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Abstract
The piecewise testable separability problem asks, given two input languages, whether there exists
a piecewise testable language that contains the first input language and is disjoint from the second.
We prove a general characterisation of piecewise testable separability on languages in a well-quasi-
order, in terms of ideals of the ordering. This subsumes the known characterisations in the case
of finite words. In the case of finite ranked trees ordered by homeomorphic embedding, we show
using effective representations for tree ideals that it entails the decidability of piecewise testable
separability when the input languages are regular. A final byproduct is a new proof of the
decidability of whether an input regular language of ranked trees is piecewise testable, which was
first shown in the unranked case by Bojańczyk, Segoufin, and Straubing (Log. Meth. in Comput.
Sci., 8(3:26), 2012).

1998 ACM Subject Classification F.4.3 Formal Languages, F.4.1 Mathematical Logic

Keywords and phrases Well-quasi-order, ideal, tree languages, first-order logic

1 Introduction

The separability problem for a class C of input languages and a class S of separators, asks
given two input languages L and L′ from C whether there exists a language S from S such
that L ⊆ S and S∩L′ = ∅. This classical problem has been studied in formal language theory
since the 70’s [32], but has sparked renewed interest due in particular to its connection with
the definability problem: given L from C, does L belong to S? When C is effectively closed
under complement, this last question reduces to the separability of L and of its complement.
Separability thus generalises definability, and has been instrumental in the recent advances
on the definability problem for the alternation hierarchy over finite words [28].

We focus in this paper on the class of piecewise testable languages as class S of separat-
ors. Over finite words, this coincides with the languages defined by BΣ1(<), the Boolean
combinations of existential first-order sentences with order, and is one of the oldest and best-
known classes of languages with decidable definability: Simon [31] showed that a language
is piecewise-testable if and only if its syntactic monoid is J -trivial. Lately, this has been
extended in two different directions:

Over finite unranked ordered trees, Bojańczyk, Segoufin, and Straubing [7] generalise
Simon’s algebraic approach and characterise the syntactic forest algebræ of piecewise
testable tree languages defined by the most common signatures. This yields the decidability
of the piecewise testable definability problem for regular unranked tree languages.
Over finite words, Almeida and Zeitoun [2, 3] first proved the decidability of the PTL
separability problem for regular input languages, based on a topological characterisation
of separability. This abstract characterisation has been turned into a much more efficient
characterisation in terms of patterns found simultaneously in L and L′ [29, 10], which
culminated in the work of Czerwiński, Martens, van Rooijen, Zeitoun, and Zetzsche [11]
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2 Deciding Piecewise Testable Separability for Regular Tree Languages

with a proof of the decidability of piecewise separability for many classes C of input
languages, which even includes the higher-order pushdown languages [19]. The crux of
this proof is a reduction to the computation of representations for downward-closures [35]
ordered by scattered subword embedding.

Separability for Tree Languages. Considering these two lines of research side by side begs
the question whether piecewise testable separability might be decidable over richer structures
than words, and in particular over trees. In this paper, we answer positively by proving:

I Theorem 1. Piecewise testable separability is decidable for regular languages of ranked
trees ordered by homeomorphic embedding.

Since the class of regular tree languages is effectively closed under complement, Theorem 1
entails as a sub-problem the decidability of the corresponding definability problem:

I Corollary 2. Piecewise testable definability is decidable for regular languages of ranked
trees ordered by homeomorphic embedding.

Thus, apart from the restriction to ranked trees, Theorem 1 also yields as a byproduct a new
proof of decidability for the piecewise testable definability problem studied by Bojańczyk
et al. [7], in the most challenging case of homeomorphic embeddings.

Order-Theoretic Framework. We employ vastly different techniques from Bojańczyk et al.’s,
and Theorem 1 should be thought of as a proof of concept for our main contribution, which
is a very general order-theoretic framework for piecewise testable separability:

We characterise in Section 3 separability by piecewise testable languages over any com-
binatorial well-quasi-order ; this encompasses for instance words ordered by scattered
subword embedding and trees ordered by homeomorphic embedding or minor ordering.
Our characterisation proceeds similarly to the topological characterisation of Almeida [2]
by comparing the closures of L and L′, but is stated in purely order-theoretic terms and
compares the ideals—i.e. the irreducible downwards-closed sets—adherent to L and L′.
The advantage of this approach is that it scales to more complex structures than words—
we have a toolkit of effective ideal representations at our disposal [14, 16]—and leads
to a very simple and general proof, that delegates syntactic manipulations to the ideal
representation. Our techniques encompass the word case: e.g. the patterns derived by
Czerwiński et al. [11] turn out to be representations for word ideals [22, 1], and we eschew
the technical work on patterns that absorbed a large part of Czerwiński et al.’s proof.
We then show in Section 4 how to turn our characterisation into a generic decision
procedure, by reduction to the adherence membership problem for the class C. Provided
we have effective representations for ideals, this yields directly the decidability for regular
tree languages. We also derive the reduction of Czerwiński et al. to the computation of
downward-closures in full generality.
In order to instantiate this framework for tree languages, we provide in Section 5 our last
ingredient: an effective representation for ideals of ranked trees ordered by homeomorphic
embedding. This is a contribution of independent interest, which fixes an issue with the
representation proposed in [14].

We start in Section 2 by defining piecewise testable languages in the general setting of
combinatorial quasi-orders, and by recalling their logical characterisation. We assume the
reader is already familiar with tree languages; see [9] for a general reference. Due to space
constraints, some material will be found in the appendices.
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2 Piecewise Testable Languages

We work in the first part of this paper with combinatorial classes X of elements, where X is
a countable set equipped with a size function |.|:X → N such that X≤n def= {x ∈ X | |x| ≤ n}
is finite for every n. As soon as we equip X with a quasi-ordering ≤, we can define a notion
of piecewise-testable languages (see Section 2.1). The usual setting for piecewise testable
languages is however that of classes of finite structures along with the embedding relation, in
which case those sets also enjoy a logical characterisation (see Section 2.2).

2.1 Pieces
Let us fix a class X equipped with a transitive reflexive relation ≤ ⊆ X ×X, i.e. (X,≤) is a
quasi-order (a qo). Two elements x and y are n-piecewise equivalent, noted x ≡n y, if for
every z ∈ X≤n, z ≤ x if and only if z ≤ y. A subset S of X is called n-piecewise testable
(an n-PTL) over (X,≤) if S is a union of n-piecewise equivalence classes. A subset S of X
is piecewise testable (a PTL) if it is an n-PTL for some n ≥ 0. This is well-known to be
equivalent to the following formulation:

I Fact 3. S is an n-PTL over (X,≤) if and only if S is a finite Boolean combination of
principal filters ↑x def= {x′ ∈ X | x ≤ x′} where x ∈ X≤n.

2.2 Logical Characterisation
Although the choice of the particular quasi-order (X,≤) is irrelevant to Fact 3 and the
treatment in Section 3, one normally chooses X to be a class K of finite structures over some
signature σ and ≤ to be the induced substructure ordering, which we denote by ‘v’. This leads
to a well-known logical characterisation in terms of the Boolean closure of existential first-
order formulæ—one of the chief motivations for studying piecewise testable languages. Other
orderings may lead to different logical characterisations, or have no logical characterisation.

Finite Structures. We consider finite relational structures M = 〈M, (Ri)i∈I〉 over a finite
signature σ = (Ri)i∈I (we conflate the names of relations in σ with their interpretations
in M). The finite set M is the domain of M and each relation Ri ⊆Mri has a prescribed
arity ri > 0. The size |M| of M is the cardinality of its domain. A class K of structures is a
set of such finite structures sharing the same signature σ and closed under isomorphism.

I Example 4 (Finite Words). Let Σ be a finite alphabet; we write Σ∗ for the set of finite
words over Σ. Such a word w can be seen as a relational structure over σs def= ((Pa)a∈Σ, <)
with its set of positions {1, . . . , |w|} as domain (where |w| denotes the length of w, and thus
coincides with its size), and Pa(x) for x ∈ {1, . . . , |w|} holds if and only if the xth symbol of
w is a ∈ Σ, while x < y has the obvious interpretation.

I Example 5 (Ranked Trees). Fix a finite ranked alphabet F , where each symbol f is mapped
to a single rank r(f) ≥ 0, and write Fr for the subset of F with rank r. A (finite, ranked,
ordered) tree is defined inductively as a term f(t1, . . . , tr) where f ∈ Fr and t1, . . . , tr are
trees [see e.g. 9]. The notions of node, child, parent, descendant, and ancestor relations
between nodes of a tree are defined as usual. We denote by T (F) the set of trees over F .

A tree can be seen as a structure with its set of nodes as domain; several signatures are
then pertinent [see 7, and Appendix B]. We shall focus later in this paper on the signature
σT

def= ((Pf )f∈F , <,<dfs,u) where, for all nodes x, y,
Pf (x) holds whenever x is labelled by f ,
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x < y whenever x is an ancestor of y,
x <dfs y whenever x is visited before y in a depth-first, left-first traversal of the tree—this
is known as the document order—, and
z = x u y whenever z is the least common ancestor of x and y, i.e. z is the unique
descendant of all the nodes which are ancestors of both x and y.

Embeddings. Recall that A v B if and only if there exists an embedding from A to B,
i.e. an injective mapping e from A to B that preserves the relations: for all i ∈ I and
a1, . . . , ari

∈ A, (a1, . . . , ari
) ∈ Ri in A if and only if (e(a1), . . . , e(ari

)) ∈ Ri in B.

I Example 6 (Scattered Subword Embedding). The signature σs of Example 4 for finite words
in Σ∗ gives rise to an embedding relation vs known as the (scattered) subword embedding:
u vs v if and only if u = a1 · · · am and v = v0a1v1 · · · vm−1amvm for some a1, . . . , am ∈ Σ
and v0, . . . , vm ∈ Σ∗.

I Example 7 (Homeomorphic Tree Embedding). Using the signature σT of Example 5 for
trees in T (F), the ordering t vT t′ is better known as the homeomorphic tree embedding
relation, and holds for t = f(t1, . . . , tr) and t′ = g(t′1, . . . , t′s) if and only if

there exists 1 ≤ i ≤ s such that t vT t′i, or
f = g (and thus r = s) and for every 1 ≤ i ≤ r, ti vT t′i;

see Appendix B for a proof of this folklore result. Note that (Σ∗,vs) is isomorphic to
(T (FΣ),vT ) where FΣ

def= Σ]{$} assigns rank 1 to letters in Σ and rank 0 to $, so our results
on ranked trees properly generalise the case of finite words.

Existential First-Order Logic. Consider first-order logic over the signature σ, and a class
of structures K over σ. Given a sentence ϕ, the set of structures M ∈ K such that M |= ϕ is
called the (first-order) language of ϕ. It is well-known that existential sentences in Σ1(σ)
define upwards-closed first-order languages S with respect to embeddings, i.e. such that
S = ↑S def= {M′ ∈ K | ∃M ∈ S .M vM′}; however the converse does not necessarily hold [33].

We are interested here in the Boolean closure BΣ1(σ) of Σ1(σ):

I Fact 8. A set S is an n-PTL over (K,v) if and only if it is definable by a sentence in
BΣ1(σ) with at most n variables.

3 Ideal Characterisation of PTL Separability

A set S ⊆ X separates L ⊆ X from L′ ⊆ X if L ⊆ S and S ∩L′ = ∅. This can be turned into
a decision problem when restricting L and L′ to a class C ⊆ 2X of finitely representable sets:
I Problem : PTL separability for C over (X,≤)
input representations of L and L′ from C
question are L and L′ PTL separable, i.e. does there exist S a PTL over (X,≤) that separates

L from L′?

In this section, we assume that (X,≤) has the additional property of being a well-quasi-
order (see Section 3.1). Under this assumption, we establish in Section 3.3 a characterisation
of PTL separability in terms of ideals of (X,≤) (whose definition we recall in Section 3.2).
This yields a generic framework in which the decidability of PTL separability can be tackled,
which we present in sections 4 and 5 and instantiate for the case of (T (F),vT ) the set of
ranked trees together with homeomorphic embeddings against the class C = Reg(T (F)) of
regular tree languages.
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3.1 Well-Quasi-Orders
Given a qo (X,≤) and a subset S ⊆ X, the downward-closure of S is ↓S def= {x ∈ X | ∃s ∈
S . x ≤ s}. A subset D ⊆ X is downwards-closed if D = ↓D; when D is a singleton {x} we
write more succinctly ↓x. The notions of upward-closure and upwards-closed subsets are
defined similarly.

A quasi-order (X,≤) is a well-quasi-order (wqo) if in every infinite sequence x0, x1, . . .

of elements of X, one can find an infinite sequence of indices i0 < i1 < · · · such that
xi0 ≤ xi1 ≤ · · · [21, 23]. Equivalently, (X,≤) is well-founded (there are no infinite descending
sequences x0 > x1 > · · · ) and satisfies the finite antichain condition (FAC), i.e. all its
antichains are finite. Still equivalently, (X,≤) has the descending chain condition: there are
no infinite descending sequences D0 ) D1 ) · · · of downwards-closed subsets Di ⊆ X.

For instance, any finite set ordered by equality is a wqo by the Pigeonhole Principle.
As another example, if (X,≤X) and (Y,≤Y ) are two wqos, then by Dickson’s Lemma,
their Cartesian product X × Y is well-quasi-ordered by the product ordering defined by
(x, y) ≤ (x′, y′) if and only if x ≤X x′ and y ≤Y y′.

In the case of examples 4 and 6, by Higman’s Lemma [21], the subword embedding relation
vs well-quasi-orders Σ∗. Turning to examples 5 and 7, as first shown by Higman [21], the
homeomorphic tree embedding relation vT similarily well-quasi-orders T (F), and Kruskal’s
Tree Theorem [23] shows that this generalises to unranked trees. Finite trees are therefore also
well-quasi-ordered by the coarser tree minor relation [17] (this is the main ordering considered
by Bojańczyk et al. [7]; see Appendix B). More examples of well-quasi-ordered classes of
structures under embedding are provided by finite undirected graphs of bounded-depth over
a signature containing only the edge relation [12]—i.e. the embedding relation is the induced
subgraph ordering—; see also [4] for some classes of labelled graphs.

3.2 Ideals
An ideal of (X,≤) is a downwards-closed and (up-)directed subset I ⊆ X, where this last
condition ensures that I is non-empty and that, given any x ∈ I and y ∈ I, there exists z ∈ I
with x ≤ z and y ≤ z. A related notion is the following. A downwards-closed subset D of
(X,≤) is irreducible if and only if it is non-empty, and for any two downwards-closed subsets
D1, D2 such that D ⊆ D1 ∪D2, D is contained in D1 or in D2 already; equivalently, D is
non-empty and cannot be written as the union of two proper, downwards-closed subsets.

I Fact 9 (c.f. Lemma 1 in [8]). The following are equivalent for a downwards-closed subset
D of a quasi-ordered set: (a) D is an ideal; (b) D is directed; (c) D is irreducible.

We write Idl(X) for the set of ideals of X. Ideals are especially useful when (X,≤) is a
wqo: for one thing, when X is countable, Idl(X) is then also countable [8, Theorem 1], and
furthermore any downwards-closed subset has a decomposition as a finite union of ideals:

I Fact 10 (c.f. Lemma 2 in [8]). A qo is FAC if and only if every downwards-closed subset is
a finite union of ideals.

3.3 Characterising Separability
Over any qo (X,≤), the case where L and L′ are not PTL separable has a well-known
characterisation in terms of sequences of indistinguishable witnesses, which is a straightforward
consequence of the definitions:
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I Lemma 11. L and L′ are not PTL separable over a qo (X,≤) if and only if there exist
two sequences of elements (xn)n∈N in L and (x′n)n∈N in L′ such that for every n, xn ≡n x′n.

Proof Idea. It suffices to observe that L and L′ are not n-PTL separable if and only if there
exist xn ∈ L and x′n ∈ L′ such that xn ≡n x′n. See Appendix A for a detailed proof. J

When (X,≤) is a wqo, we have another characterisation in terms of directed subsets
of L and L′ defining the same ideal. The fact that (X,≤) is wqo is needed in order for
Lemma 12 to hold: otherwise, Appendix B.3 presents a counter-example for the subtree
ordering over T (F).

I Lemma 12 (Key Lemma). L and L′ are not PTL separable over a wqo (X,≤) if and only
if there exist two directed sets ∆ ⊆ L and ∆′ ⊆ L′ such that ↓∆ = ↓∆′.

Proof of ‘if’. Let ∆ ⊆ L and ∆′ ⊆ L′ be two directed sets with ↓∆ = ↓∆′. Let us show that
for every n ∈ N, there exist xn ∈ L and x′n ∈ L′ such that xn ≡n x′n, from which Lemma 11
yields the result.

Write I for the ideal ↓∆ = ↓∆′. Observe that, for every n ∈ N, I ∩X≤n is finite since X
is a combinatorial class. Furthermore, for every z ∈ I ∩X≤n, by definition of I there exist
xz ∈ ∆ with z ≤ xz and x′z ∈ ∆′ with z ≤ x′z. Since ∆ and ∆′ are directed, we can find
xn ∈ ∆ and x′n ∈ ∆′ greater or equal to all those finitely many xz and x′z when z ranges over
I ∩X≤n. Then xn ≡n x′n, since for any z ∈ X≤n, either z ∈ I and then both z ≤ xz ≤ xn
and z ≤ x′z ≤ x′n, or z 6∈ I and then both z 6≤ xn and z 6≤ x′n since I is downwards-closed. J

Proof of ‘only if’. Assume L and L′ are not PTL separable, hence by Lemma 11 there exist
two infinite sequences (xn)n in L and (x′n)n in L′ with xn ≡n x′n for every n.

Let us consider the infinite sequence of pairs (xn, x′n)n∈N. By Dickson’s Lemma, X×X is
a wqo for the product ordering, hence there exists an infinite sequence of indices i0 < i1 < · · ·
such that xij ≤ xij+1 and x′ij ≤ x′ij+1

for every j ∈ N. Define ∆ def= {xij | j ∈ N}
and ∆′ def= {x′ij | j ∈ N}. These two sets are directed; they are actually infinite chains
xi0 ≤ xi1 ≤ · · · and x′i0 ≤ x

′
i1
≤ · · · .

It remains to show that ↓∆ = ↓∆′. By symmetry, it suffices to show ∆ ⊆ ↓∆′. Consider
some xij ∈ ∆; then there exists some index ik > max(ij , |xij |). Hence xij ≤ xik , and since
xik ≡ik x′ik , xij ≤ x

′
ik

and thus xij ∈ ↓∆′. J

Adherences. Let S be a subset of X. We define the adherence of S as the set of ideals
defined by the directed subsets of S:

Adh(S) def= {↓∆ ∈ Idl(X) | ∆ ⊆ S is directed } . (1)

Informally, the set S is ‘dense’ in its adherent ideals I. Lemma 12 can be restated as
saying that L and L′ are PTL separable if and only if their adherences are disjoint, i.e.
Adh(L) ∩Adh(L′) = ∅.

Related Work over Finite Words. Lemma 12 is reminiscent of several results on separability
for word languages over Σ∗. Almeida [2] showed that two regular languages over Σ are PTL
separable over (Σ∗,vs) if and only if their topological closures inside a specific profinite
semigroup do not intersect. This lead to a first decision procedure [3] by explicitly constructing
representations for these topological closures and testing their intersection for emptiness—the
counterpart in terms of Lemma 12 would be to compute the adherences of L and L′.
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Major improvements were brought by Place et al. [29] and Czerwiński et al. [10] and
culminate in Theorem 2.1 of [11], by reducing this non-empty intersection check to identifying
a common pattern ‘densely’ matched by both L and L′; this leads to a decidable PTL
separability for many classes C ⊆ 2Σ∗ , for instance context-free languages and languages of
labelled vector addition systems [11] and languages of higher-order pushdown automata [19].
It turns out that these patterns are essentially finite representations for ideals of (Σ∗,vs), so
Lemma 12 subsumes Theorem 2.1 of Czerwiński et al. [11]—and has a considerably simpler
proof.

4 Deciding PTL Separability

While Lemma 12 provides a general characterisation for PTL separability, turning it into a
decision procedure requires finite representations and effectiveness assumptions on its various
ingredients. We define a set of such assumptions in Section 4.1, which is sufficient to derive
a generic algorithm. We describe the latter in two steps: we first show in Section 4.2 a
reduction to the adherence membership problem. The final step in Section 4.3 is to show that
this last problem is decidable for the set of regular tree languages over (T (F),vT ).

4.1 Effectiveness Assumptions
In order to put Lemma 12 into practice, we need to consider in more details how we are
going to represent PTLs over (X,≤), ideals in Idl(X), and languages in C.

Effective PTL Representations. Fact 3 provides a natural representation for PTLs as finite
Boolean combinations of principal filters, i.e. more concretely as terms of the free Boolean
algebra with elements of X as atoms.

Effective Ideal Representations. Recall that over a countable wqo (X,≤), Idl(X) is also
countable [8]. In Section 4.2, we only need to have explicit ideal representations as a means of
enumerating ideals, while Corollary 15 further needs a means of computing representations as
regular tree languages. Section 5 fulfils both requirements by providing ideal representations
for (T (F),vT ) as regular tree expressions.

Effective Classes of Languages. Our last effectiveness assumptions regard the class of
languages C. We call C PTL-effective over a qo (X,≤) if
C has decidable emptiness: given a representation for L ∈ C, there is an algorithm that
decides whether L = ∅, and if
C is effectively closed under intersection with PTLs: given a representation for L ∈ C and
one for S a PTL over (X,≤), there is an algorithm that constructs a representation for
L ∩ S in C.

For instance, both over (Σ∗,vs) and over (T (F),vT ), a principal filter ↑x is a regular
language, and since regular languages are closed under Boolean operations by Fact 3 any
PTL is regular. Thus, PTL-effective classes of word and tree languages abound, starting
with regular languages themselves, but also context-free, etc.

4.2 Reducing to Adherence Membership
We describe our decision procedure in two steps. The first one reduces the PTL separability
problem for a PTL-effective class C to the following problem:



8 Deciding Piecewise Testable Separability for Regular Tree Languages

I Problem : Adherence Membership for C over (X,≤)
input a representation for L ∈ C and one for I ∈ Idl(X)
question is I ∈ Adh(L)?

I Proposition 13. Let (X,≤) be a wqo with ideal representations and C ⊆ 2X be PTL-
effective over (X,≤). Then there is a Turing reduction from the PTL separability problem to
the adherence membership problem.

Proof. Given an oracle for the adherence membership problem for C over (X,≤), our
algorithm consists of two semi-decision procedures that take representations for L ∈ C and
L′ ∈ C as input. The first attempts to show that L and L′ are PTL separable, and enumerates
representations of PTLs S until L ∩ (X \ S) = ∅ and L′ ∩ S = ∅. This is possible because
C is PTL-effective and complementing a PTL representation is trivial. The second relies
on Lemma 12 and attempts to show that L and L′ are not PTL separable by enumerating
representations of ideals I until I ∈ Adh(L) and I ∈ Adh(L′), using the oracle for adherence
membership for the tests. J

4.3 Deciding Adherence Membership
Regular Languages. In the case of regular tree languages over T (F), the adherence mem-
bership problem is decidable thanks to the following lemma:

I Lemma 14. Let (X,≤) be a qo and L ⊆ X. Then I ∈ Adh(L) if and only if I ⊆ ↓(I ∩L).

Proof. The ‘only if’ part is immediate since I = ↓∆ for ∆ ⊆ L implies ∆ ⊆ I ∩ L and thus
I ⊆ ↓(I ∩ L). For the ‘if’ part we show that I ∩ L is directed. Since I is non-empty and
included in ↓(I ∩ L), I ∩ L is also non-empty. Furthermore, if x, y are in I ∩ L, then since I
is directed there exists z ∈ I such that x ≤ z and y ≤ z, and since I ⊆ ↓(I ∩ L) there exists
z′ ∈ I ∩ L such that z ≤ z′. J

Now, if L is a regular tree language, I is also effectively regular using the ideal representations
from Section 5, and so are I ∩ L and ↓(I ∩ L) since regular tree languages are closed under
intersection and linear tree homomorphisms, hence I ⊆ ↓(I ∩ L) is decidable since inclusion
of regular tree languages is decidable, proving Theorem 1:

I Corollary 15. Adherence membership is decidable for regular tree languages over (T (F),vT ).

Generic Approach. Let us finally generalise the previous idea. Our issue is that, for instance
when C is the class of context-free languages over Σ∗, while I is a regular language and
↓(I ∩L) is a computable context-free language, the inclusion test between a regular language
and a context-free one is in general undecidable. Thankfully, ↓(I ∩L) is regular for arbitrary
languages L by Fact 10, since it is a finite union of ideals and ideals are regular. However,
the issue is then to compute a representation of ↓(I ∩ L) as a regular language, or more
generally to solve the following problem:
I Problem : Ideal Decomposition for C over (X,≤)
input a representation for L ∈ C
output ↓L as a finite union of representations of ideals in Idl(X).

The following result requires effective operations on ideal representations. We refer the
reader to [14, 16] for a systematic study of algorithms on finite ideal representations for wqos;
here we use the notion of effective ideal representations as defined by Goubault-Larrecq
et al. [16] to prove (see Appendix C.2):
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I Proposition 16. Let (X,≤) be a wqo with effective ideal representations and C ⊆ 2X be
PTL-effective over (X,≤). Then the adherence membership problem and the ideal decomposi-
tion problem are Turing-equivalent.

Two remarks are in order. The first is that the seemingly innocuous hypothesis that C
is PTL-effective is actually crucial: Theorem V.2 and Theorem VIII.1 in [25] provide an
instance of undecidable adherence membership but computable ideal decompositions over
a wqo with effective ideal representations; in these results, C is the set of run structures
between two configurations of a vector addition system, and has decidable emptiness but
lacks effective closure under intersection with PTLs. The second is that it might seem overkill
to ask for ideal decompositions when regular representations for ↓L would work just as
well in practice; however the proofs in Section 5 also entail that ideal decompositions are
computable for regular tree languages over (T (F),vT ), hence the two are equivalent.

Related Work over Finite Words. Propositions 13 and 16 together show that PTL separab-
ility reduces to the computation of ideal decompositions for downward-closures over any wqo
with effective ideal representations. This includes as a special case (Σ∗,vs) using the repres-
entations in [22, 1], and since ideal decompositions of downward-closures are computable for
many classes of PTL-effective word languages [35]—including context-free languages [34],
reachability languages of vector addition systems [18], matrix languages [35], and higher-order
pushdown languages [19]—, PTL separability is decidable for them.

In fact, propositions 13 and 16 subsume most of Theorem 2.5 of Czerwiński et al. [11],
which is stated for full trios C over Σ∗, i.e. classes of languages closed under rational
transductions—which are thus effectively closed under intersection with PTLs. There
is a small price to pay for our level of generality, which is that their Theorem 2.5 also
shows a converse reduction over (Σ∗,vs) from the ideal decomposition problem back to
the PTL separability problem. In our general setting, the best we know is that L def= I and
L′

def= X \ ↓(I ∩ S) are PTL-separable if and only if I ∈ Adh(S) by Lemma 14, but this
either uses the closure of C under complementation and downward-closure, or already uses
computable ideal decompositions. The former however holds for regular languages:

I Proposition 17. There is a many-one reduction from the adherence membership problem
to the PTL separability problem for regular tree languages over (T (F),vT ).

5 Ideals for Ranked Trees with Homeomorphic Embedding

In this section, we provide finite representations for ideals of ranked trees ordered by
homeomorphic embedding. These representations are expressed as tree regular expressions [9,
Section 2.2]. We show in Section 5.1 that any downwards-closed subset of T (F) can be
represented as a simple tree regular expression (STRE), which we construct from its tree
automaton. In Section 5.2, we then characterise ideals in this syntax as tree products, obtained
as the summands of the normal form according to a rewrite system. Thanks to this particular
proof strategy, the entire construction also solves the ideal decomposition problem: given a
regular tree language, first build the STRE for its downward-closure, then normalise this
STRE into a union of tree products representing its ideals.

Note that a concrete syntax for ranked tree ideals was proposed in [14]. However, no proof
was given, and indeed the proposed tree regular expressions failed to be downwards-closed.
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5.1 Simple Tree Regular Expressions
We define simple tree regular expressions (STREs) by the following abstract syntax:

S ::= P1 + · · ·+ Pm P ::= f?(S, · · · , S) | C∗.S
C ::= A+ · · ·+A A ::= f(S�, · · · , S�) S� ::= S | �

where f ∈ Fr in f?(P1, · · · , Pr) and in f(S�1, · · · , S�r), the sum operation + is associative
and commutative (we shall sometimes write

∑m
i=1 Pi for P1 + · · · + Pm) with 0 denoting

the empty sum, and � 6∈ F is a placeholder. Note that � is not meant to denote a family
of placeholders, rather a single one. The extended trees over the alphabet F ∪ {�}, where
� has arity 0, are called contexts. The STREs of the form P are called tree pre-products.
Among them, the tree products will be our notations for ideals, see Section 5.2.

Semantics. We write t ∈ S as an abbreviation for ‘t is in the language of S,’ and define
this language by structural induction on S. Accordingly, t ∈ f?(S1, · · · , Sn) if and only if
either t is of the form f(t1, · · · , tn) with ti ∈ Si for every i, 1 ≤ i ≤ n, or if t ∈

⋃n
i=1 Si. The

latter is necessary for S to denote a downwards-closed language. As the notation suggests,
for S = P1 + · · ·+Pm, t ∈ S iff t ∈ Pj for some j, 1 ≤ j ≤ m, and the language of 0 is empty.

The productions of C, A, and S� serve to form iterators C∗.S. The language of A =
f(S�1, · · · , S�n) consists of those contexts in T (F ∪ {�}) of the form f(c1, · · · , cn) where
ci ∈ S�i for every i. In turn, c ∈ S� if and only if either S� = � and c is the trivial context �,
or S� is an STRE S, c is a tree t in T (F), and t ∈ S. The language of C = A1 + · · ·+Am is
the union of the languages of Aj , 1 ≤ j ≤ m.

Intuitively, the language of C∗.S should consist of all trees obtained by applying contexts
in C, repeatedly, until one reaches a tree in S. For example, (f(�))∗.a? will recognise all
trees of the form fn(a), n ∈ N. There are however two catches.
1. The first one has to do with patterns A where � occurs more than once: as usual

with tree regular expressions, in replacing � by a tree from S, several occurrences of
� can be replaced by different trees from S. Hence (f(�,�))∗.(a? + b?) consists of all
binary-branching trees with inner nodes labelled f and leaves labelled a or b, including
f(f(a, a), a) and f(f(b, b), b) but also f(f(a, b), a)) or f(f(b, b), a) among others. (We
assume f binary, and a and b of rank 0.)For a context c, and a set of trees S, accordingly,
we shall write c[S] for the set of trees obtained from c by replacing each occurrence of �
by a (possibly different) tree in S.

2. The second catch has to do with downward-closure. It is tempting to define the trees
of C∗.S as those in c1[· · · [ck[S]] · · · ], for some k ∈ N and some c1, · · · , ck ∈ C. However,
there are cases where that language would fail to be downwards-closed, e.g., (f(a?,�))∗.b?
would contain f(a, b) but not a, according to that semantics.
We repair that as follows. For A = f(S�1, · · · , S�n), define suppA as the set of trees
t ∈ T (F) such that some context f(· · · , t, · · · ) (i.e., with one of its arguments equal
to t) is in the language of A. Alternatively: if those S�i, 1 ≤ i ≤ n, that are different
from � define non-empty languages, then suppA is the union of those languages; if some
S�i 6= � has an empty language, then suppA = ∅. Hence, for example, supp f(�,�) = ∅,
supp f(a?,�) = a? = {a}, and supp f ′(a?,�, 0) = ∅. For C = A1 + · · · + Am, let
suppC =

⋃m
j=1 suppAj .

We are now ready to define the language of C∗.S, as the language of trees in c1[· · · [ck[S ∪
suppC]] · · · ], for some k ∈ N and some c1, · · · , ck ∈ C. (In writing S ∪ suppC, we confuse
the STRE S with the language it defines.)



J. Goubault-Larrecq and S. Schmitz 11

q1

a

f(_, _)

q3

d

h(_, _)

q2

q4

b

g(_)

(a) Initial tree automaton.
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a
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d
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q2

q4

b

g(_)

(b) ε-strongly connected components.

Figure 1 Converting tree automata to STREs.

I Proposition 18. Every STRE defines a downwards-closed language of (T (F),vT ). Every
downwards-closed language of (T (F),vT ) is the language of some STRE.

Proof. The first part can be shown by structural induction on STREs; see Appendix C.3 for
details. For the converse direction, let L be a downwards-closed language. The complement
T (F) \ L of L is upwards-closed, and since vT is a wqo, T (F) \ L can be written as the
upward-closure ↑{t1, t2, · · · , tn} of finitely many trees. For each i, ↑ ti is easily seen to be
recognisable by a finite (bottom-up) tree automaton. Since finite unions and complements of
recognisable languages are recognisable, L is recognised by some finite tree automaton A.

We now convert A to an STRE. In general, we describe a procedure that converts any
(ε-free) finite tree automaton A to an STRE whose language is the downward-closure ↓L(A)
of the language recognised by A. This is best explained on an example: see Figure 1a, where
there is one 0-ary transition a (from no state) to state q1, one binary transition f from the
pair of states q1, q2 to q3, and so on. In textual form, we write these transitions as rewrite
rules [9]: a → q1, f(q1, q2) → q3, h(q3, q3) → q2, c → q3, g(q4) → q4, b → q4. A tree t is
recognised at a state s if and only if t→∗ s, using the rewrite rules of A. There is a set of
final states, marked with an outgoing arrow with dangling end: in our example, just q3. The
language L(A) of A is the set of trees recognised at some final state.

We first extend our automaton with ε-transitions. An ε-transition from s to s′ will be
drawn as a dashed arrow, see Figure 1b, and is just a rewrite rule of the new form s→ s′.
This implies that every tree recognised at s is also recognised at s′. For each transition, say
f(s1, s2, · · · , sn)→ s, of A, we add n ε-transitions s1 → s, s2 → s, . . . , sn → s. (To make
things clear, we are assuming that A does not originally contain any ε-transition.)Call the
resulting automaton ↓A. It is an easy exercise to show that L(↓A) = ↓L(A).

There is a graph underlying ↓A, whose vertices are the states of ↓A, and whose edges
are the ε-transitions. Build its strongly connected components: on Figure 1b, they are shown
against a grey background. By construction, any two states in the same strongly connected
component C recognise exactly the same trees, so it makes sense to talk of the language
LC(↓A) of those trees recognised at any state of C. Let C → C ′ if and only if s → s′ for
some s ∈ C, s′ ∈ C ′. The strict ordering ≺ def= →+ is well-founded, and we shall build an
STRE SC whose language is LC(↓A), by induction along ≺.

If C is a trivial strongly connected component (one state s, no self-edge), then enumerate
its incoming non-ε transitions fi(si1, si2, · · · , sini

) → s, 1 ≤ i ≤ m. Let Sij be an STRE
whose language is the set of trees recognised at sij , which is given by induction hypothesis.
Then SC def=

∑m
i=1 f

?
i (Si1, Si2, · · · , Sini

) is the desired STRE. For instance, the set of trees
recognised at the leftmost state q1 is the language of a?.

If C is a non-trivial strongly connected component, then enumerate the non-ε transitions
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P + P ′ →1 P ′ if P ⊆ P ′ A+A′ →1 A′ if A ⊆ A′
0 + P →1 P 0 +A →1 A

0∗.S →1 S (C + f(S1, · · · , Sn))∗.S →1 C∗.(S + f?(S1, · · · , Sn))
f?(~S1, 0, ~S2) →1 0 f?(~S1, S + S′, ~S2) →1 f?(~S1, S, ~S2) + f?(~S1, S

′, ~S2)
f(~S�1, 0, ~S2) →1 0 f(~S�1, S� + S′�,

~S�2) →1 f(~S�1, S�, ~S�2) + f(~S�1, S
′
�,
~S�2)

C∗.0 →1 0 if C =
∑m
i=1 fi(�, · · · ,�) and no fi is 0-ary

C∗.(S + S′) →1 C∗.S + C∗.S′ C∗.0 →1 0
if C is �-linear if C is �-linear

Figure 2 The rewrite relation →1.

fi(si1, si2, · · · , sini
)→ si, 1 ≤ i ≤ m, whose end state si is in C. For each pair i, j, if sij is

in C, then let S�ij
def= �; otherwise, let S�ij be an STRE whose language is the set of trees

recognised at sij , which we obtain by induction hypothesis. It is not too hard to see that
SC

def= (
∑m
i=1 fi(S�i1, S�i2, · · · , S�ini

))∗.0 is an STRE that suits our needs. For example, the
rightmost strongly connected component {q4} yields the STRE S4 = (b + g(�))∗.0. One
might have expected an STRE of the more intuitive form (g(�))∗.b?, however note that they
define exactly the same language.

Finally, ↓L(A) is the union of the languages of the strongly connected components
containing a final state; in our example the strongly connected component in the middle
yields the final STRE (d+ f(a?,�) + h(�, S4))∗.0. J

5.2 Tree Products
We characterise the STREs that define ideals of (T (F),vT ). Define a rewrite relation →1
on STREs that moves all + signs to the outside: for a →1-normal STRE S = P1 + · · ·+ Pm,
each Pi will be irreducible, hence S will be an ideal if and only if m = 1 by Fact 9.

The rewrite relation →1 is defined in Figure 2. Recall that + is understood modulo
associativity and commutativity. Letters matter, too: S, S′, S1, . . . , Sn are STREs, while P ,
P ′ are those special STREs of the form f?(S1, · · · , Sn) or C∗.S, etc. In particular, the third
rule of the second column applies provided the pattern f(S1, · · · , Sn) does not contain � at
all. In the first rules, note that inclusion of STREs is decidable.

For the two bottom rules, we need some auxiliary definitions. Say that a pattern
A = f(S�1, · · · , S�n) is �-linear if and only if at most one S�i is the placeholder �. Writing
C as A1 + · · ·+Am, we say that C is �-linear if and only if every non-empty Ai is �-linear.
The �-linearity restriction imposed on the last two rules is needed for the following to hold.

I Fact 19. If S →∗1 S′ then S and S′ define the same language.

I Lemma 20. Every STRE S has a normal form with respect to →1.

Proof. Using Bachmair and Plaisted’s associative path ordering >apo [6] on a precedence
where + is minimal, f > f? for each symbol f , and the (_)∗._ operator has lexicographic
status, we see that →1 is even a terminating relation. (Bachmair and Plaisted’s ordering
has been improved upon many times, but is sufficient in the case of just one associative
commutative symbol +.) J

I Definition 21. A tree product is any →1-normal tree pre-product P .

I Lemma 22. Every ideal of T (F) is the language of some tree product.
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Proof. By Proposition 18, an ideal I is the language of some STRE S. S has a →1-normal
form by Lemma 20, write it P1 + · · · + Pm. Since I is non-empty, m ≥ 1, and since I is
irreducible (Fact 9), it is included in, hence equal to, the language of some Pi. J

We finally check that the language of any tree product is directed by appealing to a few
lemmata, whose proofs can be found in Appendix C.4.

I Theorem 23. The ideals of T (F) are exactly the languages of tree products.

6 Concluding Remarks

We have presented a general order-theoretic characterisation of PTL separability, and shown
that it could be applied to decide PTL separability of languages beyond finite words, namely
of ranked regular tree languages ordered by homeomorphic embedding. Our work further adds
to the growing body of algorithmic applications of downwards-closed sets and ideals of well-
quasi-orders in logic and verification, e.g. in forward analysis [14, 15], backward analysis [24],
inference of inductive invariants [27], and reachability in vector addition systems [25].

We are confident our techniques apply to unranked trees, by defining suitable ideal
representations. In the same vein, it would be interesting to develop ideal representations for
the tree minor ordering, and to try to decide PTL separability for context-free tree languages.

An open-ended question is how to finely relate our order-theoretic characterisation with
the algebraic and topological characterisations typically employed for the definability and
separability problems. For instance, can one derive the characteristic equations of Bojańczyk
et al. [7] for piecewise-testable tree languages from Lemma 12?

Acknowledgements. The authors thank Wojciech Czerwiński, Luc Segoufin, and Georg
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Appendices i

A Basic Facts

We gather in this appendix the proofs of several basic facts about piecewise testable languages
and relational structures. These all seem to be folklore results, but it cannot hurt to include
formal proofs, especially since we are working in a fairly general setting.

A.1 Piecewise Testable Languages
Let us define ↓nx def= {x′ ∈ X≤n | x′ ≤ x} as the set of n-pieces of x, which is lifted to sets
S ⊆ X of elements by ↓nS def=

⋃
x∈S ↓nx.

Then, by definition of ≡n, x ≡n x′ if and only if ↓nx = ↓nx′, and therefore every element
x in an n-piecewise equivalence class C ∈ X/≡n has ↓nx = ↓nC. Since X is a combinatorial
class, X≤n is finite and this entails in particular that there are finitely many different
n-piecewise equivalence classes in X for every fixed n:

I Fact 24. For every fixed n, ≡n has finite index.

Characterisation by Principal Filters. We are now equipped to prove Fact 3:

I Fact 3. S is an n-PTL over (X,≤) if and only if S is a finite Boolean combination of
principal filters ↑x def= {x′ ∈ X | x ≤ x′} where x ∈ X≤n.

Proof. By the above observations, if C is an equivalence class in X/≡n, then ↓nC ⊆ X≤n is
a finite set, and we get an equivalent formulation for C as:

C =
⋂

x∈↓nC

↑x ∩
⋂

x′∈X≤n\↓nC

(X \ ↑x′) . (2)

Then, if S is a union of n-piecewise equivalence classes, it is necessarily a finite union by
Fact 24, and can be expressed as a finite union of Boolean combinations of principal filters
as in (2).

Conversely, observe that if z ∈ X≤n, x ∈ ↑ z, and x ≡n y, then by definition y ∈ ↑ z.
Thus a principal filter ↑ z with z ∈ X≤n is necessarily an n-PTL. We conclude by noting that
being a union of equivalence classes is preserved under Boolean operations, and thus n-PTLs
are closed under Boolean combinations. J

Separability. PTL separability has a straightforward characterisation in terms of indistin-
guishable witnesses:

I Lemma 11. L and L′ are not PTL separable over a qo (X,≤) if and only if there exist
two sequences of elements (xn)n∈N in L and (x′n)n∈N in L′ such that for every n, xn ≡n x′n.

Proof. It suffices to show that L and L′ are not n-PTL separable if and only if there exist
xn ∈ L and x′n ∈ L′ such that xn ≡n x′n. Since L and L′ are PTL separable if and only if
there exists n such that they are n-PTL separable, the statement will follow.

Assume S is an n-PTL such that L ⊆ S and L′ ∩ S = ∅, but that there exist x ∈ L and
x′ ∈ L′ with x ≡n x′. Then x ∈ S and therefore x′ ∈ S, contradicting S ∩ L′ = ∅.

Conversely, if for all x ∈ L and x′ ∈ L′, x 6≡n x′, then we can define S def=
⋃
x∈L[x]n as the

union of the n-piecewise equivalence classes of the elements of L. This is an n-PTL, and
furthermore S ∩ L′ = ∅ as desired. J
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A.2 Finite Model Theory
Assume ≤ is chosen as the induced substructure ordering v over a class K of finite structures.

Characterisation by Existential First-Order Sentences. We have the following logical
characterisation of piecewise testable languages:

I Fact 8. A set S is an n-PTL over (K,v) if and only if it is definable by a sentence in
BΣ1(σ) with at most n variables.

Proof. The proof relies on Fact 3 for both directions. Any principal filter ↑M can be defined
by an existential sentence ϕ with |M| variables. This uses one existentially quantified variable
per element of M and a conjunction of atoms and negated atoms describing which relations
hold between all these elements. Note that ϕ is actually existential conjunctive, i.e. does not
use disjunction.

Conversely, consider an existential sentence ϕ with n variables x1, . . . , xn. We can write
ϕ in disjunctive normal form as ϕ =

∨
1≤j≤m ϕm where each ϕj is an existential conjunctive

sentence ϕj = ∃x1 . . . xn . γj , with each γj a conjunction of atoms or negated atoms. These
conjunctions γj might be underspecified and have several minimal models with respect to
the embedding ordering. However, since σ is finite, γj can in turn be rewritten as a finite
disjunction of ‘saturated’ formulæ, by adding for every relation Ri of σ and every ri-tuple
of variables (xk1 , . . . , xkri

) taken from {x1, . . . , xn} either the atom Ri(xk1 , . . . , xkri
) or its

negation ¬Ri(xk1 , . . . , xkri
), and similarly adding xk1 = xk2 or xk1 6= xk2 . A saturated

formula is either not satisfiable, or has a single minimal model M (up to isomorphism) of
size at most n and defines the principal filter ↑M. J

WQOs and Extension Preservation. In the case of a class of finite structures K, the
embedding v ordering is always well-founded, hence (K,v) is a wqo if and only if it is FAC.

One might wonder how contrived our focus to wqos is. We argue that the classes of
structures K such that (K,v) is wqo are well-behaved, in a formal sense defined by Atserias,
Dawar, and Grohe [5]. A first-order formula ϕ is preserved under extensions in K (with
an implicit signature σ) if and only if its language is upwards-closed for v, i.e. for every
M,M′ ∈ K, if M vM′ and M |= ϕ, then M′ |= ϕ. Two formulae are equivalent (in K) if and
only if they have the same models in K. Let us say that K has the extension preservation
property if a first-order formula ϕ is preserved under extensions in K if and only if ϕ is
equivalent in K to an existential first-order formula. The Łoś-Tarski Theorem states that
for any signature σ, the class of all—finite and infinite—structures over σ has this property;
it is known to fail on the class of all finite structures [33], but to hold on several other
classes [5, 13, 20].

The interest here is that the extension preservation property holds when (K,v) is
a wqo; this does not seem to be so widely known, but is proven e.g. by Sankaran et al. [30,
Proposition 4.1]:

I Fact 25. If (K,v) is a wqo then K has the extension preservation property.

Proof. Consider a first-order sentence ϕ such that its language L(ϕ) ⊆ K is upwards-closed,
and consider the set minv L(ϕ) of minimal models of ϕ: then L(ϕ) =

⋃
M∈minv L(ϕ) ↑M.

Note that, for all finite structures M and M′, if M vM′ and M′ vM, then M and M′

are isomorphic. Hence minv L(ϕ) is an antichain up to isomorphism. Since (K,v) is a wqo,
there are therefore finitely many minimal models in minv L(ϕ) up to isomorphism, hence
L(ϕ) is a finite union of principal filters. We conclude using the fact that each one of these
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finitely many principal filters can be defined by an existential sentence (as shown e.g. in the
proof of Fact 8). J

The converse of Fact 25 does not hold in general [30, Proposition 4.3]; intuitively, the
extension preservation property only cares about first-order definable sets of structures,
whereas wqos require the whole of K to be well-behaved.

B Relational Signatures on Trees

While we focus in the main text on the signature σT = ((Pf )f∈F , <,<dfs,u), which has the
advantage of matching the well-studied homeomorphic tree embedding relation, other choices
are possible. Bojańczyk et al. [7] consider in fact several other signatures in their article on
PTL definability, and we provide here a quick comparison of the embedding relations they
define.

B.1 Homeomorphic Tree Embeddings
A first remark is that the ancestor relation can be defined by a quantifier-free formula using
the least common ancestor relation as x < y ≡ x = x u y ∧ x 6= y, hence any embedding that
preserves u also preserves < and we could define σT equivalently as ((Pf )f∈F , <dfs,u).

The following lemma is a folklore result, which we prove for the sake of completeness:

I Lemma 26. Let t = f(t1, . . . , tr) and t′ = g(t′1, . . . , t′s) be two trees in T (F). Then t vT t′
if and only if t vT t′i for some 1 ≤ i ≤ s, or f = g and ti vT t′i for every 1 ≤ i ≤ s.

Proof of ‘only if’. It suffices to check that t vT t′ in both cases. If t embeds into t′i, then
the embedding can be expanded into an embedding from t to t′. If for every 1 ≤ i ≤ r, ti
embeds into t′i by some ei and f = g, then an embedding of t into t′ is obtained by mapping
the root of t to that of t′ and using the embeddings ei for the other nodes. In both cases,
the relations of σT are preserved. J

Proof of ‘if’. Assume t embeds into t′ through some mapping e. If e maps the root of t to
some node of t′i for some 1 ≤ i ≤ s, then it also has to map all the other nodes of t inside t′i
in order to preserve the ancestor relation, i.e. e can be seen as embedding t into t′i.

Otherwise, e maps the root of t to the root of t′, and therefore they have the same label
f = g in order to preserve Pf and Pg (and thus r = s). Consider now the images of the roots
xi of each ti by e; these must be different from the root of t′ since e is injective. Assume for
the sake of contradiction that e maps two different roots xi and xj for i 6= j into nodes inside
a single t′k for some 1 ≤ k ≤ r: then the least common ancestor of e(xi) and e(xj) would
be a node inside t′k, and would be different from the image of their least common ancestor,
which is the root of t′. Hence e must induce a permutation π of {1, . . . , r} and maps xi to a
node in t′π(i). Furthermore, any inner node of ti must be mapped into an inner node of t′π(i),
as otherwise the ancestor relation < would not be preserved. Hence the restriction of e to ti
is an embedding from ti into t′π(i). Finally, if π were not the identity, then there would exist
1 ≤ i < j ≤ r such that π(j) < π(i) and thus xi <dfs xj but e(xπ(j)) <dfs e(xπ(i)) and the
document order relation <dfs would not be preserved. Thus e maps each ti into t′i. J

B.2 Tree Minors
The main signature considered by Bojańczyk et al. [7] is σm def= ((Pf )f∈F , <,<dfs). The
corresponding embedding relation is again a known one: this is a labelled version of the
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Figure 3 Two trees related by the tree minor ordering.

(ordered) tree minor ordering vm, studied for instance by Gupta [17], and can be defined
through edge contractions [7]. Tree minors well-quasi-order the set of finite trees (vT refines
vm, and also in the case of unranked trees), and our techniques could apply, provided one
identified effective ideal representations for vm and proved the decidability of the adherence
membership problem.

Figure 3 illustrates this relation on two trees, and shows that tree minors do not preserve
least common ancestors (the two trees are not related by vT ).

Note that due to our restriction to ranked trees, multiples edge contractions might be
necessary before we find again a properly labelled minor—in the example of Figure 3, we
had to contract the edges leading to the two ‘f ’ nodes and to ‘b’ and ‘d’ (since the latter
are constants, contractions delete the corresponding subtrees), but none of the intermediate
trees we obtained was respecting the symbols’ arities. Tree minors are thus more natural in
the setting of unranked trees, which incidentally is the one adopted by Bojańczyk et al. [7].

B.3 Subtree Ordering
Let <h denote the horizontal ordering: x <h y if and only if x is a sibling of y and x <dfs y.
Consider the signature σh def= ((Pf )f∈F , <h,u). This signature is considered by Bojańczyk
et al. [7, Section 6.4], and they briefly mention that their proof for σT carries over to that
case. The corresponding embedding relation vh over T (F) is again a rather natural one in
the case of ranked trees:

I Lemma 27. Let t and t′ be two trees in T (F). Then t vh t′ if and only if t is (isomorphic
to) a subtree of t′.

Proof. If t is a subtree of t′, then there is an obvious embedding of t into t′ that preserves
all the relations. Let us prove conversely that t vh t′ implies that t is a subtree of t′ by
induction on the height of t′. Let t = f(t1, . . . , tr) and t′ = g(t′1, . . . , t′s).

Let us show by induction on the height of t that, if the embedding e that witnesses t vh t′
maps the root of t to that of t′, then t = t′. First, f = g in order to preserve the predicates
Pf and Pg and thus r = s. Second, letting x1, . . . , xr and x′1, . . . , x′r denote respectively the
roots of t1, . . . , tr and t′1, . . . , t′r, e must map every xi to a node inside a different t′j in order
to preserve the least common ancestor relation u. Third, e must also preserve the horizontal
order <h, and therefore the images of the various xi must be siblings: thus e maps xi to
x′i. Four, e must map all the nodes in ti to nodes inside t′i in order to preserve the ancestor
relation. Hence ti vh t′i for every 1 ≤ i ≤ r and the restriction of e to each ti maps the root
of ti to that of t′i. By induction hypothesis, ti = t′i.

Now, if t v t′ through some mapping e, let t′′ be the subtree of t′ rooted by the image
of the root of t by e. As usual, the images of the nodes of t must all be in t′′ in order to
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preserve the ancestor relation, hence t vh t′′. By the previous claim, t′′ = t. Hence t is a
subtree of t′. J

Observe that vh strictly refines vT ; e.g. f(a, b) vT f(g(a), b) but f(a, b) 6vh f(g(a), b).
In fact, it is too fine: vh does not well-quasi-order T (F), as can be seen with the infinite
antichain {f(gn($)) | n ≥ 0} over F def= {f, g} ] {$}. Hence our techniques do not apply
directly in this case. In fact, this infinite antichain can be exploited to show that Lemma 12
requires (X,≤) to be wqo in order to apply.

I Proposition 28. There exist L and L′ not PTL separable over (T (F),vh) where all the
directed ∆ ⊆ L and ∆′ ⊆ L′ are such that ↓∆ 6= ↓∆′.

Proof. We split the infinite antichain {f(gn($)) | n ≥ 0} into its odd and even parts:
L

def= {f(g2i($)) | i ≥ 0} and L′ def= {f(g2j+1($)) | j ≥ 0}.
Any directed ∆ ⊆ L is then a singleton {f(g2i($))} for some i ≥ 0, and similarly ∆′ ⊆ L′

is directed if and only if ∆′ is a singleton {f(g2j+1($))} for some j ≥ 0. Hence, for all
directed ∆ ⊆ L and ∆′ ⊆ L′, ↓∆ = ↓ f(g2i($)) and ↓∆′ = ↓ f(g2j+1($)) are two different,
and even incomparable principal ideals.

If (T (F),vh) were a wqo, then Lemma 12 would thus yield that L and L′ are PTL
separable. However, (T (F),vh) is not a wqo, and on the contrary we observe that for every
n ≥ 0,

↓nf(g2n($)) = ↓nf(g2n+1($)) = {gm($) | m < n} , (3)

and thus f(g2n($)) ≡n f(g2n+1($)). Therefore, by Lemma 11, L and L′ are not PTL
separable. J

Note that the previous proof could also be carried out over (Σ∗,≤suf) the set of finite
words ordered by suffix (over Σ def= {f, g}): u ≤suf v if and only if there exists w ∈ Σ∗ such
that v = wu. Czerwiński et al. [10] show that PTL separability for regular languages over
(Σ∗,≤suf) is decidable, and it would be interesting to check whether PTL separability for
(T (F),vh) is decidable.

B.4 ‘Strong’ Tree Minors
The case of the signature σM def= ((Pf )f∈F , <,<h) is also considered by Bojańczyk et al. [7], and
they provide a decidable characterisation of the corresponding piecewise testable languages [7,
Theorem 6.4].

The embedding relation vM induced by this signature refines the minor ordering (e.g. in
Figure 3, none of the nodes ‘a’, ‘c’, and ‘e’ are siblings in the tree on the right, thus the two
trees are not in relation by vM ). This ordering is incomparable with the homeomorphic tree
ordering: for instance, f(a, b) vT f(g(a), g(b)) but f(a, b) 6vM f(g(a), g(b)), and conversely
f(a, b) 6vT f(g(a, b), c) but f(a, b) vM f(g(a, b), c).

Unlike the previous cases, this relation seems a bit exotic, and as far as we know it has
not been studied in the wqo literature: write t v′M t′ if there is an embedding for σM that
maps the root of t to that of t′. Then one can prove, following the same lines as in Lemma 27:

I Lemma 29. Let t = f(t1, . . . , tr) and t′ be two trees in T (F).
1. t v′M t′ if and only if

a. t′ has root label f and
b. there exists a subtree g(t′1, . . . , t′s) of t′ for some s ≥ r and an strictly monotone

mapping ϕ from {1, . . . , r} to {1, . . . , s} such that ti v′M t′ϕ(i) for every 1 ≤ i ≤ r.
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2. t vM t′ if and only if there exists a subtree t′′ of t′ such that t v′M t′′.

Proof. Point 2 is a direct consequence of point 1. Regarding the proof of point 1, we can
check that conditions a and b indeed entail t v′M t′ by suitably assembling an embedding
that preserves the relations in σM . For the converse direction, assume that t v′M t′ through
a mapping e that sends its root to the root of t′. Then the root of t′ must be labelled by f
in order to preserve Pf , thus it satisfies condition a. Furthermore, let x1, . . . , xr denote the
roots of t1, . . . , tr. We know that the images e(x1) <h · · · <h e(xr) must be siblings, hence
there exists a subtree g(t′1, . . . , t′s) of t′ such that each e(xi) roots some t′j for 1 ≤ j ≤ s, and
we let in that case ϕ(i) def= j. Then ϕ is indeed a strictly increasing mapping and r ≤ s as
desired. Finally, all the nodes in ti must be mapped to nodes in t′i in order to preserve the
ancestor relation <, hence the restriction of e to ti embeds it into t′i and sends its root to
the root of t′i, i.e. ti v′M t′i, and condition b is satisfied. J

The previous infinite antichain {f(gn(a)) | n ≥ 0} for vh becomes an infinite chain for
vM , and in fact (T (F),vM ) is a wqo (essentially the same proof arguments could be used
for unranked trees):

I Theorem 30. (T (F),vM ) is a wqo.

Proof. We proceed using a ‘minimal infinite bad sequence’ argument as first employed by
Nash-Williams [26] in his proof of Kruskal’s Tree Theorem, and prove the stronger statement
that (T (F),v′M ) is a wqo. Note that the subtree ordering is well-founded, thus any non-empty
set of trees has at least one minimal element.

Assume for the sake of contradiction that (T (F),v′M ) is not a wqo. Then there exists
a minimal infinite bad sequence s = t0, t1, . . . for v′M , i.e. where t0 was chosen among
the minimal trees (for the subtree ordering) that could start an infinite bad sequence, and
inductively for every i, ti+1 was chosen among the minimal trees (for the subtree ordering)
that could yield an infinite bad sequence starting with t0, . . . , ti.

Write each ti in the sequence s as fi(t′i,1, . . . , t′i,ri
) for some fi ∈ F and t′ij ∈ T (F). Then

we claim that the set S def= {t′i,j | i ∈ N, 1 ≤ j ≤ ri} together with v′M forms a wqo (S,v′M ).
Indeed, assuming the contrary there would exist an infinite bad sequence s′ = ti0,j0 , ti1,j1 , . . .

of elements from S. But then the infinite sequence t0, . . . , ti0−1, s
′ is bad. However, ti0,j0 is

strictly smaller than ti0 , contradicting the minimality of s.
Since (S,v′M ) is a wqo, by Dickson’s Lemma the set S′ def= {(fi, ti,1 · · · ti,ri

)} ⊆
⋃
r≤|F| Fr×

Sr is well-quasi-ordered by (f, t1 · · · tr) ≤S′ (g, t′1 · · · t′s) defined by f = g and tj v′M t′j for
every 1 ≤ j ≤ r.

With the infinite bad sequence s, we associate the infinite sequence (f0, t
′
0,1 · · · t′0,r0

), (f1, t
′
1,1, . . . , t

′
1,r1

), . . .
of elements in S′. Since (S′,≤S′) is wqo, there exists i < k such that (fi, t′i,1 · · · t′i,ri

) ≤S′
(fk, t′k,1 · · · t′k,rk

). Then ti = fi(t′i,1, . . . , t′i,ri
) and tk = fk(t′k,1, . . . , t′k,rk

) are such that fi = fk
and t′i,j v′M t′k,j for every 1 ≤ j ≤ ri. By Lemma 29 this proves ti v′M tk, contradicting the
fact that s was assumed bad. J

Theorem 30 shows that our techniques might also apply to the case of σM , provided one
worked out an effective ideal representation for (T (F),vM ) and proved the decidability of
the adherence membership problem.
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C Ideals and Tree Products

C.1 Effective Ideal Representations
Goubault-Larrecq et al. [16] study ideal representations for various wqos (X,≤), and focus
in particular on their algorithmic properties. In the following, we shall require the following
procedures on representations for elements of X and for ideals of Idl(X), and say that (X,≤)
has effective ideal representations when these procedures exist:
ideals of X (XI) compute the ideal decomposition of X;
ideal containment (IC) decide whether I ⊆ J given two ideals I, J ∈ Idl(X);
ideal intersection (II) compute the ideal decomposition of I ∩ J given two ideals I, J ∈

Idl(X);
filter complementation (CU’) compute the ideal decomposition of X \ ↑x given an element

x ∈ X.

These procedures can be employed to write procedures for the following problems:
ideal membership (IM) decide whether x ∈ I given an ideal I ∈ Idl(X). Compute X \↑x =

J1 ∪ · · · ∪ Jn using CU’; by irreducibility of I it then suffices to check that I 6⊆ Ji for
every 1 ≤ i ≤ n using IC.

ideal complementation (CD) compute a finite set B of elements x such that
⋃
x∈B ↑x =

X \ I given an ideal I ∈ Idl(X). This can be done using oracles for II and CU’ thanks to
the Generalised Valk-Jantzen Lemma [16].

C.2 Adherence Membership
I Proposition 16. Let (X,≤) be a wqo with effective ideal representations and C ⊆ 2X be
PTL-effective over (X,≤). Then the adherence membership problem and the ideal decomposi-
tion problem are Turing-equivalent.

Proof. The first reduction from the adherence membership problem to the ideal decomposi-
tion problem is an application of Lemma 14. Using CD, I has a representation as a PTL,
hence I ∩ L is in C and can be constructed. An ideal decomposition I1 ∪ · · · ∪ Ik of ↓(I ∩ L)
is then computed using the oracle, and since I is irreducible the test I ⊆ ↓(I ∩ L) is handled
by k calls to IC.

The converse reduction from the ideal decomposition problem to the adherence member-
ship problem uses an abstraction refinement algorithm already described in [25]. Given L, the
algorithm computes a descending chain D0 ⊇ D1 ⊇ · · · of downwards-closed subsets Di ⊇ L,
and halts at step k if Dk = ↓L; termination is guaranteed by the descending chain property
of the wqo (X,≤). Each Di is represented by its unique ideal decomposition, starting with
D0

def= X using XI. At every step k = 0, 1, . . . , if there is an ideal I in the decomposition of
Dk such that I 6⊆ ↓L, then we extract some x ∈ I \ ↓L by enumerating the elements of I
using IM until ↑x ∩ L = ∅, which is decidable since ↑x is a PTL, and set Dk+1

def= Dk \ ↑x
using II and CU’. The trick is that, in that situation, [25, Lemma IV.7] shows that I 6⊆ ↓L if
and only if I 6∈ Adh(L), which can be decided thanks to our oracle. J

I Proposition 17. There is a many-one reduction from the adherence membership problem
to the PTL separability problem for regular tree languages over (T (F),vT ).

Proof. Let us first show that, if (X,≤) is a wqo with effective ideal representations and C
is a PTL-effective class over (X,≤), then given as input two representations for I ∈ Idl(X)
and S ∈ C, L def= I and L′ def= X \ ↓(I ∩ S) are PTL-separable if and only if I ∈ Adh(S). If
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I ∈ Adh(S), then by Lemma 14 I ⊆ ↓(I ∩S), hence L and L′ are disjoint and I is a separator.
The latter is a PTL since it is the complement of an upwards-closed set and (X,≤) is a wqo.
Conversely, if I 6∈ Adh(S), then still by Lemma 14 there exists x ∈ I \ ↓(I ∩ S), hence L and
L′ are not disjoint and no separator of any sort can exist.

We conclude in the case where C is the class of regular tree languages over (T (F),vT ), by
observing that I, I∩S, ↓(I∩S), and T (F)\↓(I∩S) are all computable regular languages. J

C.3 Simple Tree Regular Expressions
I Lemma 31. Every STRE defines a downwards-closed language of (T (F),vT ).

Proof. We use induction on the size of the STRE, and the main point consists in checking
that if t ∈ C∗.S then any smaller tree s (w.r.t. vT ) is also in C∗.S. By induction hypothesis,
S is downwards-closed. We use a secondary induction on the k used in the definition of
the language of C∗.S as c1[· · · [ck[S ∪ suppC]] · · · ]. If k = 0, then t ∈ S, hence s ∈ S as
well. Otherwise, k ≥ 1, one of the summands in c1 is of the form f(S�1, · · · , S�n), and
t = f(t1, · · · , tn). If s is smaller than some ti, then either S�i = � and ti ∈ c2[· · · [ck[S ∪
suppC]] · · · ], which allows us to conclude by the inner induction hypothesis; or S�i is
of the form P , and is downwards-closed by the outer induction hypothesis. If instead
s = f(s1, · · · , sn) where si is smaller than ti for each i, we conclude similarly that si ∈ C∗.S
for each i, hence s ∈ C∗.S as well, by applying c1 again. J

C.4 Tree Products
Let us introduce some additional notation. We say that a pattern A = f(S�1, . . . , S�n) is
�-generated if and only if at least one is; it is empty if and only if some S�i is different from
� and has an empty language. Writing C as A1 + · · ·+Am, we say that C is �-generated if
and only if every non-empty Ai is �-generated, and is empty if and only if every Ai is empty.

By inspection of the rules defining →1, we see:

I Lemma 32. The tree products are exactly the STREs of the form:
f?(P1, · · · , Pn) where P1, . . . , Pn are tree products;
or C∗.(P1+· · ·+Pn) where n ∈ N, P1, . . . , Pn are tree products, C =

∑m
i=1 fi(P�i1, · · · , P�ini

),
each pattern P�ij is either a tree product or the placeholder �, C is �-generated, and
one of the following conditions is satisfied: (a) C is not �-linear and n ≥ 1, or (b) C is
not �-linear, n = 0, and P�ij 6= � for some i, j, or (c) C is �-linear and n = 1.

I Lemma 33. If S1, . . . , Sn are directed STREs, then so is f?(S1, · · · , Sn).

Proof. Non-emptiness is clear, since S1, . . . , Sn are non-empty. Let t, t′ any two trees in
f?(S1, · · · , Sn). If t = f(t1, · · · , tn) and t′ = f(t′1, · · · , t′n) with ti, t′i ∈ Si for every i, then
we can find t′′i ≥ ti, t′i in Si, and then f(t′′1 , · · · , t′′n) ≥ t, t′ is in f?(S1, · · · , Sn).

If t is in some Sj and t′ = f(t′1, · · · , t′n) with t′i ∈ Si for every i, then build the tree
s = f(s1, · · · , sj−1, t, sj+1, · · · , sn), where si is an arbitrary tree from the non-empty set Si,
i 6= j. Clearly, s is in f?(S1, · · · , Sn), so, by reduction to the previous case, there is a tree
t′′ ∈ f?(S1, · · · , Sn) such that s, t′ vT t′′. Since t vT s, we obtain that t, t′ vT t′′.

Similarly if t′ is in some Sk, we build a new tree s′ = f(s′1, · · · , s′k−1, t
′, s′k+1, · · · , s′n)

and conclude by a similar argument that there is a tree t′′ ∈ f?(S1, · · · , Sn) such that
t′ vT s′ vT t′′ and t vT t′′. J
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The case of STREs of the form C∗.S is more complex. The three cases (a), (b) and (c)
match those of Lemma 32, second item.

I Lemma 34. Let C = A1 + · · · + Am be a sum of patterns Ai = fi(S�i1, · · · , S�ini
),

where each S�ij that is different from � has a non-empty language. If any of the following
conditions is satisfied, then C∗.S is directed:

(a) C is not �-linear, and S has a non-empty language, or
(b) C is not �-linear, and some S�ij is different from �, or
(c) C is �-linear and �-generated, and S is irreducible.

Proof. The fact that C∗.S is non-empty is easy exercise: in case (a), C∗.S contains S; in
case (b), it contains S�ij ; in case (c), it contains S and every irreducible subset is necessarily
non-empty. Let t, t′ be any two trees in C∗.S.

In case (a), some non-empty Ai is of the form f(S�1, · · · , S�n), where � occurs at least
twice, say at positions j and j′, j 6= j′. For every k, 1 ≤ k ≤ n, define a tree tk as follows:
if S�k = � and k 6= j′ (including the case k = j), let tk = t, if k = j′ then let tk = t′,
and if S�k 6= � then pick any tree for tk from the language of S�k, which is non-empty by
assumption. We check that f(t1, · · · , tn) is in C∗.S, and t = tj , t′ = tj′ both embed into
f(t1, · · · , tn).

Case (b) reduces to (a), since if S�ij 6= �, then C∗.S defines the same language as
C∗.(S + S�ij).

In case (c), every non-empty Ai is of the form f(· · · ,�, · · · ) with a unique occurrence of
�. In that case, the language of C∗.S can be described more simply: it consists of those
trees of the form c1[c2[· · · ck[s] · · · ]], where k ∈ N, each ck is a context in the language of
C, with just one occurrence of � each, and s is a tree in S ∪ suppC. For short, say that a
context c is in C∗ if and only if it is of the form c1[c2[· · · ck[�] · · · ]], where k ∈ N and each
ck is in C. Such contexts have exactly one occurrence of �. Hence the language of C∗.S
consists of those trees c[s] where c is in C∗ and s ∈ S ∪ suppC. Given any two such trees
t = c[s] and t′ = c′[s′], we find a tree t′′ ∈ C∗.S in which both t and t′ embed, as follows.

If both s and s′ are in S, then by directedness there is an s′′ ∈ S such that s, s′ vT s′′:
we define t′′ as c[c′[s′′]].

If s ∈ S and s′ ∈ suppC, then there is an Ai = fi(S�i1, · · · , S�ini
) and a position j′,

1 ≤ j′ ≤ ni, such that S�ij′ 6= � and the language of S�ij′ contains s′. The unique position
j at which S�ij = � is different from j′. Let u = fi(u1, · · · , un) where: uj = s, uj′ = s′, for
every position k 6= j, j′ uk is an arbitrary tree from S�ik. By construction, u ∈ C∗.S, hence
so is t′′ = c[c′[u]]. Additionally, since s and s′ both embed in u, t and t′ both embed in t′′.

The same argument applies when s ∈ suppC and s′ ∈ S. Finally, we consider the case
where s, s′ are both in suppC. Then s ∈ suppAi for some i, say Ai = fi(S�i1, · · · , S�ini

),
S�ij′ 6= � and s in in the language of S�ij′ . Since S is irreducible, it is non-empty, hence we
can pick a tree s0 from it. Let uj′ = s, uj = s0 where j is the unique position where S�ij = �,
and pick uk from the non-empty language S�ik for every k 6= j, j′; define u = fi(u1, · · · , uni),
a tree from C∗.S in which s embeds. Similarly, since s′ ∈ suppC, s′ is in the support of
some Ai′ , say Ai′ = fi′(S�i′1, · · · , S�i′ni′

), S�i′j′′′ 6= � and s′ is in the language of S�i′j′′′ .
Let vj′′′ = s′ (instead of s in our previous step), vj′′ = u (instead of s0) where j′′ is the
unique position where S�i′j′′ = �, and pick vk from the non-empty language S�i′k for every
k 6= j′′, j′′′. The tree v = fi′(v1, · · · , vni′ ) is again in C∗.S, and now both s and s′ embed
into it. Finally, we define t′′ as c[c′[v]]. J

I Theorem 23. The ideals of T (F) are exactly the languages of tree products.



x Appendices

Proof. One direction is Lemma 22. In the other direction, we show that the language of
every tree product P is directed by structural induction on P , using Lemma 33 or Lemma 34,
depending on its shape, as given by Lemma 32. In doing the proof, one needs to observe
that any →1-normal STRE S = P1 + · · ·+ Pm (where the language of each Pi is an ideal by
induction hypothesis) has an empty language if and only if m = 0; this is because ideals are
never empty. J

I Proposition 35. (T (F),vT ) has effective ideal representations.

Proof. By Theorem 23, any ideal of (T (F),vT ) can be represented as a tree product, which
is a regular tree language. Let us check that we have the required procedures for effectiveness:
(XI) T (F) =

(∑
r>0

∑
f∈Fr

f(�, . . . ,�)
)∗
.F0;

(IC) containment of regular tree languages is decidable;
(II) the intersection of two regular tree languages is a regular tree language, and using the

construction of Proposition 18 and the rewrite system of Figure 2, we can obtain its
decomposition into a sum of tree products;

(CU’) ↑ t is a regular tree language, thus an automaton for T (F) \ ↑ t is constructible, and
using the construction of Proposition 18 and the rewrite system of Figure 2, we can
obtain its decomposition into a sum of tree products. J
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