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Abstract. NetEntropy is a plugin to the Orchids intrusion detection
tool that is originally meant to detect some subtle attacks on implemen-
tations of cryptographic protocols such as SSL/TLS. NetEntropy com-
pares the sample entropy of a data stream to a known profile, and flags
any significant variation. Our point is to stress the mathematics behind
NetEntropy: the reason of the rather incredible precision of NetEntropy
is to be found in theorems due to Paninski and Moddemeijer.
Keywords: sample entropy, Paninski estimator, malware, intrusion de-
tection.

1 Introduction

In 2006, we described a tool, NetEntropy, whose goal is to detect subverted
cryptographic network flows [16]. We had initially developed it as a plugin to
the Orchids intrusion detection tool [8] to help detect attacks such as [11] or [22]
where network traffic is encrypted and therefore cannot be inspected—unless we
rely on key escrows [12, Section 13.8.3], but NetEntropy is much easier to install
and use.

What NetEntropy does is estimate whether a source of bytes is sufficiently
close to a random, uniformly distributed source of bytes. Encrypted data, random
keys and nonces, compressed data should qualify as close. Plain text, but also
shellcodes, viruses and even polymorphic viruses should not.

To this end, NetEntropy computes the sample entropy HN of the source,
and compares it to an estimator ĤN—a good enough approximation of what
the average value of HN should be if the source were indeed drawn at random,
uniformly. We use the Paninski estimator (to be introduced later), and show
that it gives an extraordinarily precise statistical test of non-randomness.

The purpose of this paper is to stress the mathematics behind this extraor-
dinary precision. Before we had researched the mathematics, the best we could
say was that NetEntropy worked well in practice, and this was supported by ex-
periments. How well it fared was beyond us: it was only when we discovered the
theorems in the literature that we realized that our entropy estimation technique
was in fact precise up to levels we had never even dreamed of.

Outline. We start by reviewing the attack that led us into inventing NetEn-
tropy in Section 2. As we said, NetEntropy evaluates the sample entropy of a



flow of bytes. We review the known estimators of sample entropy in Section 3,
and justify our choice of the Paninski estimator. In Section 4, we attack the
central twin questions of this paper: how do we compute the value HN (U) the
sample entropy should have on a uniformly distributed random N -byte flow?
(Section 4.1) and how far away from HN (U) should the sample entropy be for us
to conclude that the flow is not random? (Section 4.2) We shall see that entropy-
based detection is extremely precise, already for small values of N (Section 4.3).
We conclude in Section 5.

2 The mod_ssl Attack

Our primary example will be the mod_ssl attack [11]. Similar attacks include
the SSH CRC32 attack [22].

The mod_ssl attack uses a heap overflow vulnerability during the key ex-
change (handshake) phase of SSL v2 to execute arbitrary code on the target
machine. A normal (simplified) execution of this protocol is tentatively pictured
in Figure 1, left. Flow direction is pictured by arrows, from left (client) to right
(server) or conversely. The order of messages is from top to bottom. The hand-
shake phase consists of the top six messages. Encrypted traffic then follows. We
have given an indication of the relative level of entropy by levels of shading, from
light (clear text, low entropy) to dark gray (encrypted traffic, random numbers,
high entropy).
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Fig. 1. Normal SSL v2 session (left), hijacked (right)

Encrypted traffic is (using state-of-the-art cryptographic algorithms) indis-
tinguishable from random traffic. The byte entropy of a random sequence of



characters is 8 bits per byte, at least in the limit N → +∞. On the other hand,
the byte entropy of a non-encrypted sequence of characters is much lower. Ac-
cording to [4, Section 6.4], the byte entropy of English text is no greater than
2.8, and even 0-order approximations do not exceed 4.26.

Shellcodes that are generally used with the mod_ssl attack hijack one session,
and reuse the https connection to offer basic terminal facilities to the remote
attacker. We detect this by realizing that the byte entropy of the flow on this
connection, which should tend to 8, remains low. We can therefore detect the
attack when we see the final payload in clear. Since the shellcode itself, whose
entropy is low, is sent in lieu of a session key, the entropy is already low in some
parts of the key exchange. This can be used to detect the attack even if the
shellcode does not communicate over the https channel, which is also common.

While NetEntropy was meant to detect attacks, it can also be used, and has
been used, for other purposes, typically network policy enforcement: Skype de-
tection [5], detecting encrypted botnet traffic or encrypted malwares themselves
[23, 10, 19]. Entropy checking had already been used for traffic analysis before
[7], and our contribution is to show how extraordinarily precise this technique
is even in undersampled situations. In particular it is much more precise than
distribution identification tools such as PAYL [21]: we only seek to compare a
byte stream to uniform random byte streams, and this is a setting where a math-
ematical miracle happens (Moddemeijer’s Theorem in the so-called degenerate
case, see Section 4.2).

Entropy checking can also be used as a randomness test, e.g., in checking the
adequacy of pseudo-random number generators to cryptographic applications
[20, 2.12]. In this setting as well as in ours, it has a number of advantages over
other approaches. First, it is fast and requires little memory : we do not need to
store the data to test for randomness, only the current distribution (256 integer
registers). Second, it is extremely precise, as we shall show and demonstrate.
Finally, it can be computed online, that is, as the input data come in, which
makes it ideal in our network-sniffing situation. In cryptographic applications, it
would still be fair to complement entropy-checking with other tests: see [9] for a
theory of statistical tests suited to the domain.

3 Sample Entropy and Estimators

First, a note on notation. We take log to denote base 2 logarithms. Entropies
will be computed using log, and will be measured in bits. The notation ln is
reserved for natural logarithms.

Let w be a word of length N , over an alphabet Σ = {0, 1, . . . ,m − 1}. We
may count the number ni of occurrences of each letter i ∈ Σ. The frequency fi
of i in w is then ni/N . The sample entropy of w is:

ĤMLE
N (w) = −

m−1∑
i=0

fi log fi



(The superscript MLE is for maximum likelihood estimator .) The formula is
close to the notion of entropy of a random source, but the two should not be
confused. Given a probability distribution p = (pi)i∈Σ over Σ, the entropy of p
is

H(p) = −
m−1∑
i=0

pi log pi

In the case where each character is drawn uniformly and independently, pi = 1/m
for every i, and H(p) = logm.

It is hard not to confuse H and ĤMLE
N , in particular because a property

known as the asymptotic equipartition property (AEP, [4, Chapter 3]) states
that, indeed, ĤMLE

N (w) converges in probability to H(p) when the length N of
w tends to +∞, as soon as each character of w is drawn independently according
to the distribution p. In the case of the uniform distribution, this means that
ĤMLE
N (w) tends to logm (= 8, for bytes).
However, we are not interested in the limit of ĤMLE

N (w) when N tends to
infinity, essentially because we would like to flag a anomalous value of the sample
entropy as soon as possible, and also because the actual messages we monitor
may be short: the encrypted payload is only a few dozen bytes long in short-lived
SSH connections, for example. In practice, we only compute the sample entropy
for words w of length N ≤ Nmax. Nmax = 65 536 is sufficient in the intended
intrusion detection applications.
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Fig. 2. Average sample entropy ĤMLE
N (w) of words w of size N

Let us plot the average ĤMLE
N of ĤMLE

N (w) when w is drawn uniformly
among words of size N , for m = 256, and N ranging from 1 to 4 096 (Figure 2).
The x-axis has logarithmic, not linear scale. (ĤMLE

N was evaluated by sampling
over words generated using the /dev/urandom source.) The value of H(p) is



shown as the horizontal line y = 8. As theory predicts, when N � m, typically
when N is of the order of roughly at least 10 times as large as m, then ĤMLE

N ∼
H(p). On the other hand, when N is small (roughly at least 10 times as small
as m), then ĤMLE

N ∼ logN . Considering the orders of magnitude of N and m
cited above, clearly we are interested in the regions where N ∼ m. . . precisely
where ĤMLE

N is far from H(p).
Let us turn to the mathematical literature. The field of research most con-

nected to this work is called entropy estimation [2], and the fact that N ∼ m or
N < m is often characterized as the fact that the probability p is undersampled .
Note that for, say, N = 32 and m = 256, there is absolutely no chance we may
have seen all bytes! This is as far as we can imagine to classical statistical ex-
periments, with large sample sets. Despite this, we shall still be able to obtain
informative statistical results.

In classical statistics, our problem is often described as follows. Take objects
that can be classified into m bins (our bins are just bytes) according to some
probability distribution p. Now take N samples, and try to decide whether the
entropy of p is logm (or, in general, the entropy of a given, fixed probability
distribution) just by looking at the samples. The papers [1, 17, 18] are particu-
larly relevant to our work, since they attempt to achieve this precisely when the
probability is undersampled, as in our case.

The problem that Paninski tries to solve [17, 18] is finding an estimator ĤN

of H(p), that is, a statistical quantity, computed over randomly generated N -
character words, which gives some information about the value of H(p). Partic-
ularly interesting estimators are the unbiased estimators, that is those such that
E(ĤN ) = H(p), where E denotes mathematical expectation (i.e., the average of
all ĤN (w) over all N -character words w).

Our task is:

– first, find an unbiased estimator ĤN (or one with a small bias): we shall do
this in Section 4.1;

– second, evaluate the confidence intervals (how close to ĤN should HN (w)
be for w be to be classified as random with, say, 95% confidence?); we shall
do this in Section 4.2.

The sample entropy ĤMLE
N , introduced above, is an estimator, sometimes called

the plug-in estimate, or maximum likelihood estimator [17]. As Figure 2 demon-
strates, it is biased, and the bias can in fact be rather large. So ĤMLE

N does not
fit our requirements for ĤN .

Comparing ĤMLE
N to the entropy at the limit, logm, is wrong, because

ĤMLE
N is biased for any fixed N . Nonetheless, we may introduce a correc-

tion to the estimator ĤMLE
N . To this end, we must estimate the bias. Histor-

ically, the first estimation of the bias is the Miller-Madow bias correction [13]
(m̂− 1)/(2N ln 2), where m̂ = |{i | fi 6= 0}| is the number of characters that do
appear at all in our N -character string w, yielding the Miller-Madow estimator :

ĤMM
N (w) = ĤMLE

N (w) +
m̂− 1

2N ln 2
= −

m−1∑
i=0

fi log fi +
m̂− 1

2N ln 2
.
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Fig. 3. Sample entropy estimators

Another one is the jackknifed MLE [6]:

ĤJK
N (w) = N ĤMLE

N (w)− N − 1

N

N∑
j=1

ĤMLE
N (w−j)

where w−j denotes the (N − 1)-character word obtained from w by removing
the jth character. While all these corrected estimators indeed correct the 1/N
term from biases at the limit N → +∞, they are still far from being unbiased
when N is small: see Figure 3, where the closer to the constant curve with y
value logm = 8 the better.

In the case that interests us here, i.e., when p is the uniform distribution over
m characters, an exact asymptotic formula for the bias is known as a function
of c > 0 when N and m both tend to infinity and N/m tends to c: the result is
due to Liam Paninski [17, Theorem 3]. The corrected estimator is:

ĤP
N (w) = ĤMLE

N (w)− log c+ e−c
+∞∑
j=1

cj−1

(j − 1)!
log j (1)

where the correction − log c+ e−c
∑+∞
j=1

cj−1

(j−1)! log j is the Paninski bias.
While the formula is exact only when N and m both grow to infinity, in

practice m = 256 is large enough for this formula to be relevant. On our exper-
iments, the difference between the average of ĤP

N (w) over random experiments
and logm = 8 is between −0.0002 and 0.0051 for N ≤ 100 000, and tends to
0 as N tends to infinity. (On Figure 3, it is impossible to distinguish ĤP

N—the
“Paninski” curve—from the constant curve with y-value logm = 8.) ĤP

N is an
estimator of H(p) with a very small bias, when p is the uniform distribution.



4 Evaluating the Average Sample Entropy

Instead of trying to compute a correct estimator of the actual entropy H(p),
which is, as we have seen, a rather difficult problem, we turn the problem around.

Let HN (p) be the N -truncated entropy of the distribution p = (pi)i∈Σ . This
is defined as the average of the sample entropy ĤMLE

N (w) over all words w of
length N , drawn at random according to p. In other words, this is what we
plotted in Figure 2. A direct summation shows that

HN (p) =
∑

n0,...,nm−1∈N
n0+...+nm−1=N

[(
N

n0, . . . , nm−1

)
pn0
0 . . . p

nm−1

m−1 ×

(
m−1∑
i=0

−ni
N

log
ni
N

)]

where
(

N
n0,...,nm−1

)
= N !

n0!...nm−1!
is the multinomial coefficient.

When p is the uniform distribution U (where pi = 1/m for all i), we obtain
the formula

HN (U) = 1

mN

∑
n0,...,nm−1∈N
n0+...+nm−1=N

[(
N

n0, . . . , nm−1

)
×

(
m−1∑
i=0

−ni
N

log
ni
N

)]
(2)

By construction, ĤMLE
N is then an unbiased estimator of HN . Our strategy

to detect non-random text is then to take the flow w, of length N , to compute
ĤMLE
N (w), and to compare it to HN (U). If the two quantities are significantly

apart, then w is not random.
Not only is this easier to achieve than estimating the actual entropy H(p), we

shall see (Section 4.2) that this provides us much narrower confidence intervals,
that is, much more precise estimates of non-randomness.

For example, if w is the word

0x55 0x89 0xe5 0x83 0xec 0x58 0x83 0xe4
0xf0 0xb8 0x00 0x00 0x00 0x00 0x29 0xc4
0xc7 0x45 0xf4 0x00 0x00 0x00 0x00 0x83
0xec 0x04 0xff 0x35 0x60 0x99 0x04 0x08

of length N = 32 (so N � m = 256, a very much undersampled situation), then
ĤMLE
N (w) = 3.97641, whileHN (U) = 4.87816, to 5 decimal places. Since 3.97641

is significantly less than 4.87816 (about 1 bit less information), one is tempted to
conclude that w above is not random. (This is indeed true: this w is the first 32
bytes of the code of the main() function of an ELF executable, compiled under
gcc. However, we cannot yet conclude, until we compute confidence intervals,
see Section 4.2.)

Consider, on the other hand, the word

0x85 0x01 0x0e 0x03 0xe9 0x48 0x33 0xdf
0xb8 0xad 0x52 0x64 0x10 0x03 0xfe 0x21
0xb0 0xdd 0x30 0xeb 0x5c 0x1b 0x25 0xe7
0x35 0x4e 0x05 0x11 0xc7 0x24 0x88 0x4a



This has sample entropy ĤN (w) = 4.93750. This is close enough to HN (U) =
4.87816 that we may want to conclude that this w is close to random. And indeed,
this w is the first 32 bytes of a text message encrypted with gpg. Comparatively,
the entropy of the first 32 bytes of the corresponding plaintext is only 3.96814.

Note that, provided a deviation of roughly 1 bit from the predicted value
HN (U) is significant, the ĤMLE

N estimator allows us to detect deviations from
random-looking messages extremely quickly: using just 32 characters in the ex-
amples above. Actual message sizes in SSL or SSH vary from a few dozen bytes
(usually for small control messages) to a few kilobytes (user data), with a max-
imum of 64KB.

4.1 Computing HN(U)

There are basically three ways to compute HN (U). (Recall that we need this
quantity to compare ĤMLE

N (w) to.) The first is to use Equation (2). However,
this quickly becomes unmanageable as m and N grow.
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A much better solution is to recall Equation (1). Another way of reading it
is to say that, for each constant c, when N and m tend to infinity in such a way
that N/m is about c, then HN (U) is equal to logm minus the Paninski bias,
namely:

HN (U) = logm+ log c− e−c
+∞∑
j=1

cj−1

(j − 1)!
log j + o(1). (3)

As we have seen, when m = 256, this approximation should give a good
approximation of HN (U). In fact, this approximation is surprisingly close to the
actual value of HN (U). The o(1) error term is plotted in Figure 4. It is never
more than 0.004 bit, and decreases quickly as N grows. The series (3) converges



quickly, too: the sum stabilizes after a number of iterations that is roughly linear
in c. We implemented this using 64-bit IEEE floating-point numbers, and never
needed more than 398 iterations for N ≤ 65 536 (c = 256). This grew to 415
iterations with 96-bit IEEE floating-point numbers, and to 786 iterations with
512-bit floating-point numbers using the arbitrary precision floating-point arith-
metic library MPFR [15]. Comparing the values of the Paninski bias computed
with 64-bit and 512-bit numbers reveals a relative difference that never exceeds
1.1 10−11, which is negligible: 64-bit computations are enough.

The third method to evaluate HN (U) is the standard Monte-Carlo method
consisting in drawing enough words w of length N at random, and taking the
average of ĤN (w) over all these words w. This is how we evaluated HN (U) in
Figure 2, and how we defined the reference value of HN (U) which we compared
to (3) in Figure 4. To be precise, we took the average over 100 000 samples for
N < 65 536, taking all values of N below 16, taking one value in 2 below 32, one
value in 4 below 64, . . . , and one value in 4 096 below 65 536. The spikes are
statistical variations that one may attribute to randomness in the source. Note
that they are in general smaller than the error term o(1) in (3).

In the end, the fastest implementation is just by using a pre-filled table of
values of HN (U) for values of c = N/m = N/256, with N ranging from 0 to
Nmax. One can then use any of the above three methods to fill the table. With
Nmax = 65 536, this requires a table that takes less than one megabyte. We
can also save some memory by exploiting the fact that HN (U) is a smooth and
increasing [17, Proposition 3] function of c, storing only a few well-chosen points
and extrapolating; and by using the fact that values of N that are not multiples
of 4 or even 8 are hardly ever needed.

4.2 Confidence Intervals

Evaluating ĤMLE
N (w) only gives a statistical indication of how close we are to

HN (U). Recall our first example, where w was the first 32 bytes of the code of
the main() function of some ELF executable. We found ĤMLE

N (w) = 3.97641,
while HN (U) = 4.87816. What is the actual probability that w of length N = 32
is non-random when ĤMLE

N (w) = 3.97641 and HN (U) = 4.87816?
It is again time to turn to the literature. According to [1, Section 4.1],

when N tends to +∞, ĤMLE
N is asymptotically Gaussian, in the sense that√

N ln 2(ĤMLE
N −H) tends to a Gaussian distribution with mean 0 and variance

σ2
N = V ar{− log p(X)}. In non-degenerate cases (i.e., when σ2

N > 0), the expec-
tation of (ĤMLE

N −H)2 is Θ(1/N), so the standard deviation will be proportional
to 1/

√
N . . . but precisely, the p = U case is degenerate.

As we shall see below, this is actually good news! In the degenerate case, the
standard deviation will be proportional to 1/N indeed, which goes to zero much
faster than 1/

√
N .

This means that the confidence intervals will be remarkably small, of the
order of 1/N . Said differently, this means that to reach small confidence intervals,
we shall only need very few bytes. Let us see how much. Much less is known



about the variance of ĤMLE
N = ĤMLE

N when N ∼ m or N < m than about its
bias. One useful inequality is that the variance of ĤMLE

N is bounded from above
by log2N/N [1, Remark (iv)], but this is extremely conservative. An improved
bound is due to Moddemeijer [14, Equation (12)]: the variance of ĤMLE

N evolves
as σ2

N + m−1
2N2 ln2 2

when N → +∞. In degenerate cases, where σN = 0, this means
that the statistical standard deviation SD(ĤMLE

N ) of ĤMLE
N (w), on random

words w of length N , is asymptotically equal to
√

m−1
2

1
ln 2 times 1/N . With

m = 256, this is about 16.29/N . To confirm this, we have estimated the standard
deviation of ĤN by a Monte-Carlo method, see Figure 5. The curve on the right
is the same as the one on the left, except the y-axis is in log scale, showing the
relation between SD(ĤMLE

N ) and 16.29/N more clearly.
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Fig. 5. Standard deviation of ĤMLE
N (w) (linear scale left, log scale right)

For typical sizes of 1, 2, 4, and 8 KB, the standard deviation SD(ĤMLE
N ) is

0.016, 0.008, 0.004, and 0.002 bit respectively. This is extremely small.
Let us estimate percentiles, again by a Monte-Carlo method, see Figure 6:

the y values are given so that a proportion of all words w tested falls within
y × SD(ĤMLE

N ) of the average value of ĤMLE
N . The proportions go from 50%

(bottom) to 99.9% (top). Unless N ≤ 16 (which is unrealistic), our estimate of
ĤMLE
N is exact with an error of at most 4×SD(ĤMLE

N ), with probability 99.9%.
4SD(ĤN ) is at most 64/N , and in any case no larger than 0.32 bit (for words
of about 16 characters).

Let’s return to our introductory question: What is the actual probability that
w of length N = 32 is non-random when ĤMLE

N (w) = 3.97641 and HN (U) =

4.87816? For N = 32, SD(ĤMLE
N ) is about maximal, and equal to 0.081156. So

we are at least 99.9% sure that the entropy of a 32-byte word with characters
drawn uniformly is 4.87816± 4× 0.081156, i.e., between 4.55353 and 5.20279: if
ĤMLE
N (w) = 3.97641, we can safely bet that w is not random.
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Note that N = 32 is not only a terribly undersampled case, but is also close
to the worst possible case we could dream of (see Figure 5). Still, ĤMLE

N is
already a reliable estimator of randomness here.

For sizes 1, 2, 4, and 8 KB, and a confidence level of 99.9% again, ĤMLE
N is

precise up to ±0.0625, ±0.0313, ±0.0156, and ±0.0078 bit respectively. These
are remarkably small values.

4.3 Practical experiments

Data source Entropy
(bits/byte)

ĤMLE
N HN

Binary executable (elf-i386) 6.35 8.00
Shell scripts 5.54 8.00

Terminal activity 4.98 8.00
1 Gbyte e-mail 6.12 8.00

1KB X.509 certificate (PEM) 5.81 7.80± 0.061
700B X.509 certificate (DER) 6.89 7.70± 0.089

130B bind shellcode 5.07 6.56± 0.24
38B standard shellcode 4.78 5.10± 0.28

73B polymorphic shellcode 5.69 5.92± 0.27
Random 1 byte NOPs (i386) 5.71 7.99

Fig. 7. Sample entropy of some common non-random sources

We report some practical experiments in Figure 7, on non-cryptographic
sources. This gives an idea of the amount of redundancy in common data sources.



The entropy of binary executables (ELF format, i386 architecture) was evaluated
under Linux and FreeBSD by collecting all .text sections of all files in /bin and
/usr/bin. Similarly, the entropy of shell scripts was computed by collecting all
shell scripts on the root volume of Linux and FreeBSD machines (detected by the
file command). Terminal activity was collected by monitoring a dozen telnet
connections (port 23) on tcp from a given machine with various activity, such as
text editing, manual reading, program compilation and execution (about 1 MB
of data). As far as e-mail is concerned, the measured entropy corresponds to 3
years of e-mail on the first author’s account. These correspond to large volumes
of data (large N), so that HN is 8 to 2 decimal places, and confidence intervals
are ridiculously small.

The next experiments were made on smaller pieces of data. Accordingly,
we have given HN in the form H ± δ, where δ is the 99.9% confidence interval.
Note that X.509 certificates are definitely classified as non-random. We have also
tested a few shellcodes, because, first, as we have seen in Figure 1, it is interest-
ing to detect when some random piece of data is replaced by a shellcode, and
second, because detecting shellcodes this way is challenging. Indeed, shellcodes
are typically short, so that HN is significantly different from 8. More impor-
tantly, modern polymorphic and metamorphic virus technologies, adapted to
shellcodes, make them look more random. (In fact, the one we use is encrypted,
except for a very short prolog.) While the first two shellcodes in Figure 7 are
correctly classified as non-random (even a very short 38 byte non-polymorphic
shellcode), the last, polymorphic shellcode is harder to detect. The 99.9% confi-
dence interval for being random is [5.65, 6.19]: the sample entropy of the 73 byte
polymorphic shellcode is at the left end of this interval. The 99% confidence
interval is 5.92 ± 0.19, i.e., [5.73, 6.11]: with 99% confidence, this shellcode is
correctly classified as non-random. In practice, shellcodes are usually preceded
with padding, typically long sequences of the letter A or the hexadecimal value
0x90 (the No-OPeration i386 instruction), which makes the entropy decrease
drastically, so the examples above are a worst-case scenario. Detecting that the
random key-arg field of Figure 1 (left) was replaced by a shellcode (right) is
therefore feasible.

Another worst-case scenario in polymorphic viruses and shellcodes is given
by mutation, whereby some specific instructions, such as nop, are replaced with
other instructions with the same effect, at random. This fools pattern-matching
detection engines, and also increases entropy. However, as the last line shows
on a large amount of random substitutes for nop on the i386 architecture, this
makes the sample entropy culminate at a rather low value compared to 8.

All in all, ĤMLE
N is an extraordinarily precise estimator of HN (U), even

in very undersampled cases. If you didn’t believe the mathematics, we hope
that these experimental data have convinced you. However, in the end, it is the
mathematics which give you the right estimator (the Paninski estimator) and
the bounds to expect of confidence intervals (Moddemeijer’s theorem).



5 Conclusion

We have described the basic principles behind NetEntropy, a tool that we origi-
nally designed so as to detect attacks against cryptographic network flows, but
can also be used for traffic analysis and malware detection. NetEntropy com-
pares the sample entropy of the flow to an estimator ĤMLE

N with a very small
bias, and signals any deviation above some threshold of the order of 16.29/N .

The bias of the Paninski estimator ĤMLE
N is extremely small, and the thresh-

old 16.29N is minute, which allows us to correctly conclude that certain hard-to-
qualify sources such as some polymorphic shellcodes are definitely non-random,
even after having read only a few bytes (73 in our example). This is extraordi-
nary: statistically, we are undersampling a probability distribution, to the point
that we cannot have possibly seen all possible bytes; still, we can conclude.

The key to the miracle is mathematics: here, Paninski’s estimator and Mod-
demeijer’s theorem. In practical security, mathematics is often seen as an in-
tellectual’s game, which the rest of us don’t need. We hope to have made a
convincing statement that mathematics, as in most sciences, is essential.
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Availability

NetEntropy is a free open source project. It is available under the CeCILL2 li-
cense [3]. The project homepage can be found at http://www.lsv.ens-cachan.
fr/net-entropy/.
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