Under consideration for publication in Math. Struct. in Comp. Science

A Short Proof of the Schröder-Simpson Theorem

JEAN GOUBAULT-LARRECQ^{1†}

¹ ENS Cachan, 61, avenue du président-Wilson, 94230 Cachan, France

Tel: +33-1 47 40 22 60 *Fax:* +33-1 47 40 24 64 goubault@lsv.ens-cachan.fr

Received 29 August 2012; Revised 27 May 2013

We give a short and elementary proof of the Schröder-Simpson Theorem, viz., that the space of all continuous maps from a given space X, to the non-negative reals with their Scott topology, is the cone-theoretic dual of the probabilistic powerdomain on X.

1. The Schröder-Simpson Theorem

A continuous valuation on a topological space X is a map ν from the lattice $\mathcal{O}(X)$ of open subsets of X to $\mathbb{R}^+ = \mathbb{R}^+ \cup \{+\infty\}$ such that $\nu(\emptyset) = 0$, $\nu(U) \leq \nu(V)$ whenever $U \subseteq V$, $\nu(U \cup V) + \nu(U \cap V) = \nu(U) + \nu(V)$ for all U, V, and $\nu(\bigcup_{i \in I} U_i) = \sup_{i \in I} \nu(U_i)$ for every directed family of opens $(U_i)_{i \in I}$.

Let $\mathbf{V}_{wk}(X)$ denote the space of all continuous valuations on a topological space X, with the weak topology, whose subbasic open subsets are $[h > r] = \{\nu \mid \int_{x \in X} h(x) d\nu > r\}$, where h ranges over the continuous maps from X to $\overline{\mathbb{R}}_{\sigma}^+$, and $r \in \mathbb{R}^+$, r > 0; $\overline{\mathbb{R}}_{\sigma}^+$ is $\overline{\mathbb{R}}^+$ with the Scott topology of its natural ordering. We define integration by the Choquet formula $\int_{x \in X} h(x) d\nu = \int_0^{+\infty} \nu(h^{-1}(t, +\infty)) dt$; the right-hand side is a Riemann integral.

A Riesz-like representation theorem (Kirch, 1993; Tix, 1995) states that $\mathbf{V}_{wk}(X)$ is isomorphic, as a cone, to the space of all continuous linear maps from $[X \to \overline{\mathbb{R}}_{\sigma}^+]_{\sigma}$ to $\overline{\mathbb{R}}_{\sigma}^+$. The isomorphism maps ν to the continuous linear map $h \mapsto \int_{x \in X} h(x) d\nu$. Here, $[X \to \overline{\mathbb{R}}_{\sigma}^+]$ is the space of all continuous maps from X to $\overline{\mathbb{R}}_{\sigma}^+$, and $[X \to \overline{\mathbb{R}}_{\sigma}^+]_{\sigma}$ is this space with the Scott topology of the pointwise ordering. A map is *linear* iff it preserves sums and products by non-negative reals.

Schröder and Simpson (Schröder and Simpson, 2005) found another representation theorem: the continuous linear maps ψ from $\mathbf{V}_{wk}(X)$ to $\overline{\mathbb{R}}^+$ are exactly those of the form $\nu \in \mathbf{V}_{wk}(X) \mapsto \int_{x \in X} h(x) d\nu$, for some unique $h \in [X \to \overline{\mathbb{R}}_{\sigma}^+]$. This answered a question by (Heckmann, 1996). Their proof is very technical. Keimel's proof (Keimel, 2012) is more conceptual and leads to more general results. Our argument is elementary. To make a comparison, Schröder and Simpson start with the simple observation that if

[†] Work partially supported by the ANR programme blanc project CPP.

J. Goubault-Larrecq

h exists, then h must be the map $x \in X \mapsto \psi(\delta_x)$, where δ_x is the Dirac mass at x. Checking that this map answers the question, however, proves to be difficult. Instead, we build h from the shape of the weak open $\psi^{-1}(1, +\infty)$, using two simple lemmas.

Acknowledgments. I would like to thank Alex Simpson. Let me also thank Klaus Keimel, who spotted a mistake in our original proof of Lemma 2.2, and suggested further simplifications. As will be apparent, K. Keimel is also the discoverer of many of the results we rely on.

2. The Proof

The key is Keimel's Lemma 5.5 (Keimel, 2012), which is perhaps (half of) the fundamental reason why the Schröder-Simpson Theorem holds. We state it in a slightly more general form; Keimel dealt with the case of only two maps h_i , and they were simple, i.e., of the form $\sum_{i=1}^{n} a_i \chi_{U_i}$ for some $a_i \in \mathbb{R}^+$ and opens U_i . (χ_U is the characteristic map of U.) Let $\mathbf{V}_b(X)$ denote the space of all *bounded* continuous valuations ν , i.e., such that $\nu(X) < +\infty$, with the subspace topology, which we again call the weak topology.

Lemma 2.1. Let ψ be a continuous linear map from $\mathbf{V}_b(X)$ to $\overline{\mathbb{R}}_{\sigma}^+$, and $(h_i)_{i \in I}$ be a family of continuous maps from X to $\overline{\mathbb{R}}_{\sigma}^+$. The following are equivalent:

- $\begin{array}{ll} 1 & \psi(\nu) \geq \sup_{i \in I} \int_{x \in X} h_i(x) d\nu \text{ for every } \nu \in \mathbf{V}_b(X); \\ 2 & \psi(\nu) \geq \int_{x \in X} \sup_{i \in I} h_i(x) d\nu \text{ for every } \nu \in \mathbf{V}_b(X). \end{array}$

Proof. The $2 \Rightarrow 1$ implication is clear. Conversely, assume 1. We start with Keimel's

case, where $I = \{1, 2\}$, and h_1 , h_2 are simple. Keimel argues as follows. Write h_1 as $\sum_{i=1}^m a_i \chi_{U_i}$, h_2 as $\sum_{j=1}^n b_j \chi_{V_j}$, where $a_i, b_j \in \mathbb{R}^+$, U_i , V_j are open. Let C_k , $1 \le k \le p$, be an enumeration of the atoms of the Boolean algebra of subsets of X generated by the sets U_i and V_j , i.e., the non-empty subsets of the form $\bigcap_{i=1}^m \pm_i U_i \cap$ $\bigcap_{i=1}^{n} \pm_{m+j} V_j$, where each sign \pm_i is + or -, and $+A = A, -A = X \setminus A$. One can then write h_1 as $\sum_{k=1}^p a'_k \chi_{C_k}$ and h_2 as $\sum_{k=1}^p b'_k \chi_{C_k}$, with $a'_k, b'_k \in \mathbb{R}^+$.

Each C_k is a *crescent*, i.e., the difference $A \setminus B$ of two opens A and B. The Smiley-Horn-Tarski (a.k.a., Pettis) Theorem states that each $\nu \in \mathbf{V}_b(X)$ extends to a unique additive function on the finite disjoint unions of crescents, defined on crescents by $\nu(A \setminus B) =$ $\nu(A \cup B) - \nu(B) = \nu(A) - \nu(A \cap B)$; additivity means that the ν value of a finite disjoint union of crescents is the sum of the ν values of each crescent.

Define the restriction $\nu_{|C}$ of ν to C by $\nu_{|C}(U) = \nu(C \cap U)$ for every $U \in \mathcal{O}(X)$. Writing $C = A \setminus B$ with A, B open, $\nu_{|C}(U) = \nu((A \cap U) \cup B) - \nu(B)$, from which $\nu_{|C}$ is in $\mathbf{V}_b(X)$. Moreover, $\nu_{|C}(C) = \nu(C)$, and $\nu_{|C}(C') = 0$ for every crescent C' disjoint from C.

So $\int_{x \in X} h_1(x) d\nu_{|C_k} = \sum_{k'=1}^p a'_{k'} \nu_{|C_k}(C_{k'}) = a'_k$. Similarly $\int_{x \in X} h_2(x) d\nu_{|C_k} = b'_k$. Similarly again, $\int_{x \in X} \sup(h_1(x), h_2(x)) d\nu_{|C_k} = \sup(a'_k, b'_k)$. By assumption, $\psi(\nu_{|C_k}) \ge b'_k$. $\sup(\int_{x \in X} h_1(x) d\nu_{|C_k}, \int_{x \in X} h_1(x) d\nu_{|C_k}) = \sup(a'_k, b'_k) = \int_{x \in X} \sup(h_1(x), h_2(x)) d\nu_{|C_k}.$ As the disjoint union of C_k , $1 \le k \le n$, is the whole of X, $\nu = \sum_{k=1}^p \nu_{|C_k}$, so $\psi(\nu) = \sum_{k=1}^p \nu_{|C_k}$
$$\begin{split} \sum_{k=1}^p \psi(\nu_{|C_k}) \geq \sum_{k=1}^p \int_{x \in X} \sup(h_1(x), h_2(x)) d\nu_{|C_k} &= \int_{x \in X} \sup(h_1(x), h_2(x)) d\nu. \\ \text{We now prove } 1 \Rightarrow 2 \text{ in the case where } I = \{1, 2\}, \text{ without assuming } h_1 \text{ or } h_2 \text{ simple.} \end{split}$$

Every continuous map $h: X \to \overline{\mathbb{R}}_{\sigma}^+$ is the pointwise supremum of the countable chain

Schröder-Simpson Theorem

 $(h_K)_{K \in \mathbb{N}} \text{ where } h_K = \frac{1}{2^K} \sum_{i=1}^{K2^K} \chi_{h^{-1}(i/2^K, +\infty]} \text{ is simple. Moreover, } \sup(h_{1K}, h_{2K}) = \sup(h_1, h_2)_K. \text{ If } \psi(\nu) \ge \sup_{i \in \{1,2\}} \int_{x \in X} h_i(x) d\nu \text{ for every } \nu \in \mathbf{V}_b(X), \text{ then for every } K \in \mathbb{N}, \psi(\nu) \ge \sup_{i \in \{1,2\}} \int_{x \in X} h_{iK}(x) d\nu \text{ for every } \nu \in \mathbf{V}_b(X), \text{ and by Keimel's argument above, } \psi(\nu) \ge \int_{x \in X} \sup(h_{1K}(x), h_{2K}(x)) d\nu = \int_{x \in X} \sup(h_1, h_2)_K(x) d\nu. \text{ Taking sups over } K \in \mathbb{N}, \psi(\nu) \ge \int_{x \in X} \sup(h_1(x), h_2(x)) d\nu \text{ for every } \nu \in \mathbf{V}_b(X).$

The implication $1 \Rightarrow 2$ now follows easily when I is finite. For general I, assumption 1 implies $\psi(\nu) \ge \sup_{i \in J} \int_{x \in X} h_i(x) d\nu$ for every $\nu \in \mathbf{V}_b(X)$ and for every finite subset J of I. We have seen that this implied $\psi(\nu) \ge \int_{x \in X} \sup_{i \in J} h_i(x) d\nu$ for every $\nu \in \mathbf{V}_b(X)$. Taking (directed) sups over J, and since integration is Scott-continuous in the integrated function, $\psi(\nu) \ge \int_{x \in X} \sup_{i \in I} h_i(x) d\nu$ for every $\nu \in \mathbf{V}_b(X)$.

Let us recall Keimel's Separation Theorem (Keimel, 2006, Theorem 9.1): let C be a topological cone, U be an open convex subset, and A be a non-empty convex subset of C disjoint from U; then there is a continuous linear map $\Lambda: C \to \overline{\mathbb{R}}^+_{\sigma}$ such that $\Lambda(a) \leq 1$ for every $a \in A$ and $\Lambda(u) > 1$ for every $u \in U$. A cone is a commutative monoid (C, +) with a multiplicative action (scalar product) of $(\mathbb{R}^+, +, \times)$. A topological cone additionally has a topology such that both addition + and scalar product are (jointly) continuous. A subset A of C is convex if and only if for all $\alpha \in [0, 1]$, $a, a' \in A$, $\alpha a + (1 - \alpha)a'$ is in A. Keimel's Separation Theorem is a consequence of a sandwich theorem by Roth (Roth, 2000), which relies on the Axiom of Choice. The special case where we use it $(C = \overline{\mathbb{R}}^{+n})$ is very likely to be provable without the Axiom of Choice, though.

Lemma 2.2. Let ψ be a continuous linear map from $\mathbf{V}_b(X)$ to $\overline{\mathbb{R}}_{\sigma}^+$, and h_1, \ldots, h_n be finitely many continuous maps from X to $\overline{\mathbb{R}}_{\sigma}^+$. If $\bigcap_{i=1}^n [h_i > 1] \subseteq \psi^{-1}(1, +\infty]$, then there is a continuous map $h: \to \overline{\mathbb{R}}_{\sigma}^+$ such that $\bigcap_{i=1}^n [h_i > 1] \subseteq [h > 1] \subseteq \psi^{-1}(1, +\infty]$.

Proof. Define $F: \mathbf{V}_b(X) \to \overline{\mathbb{R}}_{\sigma}^{+^n}$ by $F(\nu) = \left(\int_{x \in X} h_i(x) d\nu\right)_{1 \leq i \leq n}$. The image of $\bigcap_{i=1}^n [h_i > 1]$ by F is included in the open convex subset $U = (1, +\infty)^n$ of $\overline{\mathbb{R}}_{\sigma}^{+^n}$. One easily checks that the image A of the complement of $\psi^{-1}(1, +\infty]$ by F is also convex, since ψ is linear. A is non-empty, since F(0) is in A. We claim that A and U are disjoint: every element $(a_i)_{1 \leq i \leq n}$ of A is of the form $F(\nu)$ with $\nu \notin \psi^{-1}(1, +\infty)$, hence $\nu \notin \bigcap_{i=1}^n [h_i > 1]$ by assumption; so $a_i = \int_{x \in X} h_i(x) d\nu \leq 1$ for some i, which implies $(a_i)_{1 \leq i \leq n} \notin U$. By Keimel's Separation Theorem, there is a continuous linear map $\Lambda: C \to \overline{\mathbb{R}}_{\sigma}^+$ such that $\Lambda(a) \leq 1$ for every $a \in A$ and $\Lambda(u) > 1$ for every $u \in U$. Let $\gamma_i = \Lambda(\vec{e}_i)$ where \vec{e}_i is a tuple of zeroes, except for a 1 at position i. If we agree that $(+\infty).0 = 0.(+\infty) = 0$, then $\Lambda(\vec{c}) = \sum_i \gamma_i c_i$ for every point $\vec{c} = (c_i)_{1 \leq i \leq n}$ of $\overline{\mathbb{R}}_{\sigma}^{+^n}$. (Continuity of Λ is essential here.) Letting $h = \sum_{i=1}^n \gamma_i h_i$, we obtain $(\Lambda \circ F)(\nu) = \sum_{i=1}^n \gamma_i \int_{x \in X} h_i(x) d\nu = \int_{x \in X} h(x) d\nu$ for every $\nu \in \mathbf{V}_b(X)$. Every element ν of $\bigcap_{i=1}^n [h_i > 1]$ is such that $F(\nu)$ is in U, so $(\Lambda \circ F)(\nu) > 1$, that is, ν is in [h > 1]. Every element ν outside $\psi^{-1}(1, +\infty]$ is such that $F(\nu)$ is in A, so $(\Lambda \circ F)(\nu) \leq 1$, i.e., ν is not in [h > 1]. This proves the other inclusion $[h > 1] \subseteq \psi^{-1}(1, +\infty]$.

An equivalent statement, which we will not use but is more in the style of Lemma 2.1, is the following. Given ψ , h_1 , ..., h_n as above, if $\psi(\nu) \ge \min_{i=1}^n \int_{x \in X} h_i(x) d\nu$ for every

J. Goubault-Larrecq

 $\nu \in \mathbf{V}_b(X)$, then there is a continuous map $h: X \to \overline{\mathbb{R}}^+_{\sigma}$ such that $\psi(\nu) \ge \int_{x \in X} h(x) d\nu \ge \min_{i=1}^n \int_{x \in X} h_i(x) d\nu$ for every $\nu \in \mathbf{V}_b(X)$.

Theorem 2.3 (Schröder-Simpson). Let X be a topological space, and ψ be a continuous linear map from $\mathbf{V}_b(X)$ to $\overline{\mathbb{R}}_{\sigma}^+$. Then there is a unique continuous map $h: X \to \overline{\mathbb{R}}_{\sigma}^+$ such that $\psi(\nu) = \int_{x \in X} h(x) d\nu$ for every $\nu \in \mathbf{V}_b(X)$, and $h(x) = \psi(\delta_x)$ for every $x \in X$.

Proof. Since ψ is continuous, $\psi^{-1}(1, +\infty)$ is open, hence of the form $\bigcup_{i \in I} \bigcap_{j \in J_i} [h_{ij} > r_{ij}]$, where each J_i is finite, h_{ij} is continuous from X to \mathbb{R}^+_{σ} , and $r_{ij} \in \mathbb{R}^+$, $r_{ij} > 0$. Without loss of generality, $r_{ij} = 1$, since $[h_{ij} > r_{ij}] = [1/r_{ij}.h_{ij} > 1]$.

For each $i \in I$, Lemma 2.2 gives us a continuous map $h_i: X \to \mathbb{R}^+$ such that $\bigcap_{j \in J_i}[h_{ij} > 1] \subseteq [h_i > 1] \subseteq \psi^{-1}(1, +\infty]$. So $\psi^{-1}(1, +\infty] = \bigcup_{i \in I} \bigcap_{j \in J_i}[h_{ij} > 1] \subseteq \bigcup_{i \in I}[h_i > 1] \subseteq \psi^{-1}(1, +\infty]$, whence $\psi^{-1}(1, +\infty] = \bigcup_{i \in I}[h_i > 1]$. Let $h = \sup_{i \in I}h_i$. By Lemma 2.1, $\psi(\nu) \ge \int_{x \in X} h(x)d\nu$ for every $\nu \in \mathbf{V}_b(X)$. If the inequality were strict for some ν , then $\psi(\nu) > t > \int_{x \in X} h(x)d\nu$ for some $\nu \in \mathbf{V}_b(X)$ and some t > 0. Replacing ν by $1/t.\nu$ if necessary, we may assume t = 1. Then $\nu \in \psi^{-1}(1, +\infty] = \bigcup_{i \in I}[h_i > 1]$, so $\nu \in [h_i > 1]$ for some $i \in I$. But then $t = 1 > \int_{x \in X} h(x)d\nu \ge \int_{x \in X} h_i(x)d\nu > 1$, contradiction.

Corollary 2.4. Let X be a topological space, and ψ be a continuous linear map from $\mathbf{V}_{wk}(X)$ to $\overline{\mathbb{R}}_{\sigma}^+$. Then there is a unique continuous map $h: X \to \overline{\mathbb{R}}_{\sigma}^+$ such that $\psi(\nu) = \int_{x \in X} h(x) d\nu$ for every $\nu \in \mathbf{V}_{wk}(X)$, and $h(x) = \psi(\delta_x)$ for every $x \in X$.

Proof. Every continuous valuation ν is the supremum of a directed family of bounded continuous valuations ν_i , $i \in I$ (Heckmann, 1996, Theorem 4.2). Let $h(x) = \psi(\delta_x)$. By Theorem 2.3, and since integration is Scott-continuous in the valuation, $\psi(\nu) = \sup_{i \in I} \psi(\nu_i) = \sup_{i \in I} \int_{x \in X} h(x) d\nu_i = \int_{x \in X} h(x) d\nu$.

We also mention the following corollary to Theorem 2.3, also due to Schröder and Simpson (Schröder and Simpson, 2005). The argument below is theirs, too. Let $\mathbf{V}_{\leq 1 \ wk}(X)$ denote the space of all subprobability valuations, i.e., of all continuous valuations ν on X such that $\nu(X) \leq 1$, with the subspace (a.k.a, weak) topology from $\mathbf{V}_b(X)$. Call $\psi: \mathbf{V}_{\leq 1 \ wk}(X) \to \mathbb{R}^+_{\sigma}$ linear in this case iff $\psi(a\nu + b\nu') = a\psi(\nu) + b\psi(\nu')$ for all $\nu, \nu' \in \mathbf{V}_{\leq 1 \ wk}(X)$ and $a, b \in [0, 1]$.

Corollary 2.5. Let X be a topological space, and ψ be a continuous linear map from $\mathbf{V}_{\leq 1 \ wk}(X)$ to $\overline{\mathbb{R}}_{\sigma}^+$. Then there is a unique continuous map $h: X \to \overline{\mathbb{R}}_{\sigma}^+$ such that $\psi(\nu) = \int_{x \in X} h(x) d\nu$ for every $\nu \in \mathbf{V}_{\leq 1 \ wk}(X)$, and $h(x) = \psi(\delta_x)$ for every $x \in X$.

Proof. Define $\psi' \colon \mathbf{V}_b(X) \to \overline{\mathbb{R}}_{\sigma}^+$ by $\psi'(\nu) = a\psi(1/a.\nu)$, for any arbitrary a > 0 such that $\nu(X) \leq a$. This is well-defined by linearity, and is linear in the usual sense. Using the equivalence between $1/a.\nu \in [h > r]$ and $\nu \in [h > ar]$, one easily shows that ψ' is continuous. We finally apply Theorem 2.3 to ψ' .

We finish with a remark on dual cones. Given a topological cone C, let its *dual cone* C^* be the set of all linear continuous maps from C to $\overline{\mathbb{R}}^+_{\sigma}$. This has an obvious structure of

cone, and we topologize it with the topology induced by the inclusion of C^* into $\overline{\mathbb{R}}_{\sigma}^{+C}$ with the product topology; this is variously known as the weak topology, or as the topology of pointwise convergence, and a subbasis of opens is given by the sets $[c > r]^*$ defined as $\{\psi \in C^* \mid \psi(c) > r\}, c \in C, r \in \mathbb{R}^+$. The Schröder-Simpson Theorem, as stated above, implies that $\mathbf{V}_{wk}(X)^*$ is isomorphic to $[X \to \overline{\mathbb{R}}_{\sigma}^+]$ as a cone, by the map $h \in [X \to \overline{\mathbb{R}}_{\sigma}^+] \mapsto (\nu \in \mathbf{V}_{wk}(X) \mapsto \int_{x \in X} h(x) d\nu)$, with inverse $\psi \in \mathbf{V}_{wk}(X)^* \mapsto (x \in X \mapsto \psi(\delta_x))$. This becomes an isomorphism of topological cones once we equip $C = [X \to \overline{\mathbb{R}}_{\sigma}^+]$ with the coarsest topology containing the sets $[\nu > r]^* = \{h \in C \mid \int_{x \in X} h(x) d\nu > r\}$ (the confusion of notation with $[\nu > r]^* = \{\psi \in C^* \mid \psi(\nu) > r\}$ is vindicated by the isomorphism); it is fair to call this the *weak** topology on $C = [X \to \overline{\mathbb{R}}_{\sigma}^+]$, and we write $[X \to \overline{\mathbb{R}}_{\sigma}^+]_{wk*}$ for the resulting topological cone.

By the Riesz-like representation theorem mentioned in the introduction, $[X \to \mathbb{R}^+_{\sigma}]^*_{\sigma}$ is isomorphic to $\mathbf{V}_{wk}(X)$ as a cone. The very definition of the weak* topology (and of the isomorphism) shows that the isomorphism extends to an isomorphism of *topological* cones between $[X \to \mathbb{R}^+_{\sigma}]^*_{wk*}$ and $\mathbf{V}_{wk}(X)$.

Call a topological cone *reflexive* if and only if the function that maps each $c \in C$ to $\widehat{c} = (h \in C^* \mapsto h(c)) \in C^{**}$ is an isomorphism of topological cones. We sum up this discussion as follows.

Theorem 2.6. For every topological space X, the topological cones $\mathbf{V}_{wk}(X)$ and $[X \to \overline{\mathbb{R}}_{\sigma}^+]_{wk*}$ are reflexive, and dual to each other (up to isomorphisms of topological cones).

References

- Heckmann, R. (1996). Spaces of valuations. In Andima, S., Flagg, R. C., Itzkowitz, G., Kong, Y., Kopperman, R., and Misra, P., editors, *Papers on General Topology and Applications: 11th Summer Conference at the University of Southern Maine*, Annals of the New York Academy of Sciences 806, pages 174–200.
- Keimel, K. (2006). Topological cones: Foundations for a domain-theoretical semantics combining probability and nondeterminism. *Electronic Notes in Theoretical Computer Science*, 155:423–443.
- Keimel, K. (2012). Locally convex cones and the Schröder-Simpson theorem. Questiones Mathematicae, 35:353–390.
- Kirch, O. (1993). Bereiche und Bewertungen. Master's thesis, TH Darmstadt.
- Roth, W. (2000). Hahn-Banach type theorems for locally convex cones. Journal of the Australian Mathematical Society, 68(1):104–125.
- Schröder, M. and Simpson, A. (2005). Probabilistic observations and valuations. Talk at Mathematical Foundations of Programming Semantics XXI, Birmingham. http: //homepages.inf.ed.ac.uk/als/Talks/mfps05.pdf.
- Tix, R. (1995). Stetige Bewertungen auf topologischen Räumen. Diplomarbeit, TH Darmstadt.