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We establish Choquet-Kendall-Matheron theorems on non-Hausdorff topological spaces.

This typical result of random set theory is profitably recast in purely topological terms,

using intuitions and tools from domain theory. We obtain three variants of the theorem,

each one characterizing distributions, in the form of continuous valuations, over relevant

powerdomains of demonic, resp. angelic, resp. erratic non-determinism.

1. Introduction

This paper is in the line of a development that—up to our knowledge—has its origin in a

famous paper by G. Choquet (Choquet, 54). The motivation comes from the well-known

fact that, on the unit interval, a positive measure � is completely determined by its distri-

bution function F (x) = �([0, x]) which is an upper semi-continuous monotone increasing

function from the unit interval into the reals and every such function is the distribution

function of a unique positive measure. The point is that distribution functions—certain

real valued functions on the base space [0, 1]—are simpler objects than measures—certain

real valued functions on the �-algebra of Borel sets of the base space.

Choquet-Kendall-Matheron type theorems achieve a similar goal for hyperspacesℋsp(X),

that is, spaces of subsets of a topological space X, e.g., closed, open or compact subsets

of X topologized in some natural way. The goal is to describe measures defined on the

�-algebra of Borel sets of ℋsp(X) by some kind of ‘distribution function’ defined on

one of the spaces ℋsp(X) directly. The classical Choquet Theorem (Choquet, 54, The-

orem 50.1) concerns the hyperspace K(X) of all compact subsets of a locally compact

Hausdorff space X with the Vietoris topology: The Radon measures on the hyperspace

K(X) are in one-to-one correspondence with the upper semi-continuous non-negative

real valued functions defined on K(X) which are monotone of infinite order according
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Tsuiki at Kyoto University, Japan.
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to Choquet’s terminology. Excellent references for Choquet-type theorems are the books

by Matheron and Molchanov (Matheron, 1975; Molchanov, 2005) on the theory of ran-

dom sets and integral geometry. In both books the authors restrict themselves to second

countable locally compact Hausdorff spaces. Choquet-Kendall-Matheron type theorems

are used also in economics, where they are conceived as a form of “completion of a

misspecified model” (Gilboa and Schmeidler, 1992).

We establish Choquet-Kendall-Matheron type theorems over spaces that are not neces-

sarily Hausdorff nor second countable; only local compactness is used, and in the third of

our three cases to come, an additional hypothesis of coherence, which is trivially satisfied

in Hausdorff spaces. In our setting, the classical Choquet Theorem on the representation

of measures on the hyperspace K(X) of compact subsets of a locally compact space splits

into two parts, a ’demonic’ and an ’angelic’ one: Indeed the Vietoris topology splits in

a natural way in an upper and a lower Vietoris topology which both are far from being

Hausdorff. A third case combining the demonic and the angelic versions arises—we call

it the erratic case—that has no significance in the Hausdorff situation.

We are motivated by denotational semantics to take non-Hausdorff spaces into account.

Semantic domains in the sense of D.S. Scott are far from being Hausdorff, see (Abramsky

and Jung, 1994; Gierz et al., 2003). Quite some intuitions and tools are obtained from

the domain-theoretic perspective. Indeed, the hyperspaces under discussion are typical

examples of continuous lattices. Also, measures are profitably replaced with the essen-

tially equivalent notion of continuous valuations. The notion of a valuation on a lattice

goes back to G. Birkhoff (Birkhoff, 1940, Chapter X, Sec. 1). Valuations on distributive

lattices and their integral representations are discussed by Choquet (Choquet, 54, §41).

As a substitute for measures, valuations are abundantly used in geometric probability

theory as witnessed by the nice monograph by D.A. Klain and G.-C. Rota (Klain and

Rota, 1997). Continuous valuations were used as a convenient model of probabilistic

choice in denotational semantics (Jones and Plotkin, 1989).

Concerning the use in denotational semantics, one may think of subsets A of X as spec-

ifications of non-deterministic choice processes—picking an element from A. And there

are three classical forms of non-determinism, demonic, angelic, and erratic. Accordingly,

we prove three theorems of the kind of Choquet, Kendall, and Matheron. In the demonic

case (Section 4), we show that continuous valuations on the Smyth space of all non-empty

compact saturated subsets of X are in one-to-one correspondence with continuous cred-

ibilities, as soon as X is locally compact. In the angelic case (Section 5), we show that

continuous valuations on the Hoare space of all non-empty closed subsets are in one-to-

one correspondence with continuous plausibilities whenever X is core-compact. Finally,

in the erratic case (Section 6), we show that continuous valuations on the Plotkin space

of all non-empty lenses are in one-to-one correspondence with a new notion that we call

sesqui-continuous estimates. These measure crescents instead of opens, and the theorem

is shown assuming X is locally compact and coherent.

Using domain theoretical ideas also sheds a new light on the classical results. One

should however note that we are not the first to extend such theorems to the non-

Hausdorff case: Norberg (Norberg, 1989) has a theorem that is essentially the same as

our Theorem 5.12 relating continuous plausibilities with continuous valuations on spaces
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of closed subsets (the angelic case). We discuss the connection more precisely right after

the proof of this theorem.

2. Preliminaries

We refer to (Abramsky and Jung, 1994; Gierz et al., 2003; Mislove, 1998) for background

material on domain theory and topology, and to (Molchanov, 2005) for capacities and

related concepts.

2.1. Topology.

A topology on X is a family of subsets, called the opens, such that any union and any

finite intersection of opens is open. The complements of open subsets are called closed .

The largest open contained in a subset A of X is its interior int(A), while the smallest

closed set containing A is its closure cl(A).

Given any family of subsets A of X, there is a smallest topology on X generated by A,

i.e., making all elements of A open. Then every open in this topology is a union of finite

intersections of elements of A; A is a subbase of the topology. If every open is a union of

elements of A, then A is called a base of the topology.

A map f : X → Y is continuous iff f−1(U) is open in X for every open subset U of

Y . We shall often use the fact that, if A is a subbase of the topology of Y , f : X → Y is

continuous iff f−1(U) is open in X for all elements U of A.

A subset Q of X is compact iff one can extract a finite subcover from every open cover

of Q. It is saturated iff it is the intersection of all opens containing it, a.k.a. it is upward-

closed in the specialization quasi-ordering ≤, defined by x ≤ y iff every open containing x

contains y. The saturation ↑A of a subsetA ofX is defined equivalently as the intersection

of all opens U containing A, or as the upward-closure {x ∈ X ∣ ∃y ∈ A ⋅ y ≤ x}. We

write ↓A for the downward-closure {x ∈ X ∣ ∃y ∈ A ⋅ x ≤ y}. Every open subset is

upward-closed, and every closed subset is downward-closed. In T0 spaces X that are not

T1, such as dcpos (see below), there are compact subsets that are not saturated, e.g., {x}
where x is not maximal in X. However, for any compact subset K, ↑K is both compact

and saturated. In particular, the saturation of any finite set is compact.

We shall use Alexander’s Subbase Lemma, which states that in a space X with subbase

A, K is compact if and only if one can extract a finite subcover from every cover of K

consisting of elements of A.

A topological space X is locally compact if and only if, whenever x ∈ U with U open,

there is a compact subset K such that x ∈ int(K) ⊆ K ⊆ U . In this definition, we might

as well require K to be saturated, but this is unnecessary: if x ∈ int(K) ⊆ K ⊆ U , then

Q = ↑K is compact, saturated, and x ∈ int(Q) ⊆ Q ⊆ U . In any locally compact space,

whenever Q is a compact subset of some open U , then there is a compact saturated

subset Q1 such that Q ⊆ int(Q1) ⊆ Q1 ⊆ U .

X is coherent if and only if the intersection of any two compact saturated subsets is

again compact.
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Our theorems will be concerned with locally compact spaces, and in one case, with

locally compact, coherent spaces.

An important class of locally compact, coherent spaces is given by the stably locally

compact spaces, which are those locally compact coherent spaces that are additionally T0

and well-filtered. A space X is well-filtered if and only if, for every filtered family (Qi)i∈I
of compact saturated subsets in X, for every open U , if

∩
i∈I Qi ⊆ U then Qi ⊆ U

already for some i ∈ I. We shall only need well-filteredness in relating our results, which

are concerned with continuous valuations, to more classical formulations of the Choquet-

Kendall-Matheron Theorems based on measures.

Among the stably locally compact spaces, we find the stably compact spaces, namely

those that are additionally compact. Stable compactness has a long history, going back

to Nachbin (1948; see (Jung, 2004)). To give a concrete example, [0, 1]�, the set [0, 1]

with opens of the form (t, 1], 0 ≤ t ≤ 1, plus [0, 1] itself, is stably compact. This is just

[0, 1] with the Scott topology of its natural ordering ≤, see below. Similarly, [0, 1]I�, is

stably compact for any set I.

Stable (local) compactness is also usually defined by requiring sobriety instead of well-

filteredness. A sober space is a T0 space X where every irreducible closed set is the

closure ↓x of a point x ∈ X. A closed set F is irreducible iff it is non-empty, and

whenever F is contained in the union of two closed subsets, then F is contained in one

of them. As remarked by Jung (Jung, 2004, Section 2.3), referring to (Gierz et al., 2003,

Theorem II-1.21), this is equivalent in the presence of local compactness. Sobriety alone

implies well-filteredness, as a consequence of the Hofmann-Mislove Theorem.

A space is Hausdorff , or T2, iff every two distinct points x, y can be separated by

opens U, V , i.e., x ∈ U , y ∈ V , and U ∩ V = ∅. Every locally compact Hausdorff space

is stably locally compact, e.g., [0, 1] with its usual metric topology; the converse fails, as

for example [0, 1]� is stably compact but not T2.

2.2. Domain Theory.

A set with a partial ordering is a poset . A dcpo is a poset in which every directed family

(xi)i∈I has a least upper bound (a.k.a., sup) supi∈I xi. A family (xi)i∈I is directed iff it

is non-empty, and any two elements have an upper bound in the family. We shall also

use the dual notion of filteredness: the family (xi)i∈I is filtered iff it is non-empty, and

any two elements have an lower bound in the family. Any poset can be equipped with

the Scott topology , whose opens are the upward closed sets U such that whenever (xi)i∈I
is a directed family that has a least upper bound in U , then some xi is in U already.

The Scott topology is always T0, and its specialization ordering is the original partial

ordering.

The way-below relation ≪ on a poset X is defined by x ≪ y iff, for every directed

family (zi)i∈I that has a least upper bound z such that y ≤ z, then x ≤ zi for some i ∈ I
already. Note that x ≪ y implies x ≤ y, and that x′ ≤ x ≪ y ≤ y′ implies x′ ≪ y′.

However,≪ is not reflexive or irreflexive in general. Write ↑↑E = {y ∈ X ∣ ∃x ∈ E ⋅x≪ y},
↓↓E = {y ∈ X ∣ ∃x ∈ E ⋅ y ≪ x}. X is continuous iff, for every x ∈ X, ↓↓x is a directed

family, and has x as least upper bound. One may be more precise: A basis is a subset B of
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X such that any element x ∈ X is the least upper bound of a directed family of elements

way-below x in B. Then X is continuous if and only if it has a basis. In a continuous

poset X with basis B, the interpolation property holds: whenever x≪ z, then x≪ y ≪ z

for some y ∈ B (Mislove, 1998, Lemma 4.16). It follows that, in any continuous poset

X, ↑↑x is Scott-open for all x, and every Scott-open set U is a union of such sets, more

precisely U =
∪
x∈U∩B ↑↑x.

A map f : X → Y between posets X,Y is continuous (with respect to the respective

Scott topologies) if and only if it has the following two properties: (1) f is monotone, that

is, whenever x ≤ x′ in X, then f(x) ≤ f(x′) in Y , and (2) whenever (xi)i∈I is directed

and supi∈I xi exists in X, then supi∈I f(xi) exists in Y and f(supi∈I xi) = supi∈I f(xi).

For dcpos X and Y , the second condition simplifies to (2’): f(supi∈I xi) = supi∈I f(xi)

for every directed family (xi) in X. We will use the following standard lemma on the

continuous extension of functions:

Extension Lemma. Let X be a continuous dcpo with a basis B and f : B → ℝ a

bounded monotone function. Then the function f∗ : X → ℝ defined by

f∗(x) = sup{f(b) ∣ b ∈ B and b≪ x}

is continuous on X. It is the greatest among the continuous functions such that f∗(x) ≤
f(x) for all x ∈ B. If f∗ is an extension of f , that is, if f∗(b) = f(b) for all b ∈ B, then

it is the unique continuous extension of f to all of X.

We stress that, throughout this paper, we consider ℝ with its usual ordering as a poset

with its Scott topology, the non-trivial open sets of which are the open infinite intervals

(r,+∞[. The subspace ℝ+ of non-negative reals is equipped with the subspace topology,

which is also the Scott topology. Functions into ℝ or ℝ+ that are continuous in our sense

(with respect to the Scott topology) are called lower semi-continuous in general topology.

Every continuous dcpo X is sober, hence well-filtered, and locally compact. If addi-

tionally X is pointed , i.e., has a least element ⊥, then X is compact. If finally X is also

coherent, then X is stably compact. The stably compact dcpos are sometimes referred

to in the literature as Lawson-compact dcpos, meaning that they are exactly the dcpos

that are compact in their Lawson topology. [0, 1] with its Scott topology is an example.

The lattice O(X) of any topological space is in particular a dcpo. The spaces X such

that O(X) is a continuous dcpo are by definition the core-compact spaces. Every locally

compact space is core-compact. Concretely, if X is locally compact, then the way-below

relation on O(X), which we shall write ⋐ to distinguish it from the notation ≪ used

in more mundane dcpos, is characterized by: U ⋐ V iff there is a compact subset Q

such that U ⊆ Q ⊆ V . We shall also say that U is relatively compact in V , instead

of U is way-below V , in agreement with terminology in general topology. We say that

U is relatively compact, if it is relatively compact in the whole space X, that is, if it

is contained in some compact subset of X. That O(X) is continuous when X is locally

compact follows from the easily proved fact that any open U of X can be written as∪
Q int(Q), where Q ranges over all compact (saturated) subsets of U .
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2.3. Powerdomains.

Powerdomains were introduced, by several people, to give denotational semantics to

non-deterministic choice in higher-order programming languages. The three main such

powerdomains are the Smyth powerdomain for demonic non-determinism, the Hoare

powerdomain for angelic non-determinism, and the Plotkin powerdomain for erratic non-

determinism, see (Abramsky and Jung, 1994, Section 6.2). This viewpoint traditionally

stays with the category of dcpos, but is easily and profitably extended to general topo-

logical spaces, in the tradition of hyperspaces initiated by Hausdorff and Vietoris; see

in particular (Abramsky and Jung, 1994, Sections 6.2.3, 6.2.4), and Schalk’s PhD thesis

(Schalk, 1993).

The (topological version of the) Smyth powerdomain QV(X) of a space X is the set

of all non-empty compact saturated subsets Q of X, with the upper Vietoris topology,

which has a base given by subsets of the form □U = {Q ∈ QV(X) ∣ Q ⊆ U}, U open

in X. The specialization ordering of QV(X) is reverse inclusion. It is more traditional

in domain theory to define the poset Q(X) of all non-empty compact saturated subsets,

ordered by reverse inclusion ⊇. When X is locally compact and well-filtered, Q(X) is

a continuous dcpo, and the way-below relation is given by Q ≪ Q′ iff Q′ ⊆ int(Q), so

↑↑Q = □int(Q); in particular, the upper Vietoris and Scott topologies coincide in this

case, and Q(X) = QV(X). If X is itself a continuous dcpo, a basis of Q(X) is given by

the compacts of the form ↑E, E finite non-empty; ↑E ≪ ↑E′ iff E′ ⊆ ↑↑E, i.e., iff for

every y ∈ E′, there is an x ∈ E such that x≪ y in X.

The (topological version of the) Hoare powerdomain ℋV(X) of X is the set of all non-

empty closed subsets F of X, with the lower Vietoris topology, which has a subbase (not

a base) given by subsets of the form ◇U = {F ∈ ℋV(X) ∣ F ∩U ∕= ∅}, U open in X. The

specialization ordering of ℋV(X) is ordinary inclusion. It is more traditional in domain

theory to define the dcpo ℋ(X) of all non-empty closed subsets of X, ordered by ⊆. The

sup of a directed family (Fi)i∈I of non-empty closed subsets in ℋ(X) is then cl(
∪
i∈I Fi).

When X is a continuous dcpo, so is ℋ(X), and its way-below relation is given by F ≪ F ′

iff there is a non-empty finite subset E of (a given basis of) X such that F ⊆ ↓E and

E ⊆ ↓↓F ′. Then the subsets ↓E themselves, with E non-empty and finite, form a basis of

ℋ(X), and ↓E ≪ F ′ in ℋ(X) iff E ⊆ ↓↓F ′. It is then an easy exercise to show that the

Scott and the lower Vietoris topologies coincide, i.e., that ℋ(X) = ℋV(X) as soon as X

is a continuous dcpo.

Finally, the Plotkin powerdomain Pℓ(X) over X is the space of (compact) lenses L of

X. A lens L of X is the intersection Q ∩ F of a compact saturated subset Q of X and

a closed subset F of X, provided this intersection is non-empty. Then L has a canonical

presentation as ↑L∩ cl(L), where ↑L is compact saturated, and cl(L) is closed. There is

a domain-theoretic definition, as a dcpo Pℓ(X) of lenses, ordered by the topological Egli-

Milner ordering ⊑EM, defined by L ⊑EM L′ iff ↑L ⊇ ↑L′ and cl(L) ⊆ cl(L′) (Abramsky

and Jung, 1994, Section 6.2.3). We shall again prefer the purely topological counterpart,

which we write PℓV(X): this is Pℓ(X) with the Vietoris topology , generated by sets

{L ∈ Pℓ(X) ∣ L ⊆ U}, which we shall write □U again, and {L ∈ Pℓ(X) ∣ L ∩ U ∕= ∅},
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which we shall write ◇U , for any subset U of X. The specialization ordering of PℓV(X)

is ⊑EM, and the Scott topology of Pℓ(X) is always finer than the Vietoris topology.

The two topologies coincide when X is a stably compact, continuous dcpo. Indeed, in

this case, Pℓ(X) is a continuous dcpo, a basis is given by the finite lenses ⟨E⟩ = ↓E∩↑E
(E a finite subset of X), and ⟨E⟩ is way below a lens L iff E ⊆ ↓↓cl(L) and L ⊆ ↑↑E. So the

basic Scott-open ↑↑⟨E⟩, where E = {x1, . . . , xn}, is the Vietoris open □↑↑E ∩
∩n
i=1 ◇↑↑xi.

Conversely, it is easy to see that all subbasic open sets of the Vietoris topology are

Scott-open.

2.4. Measures and Valuations.

It is traditional to define integration and probabilistic processes using measures. An

algebra (of subsets) on a set X is a collection of subsets of X that contains the empty

set and is closed under complements and finite unions. A �-algebra is defined similarly,

except with countable unions instead of finite unions. The smallest �-algebra containing

all the opens of a given topological space X is the Borel �-algebra of X.

Given a �-algebra A on X, a measure is a map � : A → ℝ+ such that �(∅) = 0 and

�(
∪
n∈ℕAn) =

∑
n∈ℕ �(An) for every sequence (An)n∈ℕ of pairwise disjoint elements of

A. Our measures are usually referred to as bounded measures, i.e., � does not take the

value +∞. When X is a topological space, we shall always assume that measures are

measures on the Borel �-algebra of X.

An alternative to measures on topological spaces is given by continuous valuations,

whose usefulness in semantics was strongly supported by Jones and Plotkin (Jones and

Plotkin, 1989). Instead of measuring measurable subsets, they only measure opens. Con-

tinuous valuations are a special case of capacities, a notion we shall need as well, and

therefore introduce right away. The latter take their roots in Choquet’s work on capac-

ities (Choquet, 54), and are instrumental in potential theory, probability theory, and

economics (Gilboa and Schmeidler, 1992).

Generalizing slightly the case of a topological space X with the lattice O(X) of open

subsets, we consider a set X with a lattice of subsets, i.e., a collection ℒ of subsets of

X with the properties that ∅ ∈ ℒ, X ∈ ℒ and U, V ∈ ℒ implies U ∩ V,U ∪ V ∈ ℒ.

Taking the naming conventions of (Goubault-Larrecq, 2007a), and following (Gilboa and

Schmeidler, 1992), a capacity � on ℒ is a strict map � from ℒ to ℝ+; strictness means

that �(∅) = 0. A game is a monotone capacity, i.e., �(U) ≤ �(V ) whenever U ⊆ V . We

shall consider later slight relaxations of these notions, where ℒ is no longer assumed to

be a lattice of subsets.

The game � is modular (resp., convex , resp. concave) iff �(U ∪ V ) + �(U ∩ V ) =

�(U)+�(V ) (resp. ≥, resp. ≤) for all U, V ∈ ℒ. The terms supermodular and submodular

are sometimes used in lieu of convex, concave. A modular game is called a valuation.

If ℒ is the lattice O(X) of all open sets in a topological space X, then a valuation on

O(X) is also called a valuation on the space X.

On a space X, we say that a game is continuous iff �(
∪
i∈I Ui) = supi∈I �(Ui) for every

directed family (Ui)i∈I of opens.

Any measure � on the Borel �-algebra of X restricts to a valuation � on X. It is
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continuous as soon as X is locally compact and � is what we might call a weakly Radon

measure, i.e., a (bounded) measure such that, for every open U , for every � > 0, there is

a compact saturated subset Q of U and a measurable subset B of Q such that �(B) ≥
�(U)− �. This is a mild generalization of the usual definition of Radon measure, where

the same property is required for all measurable U ; in Hausdorff spaces, Q will always

be saturated; in metrizable spaces, additionally, compacts are measurable, and we would

retrieve the usual definition of Radon measure, where �(A) = supQ compact �(Q) for all

measurable sets A. To show that any weakly Radon measure restricts to a continuous

valuation on open sets, we reason as follows. Let U =
∪
i∈I Ui, where (Ui)i∈I is a directed

family of opens, and let � > 0; we need to prove that �(Ui) ≥ �(U) − � for some i ∈ I.

Using the fact that � is weakly Radon, let B ⊆ Q ⊆ U as above. Since X is locally

compact, there is a compact saturated subset Q1 such that Q ⊆ int(Q1) ⊆ Q1 ⊆ U .

Then Q1 ⊆ Ui for some i ∈ I, so �(Ui) ≥ �(int(Q1)) = �(int(Q1)) ≥ �(B) ≥ �(U)− �.
Conversely, if X is locally compact and well-filtered, every continuous valuation �

extends to a (unique, bounded) measure � on all Borel measurable subsets of X. This

is Theorem 5.3 of (Keimel and Lawson, 2005), once restricted to bounded measures.

Moreover, one can observe that the measure � thus constructed is weakly Radon: for

every open U , since X is locally compact, hence O(X) is a continuous dcpo, �(U) =

supV⋐U �(V ); so for every � > 0, there is an open V and a compact saturated subset Q

such that V ⊆ Q ⊆ U and �(V ) ≥ �(U)− �; then take B = V .

One can therefore conclude that measures and continuous valuations are one and the

same thing, under mild assumptions. (See (Keimel and Lawson, 2005) for other extension

results from continuous valuations to measures.) Precisely, weakly Radon measures are

in one-to-one correspondence with continuous valuations, on any locally compact and

well-filtered space.

This is one example of a measure extension theorem. There are others: later we shall

cite Norberg’s Theorem 3.9 (Norberg, 1989), see also (Alvarez-Manilla et al., 1997,

Corollary 5.2), which applies to second countable continuous dcpos. Keimel and Lawson

(Keimel and Lawson, 2005, Theorem 8.3) show that when X is stably locally compact,

i.e., T0, well-filtered, locally compact and coherent, every locally finite (not necessarily

bounded) continuous valuation on X extends to a Radon measure on the Borel �-algebra

of Xpatch, where Xpatch is X with its patch topology—a �-algebra that is in general larger

than the Borel �-algebra of X.

2.5. Credibilities, plausibilities.

Let us step back to games, i.e., monotone capacities. A game � is totally convex iff:

�

(
n∪
i=1

Ui

)
≥

∑
I⊆{1,...,n},I ∕=∅

(−1)∣I∣+1�

(∩
i∈I

Ui

)
(1)

for every finite family (Ui)
n
i=1, n ≥ 1, of opens of X. A credibility is a totally convex game.

We called credibilities belief functions in (Goubault-Larrecq, 2007a), following common

usage. Choquet used the term “monotonic of infinite order” (Choquet, 54), and one often

sees the term “totally monotonic” for this notion, see, e.g., (Gilboa and Schmeidler, 1992),
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sometimes with a slightly different definition (Molchanov, 2005, Definition 1.8). Similarly,

the standard name for “totally concave” below is “totally alternating”. However these

standard names fail to reveal a fundamental duality, which the first author called convex-

concave duality (Goubault-Larrecq, 2010).

Dually, a game � is totally concave iff (1) holds with ≥ replaced by ≤, and the roles

of unions and intersections are swapped, i.e.:

�

(
n∩
i=1

Ui

)
≤

∑
I⊆{1,...,n},I ∕=∅

(−1)∣I∣+1�

(∪
i∈I

Ui

)
(2)

A totally concave game is a plausibility (Goubault-Larrecq, 2007a; Molchanov, 2005).

Note that, if � is a valuation, then (1) holds with = instead of ≥. This equation is the

well-known inclusion-exclusion principle of probability theory. Dually, we call (2) with =

instead of ≤ the exclusion-inclusion principle; this again holds whenever � is a valuation.

Two of the three theorems that form the topic of this paper relate continuous credi-

bilities, resp. plausibilities, on X with continuous valuations on the Smyth, resp. Hoare

powerdomain on X. These will be established in Section 4 and Section 5. We will deal

with the Plotkin powerdomain in Section 6. However we postpone the definition of the

notion corresponding to valuations on this powerdomain, estimates, to Section 6.

Given any capacity � on a space X, and any continuous map f : X → Y , the image

capacity f [�] on Y is defined by f [�](V ) = �(f−1(V )). It is easy to see that f [�] is a

game, a continuous game, a credibility, a plausibility, or a valuation, as soon as � is.

3. Generating valuations: A general setting

In this section we deal with the following question: Given a collection S of subsets of a set

L and a real valued function � defined on S, under which conditions is it possible to extend

� to a uniquely determined valuation on the lattice of subsets of L generated by S. We

will always suppose that S is a ∩-semilattice, that is, finite intersections of members of S
also belong to S. Under this hypothesis Groemer (Groemer, 1978, Theorem 1) has given a

complete solution to the problem. We refer to the book by Klain and Rota for an elegant

presentation of Groemer’s Integral Theorem (Klain and Rota, 1997, Theorem 2.2.1). Note

that strict modular real valued functions on lattices are called valuations by Klain and

Rota. If one requires valuations to be monotone as we do, one has to add a hypothesis

on the set function � that will turn out to be exactly Choquet’s monotonicity of infinite

order, namely, total convexity.

For our purposes we will only use a very special case of Groemer’s Integral Theorem.

As in this special case the proof is short and elementary, we will present it below. We

need some preparations.

For every subset A of a set L, we denote by XA the characteristic function of A, that
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is, XA(x) = 1 if x ∈ A, else = 0. For subsets A1 and A2, one has

XA1∩A2 = XA1 ⋅ XA2 (3)

XA1∪A2 = XA1 + XA2 −XA1∩A2 (4)

XA1∖A2
= XA1

−XA1∩A2
(5)

XL∖A1
= 1−XA1

(6)

For a non-empty finite family A1, . . . , An of subsets, we have A1 ∪ ⋅ ⋅ ⋅ ∪ An = L ∖(
(L ∖ A1) ∩ ⋅ ⋅ ⋅ ∩ (L ∖ An)

)
. From Equations (3) and (6), we deduce that XA1∪⋅⋅⋅∪An

=

1−
∏n
i=1(1−XAn) = 1−

∑
I⊆{1,...,n}(−1)∣I∣

∏
i∈I XAi =

∑
I⊆{1,...,n}

I ∕=∅
(−1)∣I∣+1

∏
i∈I XAi =∑

I⊆{1,...,n}
I ∕=∅

(−1)∣I∣+1X(
T

i∈I Ai), so we have the the following generalization of (4) that will

be called the Inclusion-Exclusion Formula:

XA1∪⋅⋅⋅∪An =
∑

I⊆{1,...,n}
I ∕=∅

(−1)∣I∣+1X(
T

i∈I Ai) (7)

We adopt the usual convention that the union of an empty family of subsets of a set L is

the empty set and that the intersection is the whole set L. Equation (7) then also holds

for the empty family of subsets, as the sum over an empty index set is 0.

For the characteristic function of the relative complement S = A∖(A1∪. . .∪An), XS =

XA−XA∩(A1∪...∪An) = XA−X(A∩A1)∪...∪(A∩An) = XA−
∑
I⊆{1,...,n}

I ∕=∅
(−1)∣I∣+1XT

i∈I(A∩Ai).

Thus:

XA∖(A1∪...∪An) = XA −
∑

I⊆{1,...,n}
I ∕=∅

(−1)∣I∣+1X(A∩
T

i∈I Ai) (8)

or equivalently,

XA∖(A1∪...∪An) =
∑

I⊆{1,...,n}

(−1)∣I∣X(A∩
T

i∈I Ai) (9)

For a collection S of subsets of L denote by V (S) the vector space of real valued

functions on L generated by the characteristic functions XA, A ∈ S, that is:

V (S) = {
n∑
i=1

riXAi
∣ Ai ∈ S, ri ∈ ℝ for i = 1, . . . , n}.

We shall say that S is a ∩-semilattice of subsets of L, if A1 ∩A2 ∈ S whenever A1 ∈ S
and A2 ∈ S. In this paper we also require that L ∈ S. If in addition A1 ∪ A2 ∈ S and

∅ ∈ S, then we say that S is a lattice of subsets. If moreover L ∖A2 ∈ S, then S is called

an algebra of subsets.

Remark 3.1. Let S be a ∩-semilattice of subsets of L.

(a) The finite unions B = A1 ∪ ⋅ ⋅ ⋅ ∪ An of non-empty families Ai ∈ S form a lattice

�S of subsets of L, the lattice generated by S. The characteristic functions of these finite

unions belong to the vector space V (S) by Equation (7).
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(b) For A ∈ S and for any finite (possibly empty) family A1, . . . , An in S, the charac-

teristic function of the relative complement

S = A ∖ (A1 ∪ ⋅ ⋅ ⋅ ∪An)

also belongs to the vector space V (S) by Equation (5).

(c) EveryB ∈ �S and every relative complementB∖B′ of members of the lattice �S can

be represented as a finite union of disjoint sets of the form S. (Indeed let B = A1∪⋅ ⋅ ⋅∪An
with Ai in S, let S1 = A1 ∖B′ and Si = Ai ∖ (A1 ∪ ⋅ ⋅ ⋅ ∪Ai−1 ∪B′) for i = 2, . . . , n. Then

the Si are pairwise disjoint and their union is B ∖B′.)
(d) The finite unions of sets of the form S form an algebra �S, the algebra of subsets

generated by S. The characteristic functions of sets C ∈ �S all belong to the vector space

V (S). In fact, the characteristic function XC of a set C belongs to V (S) if and only if

C ∈ �S.

Let us consider now a real valued function � defined on a collection S of subsets of L.

Slightly relaxing our previous definition, we will say that � is strict if �(∅) = 0 as soon

as ∅ ∈ S, and that � is monotone if �(A1) ≤ �(A2) whenever A1 ⊆ A2 in S. If S is a

lattice, we again say that � is modular if the equation

�(U ∪ V ) + �(U ∩ V ) = �(U) + �(V )

holds for all U, V ∈ S. If S is an algebra, then � is said to be additive, if �
(∪n

i=1Ai
)

=∑n
i=1 �(Ai) for all finite families of pairwise disjoint members Ai ∈ S. An additive map

on an algebra is easily seen to be modular and strict, thus it induces a strict modular

map on each sublattice.

Remark 3.2. There are canonical bijections between

(i) the [monotone] linear functionals � : V (S)→ ℝ,

(ii) the [monotone] additive maps � : �S → ℝ,

(iii) the strict [monotone] modular maps � : �S → ℝ.

Indeed, if � is a [monotone] linear functional on the vector space V (S), we define its

’restriction’ to the algebra �S by considering the values on the characteristic functions,

that is, we set �(C) = �(XC) for C ∈ �S; the linearity of � on V (S) implies the

additivity of its ’restriction’ to �S and, if � is monotone on V (S), it is also monotone

on �S. Restricting further yields a strict [monotone] modular function on the lattice �S.

Conversely, every strict [monotone] modular map on �S extends uniquely to a [monotone]

additive map on the algebra �S according to the well-known Smiley-Horn-Tarski Theorem

(see, e.g., (König, 1997, Theorem 3.4)). And any [monotone] additive map � on �S defines

a [monotone] linear functional by considering the integral
∫
fd� =

∑n
i=1 ri�(Ai) for

f =
∑n
i=1 riXAi ∈ V (S) with respect to � (Klain and Rota, 1997, Theorem 2.2.1).

In the following we will always identify additive maps on �S and modular maps on �S
according to the previous remark.

We now note that an extension of a function � : S → ℝ to a linear functional on V (S)

(to an additive function on �S, a modular function on �S, respectively) is unique, if it

exists.
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Remark 3.3. (a) As the characteristic functions XA, A ∈ S, generate the vector space

V (S), a linear functional � on V (S) is uniquely determined by its values on these char-

acteristic functions. Thus, for a function � : S → ℝ there is at most one linear functional

�∗ : V (S)→ ℝ such that �∗(XA) = �(A) for all A ∈ S.

(b) As the linear functionals on V (S) are in bijective correspondence with the strict

modular maps on the lattice �S (with the additive maps on the Boolean ring �S, respec-

tively), a function � : S → ℝ has at most one strict modular extension �∗ : �S → ℝ (at

most one additive extension �∗ : �S → ℝ, respectively). If such an extension exists, it is

given by:

�∗(A1 ∪ . . . ∪An) =
∑

I⊆{1,...,n}
I ∕=∅

(−1)∣I∣+1�
(∩
i∈I

Ai
)

(10)

�∗(A ∖ (A1 ∪ . . . ∪An)) =
∑

I⊆{1,...,n}

(−1)∣I∣�
(
A ∩

∩
i∈I

Ai
)

(11)

This is seen by applying the functional �∗ to Equations (7) and (8).

For the existence of an extension in the general case we refer to Groemer’s Integral

Theorem (Klain and Rota, 1997, Theorem 2.2.1). We will only use it in a special case for

which we will include a simple proof: see Theorem 3.3 below.

Definition 3.1. A member A of a ∩-semilattice S of subsets will be called ∪-irreducible

if it cannot be represented as a finite union of strictly smaller members of S. We will say

that S is ∪-irredundant, if all of its members are ∪-irreducible.

Lemma 3.2. Suppose S is a ∪-irredundant ∩-semilattice. Then the characteristic func-

tions XA, ∅ ∕= A ∈ S, are linearly independent, hence, form a basis for the vector space

V (S).

Proof. Suppose that
∑n
i=1 riXAi

= 0 for pairwise distinct non-empty Ai ∈ S and

0 ∕= ri ∈ ℝ. Among the sets Ai choose a maximal one, say A1. As A1 is supposed to be

∪-irreducible, it contains an element x not contained in A2 ∪ ⋅ ⋅ ⋅ ∪An. Thus XA1
(x) = 1

and XAi
(x) = 0 for i = 2, . . . , n, whence 0 =

∑n
i=1 riXAi

(x) = r1, a contradiction.

Theorem 3.3. Suppose that S is a ∪-irredundant ∩-semilattice of subsets of a set L

and � : S → ℝ a strict real valued function. Then:

(i) There is a unique linear functional �∗ : V (S) → ℝ such that �∗(XA) = �(A) for all

A ∈ S.

(ii) There is a unique additive function �∗ : �S → ℝ extending �.

(iii) There is a unique strict modular function �∗ : �S → ℝ extending �.

The extension �∗ is given by the formulas (10) and (11).

Property (i) follows from the preceding Lemma since any real valued function defined

on a basis of a vector space has a unique extension to a linear map. Properties (ii) and

(iii) follow by restricting the linear extension �∗ from (i) to the characteristic functions

of members of �S and �S, respectively, that is, �∗(B) = �∗(XB) for B in �S or �S.

Groemer’s Integral Theorem has the same conclusion as Theorem 3.3, but is more
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general. Instead of �S it assumes a general lattice of sets, and S is only assumed to

be a ∩-semilattice that is also a generating subset for this lattice, in the sense that

every element of the lattice should be a finite union of elements of S. On the other

hand, Groemer’s Theorem requires one to check that the inclusion-exclusion formula

� (
∪n
i=1Ai) =

∑
I⊆{1,...,n},I ∕=∅(−1)∣I∣+1�

(∩
i∈I Ai

)
is satisfied for all A1, . . . , An in S

such that
∪n
i=1Ai is also in S. Theorem 3.3 is the special case where S is ∪-irredundant,

in which case the latter condition is vacuously true.

The modular extension �∗ of � from S to �S need not be monotone, even when � is

monotone on S. As a simple example one may consider the three element set a, b, c with

the ∩-semilattice S = {∅, {a}, {b}, {a, b, c}} and the function �(∅) = 0, �({a} = �({b}) =

�({a, b, c} = 1 which is monotone on S, but its extension is not monotone as it satisfies

�∗({a, b}) = 2 > �({a, b, c} = 1.

We want to characterize those � for which the extension �∗ is also monotone. For this

we consider the pointwise order of functions in the vector space V (S) and the inclusion

order on �S and �S. Note that an additive function on a ring of sets is monotone if and

only if all its values are non-negative and, similarly, a linear functional on the vector

space V (S) is monotone if and only if non-negative elements have non-negative values.

Such functionals are often called positive.

Lemma 3.4. Let S be a ∩-semilattice of subsets of a set L and �S the lattice generated

by S. If a modular function � : �S → ℝ is monotone its restriction � to S satisfies the

following property: For every A ∈ S and every finite family A1, . . . , An in S such that

A1 ∪ . . . ∪An ⊆ A, the following inequality holds:

�(A) ≥
∑

I⊆{1,...,n}
I ∕=∅

(−1)∣I∣+1�
(∩
i∈I

Ai
)
. (12)

Proof. If A1 ∪ . . . ∪ An ⊆ A in S, the monotonicity of � implies �(A1 ∪ . . . ∪ An) ≤
�(A) = �(A). Calculating �(A1 ∪ . . .∪An) according to Equation (10) yields the desired

inequality.

The previous lemma gives rise to the following definition:

Definition 3.5. A real valued function � defined on a ∩-semilattice S of subsets of a

set L is called totally convex, iff it satisfies the inequality (12) for all A,A1, . . . .An in S
such that A1 ∪ . . . ∪ An ⊆ A. This is tantamount to saying that, for every A ∈ S and

every finite family A1, . . . , An in S the following inequality holds:∑
I⊆{1,...,n}

(−1)∣I∣�
(
A ∩

∩
i∈I

Ai
)
≥ 0. (13)

In the inequalities (12) and (13) the case n = 0 is admitted which implies that a totally

convex function has only non-negative values. The case n = 1 shows that totally convex

functions are monotone.

The following is the main result of this section:

Theorem 3.6. For a ∪-irredundant ∩-semilattice S of subsets of a set L there is a
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canonical bijection between:

(i) monotone additive real valued functions � on the algebra �S generated by S,

(ii) valuations on the lattice �S generated by S,

(iii) totally convex strict real valued functions � defined on S.

Proof. Every monotone additive real valued function � on �S restricts to a monotone

strict modular function on �S and every monotone strict modular function on �S restricts

to a strict totally convex function on S by the preceding lemma. It remains to show that

every strict totally convex real valued function � on S extends uniquely to a monotone

additive real valued function �∗ on �S.

By Theorem 3.3, � has a unique extension �∗ to an additive real valued function on

�S. The value of every set of the form S = A ∖ (A1 ∪ . . .∪An) with A,A1. . . . , An in S is

given by Equation (11). If � is totally convex, then �∗(S) ≥ 0. As every set C belonging

to the algebra �S is a disjoint union of sets of the form S, the additivity of �∗ implies that

�∗(C) ≥ 0. But additive functions with non-negative values on an algebra are monotone.

We can dualize the developments of this section in the following way: Complementation

A 7→ L ∖ A is an anti-isomorphism of the algebra of subsets of a set L. It interchanges

∩ and ∪. It allows to transfer every statement about a collection S of subsets of L to a

dual statement about the complementary collection Sc = {L ∖A ∣ A ∈ S}.
For a real valued map � on a collection S of subsets the conjugate map �c is defined

on the complementary collection Sc by �c(B) = �(L) − �(L ∖ B) provided that L ∈ S.

The following properties are straightforward:

Remark 3.4. Let S be a collection of subsets of L containing L itself, and � be a real

valued function defined on L.

(1) S is a ∩-semilattice if and only if Sc is a ∪-semilattice, �c is always strict, and �

is monotone if and only if �c is.

(2) If S is a ∩-semilattice, then � is totally convex on S if and only if �c is totally

concave on Sc, which means that, for all B ∈ Sc and for each finite non-empty family

B1, . . . , Bn in Sc, with n ≥ 1, the following inequality holds:∑
I⊆{1,...,n}

(−1)∣I∣�c
(
B ∪

∪
i∈I

Bi
)
≤ 0. (14)

(3) S is a lattice if and only if Sc is a lattice, too, and then � is modular if and only

if �c is.

(4) If S is an algebra, then Sc = S and, if � is additive on S, then � = �c.

Only the second statement needs a proof. We first note that �c is always strict and

that (14) with n = 1 implies that �c is monotone, hence that �c(B) ≥ 0 by definition.

Note also that, contrarily to (13), we do not allow n to be 0 in (14): this would require

�c(B) ≤ 0; since already �c(B) ≥ 0, this would force �c to be identically zero, hence �

to be constant.
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Let A = L ∖B and Ai = L ∖Bi for each i. We compute:∑
I⊆{1,...,n}

(−1)∣I∣�c
(
B ∪

∪
i∈I

Bi
)

=
∑

I⊆{1,...,n}

(−1)∣I∣

(
�(L)− �

(
A ∩

∩
i∈I

Ai
))

=

⎛⎝ ∑
I⊆{1,...,n}

(−1)∣I∣

⎞⎠ �(L)−
∑

I⊆{1,...,n}

(−1)∣I∣�
(
A ∩

∩
i∈I

Ai
)
.

When n ≥ 1,
∑
I⊆{1,...,n}(−1)∣I∣ = 0, as the development of (1 − 1)n shows. So (14)

holds in this case if and only if
∑
I⊆{1,...,n}(−1)∣I∣�

(
A∩

∩
i∈I Ai

)
≥ 0, which is just (13)

in the case n ≥ 1. In particular, if � is totally convex, then (14) is satisfied whenever

n ≥ 1. Conversely, if �c is totally concave, then (13) is satisfied whenever n ≥ 1. We

must show that it is also satisfied when n = 0, i.e., that �(A) ≥ 0. (14) with n = 1 yields

�c(B)− �c(B ∪ B1) ≤ 0 for any B1. For B1 = L, we obtain �c(B)− �(L) ≤ 0, which is

the desired inequality.

Dualizing our theorems 3.3 and 3.6, and in particular using the obvious dual notions

of ∪-semilattice, ∩-irreducibility, and ∩-irredundancy, we obtain:

Theorem 3.7. Let S be a ∩-irredundant ∪-semilattice of subsets of L. Then every strict

real valued function � defined on S extends uniquely to a modular function �∗ on the

lattice �S generated by S. The extension is a valuation if and only if � is totally concave.

The members of the lattice �S are the finite intersections B1∩. . .∩Bn of sets B1. . . . , Bn ∈
S, and the extension �∗ on such sets is given by

�∗(B1 ∩ . . . ∩Bn) =
∑

I⊆{1,...,n}
I ∕=∅

(−1)∣I∣+1�
(∪
i∈I

Bi

)
. (15)

4. The Demonic Case: Continuous Credibilities

Throughout this section we consider a topological space X. Recall that we denote by

O(X) the lattice of all open subsets of X and by QV(X) the set of all non-empty compact

saturated subsets Q ⊆ X with the upper Vietoris topology which is given by the basic

open sets

□U = {Q ∈ Q(X) ∣ Q ∈ U}, U ∈ O(X).

Let us note in passing that QV(X) is sober provided that X is, see (Schalk, 1993, Propo-

sition 7.20). We start with a useful lemma on the basic open sets □U .

Lemma 4.1. (1) □∅ = ∅ and □X = QV(X); (2) □U∩□V = □(U ∩ V ); (3) □
(∪

i∈I Ui
)

=∪
i∈I □Ui for every directed family of opens (Ui)i∈I .

Proof. For (1) we use that the empty set is excluded from QV(X). (2) and the ⊇
direction of (3) are obvious. For any Q ∈ □

(∪
i∈I Ui

)
, i.e., Q ⊆

∪
i∈I Ui, there is an i ∈ I

such that Q ⊆ Ui since Q is compact; so Q ∈ □Ui, hence Q ∈
∪
i∈I □Ui.
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It is item (2) that allowed us to claim that the sets of the form □U formed not just a

subbase, but a base of the topology of QV(X).

Lemma 4.2. The basic open sets □U form a ∪-irredundant ∩-semilattice S of subsets

of Q(X) and the map U 7→ □U : O(X)→ S is an isomorphism of ∩-semilattices.

Proof. Property (2) in Lemma 4.1 tells us that U 7→ □U is a ∩-semilattice homo-

morphism. If U, V are different open sets, for example U ∕⊆ V , then there is an element

x ∈ U ∖ V ; hence ↑x is a compact saturated set contained in □U ∖ □V , which implies

that □U ∕= □V . Thus U 7→ □U : O(X) → S is injective and, hence, a ∩-semilattice

isomorphism.

In order to show that S is ∪-irredundant, we take an open set U and we suppose

that U1, . . . , Un are open sets such that □Ui is a proper subset of □U for every i. By the

previous paragraph we can find an xi ∈ U ∖Ui for every i. The saturation ↑{x1, . . . , xn} is

a compact saturated subset of U not contained in any Ui. Thus the union □U1∪ . . .∪□Un
is properly contained in □U which shows that □U is ∪-irreducible.

The preceding lemma allows us to apply Theorem 3.3 and Theorem 3.6. The finite

unions □U1∪ . . .∪□Un of basic open sets with Ui ∈ O(X) will be called elementary open

sets; they form the lattice �S generated by the basic open sets. And we obtain:

Corollary 4.3. For every strict map � : O(X) → ℝ there is a unique strict modular

function �∗ : �S → ℝ such that �∗(□U) = �(U) for every open U in X. The extension is

given by

�∗(□U1 ∪ . . . ∪□Un) =
∑

I⊆{1,...,n}
I ∕=∅

(−1)∣I∣+1�
(∩
i∈i
Ui
)
.

The extension �∗ is a valuation if and only if � is a credibility on X.

We would like to extend the valuation �∗ on the elementary open sets to a continuous

valuation on the lattice of all open subsets of QV(X). We first observe that the continuity

of the credibility � is a necessary condition.

Lemma 4.4. For any continuous valuation P on QV(X), the game P⇃X defined by

P⇃X(U) = P (□U), for all opens U of X, is a continuous credibility on X.

Proof. It is clear that � = P⇃X is a game, and � is continuous, as it is the composition

of the map U 7→ □U , which is continuous by Lemma 4.1 (3), followed by the continuous

map P . Clearly, � is totally convex by Corollary 4.3, as the restriction of P to the lattice

�S is a valuation.

The notation P⇃X is meant to be a reminder that it is obtained by restriction. If we

equate X with the subspace of QV(X) of all elements of the form ↑x, x ∈ X, the opens

U of X are exactly the opens of the form □U ∩X, so that we have actually defined P⇃X
by the restriction formula P⇃X(□U ∩X) = P (□U).

Our goal in this section is to show that, under mild conditions on X, the converse

holds: any continuous credibility on X can be extended to a continuous valuation on the

whole of QV(X). Moreover, the extension is unique.
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This can be interpreted in many ways. In economics, this theorem is a refinement of

the “completion of a misspecified model” result of (Gilboa and Schmeidler, 1992), where

games really are games between players, namely the elements of the space X. When

X is finite at least, valuations are naturally identified with games (in the usual sense)

where each player plays independently of (or against) each other, expecting some payoff

for herself (utility). Capacities model situations where players can form coalitions, where

payoff will be allotted to coalitions as a whole: this is the so-called cooperative game

with transferable utility model. (Utility is transferable because we don’t care how the

players in a given coalition will share their earnings, and don’t prefer any way of sharing

among the coalition over any other.) Coalitions are non-empty sets of players. When X is

topologized, our constructions show that coalitions should be refined to mean non-empty

compact saturated sets of players, although this may now lack some of the economic

intuition.

In mathematics, this is a representation theorem for random sets. This states that it

is equivalent to give oneself a distribution over subsets of X (here, non-empty compact

saturated subsets), or to give oneself a continuous credibility on X directly (Molchanov,

2005).

In a computer science context, the first author has argued elsewhere (Goubault-Larrecq,

2007a) that continuous credibilities provided a semantic model for mixed probabilistic

choice and demonic non-determinism. Remember that QV(X) is the standard powerdo-

main for demonic non-determinism. Our theorem then states that continuous credibilities

are in one-to-one correspondence with continuous valuations on QV(X). This model is

one where probabilistic choice is resolved first, then non-determinism, i.e., the opposite

of some other models (Mislove, 2000; Tix et al., 2005; Goubault-Larrecq, 2007b). I.e.,

you first draw some non-empty compact saturated subset Q ∈ QV(X) at random, then

pick non-deterministically some element from Q.

The following lemma probably illustrates the point more concretely. Let �x be the Dirac

mass at x: �x(U) is 1 if x ∈ U , 0 otherwise; this is a continuous valuation. Let uQ be the

unanimity game on Q: uQ(U) is 1 if Q ⊆ U , 0 otherwise. Unanimity games generalize

Dirac masses in that �x = u↑ x = u�Q(x). Call a valuation simple iff it is of the form∑n
i=1 ai�xi

, a1, . . . , an ∈ ℝ+; every simple valuation is a continuous valuation. Call simple

credibility any game of the form
∑n
i=1 aiuQi , a1, . . . , an ∈ ℝ+, Q1, . . . , Qn ∈ QV(X).

Then we have:

Lemma 4.5. Any simple credibility is a continuous credibility. Moreover, every re-

striction of a simple valuation on QV(X) is a simple credibility on X; namely, for any

a1, . . . , an ∈ ℝ+, Q1, . . . , Qn ∈ QV(X),(
n∑
i=1

ai�Qi

)
⇃X

=

n∑
i=1

aiuQi .

Proof. The first claim follows from the second one and Lemma 4.4. The second one is

immediate: on the open U , the two sides of the equality simplify to
∑

1≤i≤n
Qi⊆U

ai.
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Unanimity games uQ are in bijection with elements of Q(X), and are accordingly models

of pure demonic non-deterministic choice, among all continuous credibilities. Pure non-

deterministic choice can be characterized by the fact that the game takes the values 0 or

1 only:

Proposition 4.6. Let X be a sober space. Any continuous credibility � with �(X) = 1

and such that � only takes values 0 or 1 is of the form uQ, Q ∈ QV(X). In fact, this

already holds of all convex games that take values 0 or 1 only and such that �(X) = 1,

where � is convex iff �(U ∪ V ) + �(U ∩ V ) ≥ �(U) + �(V ) for all opens U , V .

Proof. We first check that every continuous credibility is convex: this is the case n = 2

in (1). Next, assume � is a convex game, �(X) = 1, and � only takes values 0 or 1. Let

ℱ be the collection of all opens U such that �(U) = 1. This is a filter of opens, i.e., it

is non-empty (since �(X) = 1), U ⊆ V and U ∈ ℱ imply V ∈ ℱ and U, V ∈ ℱ imply

U ∩ V ∈ ℱ . The latter is because �(U ∩ V ) ≥ �(U) + �(V )− �(U ∪ V ) ≥ 1 + 1− 1 = 1,

and �(U ∩V ) is either 0 or 1. ℱ is Scott-continuous, i.e., for any directed family of opens

(Ui)i∈I , if
∪
i∈I Ui ∈ ℱ then Ui ∈ ℱ already for some i ∈ I. And ℱ is non-trivial, i.e.,

not the whole of O(X), since ∅ ∕∈ ℱ . The Hofmann-Mislove Theorem, see (Abramsky

and Jung, 1994, Theorem 7.2.9) or (Gierz et al., 2003, Theorem II-1.20), implies that the

intersection Q of all elements of ℱ is a non-empty compact saturated subset of X, and

that Q ⊆ U iff U ∈ ℱ , whence � = uQ.

We come finally to our demonic extension of the Choquet-Kendall-Matheron theorem.

We need some facts about the upper Vietoris topology. It will be convenient to use the

following notation for compact saturated sets Q in X: ■Q = {Q′ ∈ QV(X) ∣ Q′ ⊆ Q}.

Lemma 4.7. The set ■Q is compact and saturated in QV(X) for every compact satu-

rated set Q in X,

Proof. Consider a family of basic open sets (□Ui)i, Ui ∈ O(X), such that ■Q ⊆∪
i□Ui. Then Q ∈

∪
i□Ui. Thus, there is an i such that Q ∈ □Ui which means that

Q ⊆ Ui that is, ■Q ⊆ □Ui.

Among the elementary open sets we consider those of the form □int(Q1) ∪ . . . ∪
□int(Qn) where Q1, . . . , Qn are compact saturated sets. We call them special elementary

open sets.

Lemma 4.8. If X is locally compact, then every elementary open set □U1∪ . . .∪□Un is

the union of the directed family of special elementary open sets □int(Q1)∪. . .∪□int(Qn)

with Q1 ⊆ U1, . . . , Qn ⊆ Un. In particular, the sets □int(Q), where Q ranges over all

compact saturated sets of X form a basis of the upper Vietoris topology.

Proof. It suffices to show that □U =
∪
{□int(Q) ∣ Q ∈ □U}. As X is locally compact,

an open subset U of X is the union of the int(Q) where Q ranges over the compact

saturated sets contained in U , i.e., U =
∪
{int(Q) ∣ Q ∈ □U}. As the union of finitely

many compact saturated sets contained in U is again a compact saturated set contained

in U , □U is directed and Lemma 4.1 (3) implies that □U =
∪
{□int(Q) ∣ Q ∈ □U}.
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Lemma 4.8 shows that if X is locally compact, then QV(X) is a C-space in the sense

of Erné (Erné, 1991), that is, a space Z in which for every z ∈ Z, for every open

neighborhood V of z, there is a further element z′ ∈ V such that z is in the interior of

the upward-closure of z′. Specifically, for every Q ∈ QV(X), for every open neighborhood

U of Q in QV(X), there is a basic open □int(Q′) containing Q and included in U .

But □int(Q′) is included in ■Q′, which is precisely the upward-closure of Q′ in the

specialization ordering of QV(X), which is reversed inclusion.

Every C-space is, by definition, locally compact. Moreover, the lattice of open subsets

of any C-space is completely distributive, hence in particular continuous.

Lemma 4.9. Let X be a locally compact space. Then QV(X) is locally compact, too.

The lattice of open subsets of QV(X) is continuous; for two open subsets U and V
we have U ⋐ V if and only if there are finitely many Q1, . . . , Qn ∈ V such that U ⊆
□int(Q1) ∪ . . . ∪□int(Qn).

Proof. Only the last statement remains to be proved. Let U and V be open subsets

for the upper Vietoris topology. If there are Q1, . . . , Qn ∈ V such that U ⊆ □int(Q1) ∪
. . . ∪ □int(Qn), then U ⊆ ■Q1 ∪ . . . ∪ ■Qn ⊆ V. Being a finite union of compact sets

■Q1 ∪ . . .∪■Qn is compact. It follows that U ⋐ V. Suppose conversely that U ⋐ V. The

open set V is a union of basic open sets □U , and each of those is a union of basic open sets

□int(Q) with Q ⊆ U . Hence, V a union of sets of the form □int(Q) with Q ∈ V. Thus, if

U ⋐ V, there are finitely many Q1, . . . , Qn ∈ V such that U ⊆ □int(Q1)∪ . . .∪□int(Qn)

as desired.

As an immediate consequence of the previous lemma we have:

Corollary 4.10. Suppose that X is locally compact. The special elementary opens

□int(Q1)∪ . . .∪□int(Qn), where Q1, . . . , Qn range over finite families of compact satu-

rated subsets of X, form a basis of the continuous poset O(QV(X)).

Proposition 4.11. For every continuous credibility � on X, there is at most one con-

tinuous valuation �∗ on QV(X) such that �(U) = �∗(□U) for every open U of X; and

such a �∗ exists whenever X is locally compact.

Proof. Assume � is a continuous credibility on X. By Corollary 4.3, there a unique

valuation �∗ defined on the lattice �S of elementary opens such that �∗(□U) = �(U) for

every open U of X.

As every open subset U of QV(X) is the union of elementary opens contained in U and

as this family is directed, a continuous extension of �∗ to O(QV(X)) must satisfy

�∗(U) = sup{�∗(V) ∣ V ∈ �S,V ⊆ U}

and hence is uniquely determined by the values of �∗ on the elementary opens.

In order to show the existence, we suppose that X is locally compact. By Lemma 4.9,

the lattice of open subsets of QV(X) is continuous, the elementary opens form a basis

and we have identified the way-below relation there. According to the Extension Lemma

recorded in the Preliminaries, we obtain a continuous map �∗∗ : O(QV(X)) → ℝ by
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defining

�∗∗(U) = sup
J finite ⊆U

�∗
( ∪
Q∈J

□int(Q)
)
.

Let us show that �∗∗ is indeed an extension of �∗, that is, �∗∗(U) = �∗(U) holds for

elementary opens U = □U1 ∪ . . . ∪ □Un where U1, . . . , Un are open in X. Without loss

of generality, assume U1, . . . , Un to be non-empty.

By Lemma 4.8 and Lemma 4.9, the definition of �∗∗(U) can be simplified for elementary

opens:

�∗∗(□U1 ∪ . . . ∪□Un) = sup
Q1⊆U1,...,Qn⊆Un

�∗
(
□int(Q1) ∪ . . . ∪□int(Qn)

)
.

Using the definition of �∗ (see Corollary 4.3),

�∗
(
□int(Q1)∪. . .∪□int(Qn)

)
+

∑
I⊆{1,...,n},I ∕=∅
∣I∣ even

�
(∩
i∈I

int(Qi)
)

=
∑

I⊆{1,...,n},I ∕=∅
∣I∣ odd

�
(∩
i∈I

int(Qi)
)
.

The family of all tuples (Q1, . . . , Qn) of non-empty compact saturated subsets such that

Q1 ⊆ Un, . . . , Qn ⊆ Un, ordered by pointwise inclusion, is directed. Take sups in the

above equality, using the fact that + is Scott-continuous, and that � is continuous:

�∗∗(□U1 ∪ . . . ∪□Un) +
∑

I⊆{1,...,n},I ∕=∅
∣I∣ even

�(VI) =
∑

I⊆{1,...,n},I ∕=∅
∣I∣ odd

�(VI),

where VI stands for
∪
Q1⊆U1,...,Qn⊆Un

∩
i∈I int(Qi). Now, using Lemma 4.8, VI =

∩
i∈I Ui:

in the ⊇ direction, let x ∈
∩
i∈I Ui, pick a compact saturated subset Q such that x ∈

int(Q) ⊆ Q ⊆
∩
i∈I Ui, let Qi = Q for all i ∈ I, and Qi ⊆ Ui arbitrary otherwise

(remember that each Ui is non-empty). So

�∗∗(□U1 ∪ . . . ∪□Un) +
∑

I⊆{1,...,n},I ∕=∅
∣I∣ even

�
(∩
i∈I

Ui

)
=

∑
I⊆{1,...,n},I ∕=∅
∣I∣ odd

�
(∩
i∈I

Ui

)
.

By Corollary 4.3, a similar equation holds with �∗ in place of �∗∗, so indeed �∗∗(U) =

�∗(U) where U = □U1 ∪ . . . ∪□Un.

As �∗∗ is an extension of �∗ we may use the notation �∗ instead of �∗∗ also for the

extended map.

We finally claim that �∗ is modular on O(QV(X)). Let U and U ′ be two arbitrary opens

of QV(X), and write them as unions of directed families of elementary opens (Ui)i∈I and

(U ′j)j∈J respectively. Then U ∪U ′ is the union of the directed family of elementary opens

(Ui ∪ U ′j)i∈I,j∈J , and similarly for U ∩ U ′. Since �∗ is continuous and since + is Scott-

continuous, �∗(U∪U ′)+�∗(U∩U ′) is the least upper bound of all �∗(Ui∪U ′j)+�∗(Ui∩U ′j),
where i ∈ I, j ∈ J , which equals �∗(Ui) + �∗(U ′j) as �∗ is a valuation. It follows that

�∗(U ∪ U ′) + �∗(U ∩ U ′) = �∗(U) + �∗(U ′).

Putting Lemma 4.4 and Proposition 4.11 together, we get:

Theorem 4.12 (Representation, Demonic Case). Let X be locally compact. The

function that maps any continuous valuation P on QV(X) to the continuous credibility
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P⇃X on X is one-to-one. For every continuous credibility � on X, there is a unique

continuous valuation �∗ on QV(X) such that �∗⇃X = �, i.e., such that �∗(□U) = �(U) for

all open subsets U of X.

To give an illustration of what �∗ is, it follows immediately from Lemma 4.5 and the

uniqueness of �∗ that (
∑n
i=1 aiuQi

)
∗

is just the simple valuation
∑n
i=1 ai�Qi

on QV(X).

For those who have a preference for measures as compared to continuous valuations,

we obtain:

Corollary 4.13. Let X be locally compact and well-filtered. Any weakly Radon mea-

sure � on QV(X) restricts to a continuous credibility �⇃X on X. Conversely, for every

continuous credibility � on X, there is a unique weakly Radon measure � on QV(X) such

that �(□U) = �(U) for all opens U of X.

Proof. This follows from the above using the Keimel-Lawson result that continuous

valuations and weakly Radon measures are in one-to-one correspondence on any locally

compact and well-filtered space, and from the fact that QV(X) is indeed locally compact

and well-filtered, since QV(X) = Q(X) is a continuous dcpo under our assumptions.

We shall later argue for a representation theorem for the angelic case, which only

assumes X core-compact, not locally compact (Theorem 5.12). A similar generalization

can be obtained here by replacing QV(X) by the space ℱV (X) of all non-trivial (i.e., not

containing the empty open) Scott-open filters of open subsets of X. When X is sober,

the Hofmann-Mislove Theorem states that these two spaces are order-isomorphic through

the isomorphism that sends each Q ∈ QV(X) to its filter of open neighborhoods, where

we agree to order QV(X) by its specialization ordering ⊇ and ℱV (X) by inclusion. This

easily extends to a homeomorphism provided we equip ℱV (X) with the topology having

as basic open subsets those of the form {ℱ ∈ ℱV (X) ∣ U ∈ ℱ} when U ranges over the

open subsets of X. We decide to write the latter, again, □U .

For any space X, let the sobrification Xs of X be the space of all irreducible closed

subsets C of X, with the so-called hull-kernel topology. This is none other than the lower

Vietoris topology on Xs, whose subbasic open sets are ⋄U = {C ∈ Xs ∣ C ∩ U ∕= ∅},
U open in X. Irreducibility entails that the latter are the only open subsets of Xs.

In particular, the topologies O(X) and O(Xs) are order-isomorphic, through the map

U 7→ ⋄U .

It is remarkable that Xs is locally compact as soon as X is core-compact. This is an

instance of the Hofmann-Lawson duality between continuous distributive lattices and

locally compact sober spaces, see (Abramsky and Jung, 1994, Theorem 7.2.16) or (Gierz

et al., 2003, Theorem V-5.5). So, if X is core-compact, then Xs is locally compact, and

we can apply Theorem 4.12 on Xs instead of X. Since Xs is also sober, QV(Xs) is

homeomorphic to ℱV (Xs). However, there is an order-isomorphism between the opens

of Xs and those of X, which implies that ℱV (Xs) is homeomorphic to ℱV (X). Putting

all this together, we obtain the following result.

Corollary 4.14. Let X be core-compact. The function that maps any continuous valu-

ation P on ℱV (X) to the continuous credibility P⇃X on X, defined by P⇃X(U) = P (□U),
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is one-to-one. For every continuous credibility � on X, there is a unique continuous valu-

ation �∗ on ℱV (X) such that �∗⇃X = �, i.e., such that �∗(□U) = �(U) for all open subsets

U of X.

We finish this section with an application to integration. We use Choquet integration

(Choquet, 54) of any continuous map f : X → ℝ+
� (i.e., any lower semi-continuous map

from X to ℝ+) along any game �, which we write C
∫
x∈X f(x)d�:

C
∫
x∈X

f(x)d� =

∫ +∞

0

�(f−1(t,+∞))dt (16)

Denneberg (Denneberg, 1994, Chapters 5, 6) gives an in-depth treatment of the Choquet

integral, in a more standard, measure-theoretic fashion, where f above does not need

to be continuous, but the resulting integral only commutes with limits of increasing

sequences, not of directed families. Tix (Tix, 1995) also used the same formula (16),

in the restricted case where � is a continuous valuation. The integral on the right is

an ordinary improper Riemann integral, and is well-defined, since f−1(t,+∞) is open

for every t ∈ ℝ by assumption, and � measures opens. Also, since f is bounded, the

improper integral above really is an ordinary Riemann integral over some closed interval.

The function t 7→ �(f−1(t,+∞)) is non-increasing, and every non-increasing function is

Riemann-integrable.

It is immediate from (16) that Choquet integration satisfies the change of variables

formula: C
∫
x∈X f(g(x))d� = C

∫
y∈Y f(y)dg[�], whenever g is continuous from X to Y , f is

continuous from Y to ℝ+
� , and � is any game on X. Recall that the image game g[�] is

defined by g[�](V ) = �(g−1(V )).

It is easy to see that the Choquet integral is monotonic in both the f and the � argu-

ment. It is Scott-continuous in �, because Riemann integrals of non-increasing functions

are Scott-continuous in the integrated function, see for example (Tix, 1995, Lemma 4.2),

or use elementary reasoning on Darboux sums; we leave this as an exercise. Similarly,

the Choquet integral is Scott-continuous in f as soon as � is a continuous game, meaning

that if f is continuous bounded and the sup of the directed family (fi)i∈I of continuous

bounded maps, then C
∫
x∈X f(x)d� = supi∈I C

∫
x∈X fi(x)d�: again, reason on the formula

(16).

The Choquet integral is also linear in the game, in the sense that C
∫
x∈X f(x)d

∑n
i=1 ai�i =∑n

i=1 ai C
∫
x∈X f(x)d�i. This is because the Riemann integral is linear in the integrated

function. The Choquet integral is not in general linear in f (integration along unanim-

ity games provides easy counterexamples, see Lemma 4.17 below), although it is cer-

tainly positively homogeneous: whenever a ∈ ℝ+, C
∫
x∈X af(x)d� = a C

∫
x∈X f(x)d� (do the

change of variables t 7→ t/a in (16), at least when a ∕= 0).

An alternate definition consists in observing that any step function
∑n
i=1 ai�Ui

, where

a1, . . . , an ∈ ℝ+, X ⊇ U1 ⊇ . . . ⊇ Un is a decreasing sequence of opens, and �U is the

indicator function of U (�U (x) = 1 if x ∈ X, �U (x) = 0 otherwise) is continuous from

X to ℝ+
� , and of integral along � equal to

∑n
i=0 ai�(Ui)—for any game �:
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Lemma 4.15. Let � be any game on X. For any step function
∑n
i=1 ai�Ui

, where

a1, . . . , an ∈ ℝ+, X ⊇ U1 ⊇ . . . ⊇ Un,

C
∫
x∈X

f(x)d� =

n∑
i=1

ai�(Ui).

Proof. Without loss of generality, assume a1, . . . , an > 0. For every t ∈ ℝ+, �(f−1(t,+∞))

equals �(U1) for all t ∈ [0, a1), �(U2) for all t ∈ [a1, a1 + a2), . . . , �(Un) for all t ∈
[a1 + . . . + an−1, a1 + . . . + an−1 + an), and 0 for all t ∈ [a1 + . . . + an,+∞). So,

splitting the Riemann integral of (16) at the corresponding boundaries, C
∫
x∈X f(x)d� =

a1�(U1) + a2�(U2) + . . .+ an�(Un).

It is well-known that every bounded continuous function f : X → ℝ+
� can be written as

the least upper bound of a sequence of step functions fK = 1
2K

∑⌊b2K⌋
k=1 �f−1( k

2K
,+∞)(x),

K ∈ ℕ, where b = supx∈X f(x). Then the integral of f along � is the least upper bound

of the increasing sequence of the integrals of fK along � (even if � is not continuous).

The resulting formula is known as Jones’ integral when � is a continuous valuation:

Lemma 4.16. Let � be any game on X. For every bounded continuous function f :

X → ℝ+
� , the sequence (fK)K∈ℕ is non-decreasing, fK tends uniformly to f in the sense

that f(x)− 1
2K ≤ fK(x) ≤ f(x) for all x ∈ X, and:

C
∫
x∈X

f(x)d� = sup
K∈ℕ

C
∫
x∈X

fK(x)d�

Proof. If b = supx∈X f(x) is zero, then this is obvious. So assume b > 0. Let more

generally f(�)(x) = �
∑⌊b/�⌋
k=1 �f−1]k�,+∞[(x) for any � > 0; f(�) is a step function, and

fK = f(1/2K). It is standard that f(�) is non-increasing in �, and below f ; moreover, it is

easy to see that f(x)− f(�)(x) ≤ � for all x ∈ X.

Moreover, by Lemma 4.15, C
∫
x∈X f(�)(x)d� =

∑⌊b/�⌋
k=1 ��(f−1(k�,+∞)). Since Cho-

quet integration is monotonic in the integrated function, this is less than or equal to

C
∫
x∈X f(x)d�. Since f−1(t,+∞) is non-increasing in t, for every k ≥ 1, ��(f−1(k�,+∞)) ≥∫ (k+1)�

k�
�(f−1(t,+∞))dt. So:

C
∫
x∈X

f(�)(x)d� =

⌊b/�⌋∑
k=1

��(f−1(k�,+∞))

≥
⌊b/�⌋∑
k=1

∫ (k+1)�

k�

�(f−1(t,+∞))dt

=

∫ (⌊b/�⌋+1)�

�

�(f−1(t,+∞))dt

=

∫ +∞

�

�(f−1(t,+∞))dt since f−1(t,+∞) = ∅ whenever t ≥ b

= C
∫
x∈X

f(x)d� −
∫ �

0

�(f−1(t,+∞))dt ≥ C
∫
x∈X

f(x)d� − ��(X)
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since f−1(t,+∞) ⊆ X and � is monotone.

Choquet integration has other properties, notably that the integral of f + g does indeed

coincide with the sums of the integrals of f and g when f and g are comonotonic, i.e.,

when there is no pair x, x′ ∈ X such that f(x) < f(x′) and g(x) > g(x′). See (Gilboa

and Schmeidler, 1992) for the finite case, (Goubault-Larrecq, 2007, chapitre 4) for the

topological case, or (Molchanov, 2005, Theorem 5.5).

We are more interested here in integrating along continuous credibilities. We first note

the following, which is probably the most intuitive reason why picking from a compact

saturated set Q should be called demonic non-determinism: taking the average along uQ
means minimizing your earnings f(x) over all possible choices x ∈ Q.

Lemma 4.17. For every non-empty compact saturated set Q of X, for every bounded

continuous map f : X → ℝ+
� , let f∗(Q) = minx∈Q f(x). Then C

∫
x∈X f(x)duQ = f∗(Q).

Proof. First, the minimum minx∈Q f(x) is indeed attained: since Q is compact (and

non-empty), the image f(Q) is compact in ℝ+
� (and non-empty), so ↑ f(Q) is non-empty

compact saturated, hence of the form [t,+∞) for some real t: then t = minx∈Q f(x). Now

observe that uQ(f−1(t,+∞)) = 1 iff Q ⊆ f−1(t,+∞) iff minx∈Q f(x) > t iff t < f∗(Q),

and uQ(f−1(t,+∞)) = 0 otherwise. By (16), C
∫
x∈X f(x)duQ =

∫ +∞
0

uQ(f−1(t,+∞))dt =∫ f∗(Q)

0
1dt = f∗(Q).

It follows that integrating along simple credibilities means taking “means of mins”

(Gilboa and Schmeidler, 1992): C
∫
x∈X f(x)d

∑n
i=1 aiduQi

=
∑n
i=1 ai minx∈Qi

f(x). This

is another way to see that picking x at random along a credibility means picking a non-

empty compact saturated subset Qi at random with probability ai, then picking some

element from Qi in a demonic way. This generalizes to all continuous, not just simple

credibilities:

Proposition 4.18. For every continuous valuation P on QV(X), for every bounded

continuous map f : X → ℝ+
� , C
∫
x∈X f(x)dP⇃X = C

∫
Q∈QV(X)

f∗(Q)dP .

Let X be locally compact. For every continuous credibility � on X, for every bounded

continuous map f : X → ℝ+
� , C
∫
x∈X f(x)d� = C

∫
Q∈QV(X)

f∗(Q)d�∗.

Proof. Note that f−1
∗ (t,+∞) = {Q ∣ minx∈Q f(x) > t} = {Q ∣ Q ⊆ f−1(t,+∞)} =

□f−1(t,+∞). (That the minimum is attained is important.) Then C
∫
Q∈QV(X)

f∗(Q)dP =∫ +∞
0

P (f−1
∗ (t,+∞))dt =

∫ +∞
0

P (□f−1(t,+∞))dt =
∫ +∞

0
P⇃X(f−1(t,+∞))dt. The lat-

ter is just C
∫
x∈X f(x)dP⇃X . The second part then follows from Theorem 4.12.

Using Lemma 4.17, one can also see this as a form of disintegration, viz. C
∫
x∈X f(x)d� =

C
∫
Q∈QV(X)

(
C
∫
x∈Q f(x)duQ

)
d�∗.

5. The Angelic Case: Continuous Plausibilities

There is an easy way in which we can reduce the case of continuous plausibilities to that

of continuous credibilities, at least when X is stably compact. In this case indeed, there is
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a form of duality between angelic and demonic non-determinism that immediately entails

that there is a one-to-one correspondence between continuous (normalized) plausibilities

on X and continuous (normalized) valuations on the Hoare powerdomain ℋV(X) of all

non-empty closed subsets ofX. This is the subject of (Goubault-Larrecq, 2010, Section 6).

However, we can also prove the same result under weaker assumptions on X. The

procedure is parallel to that in Section 4.

The upshot is that, dually to continuous credibilities, continuous plausibilities provide

a semantic model for mixed probabilistic choice and angelic non-determinism, where

one draws some non-empty closed subset F ∈ ℋV(X) at random, then picks non-

deterministically some element from F .

The topology of ℋV(X) is the lower Vietoris topology the opens of which are unions

of finite intersections of subbasic open sets

◇U = {F ∈ ℋV(X) ∣ F ∩ U ∕= ∅}.

Contrarily to the case of QV(X), they only form a subbase, not a base. Let us notice

in passing that ℋV(X) is always sober as remarked by (Schalk, 1993, Proposition 1.7).

Some obvious properties of the subbasic opens are:

Lemma 5.1. (1) ◇∅ = ∅ and ◇X = ℋV(X); (2) ◇U∪◇V = ◇(U ∪ V ); (3) ◇
(∪

i∈I Ui
)

=∪
i∈I ◇Ui for every directed family of opens (Ui)i∈I .

Note (2): ◇ commutes with finite unions, while □ commutes with finite intersections.

Lemma 5.2. The subbasic open sets ◇U for U open in X form a ∩-irredundant ∪-

semilattice S of subsets of ℋV(X) and U 7→ ◇U is a ∪-semilattice isomorphism from the

set O(X) of all open subsets of X onto the semilattice S of subbasic open sets in ℋV(X).

Proof. For the second claim it suffices to show that U 7→ ◇U is injective. Indeed, if U

and U ′ are two different open sets, say U ∕⊆ U ′, then there is an element x ∈ U ∖U ′. The

closure of the singleton {x} meets U but not U ′ and, hence, is then a member of ◇U but

not of ◇U ′.

It remains to show that the members of S are ∩-irreducible. This is the case in a strong

sense: Consider collection of open subsets Ui of X such that ◇Ui properly contains ◇U

for each i. Then for each i there is a closed set Fi meeting Ui but disjoint from U The

closure F of the union of all the sets Fi meets every Ui but is still disjoint from the open

set U , which implies that F ∈
∩
i◇Ui ∖◇U .

The finite intersections ◇U1 ∩ . . . ∩ ◇Un of subbasic opens are the basic open sets of

the lower Vietoris topology and they form a lattice of subsets of ℋV(X). The preceding

lemma allows us to apply Theorem 3.7 and we obtain:

Corollary 5.3. For every strict map � : O(X) → ℝ there is a unique strict modular

function �∗ defined on the lattice of basic opens of ℋV(X) such that �∗(◇U) = �(U) for

every open set U in X. The extension is given by

�∗(◇U1 ∩ . . . ∩◇Un) =
∑

I⊆{1,...,n}
I ∕=∅

(−1)
∣I∣+1

�
(∪
i∈i
Ui
)
.
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The extension �∗ is a valuation if and only if � is a plausibility on X.

We would like to extend � to a continuous valuation on ℋV(X). We observe:

Lemma 5.4. For any continuous valuation P on ℋV(X), the game P↾X defined by

P↾X(U) = P (◇U), for all opens U of X, is a continuous plausibility on X.

Proof. Continuity is by Lemma 5.1 (3). As the restriction of P to the lattice of ele-

mentary opens is a valuation, � is totally concave by Corollary 5.3

Again, P↾X is obtained by restriction, considering X as a subspace of ℋV(X). The

canonical embedding justifying this is �ℋ : X → ℋV(X), x 7→ ↓x, assuming X is T0.

Dually to unanimity games uQ, let eF be the example game on the non-empty closed

set F : eF (U) is 1 if F ∩U ∕= ∅, 0 otherwise. Example games also generalize Dirac masses,

since �x = e↓ x.

Call simple plausibility any game of the form
∑n
i=1 aiuFi

, a1, . . . , an ∈ ℝ+, F1, . . . , Fn ∈
ℋV(X). Then we have:

Lemma 5.5. Any simple plausibility is a continuous plausibility. Moreover, every re-

striction of a simple valuation on ℋV(X) is a simple plausibility on X; namely, for any

a1, . . . , an ∈ ℝ+, F1, . . . , Fn ∈ ℋV(X),(
n∑
i=1

ai�Fi

)
↾X

=

n∑
i=1

aieFi
.

Proof. The first claim follows from the second one and Lemma 5.4. The second one is

immediate: on the open U , the two sides of the equality simplify to
∑

1≤i≤n
Fi∩U ∕=∅

ai.

Similarly to Proposition 4.6, example games can be justified as models of pure angelic

non-determinism, where again pure non-determinism is characterized by games taking

values 0 or 1 only:

Proposition 5.6. Let X be a topological space. Any continuous plausibility � with

�(X) = 1 and such that � only takes values 0 or 1 is of the form eF , F ∈ ℋV(X). In

fact, this already holds of all concave games that take values 0 or 1 only and such that

�(X) = 1, where � is concave iff �(U ∪V ) + �(U ∩V ) ≤ �(U) + �(V ) for all opens U , V .

Proof. We first check that every continuous plausibility is convex: this is the case n = 2

in (2). Next, consider the union U∞ of all opens U such that �(U) = 0. Note that this is

a directed union: if �(U) = 0 and �(V ) = 0 then �(U ∪V ) ≤ �(U)+�(V )−�(U ∩V ) = 0.

Since � is continuous, �(U∞) = 0. Let F be the complement of U∞. F is non-empty,

otherwise �(X) = �(U∞) = 0. For every open set U , if U does not intersect F then

U ⊆ U∞, so �(U) = 0; if U does, then U is not contained in U∞, so �(U) ∕= 0, whence

�(U) = 1. So � = eF .

To establish a converse to Lemma 5.4, we will need to study the topology of ℋV(X).

It will be convenient to use the following notation for every compact subset Q of X:

♦Q = {F ∈ ℋV(X) ∣ F ∩Q ∕= ∅}
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Lemma 5.7. ♦Q1 ∩ . . . ∩ ♦Qn is compact and saturated in ℋV(X) for any non-empty

finite family Q1, . . . , Qn of non-empty compact subsets of X.

Proof. It is certainly saturated. By Alexander’s Subbase Lemma, it is enough to show

that for every family (Uj)j∈J of opens of X, such that
∩n
i=1 ♦Qi ⊆

∪
j∈J ◇Uj , there is

a finite subset J ′ of J such that
∩n
i=1 ♦Qi ⊆

∪
j∈J′ ◇Uj . Since

∩n
i=1 ♦Qi ⊆

∪
j∈J ◇Uj ,

consider the closed set F , complement of
∪
j∈J Uj . F is certainly not in

∪
j∈J ◇Uj , so

it is not in
∩n
i=1 ♦Qi either. It follows that F does not intersect some Qi, 1 ≤ i ≤

n. Equivalently, Qi is contained in the complement of F , namely
∪
j∈J Uj . Since Qi

is compact, there is a finite subset J ′ of J such that Qi ⊆
∪
j∈J′ Uj . We claim that∩n

i=1 ♦Qi ⊆
∪
j∈J′ ◇Uj : every closed set F in the left hand side must meet Qi, hence

also
∪
j∈J′ Uj . So F meets Uj for some j ∈ J ′, whence F ∈

∪
j∈J′ ◇Uj .

Among the basic open sets of ℋV(X) we consider those of the form ◇int(Q1) ∩ . . . ∩
◇int(Qn) where Q1, . . . , Qn are compact saturated sets in X. We call them special basic

open sets.

Lemma 5.8. If X is locally compact, then every basic open set ◇U1 ∩ . . . ∩◇Un is the

union of the directed family of special basic open sets ◇int(Q1) ∩ . . . ∩ ◇int(Qn) with

Q1 ⊆ U1, . . . , Qn ⊆ Un. In particular, the sets ◇int(Q) form a subbasis of the lower

Vietoris topology, when Q ranges over the compact saturated sets in X.

Proof. As X is locally compact, an open subset Ui of X is the union of the int(Qi)

where Qi ranges over the compact saturated sets in X contained in Ui, i.e., Ui =∪
{int(Qi) ∣ Qi ⊆ Ui}. As the union of finitely many compact saturated set contained in

Ui is again a compact saturated sets contained in Ui, the family of Qi ⊆ Ui is directed.

Lemma 5.1 (3) implies that ◇Ui =
∪
{◇int(Q)i ∣ Qi ⊆ Ui}. We deduce ◇U1∩. . .∩◇Un =∪

Q1⊆U1
◇int(Q1)∩. . .∩

∪
Qn⊆Un

◇int(Qn) =
∪
Q1⊆U1,...,Qn⊆Un

◇int(Q1)∩. . .∩◇int(Qn),

where we have used that directed unions commute with finite intersections.

It is known (Schalk, 1993, Proposition 6.11) that for a locally compact space X, the

Hoare powerdomain is locally compact and sober. We reprove local compactness and give

some additional information:

Lemma 5.9. Let X be a locally compact space. Then ℋV(X) is locally compact. The

lattice of open subsets of ℋV(X) is continuous; for two open subsets U and V we have

U ⋐ V if and only if there are finitely many compact saturated sets Q1, . . . , Qn such that

U ⊆ ◇int(Q1) ∩ . . . ∩◇int(Qn) and ♦Q1 ∩ . . . ∩ ♦Qn ⊆ V

Proof. We first show thatℋV(X) is locally compact. For this, consider any F ∈ ℋV(X)

and any basic open neighborhood ◇U1 ∩ . . . ∩◇Un of F . Then F ∩Ui ∕= ∅ whence there

are points xi ∈ F ∩ Ui for i = 1, . . . , n. As X is locally compact, we may find open

sets Vi and compact saturated sets Qi such that xi ∈ Vi ⊆ Qi ⊆ Ui for each i. Then

F ∈ ◇V1 ∩ . . .∩◇Vn as xi ∈ F ∩ Vi for each i and ◇V1 ∩ . . .∩◇Vn ⊆ ♦Q1 ∩ . . .∩♦Qn ⊆
◇U1∩ . . .∩◇Un. As ♦Q1∩ . . .∩♦Qn is compact by Lemma 5.7, we have found a compact

neighborhood of F contained in the given basic neighborhood.

For any locally compact space—hence also for ℋV(X)—the lattice of open subsets is
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continuous and, for open subsets U and V, one has U ⋐ V if and only of there is a compact

set K such that U ⊆ K ⊆ V. Thus, if there are compact saturated sets Q1, . . . , Qn such

that U ⊆ ◇int(Q1) ∩ . . . ∩ ◇int(Qn) and ♦Q1 ∩ . . . ∩ ♦Qn ⊆ V, then U ⋐ V, as by

Lemma 5.7 ♦Q1 ∩ . . . ∩ ♦Qn is compact. Suppose conversely that U ⋐ V. The open

set V is a union of basic open sets ◇U1 ∩ ⋅ ⋅ ⋅ ∩ ◇Un, and each of those is a union of

special basic open sets ◇int(Q1) ∩ . . . ∩◇int(Qn) with Qi ⊆ Ui for i = 1, . . . , n. Hence,

V a union of special basic opens ◇int(Q1) ∩ . . . ∩◇int(Qn) with ♦Q1 ∩ . . . ∩ ♦Qn ⊆ V.

Thus, if U ⋐ V, there are finitely many compact saturated sets Q1, . . . , Qn such that

U ⊆ ◇int(Q1) ∩ . . . ∩◇int(Qn) and ♦Q1 ∩ . . . ∩ ♦Qn ⊆ V. as desired.

As an immediate consequence of the previous lemma we have;

Corollary 5.10. Suppose that X is locally compact. The special basic opens ◇int(Q1)∩
. . .∩◇int(Qn), where Q1, . . . , Qn range over finite families of compact saturated subsets

of X, form a basis of the continuous lattice O(ℋV(X)).

Proposition 5.11. For every continuous plausibility � on X, there is at most one con-

tinuous valuation �∗ on ℋV(X) such that �(U) = �∗(◇U) for every open U of X; and

such a �∗ exists whenever X is locally compact.

Proof. Assume � is a continuous plausibility on X. By Corollary 5.3, there is a unique

valuation �∗ defined on the lattice of basic opens such that �∗(◇U) = �(U) for every

open U of X.

As every open subset U of ℋV(X) is the union of its basic open subsets and as this

family is directed, a continuous extension of �∗ to O(ℋV(X)) must satisfy

�∗(U) = sup{�∗(V) ∣ V basic open, V ⊆ U}

and hence is uniquely determined by the values of �∗ on the basic opens.

In order to show the existence, we suppose that X is locally compact. By Lemma 5.9

and Corollary 5.10, the lattice of open subsets of ℋV(X) is continuous, the basic opens

form a basis of this continuous lattice and we have identified the way-below relation

there. According to the Extension Lemma recorded in the Preliminaries, we define

�∗∗ : O(ℋV(X))→ ℝ by

�∗∗(U) = sup
J
�∗

( ∩
Q∈J

◇int(Q)
)

where J ranges over the finite sets of compact saturated setsQ such that
∩
Q∈J ◇int(Q) ⋐

U . The map �∗∗ is always continuous. It is an extension of �∗ if and only if �∗∗(U) = �∗(U)

for all basic opens U and, in this case, �∗∗ is the unique continuous extension of �∗.

Thus, let us show that �∗∗(U) = �∗(U) holds for U = ◇U1 ∩ . . . ∩◇Un where U1, . . . ,

Un are open in X. Without loss of generality, assume U1, . . . , Un to be non-empty. By

Lemma 5.8 and Lemma 5.9, the definition of �∗∗(U) can be simplified for basic opens:

�∗∗(◇U1 ∩ . . . ∩◇Un) = sup
Q1⊆U1,...,Qn⊆Un

�∗
(
◇int(Q1) ∩ . . . ∩◇int(Qn)

)
.
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Using the definition of �∗ (see Corollary 5.3),

�∗
(
◇int(Q1)∩. . .∩◇int(Qn)

)
+

∑
I⊆{1,...,n},I ∕=∅
∣I∣ even

�
(∪
i∈I

int(Qi)
)

=
∑

I⊆{1,...,n},I ∕=∅
∣I∣ odd

�
(∪
i∈I

int(Qi)
)
.

The family of all tuples (Q1, . . . , Qn) of non-empty compact saturated subsets such that

Q1 ⊆ Un, . . . , Qn ⊆ Un, ordered by pointwise inclusion, is directed. Take sups in the

above equality, using the fact that + is Scott-continuous, and that � is continuous:

�∗∗(◇U1 ∩ . . . ∩◇Un) +
∑

I⊆{1,...,n},I ∕=∅
∣I∣ even

�(VI) =
∑

I⊆{1,...,n},I ∕=∅
∣I∣ odd

�(VI),

where VI stands for
∪
Q1⊆U1,...,Qn⊆Un

∪
i∈I int(Qi). Now VI =

∪
i∈I Ui, as in a locally

compact space every element in an open set Ui is contained in the interior of some

compact saturated set Qi ⊆ Ui. So

�∗∗(◇U1 ∩ . . . ∩◇Un) +
∑

I⊆{1,...,n},I ∕=∅
∣I∣ even

�
(∪
i∈I

Ui

)
=

∑
I⊆{1,...,n},I ∕=∅
∣I∣ odd

�
(∪
i∈I

Ui

)
.

By Corollary 5.3, a similar equation holds with �∗ in place of �∗∗, so indeed �∗∗(U) =

�∗(U) where U = ◇U1 ∩ . . . ∩◇Un.

As �∗∗ is an extension of �∗ we may use the notation �∗ instead of �∗∗ also for the

extended map. To conclude, we show that �∗ is modular exactly as for �∗ in Proposi-

tion 4.11, using the facts that �∗ is continuous and + is Scott-continuous.

Proposition 5.11 can be extended to the case of core-compact spaces. Remember that

the topologies O(X) of X and O(Xs) of the sobrification Xs of X are order-isomorphic,

through the map U 7→ ⋄U .

It follows that ℋV(X) is isomorphic to ℋV(Xs). The isomorphism is given, in one

direction by the map box : F ∈ ℋV(X) 7→ □F ∈ ℋV(Xs), where we define □F as the

complement of ⋄U where U is the complement of F (this is continuous since the inverse

image of ◇⋄U is ◇U); in the other direction by the map unbox sending □F (all closed

sets of Xs are of this form) to F , which is continuous since the inverse image of ◇U is

◇⋄U .

If X is core-compact, then use Proposition 5.11 on the locally compact space Xs. For

every continuous plausibility � on X, �′(⋄U) = �(U) defines a continuous plausibility on

Xs: this follows from the fact that not only ⋄ commutes with finite unions, but also with

finite intersections, a consequence of irreducibility. By Proposition 5.11, �′∗ exists, in such

a way that �′∗(◇⋄U) = �′(⋄U) for all opens U of X. Then define �∗ as the image game

unbox[�′∗], where unbox maps □F to F . As the image game of a continuous valuation

by a continuous map, �∗ is a continuous valuation, and �∗(◇U) = �′∗(unbox
−1(◇U)) =

�′∗(◇⋄U) = �′(⋄U) = �(U). Putting this together with Lemma 5.4, we get:

Theorem 5.12 (Representation, Angelic Case). Let X be core-compact. The func-

tion that maps any continuous valuation P on ℋV(X) to the continuous plausibility P↾X
on X is one-to-one. For every continuous plausibility � on X, there is a unique continuous
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valuation �∗ on ℋV(X) such that �∗↾X = �, i.e., such that �∗(◇U) = �(U) for all open

subsets U of X.

Note that, from Lemma 5.5 and the uniqueness of �∗, (
∑n
i=1 aieFi

)∗ is just the simple

valuation
∑n
i=1 ai�Fi on ℋV(X).

Again, this has the following measure-theoretic consequence.

Corollary 5.13. Let X be core-compact. Any weakly Radon measure � on ℋV(X) re-

stricts to a continuous plausibility �↾X on X. Conversely, for every continuous plausibility

� on X, there is a unique weakly Radon measure � on ℋV(X) such that �(◇U) = �(U)

for all opens U of X.

Proof. As ℋV(X) is locally compact (by Lemma 5.9) and well-filtered (because sober,

using the Hofmann-Mislove Theorem), we can apply the Keimel-Lawson result that con-

tinuous valuations and weakly Radon measures are in one-to-one correspondence on any

locally compact and well-filtered space.

The latter result is closest to Norberg’s Theorem (Norberg, 1989, Theorem 6.1). He

requires X to be core-compact, second countable and sober, while we only need X to

be core-compact, and not even T0. Sobriety seems to be the price to pay for deducing

topological facts from their localic counterparts. Second countability is also required by

Norberg, however this can be accounted for by the fact that he deals with measures

instead of valuations. The connection can be made explicit by using a measure extension

theorem due to Norberg again (Norberg, 1989, Theorem 3.9), see also (Alvarez-Manilla

et al., 1997, Corollary 5.2), instead of the Keimel-Lawson result we have been using so far:

on a continuous dcpo L with a second countable Scott topology, for any locally finite map

� : O(L)→ ℝ+∪{+∞} (i.e., �(U) < +∞ whenever U ⋐ L), � has a unique extension to

a Borel measure on the Borel �-algebra of L iff its is an !-continuous valuation (where

!-continuous means that �(
∪
n∈ℕ Un) = supn∈ℕ �(Un) for all non-decreasing sequences

of opens (Un)n∈ℕ).

Other small differences occur in the definition of the topology ofℋV(X), which Norberg

takes as generated by the sets ♦Q, Q compact saturated in X in his Theorem 6.1.

As in the demonic case, we finish with a look at Choquet integration. The next lemma

is an intuitive explanation why picking from a closed set F should be called angelic non-

determinism: taking the average along eF means getting as high an earning f(x) as you

can over all possible choices x ∈ F (and even a bit more, as this is a sup, not a max).

Lemma 5.14. For every non-empty closed set F of X, for every bounded continuous

map f : X → ℝ+
� , let f∗(F ) = supx∈F f(x). Then C

∫
x∈X f(x)deF = f∗(F ).

Proof. Observe that eF (f−1(t,+∞)) = 1 iff F ∩f−1(t,+∞) ∕= ∅ iff supx∈F f(x) > t iff

t < f∗(F ), and eF (f−1(t,+∞)) = 0 otherwise. Using the definition (16), C
∫
x∈X f(x)deF =∫ +∞

0
eF (f−1(t,+∞))dt =

∫ f∗(F )

0
1dt = f∗(F ).

So integrating along simple plausibilities means taking means of sups: we obtain the

equality C
∫
x∈X f(x)d

∑n
i=1 aideFi

=
∑n
i=1 ai supx∈Fi

f(x). This is another way to see that

picking x at random along a credibility means picking a non-empty closed subset Fi at
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random with probability ai, then picking some element from Fi in an angelic way. This

generalizes to all continuous, not just simple plausibilities:

Proposition 5.15. For every continuous valuation P on ℋV(X), for every bounded

continuous map f : X → ℝ+
� , C
∫
x∈X f(x)dP↾X = C

∫
F∈ℋV(X)

f∗(x)dP .

Let X be core-compact. For every continuous plausibility � on X, for every bounded

continuous map f : X → ℝ+
� , C
∫
x∈X f(x)d� = C

∫
F∈ℋV(X)

f∗(x)d�∗.

Proof. Note that f∗−1(t,+∞) = {F ∣ supx∈F f(x) > t} = {F ∣ F ∩ f−1(t,+∞) ∕=
∅} = ◇f−1(t,+∞). Then C

∫
F∈ℋV(X)

f∗(x)dP =
∫ +∞

0
P (f∗−1(t,+∞))dt is equal to∫ +∞

0
P (◇f−1(t,+∞))dt =

∫ +∞
0

P↾X(f−1(t,+∞))dt. The latter is just C
∫
x∈X f(x)dP↾X .

The second part then follows from Theorem 5.12.

Using Lemma 5.14, one can also see this as a form of disintegration, viz. C
∫
x∈X f(x)d� =

C
∫
F∈ℋV(X)

(
C
∫
x∈Q f(x)deF

)
d�∗.

6. The Erratic Case: Sesqui-Continuous Estimates

We now turn to the third powerdomain, the Plotkin powerdomain PℓV(X), which com-

bines the angelic with the demonic one. If not specified otherwise, X will be an arbitrary

topological space and O(X) the lattice of open subsets. Our goal in this section is to

elucidate what kind of game on X would be in a similar correspondence to continuous

valuations on PℓV(X). These will be the estimates, see below. However, be warned that

estimates won’t actually be games, since they won’t measure opens, rather crescents. A

crescent C is the difference U ∖ V of two opens U and V , equivalently, the intersection

C = U∩F of an open set U with a closed subset F ; crescents are sometimes called locally

closed subsets. In the literature the presentation of crescents as differences of open sets

prevails. For our purposes it turns out that the presentation as an intersection of an open

with a closed set is preferable for technical reasons. Note that open as well as closed sets

are crescents. The intersection of finitely many crescents is again a crescent so that the

crescents of X form a ∩-semilattice C(X) of subsets of X.

Crescents are usually mentioned to describe the smallest algebra of sets A(X) con-

taining the topology of X: the elements of this algebra are the finite, disjoint unions of

crescents. The Smiley-Horn-Tarski Theorem, a.k.a., Pettis’ Theorem, states that every

real valued strict modular function � on O(X) extends to a unique additive set function

�# on A(X). (It is traditional to write simply � instead of �#, however we prefer to

make it clear which is the valuation, and which is the extension.)

We draw the attention of the reader to the fact that, contrarily to �#, estimates will

be defined not on finite disjoint unions of crescents, but only on crescents.

Recall that PℓV(X) is the set of all lenses, where a lens is the intersection L = Q ∩ F
of a compact saturated set Q with a closed set F , provided the intersection is non-empty.

□U = {L ∈ PℓV(X) ∣ L ⊆ U} and ◇V = {L ∈ PℓV(X) ∣ L ∩ V ∕= ∅}

are the subbasic open sets of the topology on PℓV(X), where U and V range over the
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open subsets of X. We extend these notations to crescents C of X: □C = {L ∈ PℓV(X) ∣
L ⊆ C} and ◇C = {L ∈ PℓV(X) ∣ L ∩ C ∕= ∅}. As closed sets F are crescents, □F and

◇F are defined for closed sets, too.

The operators □ and ◇ have the following properties:

Lemma 6.1. (1) For any closed or open subset G of X one has

□G = PℓV(X) ∖◇(X ∖G), ◇G = PℓV(X) ∖□(X ∖G).

In particular, for closed sets F in X, the sets □F and ◇F are (subbasic) closed sets in

PℓV(X).

(2) For crescents C,C ′ of X, one has

□C ∩□C ′ = □(C ∩ C ′).

In particular, for every crescent C = U ∩ F with U open and F closed in X, □C =

□U ∩□F ; hence, □C is a crescent in Pℓ(X).

(3) The crescents in PℓV(X) of the form □C, C ∈ C(X), generate the same algebra

A0 of subsets as the subbasic open sets □U and ◇V , U, V ∈ O(X).

Proof. (1) For a lens L one has L ∈ □G iff L ⊆ G iff L ∩ (X ∖ G) = ∅ iff L ∕∈
◇(X ∖G) iff L ∈ PℓV(X) ∖◇(X ∖G). The second claim follows in the same way. (2) is

straightforward. (3) The algebra generated by the □U and ◇V contains all differences

□U ∖◇V = □(U ∖ V ). Conversely, the algebra generated by the □C, where C ranges over

the crescents of X, contains □U and □F for all all open sets U and all closed sets F in

X, as open and closed sets are crescents, hence it also contains ◇V = PℓV(X)∖□(X ∖V )

for open V .

Although crescents C of X are not ∪-irreducible in the ∩-semilattice C(X), it is remark-

able that the crescents □C are ∪-irreducible in PℓV(X):

Lemma 6.2. The set □C(X) = {□C ∣ C ∈ C(X)} of crescents of PℓV(X) is a ∪-

irredundant ∩-semilattice and C 7→ □C is a ∩-semilattice isomorphism from the set

C(X) of all crescents in X to the semilattice □C(X).

Proof. As singletons are lenses, every crescent C of X is the union of the lenses L ∈ □C.

Thus, if we have two crescents C ∕= C ′, then also □C ∕= □C ′. Together with Lemma 6.1 (2)

this implies that C 7→ □C is a ∩-semilattice isomorphism.

We now show that every □C is ∪-irreducible. Suppose that C1, . . . , Cn are crescents in

X such that □Ci is a proper subsets of □C for i = 1, . . . , n. Then Ci is a proper subset

of C. Choose xi ∈ C ∖ Ci. Then the lens L = ↑{x1, . . . , xn} ∩ cl{x1, . . . , xn} belongs to

□C, but not to □Ci for i = 1. . . . , n, that is, □C1 ∪ . . . ∪□Cn ∕= □C.

Lemma 6.2 allows us to apply Theorem 3.3 and Theorem 3.6 and we obtain:

Corollary 6.3. Let X be a topological space. LetA0 be the algebra of subsets of PℓV(X)

generated by the crescents □C, where C is a crescent of X. Then, for every function

� : C(X) → ℝ, there is a unique additive map �∗∗ : A0 → ℝ with the property that

�∗∗(□C) = �(C) for each crescent C of X. The map �∗∗ is monotone if and only if � is
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totally convex, that is, if for all crescents C,C1, . . . , Cn of X the following inequality

holds: ∑
I⊆{1,...,n}

(−1)∣I∣�(C ∩
∩
i∈I

Ci) ≥ 0. (17)

Thus, a map � : C(X)→ ℝ can be extended to a monotone additive map on the algebra

generated by the crescents □C, C ∈ C(X) if and only if it is an estimate according to

the following definition;

Definition 6.4 (Estimate). Let X be a topological space. An estimate on X is a strict

totally convex map � from the ∩-semilattice C(X) of all crescents of X to ℝ+.

Let us comment on the relation between estimates on the one side and credibilities

and plausibilities on the other side:

Remark 6.1. For every estimate � on X, define the maps:

�↑(U) = �(U)

�↓(V ) = �(X)− �(X ∖ V )

for all opens U , V . Then �↑ is a credibility on X and �↓ is a plausibility on X.

Indeed, all open sets U are crescents. Thus, the restriction �↑ of an estimate � to the open

sets remains totally convex, i.e., a credibility on X. Also the closed sets F are crescents.

So the restriction of an estimate to the closed sets remains totally convex. It follows that

its conjugate �↓ is totally concave on the open sets, i.e., a plausibility on X.

It is tempting to guess that an estimate � should be determined in a unique way

by giving just the credibility �↑ and the plausibility �↓. However, estimates carry more

information than just a credibility and a plausibility together. We shall see this in Propo-

sition 6.19.

In order to prepare the continuous version of Corollary 6.3 we define:

Definition 6.5. We say that a function � : C(X)→ ℝ is sesqui-continuous if it is mono-

tone and satisfies

— for every directed family of opens (Ui)i∈I and for every closed F in X,

�
(∪
i∈I

Ui ∩ F
)

= sup
i∈I

�(Ui ∩ F ) (18)

— for every open U and for every filtered family of closed (Fj)j∈J in X,

�
(
U ∩

∩
j∈J

Fj

)
= inf

j∈J
�(U ∩ Fj) (19)

This definition is justified by the following lemmas and the subsequent proposition:

Lemma 6.6. If P is a continuous valuation on a space X, then its Smiley-Horn-Tarski

extension P# is sesqui-continuous on the crescents of X.
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Proof. Let U be open and let (Fi)i∈I be a filtered family of closed sets. Then (X ∖ Fi)i∈I
is a directed family of open sets and, by the continuity of P on the opens and the additivity

of P#, we have P#(U ∩
∩
i∈I Fi) = P (U)− P (U ∖

∩
i∈I Fi) = P (U)− P (

∪
i∈I(U ∖ Fi) =

P (U)−supi∈I P (U ∖Fi) = infi∈I(P (U)−P (U ∖Fi)) = infi∈I P
#(U∩Fi). In the particular

case U = X we obtain P#(
∩
i Fi) = infi∈I P

#(Fi).

Now let F be closed and let (Ui)i∈I be a directed family of opens sets. Using the

additivity of P# again we obtain: P#(
∪
i∈I Ui ∩ F ) = P#(F ) − P#(F ∖

∪
i∈I Ui) =

P#(F )−P#(
∩
i∈I(F ∖Ui)). As (F ∖ Ui)i∈I is a filtered family of closed sets, the result of

the previous paragraph allows to conclude that P#(
∩
i∈I Ui∩F ) = P#(F )−infi∈I P

#(F ∖
Ui) = supi∈I(P

#(F )− P#(F ∖ Ui)) = supi∈I P
#(Ui ∩ F ), as desired.

Lemma 6.7. (1) For every directed family of opens (Ui)i∈I and for every closed set F

in X,

□

(∪
i∈I

Ui ∩ F
)

=
∪
i∈I

□(Ui ∩ F ).

(2) For every open set U and every family of closed sets (Fj)j∈J in X,

□

(
U ∩

∩
j∈J

Fj

)
=
∩
j∈J

□(U ∩ Fj).

Proof. (1) L ∈ □
(∪

i∈I Ui ∩ F
)

iff L ⊆
∪
i∈I Ui ∩F , iff L ⊆

∪
i∈I Ui, and L ⊆ F . Since

L is compact and the family (Ui) directed, if L ⊆
∪
i∈I Ui, then L ⊆ Ui for some i ∈ I,

so L ⊆ Ui ∩ F , hence L ∈ □(Ui ∩ F ). The converse is clear.

(2) L ∈ □
(
U ∩

∩
i∈J Vj

)
iff L ⊆ U ∩

∩
i∈J Fj =

∩
j∈J(U ∩ Fj), and this is equivalent

to L ∈
∩
j∈J □(U ∩ Fj).

Every valuation P on PℓV(X) extends to a monotone additive map P# on the algebra

A(PℓV(X)) generated by all the open subsets of PℓV(X). Thus P# is also monotone

and additive on the algebra A0 generated by the subbasic open sets which is equally

generated by the □C for each C ∈ C(X) by Lemma 6.1 (3). Then the restriction of P#

to the ∩-semilattice □C(X) is strict and totally convex by Corollary 6.3. Thus, for every

valuation on PℓV(X) its restriction P⇃↾X(C) = P#(□C) is an estimate on X.

Proposition 6.8. Let X be a topological space, P a valuation on PℓV(X). Then P⇃↾X
is an estimate. If moreover P is continuous, then P⇃↾X is sesqui-continuous.

Proof. Let us show that P⇃↾X is sesqui-continuous, assuming P continuous. For every

crescent C = U ∩ F , □C = □U ∩ □F by Lemma 6.1 (2), so P⇃↾X(C) = P#(□C) =

P#(□U ∩ □F ). Using that P# is sesqui-continuous on the crescents of PℓV(X) by

Lemma 6.6 and that the map C 7→ □C from the crescents of X to the crescents of

Pℓ(X) has the continuity properties established in Lemma 6.7, we infer that P⇃↾X is

sesqui-continuous on the crescents of X, too.

We shall see that, under some conditions on the space X, all sesqui-continuous esti-

mates are in fact obtained this way. Before we do so, we give an example of estimates,

the simple estimates.
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Definition 6.9 (Unanimity Estimate). LetX be a topological space. For every subset

A of X, the unanimity estimate on A is the map from C(X) to ℝ+ defined by: for every

crescent C, ueA(C) = 1 if A ⊆ C, ueA(C) = 0 otherwise.

A simple estimate is any map of the form
∑n
i=1 aiueLi

, a1, . . . , an ∈ ℝ+, L1, . . . , Ln ∈
PℓV(X).

Lemma 6.10. Every simple estimate is a sesqui-continuous estimate; in fact
∑n
i=1 aiueLi =

(
∑n
i=1 ai�Li

)⇃↾X .

Proof. For any crescent C, (
∑n
i=1 aiueLi

)(C) =
∑

1≤i≤n
Li⊆C

ai =
∑

1≤i≤n
Li∈□C

ai, and this is

just (
∑n
i=1 ai�Li

)(□C). The first part of the Lemma now follows from Proposition 6.8.

Simple estimates are models of mixed probabilistic and erratic non-deterministic choice:

pick Li at random first, then choose erratically, from Li.

Note that, when � =
∑n
i=1 aiueLi

is a simple estimate, �↑ is the simple credibility∑n
i=1 aiu(↑Li), while �↓ is the simple plausibility

∑n
i=1 aiecl(Li). The first claim is obvious,

because Li ⊆ U iff ↑Li ⊆ Ui. The second claim is proved as follows: �↓(V ) =
∑n
i=1 ai −∑

1≤i≤n
Li⊆X∖V

ai =
∑

1≤i≤n
Li∩V ∕=∅

ai; then since V is open, Li ∩ V ∕= ∅ iff cl(Li) ∩ V ∕= ∅, so that

�↓(V ) = (
∑n
i=1 aiecl(Li))(V ).

As for Proposition 4.6 and Proposition 5.6, unanimity estimates are models of pure

erratic non-determinism.

Proposition 6.11. Let X be either T2 or stably compact. Any sesqui-continuous es-

timate � such that � only takes values 0 or 1 and with �(X) = 1 is of the form

ueL, L ∈ PℓV(X). In fact, this already holds if �↑ is a continuous convex game, �↓

is a continuous concave game, �(U ∖ V ) is monotone in U and antitone in V , and

�↑(U) ≤ �(U ∖ V ) + �↓(V ) for all opens U , V .

Proof. First, if � is a sesqui-continuous estimate, then �↑ is a continuous credibility,

and �↓ is a continuous plausibility. In particular, �↑ is convex and �↓ is concave. Taking

n = 1 in (17) where C1 ⊆ C yields �(C)− �(C1) ≥ 0, i.e., � is monotone in its argument.

In particular, �(U ∖ V ) is monotone in U and antitone in V . Taking n = 2, C = X,

C1 = X ∖ V , C2 = U in (17) yields �↓(V ) − �↑(U) + �(U ∖ V ) = �(X) − �(X ∖ V ) −
�(U) + �(U ∖ V ) = �(C)− �(C ∩ C1)− �(C ∩ C2) + �(C ∩ C1 ∩ C2) ≥ 0.

We now assume only the latter inequality, namely that �↑(U) ≤ �(U ∖ V ) + �↓(V ) for

all opens U , V , plus the facts that �↑ is a continuous convex game, �↓ is a continuous

concave game, and that �(U ∖ V ) is monotone in U and antitone in V .

To prove the claim, it is instructive to go through Heckmann’s A-valuations (Heck-

mann, 1997). Let A the dcpo with three elements 0, M, and 1, with ordering ⊑ such that

0 ⊑ M ⊑ 1. An A-valuation � : O(X) → A is a strict, monotone, continuous map such

�(X) = 1, whenever �(U) = 0 then �(U ∪ V ) = �(V ) for all opens V , and whenever

�(U) = 1 then �(U ∩ V ) = �(V ) for all opens V . When X is stably compact, PℓV(X)

is isomorphic to the space of A-valuations with a form of Vietoris topology (Goubault-

Larrecq, 2010, Proposition 5.3); in any case for any A-valuation � there is a unique lens
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L such that �(U) = 1 if L ⊆ U , �(U) = 0 if L ∩ U = ∅, and �(U) = M otherwise. The

same holds when X is T2 (Heckmann, 1997, Theorem 5.1).

We shall show that the map defined by �(U) = 1 if �↑(U) = 1, �(U) = 0 if �↓(U) = 0,

and �(U) = M otherwise, is an A-valuation (without any assumption at all on X).

This is well-defined, in particular we cannot have both �↑(U) = 1 and �↓(U) = 0,

otherwise 1 = �↑(U) ≤ �(U ∖ U) + �↓(U) = 0. Then, � is monotonic and continuous

because �↑ and �↓ are.

We must show that, if �(U) = 0 then �(U∪V ) = �(V ) for all opens V . Since �(U) = 0,

�↓(U) = 0. Then �↑(U ∪V ) ≤ �((U ∪V )∖U)+�↓(U) ≤ �(V ∖U)+0 ≤ �(V ∖∅) = �↑(V ).

Since �↑(V ) ≤ �↑(U ∪ V ) by monotonicity, �↑(U ∪ V ) = �↑(V ). Also, �↓(U ∪ V ) ≤
�↓(U) + �↓(V )− �↓(U ∩ V ) ≤ �↓(V ), so �↓(U ∪ V ) = �↓(V ). Since �↑ and �↓ both agree

on U ∪ V and V , so does �, i.e., �(U ∪ V ) = �(V ).

We must then show that, if �(U) = 1, i.e., if �↑(U) = 1, then �(U∩V ) = �(V ). Again, it

is enough to show �↑(U∩V ) = �↑(V ) and �↓(U∩V ) = �↓(V ). The first equality is because

�↑(U ∩V ) ≥ �↑(U)+�↑(V )−�↑(U ∪V ) ≥ 1+�↑(V )−1 = �↑(V ), the converse inequality

being clear. The second equality is because 1 = �↑(U) ≤ �(U ∖ (U ∩ V )) + �↓(U ∩ V ) =

�(U ∖ V ) + �↓(U ∩ V ) ≤ �(X ∖ V ) + �↓(U ∩ V ) = 1− �↓(V ) + �↓(U ∩ V ).

In order to achieve our goal to show that every sesqui-continuous estimate � extends

to a continuous valuation on PℓV(X), we will require the space X not only to be locally

compact as in the demonic and angelic cases, but also to be coherent in the sense that

the intersection of any two compact saturated subsets is compact, too. This will allow us

to derive the relevant topological properties of PℓV(X).

For compact saturated subsets Q of X we use the notations

■Q = {L ∈ PℓV(X) ∣ L ⊆ Q} and ♦Q = {L ∈ PℓV(X) ∣ L ∩Q ∕= ∅}

and we show:

Lemma 6.12. Let X be a coherent space. Then ■Q ∩ ♦Q1 ∩ ⋅ ⋅ ⋅ ∩ ♦Qn is compact in

PℓV(X) for all compact saturated sets Q,Q1, . . . , Qn in X.

Proof. Let P = ■Q∪
∪n
i=1 ♦Qi. Use Alexander’s Subbase Lemma, and show that one

can extract a finite subcover from a cover of P by subbasic opens □Ui, i ∈ I, and ◇Vj ,

j ∈ J . Since this is a cover, ■Q ∩
∩n
i=1 ♦Qi ⊆

∪
i∈I □Ui ∪

∪
j∈J ◇Vj .

Let L0 = Q ∖
∪
j∈J Vj .

If L0 is empty, then Q ⊆
∪
j∈J Vj , so Q ⊆

∪
j∈J0 Vj for some finite subset J0 of J .

Then (◇Vj)j∈J0 is the desired finite subcover.

Otherwise, L0 is a lens, L0 ∈ ■Q, and L0 ∕∈
∪
j∈J ◇Vj . So either L0 ∕∈

∩n
i=1 ♦Qi or

L0 ⊆ Ui for some i ∈ I.

In the latter case, Q ⊆ Ui ∪
∪
j∈J Vj , so Q ⊆ Ui ∪

∪
j∈J0 Vj for some finite subset J0 of

J . Then □Ui and (◇Vj)j∈J0 form the desired finite subcover.

In the former case, where L0 ∕∈
∩n
i=1 ♦Qi, there is an i, 1 ≤ i ≤ n, such that L0 ∩Qi is

empty, i.e., Q ∩Qi ⊆
∪
j∈J Vi. We now use the fact that X is coherent to conclude that

Q ∩ Qi ⊆
∪
j∈J0 Vi for some finite subset J0 of J . Then (◇Vj)j∈J0 is the desired finite

subcover.
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Remark 6.2. If X is compact and coherent, then we may choose Q = X in the above

lemma and we obtain that
∩n
i=1 ♦Qi is compact saturated for any compact saturated

subsets Q1, . . . , Qn of X. For this conclusion, the hypothesis of compactness for X cannot

be omitted. If we choose X = ℝ−, the negative reals including 0 with the Scott topology,

then ℝ− is coherent and even stably locally compact. But the sets ♦Q are not compact.

Remark 6.3. We do not claim that ■Q ∩ ♦Q1 ∩ ⋅ ⋅ ⋅ ∩ ♦Qn is saturated, and we won’t

need it. This is compact saturated when X is not just coherent, but stably compact.

Indeed, while ■Q is always saturated, to show that ♦Q is, we need to show that for

any two lenses L, L′ such that L ⊆ cl(L′), if L ∩ Q ∕= ∅ then L′ ∩ Q ∕= ∅. Indeed, when

X is stably compact, ↓L′ is closed (see e.g., (Goubault-Larrecq, 2010, Fact 4.1)). So

↓L′ = cl(L′). If L ∩Q ∕= ∅, then there is an element x in L ∩Q. Since L ⊆ ↓L′, there is

an element x′ in L′ such that x ≤ x′; then x′ ∈ Q.

A finite union of compact sets of the form P = ■Q∩♦Q1∩⋅ ⋅ ⋅∩♦Qn, whereQ,Q1, . . . Qn
are compact saturated in X, is again compact in PℓV(X); we call such finite unions

elementary compacts and we denote by Qel(Pℓ(X)) the set of these elementary compacts.

Lemma 6.13. Over a coherent space X, the intersection of two elementary compact

sets in PℓV(X) is again an elementary compact set.

Proof. Using distributivity, the intersection of two elementary compact sets in PℓV(X)

is a finite union of intersections of two sets of the form P = ■Q ∩ ♦Q1 ∩ ⋅ ⋅ ⋅ ∩ ♦Qn and

P ′ = ■Q′ ∩ ♦Q′1 ∩ ⋅ ⋅ ⋅ ∩ ♦Q′m. As X is supposed to be coherent, Q ∩Q′ is compact and

saturated. As ■(Q ∩Q′) = ■Q ∩ ■Q′, the intersection of P and P ′ is again a compact

set according to Lemma 6.12.

For the rest of this section we adopt the following terminology for purely technical

reasons. A finite union of basic open sets □U∩◇U1∩⋅ ⋅ ⋅∩◇Un will be called an elementary

open, and a finite union of special basic sets □int(Q) ∩◇int(Q1) ∩ . . .◇int(Qn), where

Q,Q1, . . . , Qn are compact and saturated in X, will be called a special elementary open.

We denote by Oel(PℓV(X)) the collection of all elementary open sets.

Lemma 6.14. Let X be a locally compact coherent space. Then PℓV(X) is locally

compact, too. The lattice O(PℓV(X)) of open subsets is continuous; for two open subsets

U and V one has U ⋐ V if and only if there is an elementary compact set P such that

U ⊆ P ⊆ V. The elementary open sets form a basis of the continuous lattice O(PℓV(X).

Proof. We first show that PℓV(X) is locally compact. For this, consider any lens L and

any of its basic open neighborhood □U ∩◇U1 ∩ . . . ∩◇Un. Then L ⊆ U and L ∩ Ui ∕= ∅
so that there are points xi ∈ L ∩ Ui for i = 1, . . . , n. As X is locally compact, we

may find open sets V, V1, . . . , Vn and compact saturated sets Q,Q1, . . . , Qn such that

L ⊆ V ⊆ Q ⊆ U and xi ∈ Vi ⊆ Qi ⊆ Ui for each i. Then L ∈ □U ∩ ◇V1 ∩ . . . ∩ ◇Vn
and □V ∩ ◇V1 ∩ . . . ∩ ◇Vn ⊆ ■Q ∩ ♦Q1 ∩ . . . ∩ ♦Qn ⊆ □U ∩ ◇U1 ∩ . . . ∩ ◇Un. As

■Q∩♦Q1∩. . .∩♦Qn is compact by Lemma 6.12, we have found a compact neighborhood

of L contained in the given basic neighborhood.

For any locally compact space—hence also for PℓV(X)—the lattice of open subsets
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is continuous and, for open subsets U and V, one has U ⋐ V if and only of there is a

compact set K such that U ⊆ K ⊆ V. Thus, if there is an elementary compact P such

that U ⊆ P ⊆ V, then U ⋐ V. Suppose conversely that U ⋐ V. The open set V is a union

of basic open sets □U ∩ ◇U1 ∩ ⋅ ⋅ ⋅ ∩ ◇Un, and each of those is a union of special basic

open sets

(†) □int(Q) ∩◇int(Q1) ∩ . . . ∩◇int(Qn) with Q ⊆ U, Qi ⊆ Ui (i = 1, . . . , n).

Hence, V is also a union of special basic opens of the form (†). Thus, if U ⋐ V, there are

finitely many basic open sets of the form (†) such that U is contained in their union. This

yields a corresponding elementary compact set P with U ⊆ P ⊆ V. At the same time

this shows that finite unions of sets of the form (†) yield a basis of the the continuous

lattice O(PℓV(X)).

According to Corollary 6.3 an estimate � on X has a unique extension to a monotone

additive map �∗∗ on the algebra A0 generated by the crescents □C, C ∈ C(X). As the

elementary open sets are contained in this algebra, the restriction of �∗∗ to Oel(PℓV(X)) is

a valuation. In order to find a continuous valuation on PℓV(X) extending the valuation

�∗∗ we proceed according to the Extension Lemma recorded in the preliminaries using

that Oel(Pℓ(X)) is a basis of the continuous lattice O(PℓV(X)):

Lemma 6.15. Let X be locally compact and coherent, and let � be an estimate on X.

For every open subset V of PℓV(X), let:

(∣�∣)(V) = sup
U∈Oel(PℓV(X))

U⋐V

�∗∗(U)

Then (∣�∣) is a continuous valuation on PℓV(X).

Proof. That (∣�∣) is continuous, is a consequence of the Extension Lemma. Then, note

the following, abbreviating Oel(PℓV(X)) as B. These are well-known as well, but we still

provide a proof.

1 For any opens V1, V2 of PℓV(X), for all U ∈ B, U ⋐ V1 ∪ V2 iff there are U1,U2 ∈ B
such that U ⊆ U1 ∪ U2, U1 ⋐ V1, and U2 ⋐ V2.

Indeed, as Vi is the union of the directed family of elementary opens Ui that are

relatively compact in Vi for i = 1, 2, the union V1 ∪ V2 is the union of the directed

family of the U1∪U2 where Ui are elementary opens relatively compact in Vi (i = 1, 2).

If U ⋐ V1∪V2 it follows that there are elementary basic sets U1,U2 which are relatively

compact in V1,V2, respectively, such that U ⋐ U1 ∩ U2. The converse direction is

obvious.

2 For every opens V1, V2 of PℓV(X), for every U ∈ B, U ⋐ V1 ∩ V2 iff there are

U1,U2 ∈ B such that U ⊆ U1 ∩ U2, U1 ⋐ V1, and U2 ⋐ V2.

Indeed, if U ⋐ V1 ∩ V2, then take U1 = U2 = U . Conversely, if U ⊆ U1 ∩ U2, U1 ⋐ V1,

and U2 ⋐ V2 then, by Lemma 6.14, there are two elementary compact sets Q1, Q2

such that U1 ⊆ Q1 ⊆ V1 and U2 ⊆ Q2 ⊆ V2, whence U ⊆ Q1 ∩ Q2 ⊆ V1 ∩ V2.

The intersection Q1 ∩ Q2 of two elementary compact sets is elementary compact by

Lemma 6.13. Hence U ⋐ V1 ∩ V2.
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We then compute:

(∣�∣)(V1 ∪ V2) + (∣�∣)(V1 ∩ V2) = sup
U∈B

U⋐V1∪V2

�∗∗(U) + sup
U∈B

U⋐V1∩V2

�∗∗(U)

= sup
U1,U2∈B
U1⋐V1
U2⋐V2

�∗∗(U1 ∪ U2) + sup
U1,U2∈B
U1⋐V1
U2⋐V2

�∗∗(U1 ∩ U2)

by Items 1 and 2 above

= sup
U1,U2∈B
U1⋐V1
U2⋐V2

(
�∗∗(U1 ∪ U2) + �∗∗(U1 ∩ U2)

)
= sup

U1,U2∈B
U1⋐V1
U2⋐V2

�∗(U1) + sup
U1,U2∈B
U1⋐V1
U2⋐V2

�∗∗(U2)

= sup
U1∈B
U1⋐V1

�∗∗(U1) + sup
U2∈B
U2⋐V2

�∗∗(U2) = (∣�∣)(V1) + (∣�∣)(V2)

where we use that �∗∗ itself is modular.

The continuous valuation (∣�∣) according to Lemma 6.15 can be extended to an additive

map (∣�∣)#
on the algebra A(PℓV(X)) generated by the open sets. It remains to show:

Lemma 6.16. Let X be locally compact and coherent, and � be a sesqui-continuous

estimate on X. Then, for every crescent C on X, �(C) = (∣�∣)#(□C).

Proof. Clearly, (∣�∣)(U) ≤ �∗∗(U) for every U ∈ Oel(PℓV(X)), since �∗∗ is monotone; this

applies in particular when U is of the form □U or □U ∩◇V , so (a) (∣�∣)(□U) ≤ �∗∗(□U) =

�(U) (using Corollary 6.3), and (b) (∣�∣)(□U ∩◇V ) ≤ �∗∗(□U ∩◇V ) = �∗∗(□U)−�∗∗(□(U ∖
V )) = �(U)− �(U ∖ V ), using Corollary 6.3 again.

When U = □U , where U is open in X, since X is locally compact, U is the sup of

the directed family of all opens U ′ ⋐ U . However, if U ′ ⋐ U then there is a compact

saturated subset Q such that U ′ ⊆ Q ⊆ U , whence □U ′ ⊆ ■Q ⊆ □U . Using Lemma 6.12,

□U ′ ⋐ □U . Since �∗∗(□U
′) = �(U ′) by Corollary 6.3, (∣�∣)(□U) ≥ �(U ′) for all U ′ ⋐ U .

Since � is sesqui-continuous, and taking sups, (∣�∣)(□U) ≥ �(U). By (a), (∣�∣)(□U) = �(U).

When U = □U ∩◇V , U is the sup of the directed family of all opens U ′ ⋐ U , and V is

the sup of the directed family of all opens V ′ ⋐ V . By similar reasoning using Lemma 6.12,

□U ′ ∩ ◇V ′ ⋐ □U ∩ ◇V , so (∣�∣)(□U ∩ ◇V ) ≥ �∗∗(□U
′ ∩ ◇V ′) = �(U ′) − �(U ′ ∖ V ′)

(reasoning as in (b)) ≥ �(U ′)− �(U ∖ V ′) since � is monotone). By sesqui-continuity, the

sup of the latter quantity over U ′ ⋐ U and V ′ ⋐ V is �(U) − �(U ∖ V ). So, using (b),

(∣�∣)(□U ∩◇V ) = �(U)− �(U ∖ V ).

Combining this with (∣�∣)(□U) = �(U), we obtain (∣�∣)(□U)− (∣�∣)(□U ∩◇V ) = �(U ∖V ),

which is the desired equality.

Lemma 6.17. Let X be locally compact and coherent, and � be a sesqui-continuous

estimate on X. Let (∣�∣) be defined as in Lemma 6.15. Then (∣�∣)# coincides with �∗∗ on

the algebra generated by the elementary opens of PℓV(X); and (∣�∣) coincides with �∗∗ on

Oel(PℓV(X)).
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Proof. P = (∣�∣) is a continuous valuation on PℓV(X) such that �(C) = P#(□C) for

every crescent C, by Lemma 6.15 and Lemma 6.16. By Corollary 6.3, P# coincides with

�∗∗ on the smallest algebra containing the elementary opens of PℓV(X). The second part

follows immediately from the first.

Theorem 6.18. Let X be locally compact and coherent. For every sesqui-continuous

estimate � on X, (∣�∣) is the unique continuous valuation P on PℓV(X) such that P⇃↾X = �,

i.e., such that, for every crescent C on X, �(C) = P#(□C).

This is obtained by:

(∣�∣)(V) = sup
U∈Oel(PℓV(X))

U⋐V

�∗∗(U)

where �∗∗ is defined over elementary opens by:

�∗∗

(
m∪
i=1

(□Ui ∩◇Ui1 ∩ . . . ∩◇Uini
)

)
(20)

=
∑

I⊆{1,...,m}
I ∕=∅

∑
Ji⊆{1,...,ni}
for each i∈I

(−1)
∣I∣+

P
i∈I ∣Ji∣+1

�(
∩
i∈I

Ui ∖
∪
i∈I
j∈Ji

Uij)

The map � 7→ (∣�∣) is one-to-one from the set of sesqui-continuous estimates on X onto

the set of continuous valuations on PℓV(X), with inverse the map P 7→ P⇃↾X .

Proof. The first part of the theorem follows from Lemma 6.17 and the last from Propo-

sition 6.8. Let us check (20). Necessarily,

�∗∗(□U ∩◇U1 ∩ . . . ∩◇Un) = �∗∗(□U ∖ (□(X ∖ U1) ∪ . . . ∪□(X ∖ Un)))

= �∗∗(□U)− �∗∗(□(U ∖ U1) ∪ . . . ∪□(U ∖ Un))

=
∑

J⊆{1,...,n}

(−1)
∣J∣
�∗∗(□(U ∖

∪
j∈J

Uj))

=
∑

J⊆{1,...,n}

(−1)
∣J∣
�(U ∖

∪
j∈J

Uj)

Equation (20) follows by a further application of the inclusion-exclusion principle.

We may apply the previous theorem to unanimity estimates. Together with Lemma 6.10

it implies that:
n∑
i=1

ai�Li
= (∣

n∑
i=1

aiueLi
∣).

We have claimed that estimates � carried more information than just that given by

the credibility �↑ and the plausibility �↓. Indeed:

Proposition 6.19. The estimates � are not determined uniquely from �↑ and �↓. More

precisely, there is a space X, and two estimates � and �′ such that �↑ = �′
↑

and �↓ = �′
↓
,

but � ∕= �′.

One can even takeX finite, and require one to find uncountably many sesqui-continuous

estimates � with given �↑ and �↓.
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Proof. Let X be the space {1 < 2 < . . . < n}. With the Scott topology this is trivially

a locally compact coherent space, so any sesqui-continuous estimate � on X extends to a

continuous valuation (∣�∣) on PℓV(X) by Theorem 6.18. Since PℓV(X) is finite, (∣�∣) must

be a simple valuation, hence � must be a simple estimate.

X has n + 1 opens: the intervals [i, n] with 1 ≤ i ≤ n, and the empty set. X has

n(n + 1)/2 lenses: the intervals [i, j] with 1 ≤ i ≤ j ≤ n. So � can be written as∑
1≤i≤j≤n aijue[i,j]. Let us consider each aij as an unknown. To give oneself �↑ means

giving oneself the n sums
∑

1≤i≤j≤n
[i,j]⊆U

aij , one for each non-empty open U of X. (The case

of the empty open is trivial, since �(∅) = 0.) Similarly, giving oneself �↓ means giving

oneself the values of the n sums
∑

1≤i≤j≤n
[i,j]∩V ∕=∅

aij , one for each non-empty open V of X. This

is only 2n equations for n(n + 1)/2 unknowns. When n ≥ 4, there are more unknowns

than equations, from which we shall see that the value of aij will not be unique.

Here is an explicit counter-example, found by solving the above constraints with n = 4.

Fix an estimate �0 =
∑

1≤i≤j≤4
1
10ue[i,j]. For all reals a, b such that 0 ≤ a, b ≤ 2/10 and

−1/10 ≤ b− a ≤ 1/10, let:

�a,b = 1
10ue[1,1] + 1

10ue[1,2] + aue[1,3] + ( 2
10 − a)ue[1,4]

+ 1
10ue[2,2] + ( 2

10 − b)ue[2,3] + b ue[2,4]

+ ( 1
10 + b− a)ue[3,3] + ( 1

10 − b+ a)ue[3,4]

+ 1
10ue[3,4]

One checks that:

�↑a,b([1, 4]) = 1

�↑a,b([2, 4]) =
6

10
(sum of all coefficients on all rows except the first)

�↑a,b([3, 4]) =
3

10
(all rows except the first and the second one)

�↑a,b([4, 4]) =
1

10

�↑a,b(∅) = 0

and also that:

�↓a,b([1, 4]) = 1

�↓a,b([2, 4]) =
9

10
(sum of all coefficients on all columns except the first)

�↓a,b([3, 4]) =
7

10
(all columns except the first and the second one)

�↓a,b([4, 4]) =
4

10

�↓a,b(∅) = 0

So �↑a,b are �↓a,b are independent of a and b, provided 0 ≤ a, b ≤ 2/10 and −1/10 ≤ b−a ≤
1/10.
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7. Conclusion

One aspect of this work is naturally that we have extended Choquet-Kendall-Matheron

theorems to yet another level of generality. Dealing with non-Hausdorff spaces is needed if

we ever want to apply these results to situations like those encountered in domain theory,

where no dcpo of interest is Hausdorff. However we believe that the most important aspect

of this work is the precise connection between credibilities, resp. plausibilities, and models

of mixed probabilistic choice and non-deterministic choice, where the role of the Smyth,

resp. the Hoare powerdomains, appear clearly. A nice intuition, obtained using Choquet

integration along credibilities, resp. plausibilities, is that demonic choice minimizes your

earnings while angelic choice maximizes them.

The erratic case is stranger, and we had to invent the new notion of sesqui-continuous

estimate. Our last result shows that we cannot reduce the description of an estimate �

to the description of a pair of a credibility �↑ and a plausibility �↓, contrarily to what

happens with forks (Goubault-Larrecq, 2007b), another model for mixed probabilistic

choice and erratic non-determinism, which are just pairs of a continuous lower previ-

sion and a continuous upper prevision satisfying some conditions. (The latter two are

models of mixed probabilistic choice and demonic, resp. angelic choice. In both kinds of

previsions, and in forks, as well as in (Mislove, 2000; Tix et al., 2005), one can see the

non-deterministic choices to be done first, then the probabilistic choices. This is opposite

to the models considered here.)

Another question we would like to answer is: is there a meaningful notion of integration

along estimates � that would require the extra information in � that one cannot get from

�↑ and �↓ alone? We shall explore this in another paper.
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