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We give a short and elementary proof of the Schröder-Simpson Theorem, viz., that the

space of all continuous maps from a given space X, to the non-negative reals with their

Scott topology, is the cone-theoretic dual of the probabilistic powerdomain on X.

1. The Schröder-Simpson Theorem

A continuous valuation on a topological space X is a map ν from the lattice O(X) of

open subsets of X to R+
= R+ ∪ {+∞} such that ν(∅) = 0, ν(U) ≤ ν(V ) whenever

U ⊆ V , ν(U ∪V ) + ν(U ∩V ) = ν(U) + ν(V ) for all U , V , and ν(
⋃
i∈I Ui) = supi∈I ν(Ui)

for every directed family of opens (Ui)i∈I .

Let Vwk(X) denote the space of all continuous valuations on a topological space X,

with the weak topology, whose subbasic open subsets are [h > r] = {ν |
∫
x∈X h(x)dν > r},

where h ranges over the continuous maps from X to R+

σ , and r ∈ R+, r > 0; R+

σ is R+

with the Scott topology of its natural ordering. We define integration by the Choquet

formula
∫
x∈X h(x)dν =

∫ +∞
0

ν(h−1(t,+∞])dt; the right-hand side is a Riemann integral.

A Riesz-like representation theorem (Kirch, 1993; Tix, 1995) states that Vwk(X) is

isomorphic, as a cone, to the space of all continuous linear maps from [X → R+

σ ]σ to

R+

σ . The isomorphism maps ν to the continuous linear map h 7→
∫
x∈X h(x)dν. Here,

[X → R+

σ ] is the space of all continuous maps from X to R+

σ , and [X → R+

σ ]σ is this

space with the Scott topology of the pointwise ordering. A map is linear iff it preserves

sums and products by non-negative reals.

Schröder and Simpson (Schröder and Simpson, 2005) found another representation

theorem: the continuous linear maps ψ from Vwk(X) to R+
are exactly those of the

form ν ∈ Vwk(X) 7→
∫
x∈X h(x)dν, for some unique h ∈ [X → R+

σ ]. This answered a

question by (Heckmann, 1996). Their proof is very technical. Keimel’s proof (Keimel,

2012) is more conceptual and leads to more general results. Our argument is elementary.

To make a comparison, Schröder and Simpson start with the simple observation that if
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h exists, then h must be the map x ∈ X 7→ ψ(δx), where δx is the Dirac mass at x.

Checking that this map answers the question, however, proves to be difficult. Instead,

we build h from the shape of the weak open ψ−1(1,+∞], using two simple lemmas.

Acknowledgments. I would like to thank Alex Simpson. Let me also thank Klaus Keimel,

who spotted a mistake in our original proof of Lemma 2.2, and suggested further simpli-

fications. As will be apparent, K. Keimel is also the discoverer of many of the results we

rely on.

2. The Proof

The key is Keimel’s Lemma 5.5 (Keimel, 2012), which is perhaps (half of) the fundamental

reason why the Schröder-Simpson Theorem holds. We state it in a slightly more general

form; Keimel dealt with the case of only two maps hi, and they were simple, i.e., of

the form
∑n
i=1 aiχUi

for some ai ∈ R+ and opens Ui. (χU is the characteristic map of

U .) Let Vb(X) denote the space of all bounded continuous valuations ν, i.e., such that

ν(X) < +∞, with the subspace topology, which we again call the weak topology.

Lemma 2.1. Let ψ be a continuous linear map from Vb(X) to R+

σ , and (hi)i∈I be a

family of continuous maps from X to R+

σ . The following are equivalent:

1 ψ(ν) ≥ supi∈I
∫
x∈X hi(x)dν for every ν ∈ Vb(X);

2 ψ(ν) ≥
∫
x∈X supi∈I hi(x)dν for every ν ∈ Vb(X).

Proof. The 2 ⇒ 1 implication is clear. Conversely, assume 1. We start with Keimel’s

case, where I = {1, 2}, and h1, h2 are simple. Keimel argues as follows.

Write h1 as
∑m
i=1 aiχUi

, h2 as
∑n
j=1 bjχVj

, where ai, bj ∈ R+, Ui, Vj are open. Let

Ck, 1 ≤ k ≤ p, be an enumeration of the atoms of the Boolean algebra of subsets of X

generated by the sets Ui and Vj , i.e., the non-empty subsets of the form
⋂m
i=1±iUi ∩⋂n

j=1±m+jVj , where each sign ±i is + or −, and +A = A, −A = X rA. One can then

write h1 as
∑p
k=1 a

′
kχCk

and h2 as
∑p
k=1 b

′
kχCk

, with a′k, b
′
k ∈ R+.

Each Ck is a crescent, i.e., the difference ArB of two opens A and B. The Smiley-Horn-

Tarski (a.k.a., Pettis) Theorem states that each ν ∈ Vb(X) extends to a unique additive

function on the finite disjoint unions of crescents, defined on crescents by ν(A r B) =

ν(A∪B)−ν(B) = ν(A)−ν(A∩B); additivity means that the ν value of a finite disjoint

union of crescents is the sum of the ν values of each crescent.

Define the restriction ν|C of ν to C by ν|C(U) = ν(C∩U) for every U ∈ O(X). Writing

C = ArB with A, B open, ν|C(U) = ν((A∩U)∪B)−ν(B), from which ν|C is in Vb(X).

Moreover, ν|C(C) = ν(C), and ν|C(C ′) = 0 for every crescent C ′ disjoint from C.

So
∫
x∈X h1(x)dν|Ck

=
∑p
k′=1 a

′
k′ν|Ck

(Ck′) = a′k. Similarly
∫
x∈X h2(x)dν|Ck

= b′k.

Similarly again,
∫
x∈X sup(h1(x), h2(x))dν|Ck

= sup(a′k, b
′
k). By assumption, ψ(ν|Ck

) ≥
sup(

∫
x∈X h1(x)dν|Ck

,
∫
x∈X h1(x)dν|Ck

) = sup(a′k, b
′
k) =

∫
x∈X sup(h1(x), h2(x))dν|Ck

. As

the disjoint union of Ck, 1 ≤ k ≤ n, is the whole of X, ν =
∑p
k=1 ν|Ck

, so ψ(ν) =∑p
k=1 ψ(ν|Ck

) ≥
∑p
k=1

∫
x∈X sup(h1(x), h2(x))dν|Ck

=
∫
x∈X sup(h1(x), h2(x))dν.

We now prove 1⇒ 2 in the case where I = {1, 2}, without assuming h1 or h2 simple.

Every continuous map h : X → R+

σ is the pointwise supremum of the countable chain
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(hK)K∈N where hK = 1
2K

∑K2K

i=1 χh−1(i/2K ,+∞] is simple. Moreover, sup(h1K , h2K) =

sup(h1, h2)K . If ψ(ν) ≥ supi∈{1,2}
∫
x∈X hi(x)dν for every ν ∈ Vb(X), then for every

K ∈ N, ψ(ν) ≥ supi∈{1,2}
∫
x∈X hiK(x)dν for every ν ∈ Vb(X), and by Keimel’s argument

above, ψ(ν) ≥
∫
x∈X sup(h1K(x), h2K(x))dν =

∫
x∈X sup(h1, h2)K(x)dν. Taking sups over

K ∈ N, ψ(ν) ≥
∫
x∈X sup(h1(x), h2(x))dν for every ν ∈ Vb(X).

The implication 1 ⇒ 2 now follows easily when I is finite. For general I, assumption

1 implies ψ(ν) ≥ supi∈J
∫
x∈X hi(x)dν for every ν ∈ Vb(X) and for every finite subset J

of I. We have seen that this implied ψ(ν) ≥
∫
x∈X supi∈J hi(x)dν for every ν ∈ Vb(X).

Taking (directed) sups over J , and since integration is Scott-continuous in the integrated

function, ψ(ν) ≥
∫
x∈X supi∈I hi(x)dν for every ν ∈ Vb(X).

Let us recall Keimel’s Separation Theorem (Keimel, 2006, Theorem 9.1): let C be a

topological cone, U be an open convex subset, and A be a non-empty convex subset of C

disjoint from U ; then there is a continuous linear map Λ: C → R+

σ such that Λ(a) ≤ 1 for

every a ∈ A and Λ(u) > 1 for every u ∈ U . A cone is a commutative monoid (C,+) with

a multiplicative action (scalar product) of (R+,+,×). A topological cone additionally

has a topology such that both addition + and scalar product are (jointly) continuous. A

subset A of C is convex if and only if for all α ∈ [0, 1], a, a′ ∈ A, αa+ (1− α)a′ is in A.

Keimel’s Separation Theorem is a consequence of a sandwich theorem by Roth (Roth,

2000), which relies on the Axiom of Choice. The special case where we use it (C = R+n
)

is very likely to be provable without the Axiom of Choice, though.

Lemma 2.2. Let ψ be a continuous linear map from Vb(X) to R+

σ , and h1, . . . , hn be

finitely many continuous maps from X to R+

σ . If
⋂n
i=1[hi > 1] ⊆ ψ−1(1,+∞], then there

is a continuous map h : → R+

σ such that
⋂n
i=1[hi > 1] ⊆ [h > 1] ⊆ ψ−1(1,+∞].

Proof. Define F : Vb(X) → R+

σ

n
by F (ν) =

(∫
x∈X hi(x)dν

)
1≤i≤n. The image of⋂n

i=1[hi > 1] by F is included in the open convex subset U = (1,+∞]n of R+

σ

n
. One easily

checks that the image A of the complement of ψ−1(1,+∞] by F is also convex, since ψ

is linear. A is non-empty, since F (0) is in A. We claim that A and U are disjoint: every

element (ai)1≤i≤n of A is of the form F (ν) with ν 6∈ ψ−1(1,+∞], hence ν 6∈
⋂n
i=1[hi > 1]

by assumption; so ai =
∫
x∈X hi(x)dν ≤ 1 for some i, which implies (ai)1≤i≤n 6∈ U . By

Keimel’s Separation Theorem, there is a continuous linear map Λ: C → R+

σ such that

Λ(a) ≤ 1 for every a ∈ A and Λ(u) > 1 for every u ∈ U . Let γi = Λ(~ei) where ~ei is a

tuple of zeroes, except for a 1 at position i. If we agree that (+∞).0 = 0.(+∞) = 0, then

Λ(~c) =
∑
i γici for every point ~c = (ci)1≤i≤n of R+

σ

n
. (Continuity of Λ is essential here.)

Letting h =
∑n
i=1 γihi, we obtain (Λ ◦ F )(ν) =

∑n
i=1 γi

∫
x∈X hi(x)dν =

∫
x∈X h(x)dν

for every ν ∈ Vb(X). Every element ν of
⋂n
i=1[hi > 1] is such that F (ν) is in U , so

(Λ ◦ F )(ν) > 1, that is, ν is in [h > 1]. Every element ν outside ψ−1(1,+∞] is such that

F (ν) is in A, so (Λ ◦ F )(ν) ≤ 1, i.e., ν is not in [h > 1]. This proves the other inclusion

[h > 1] ⊆ ψ−1(1,+∞].

An equivalent statement, which we will not use but is more in the style of Lemma 2.1,

is the following. Given ψ, h1, . . . , hn as above, if ψ(ν) ≥ minni=1

∫
x∈X hi(x)dν for every
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ν ∈ Vb(X), then there is a continuous map h : X → R+

σ such that ψ(ν) ≥
∫
x∈X h(x)dν ≥

minni=1

∫
x∈X hi(x)dν for every ν ∈ Vb(X).

Theorem 2.3 (Schröder-Simpson). Let X be a topological space, and ψ be a contin-

uous linear map from Vb(X) to R+

σ . Then there is a unique continuous map h : X → R+

σ

such that ψ(ν) =
∫
x∈X h(x)dν for every ν ∈ Vb(X), and h(x) = ψ(δx) for every x ∈ X.

Proof. Since ψ is continuous, ψ−1(1,+∞] is open, hence of the form
⋃
i∈I
⋂
j∈Ji [hij >

rij ], where each Ji is finite, hij is continuous from X to R+

σ , and rij ∈ R+, rij > 0.

Without loss of generality, rij = 1, since [hij > rij ] = [1/rij .hij > 1].

For each i ∈ I, Lemma 2.2 gives us a continuous map hi : X → R+ such that⋂
j∈Ji [hij > 1] ⊆ [hi > 1] ⊆ ψ−1(1,+∞]. So ψ−1(1,+∞] =

⋃
i∈I
⋂
j∈Ji [hij > 1] ⊆⋃

i∈I [hi > 1] ⊆ ψ−1(1,+∞], whence ψ−1(1,+∞] =
⋃
i∈I [hi > 1]. Let h = supi∈I hi. By

Lemma 2.1, ψ(ν) ≥
∫
x∈X h(x)dν for every ν ∈ Vb(X). If the inequality were strict for

some ν, then ψ(ν) > t >
∫
x∈X h(x)dν for some ν ∈ Vb(X) and some t > 0. Replacing

ν by 1/t.ν if necessary, we may assume t = 1. Then ν ∈ ψ−1(1,+∞] =
⋃
i∈I [hi > 1],

so ν ∈ [hi > 1] for some i ∈ I. But then t = 1 >
∫
x∈X h(x)dν ≥

∫
x∈X hi(x)dν > 1,

contradiction.

Corollary 2.4. Let X be a topological space, and ψ be a continuous linear map from

Vwk(X) to R+

σ . Then there is a unique continuous map h : X → R+

σ such that ψ(ν) =∫
x∈X h(x)dν for every ν ∈ Vwk(X), and h(x) = ψ(δx) for every x ∈ X.

Proof. Every continuous valuation ν is the supremum of a directed family of bounded

continuous valuations νi, i ∈ I (Heckmann, 1996, Theorem 4.2). Let h(x) = ψ(δx).

By Theorem 2.3, and since integration is Scott-continuous in the valuation, ψ(ν) =

supi∈I ψ(νi) = supi∈I
∫
x∈X h(x)dνi =

∫
x∈X h(x)dν.

We also mention the following corollary to Theorem 2.3, also due to Schröder and Simp-

son (Schröder and Simpson, 2005). The argument below is theirs, too. Let V≤1 wk(X)

denote the space of all subprobability valuations, i.e., of all continuous valuations ν

on X such that ν(X) ≤ 1, with the subspace (a.k.a, weak) topology from Vb(X).

Call ψ : V≤1 wk(X) → R+

σ linear in this case iff ψ(aν + bν′) = aψ(ν) + bψ(ν′) for all

ν, ν′ ∈ V≤1 wk(X) and a, b ∈ [0, 1].

Corollary 2.5. Let X be a topological space, and ψ be a continuous linear map from

V≤1 wk(X) to R+

σ . Then there is a unique continuous map h : X → R+

σ such that ψ(ν) =∫
x∈X h(x)dν for every ν ∈ V≤1 wk(X), and h(x) = ψ(δx) for every x ∈ X.

Proof. Define ψ′ : Vb(X) → R+

σ by ψ′(ν) = aψ(1/a.ν), for any arbitrary a > 0 such

that ν(X) ≤ a. This is well-defined by linearity, and is linear in the usual sense. Using

the equivalence between 1/a.ν ∈ [h > r] and ν ∈ [h > ar], one easily shows that ψ′ is

continuous. We finally apply Theorem 2.3 to ψ′.

We finish with a remark on dual cones. Given a topological cone C, let its dual cone C∗

be the set of all linear continuous maps from C to R+

σ . This has an obvious structure of
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cone, and we topologize it with the topology induced by the inclusion of C∗ into R+

σ

C
with

the product topology; this is variously known as the weak topology, or as the topology

of pointwise convergence, and a subbasis of opens is given by the sets [c > r]∗ defined as

{ψ ∈ C∗ | ψ(c) > r}, c ∈ C, r ∈ R+. The Schröder-Simpson Theorem, as stated above,

implies that Vwk(X)∗ is isomorphic to [X → R+

σ ] as a cone, by the map h ∈ [X →
R+

σ ] 7→ (ν ∈ Vwk(X) 7→
∫
x∈X h(x)dν), with inverse ψ ∈ Vwk(X)∗ 7→ (x ∈ X 7→ ψ(δx)).

This becomes an isomorphism of topological cones once we equip C = [X → R+

σ ] with

the coarsest topology containing the sets [ν > r]∗ = {h ∈ C |
∫
x∈X h(x)dν > r} (the

confusion of notation with [ν > r]∗ = {ψ ∈ C∗ | ψ(ν) > r} is vindicated by the

isomorphism); it is fair to call this the weak∗ topology on C = [X → R+

σ ], and we write

[X → R+

σ ]wk∗ for the resulting topological cone.

By the Riesz-like representation theorem mentioned in the introduction, [X → R+

σ ]∗σ
is isomorphic to Vwk(X) as a cone. The very definition of the weak∗ topology (and of

the isomorphism) shows that the isomorphism extends to an isomorphism of topological

cones between [X → R+

σ ]∗wk∗ and Vwk(X).

Call a topological cone reflexive if and only if the function that maps each c ∈ C to

ĉ = (h ∈ C∗ 7→ h(c)) ∈ C∗∗ is an isomorphism of topological cones. We sum up this

discussion as follows.

Theorem 2.6. For every topological space X, the topological cones Vwk(X) and [X →
R+

σ ]wk∗ are reflexive, and dual to each other (up to isomorphisms of topological cones).
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