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Abstract

Inspired by a construction of Escardó, Lawson, and Simpson, we give a general
construction of C-generated objects in a topological construct. When C consists of
exponentiable objects, the resulting category is Cartesian-closed. This generalizes
the familiar construction of compactly-generated spaces, and we apply this to Kr-
ishnan’s categories of streams and prestreams, as well as to Haucourt streams. For
that, we need to identify the exponentiable objects in these categories: for pre-
streams, we show that these are the preordered core-compact topological spaces,
and for streams, these are the core-compact streams.

1 Introduction
Streams and prestreams were introduced by Krishnan [Kri09] as a foundation for di-
rected algebraic topology, where topological spaces are equipped with a local notion
of direction, typically of time. There are several competing proposals, see [Hau09a],
and the references given therein. Streams are one of the most practical. Krishnan
(op.cit.) shows that streams for a complete and cocomplete category. He also identifies
a Cartesian-closed subcategory of so-called compactly flowing streams, modeled after
the Cartesian-closed category of compactly generated weak Hausdorff spaces.

Our objective is to show that there are many Cartesian-closed subcategories, both
of prestreams and of streams. The main construction is a more or less direct cate-
gorical generalization of a topological construction by Escardó, Lawson, and Simpson
[ELS04], which we describe in Section 3, right after having recapitulated a few notions
that we need in Section 2. Our initial motivation was to find Cartesian-closed subcat-
egories of prestreams, instead of Krishnan’s streams. Indeed, prestreams are simpler
objects, with a clearer definition. As a general element of style, and in the name of
clarity, one of our aims was to make all constructions as concrete as we could, and
while this seems to be contradicted by the abstract style of Section 3, in the remaining
sections we insist on giving explicit formulae for limits, colimits, and other notions.
This is needed anyway later.
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The construction of Section 3 is parameterized by a class of exponentiable objects
(of prestreams, or of streams, in our case), and it is therefore interesting to charac-
terize exponentiable objects in each of the relevant categories. This is what we do
for prestreams in Section 5, and for streams in Section 6. We also study the re-
stricted, intuitive class of streams introduced by Haucourt [Hau12], because of their
intuitive appeal. In each case, we obtain Cartesian-closed categories: core-compactly
generated streams, core-compactly generated Haucourt streams, core-compactly gener-
ated prestreams, compactly generated streams, compactly generated Haucourt streams,
compactly generated prestreams, and orderly compactly generated prestreams all form
Cartesian-closed categories. We conclude in Section 7.

2 Preliminaries
Exponentiable objects. In a category C with finite products×, an exponential (from
the object X to the object Y ) is an object Y X , together with a morphism App: Y X ×
X → Y (application, evaluation), and a collection of morphisms Λ(f) : Z → Y X , one
for each morphism f : Z×X → Y , where Z is an arbitrary object of C, satisfying the
equations:

(β) App ◦ (Λ(f)× idX) = f for every f : Z ×X → Y
(η) Λ(App) = idY X

(σ) Λ(f) ◦ g = Λ(f ◦ (g × idX)) for all f : Z ×X → Y, g : Z ′ → Z.

This presentation is closest to the λ-calculus [Cur86]. An object X is exponentiable in
C if and only if it has an exponential Y X for every object Y of C. Equivalently, X is
exponentiable if and only if the functor ×X is left adjoint (to the functor X ). C is
Cartesian-closed if and only if all its objects are exponentiable.

For example, the exponentiable objects in Top, the category of topological spaces,
are exactly the core-compact spaces. (See [ELS04], or [GL13, Section 5.4], for a
comprehensive treatment.) These are defined as follows. Let O(X) denote the lattice
of open subsets of a topological space X . For U, V ∈ O(X), write U b V if and
only if every open cover of V contains a finite subcover of U . (This is the so-called
way-below relation familiar to domain theorists.) X is core-compact if and only if for
every open neighborhood V of any point x ∈ X , there is an open subset U such that
x ∈ U b V . Every locally compact space (i.e., every space in which every point has a
neighborhood basis of compact subsets) is core-compact, where U b V if and only if
U ⊆ K ⊆ V for some compact subset K.

In Hausdorff spaces (and more generally, sober spaces), core-compactness coin-
cides with local compactness. In particular, a Hausdorff space that is not locally com-
pact cannot be exponentiable in Top. Examples include Q, the Sorgenfrey line, or
Baire space NN [GL13, Exercises 4.8.4, 4.8.5, Example 4.8.12]: Top is not Cartesian-
closed.

When X is core-compact, then Y X can be taken to be the space of all continuous
maps from X to Y , with the Isbell topology. In this case, the description of the latter
simplifies to the following (see [EH02, Theorem 4.3], or [GL13, Theorem 5.4.4]),
which we call the core-open topology: it is the coarsest topology that makes [U b
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V ] open for all opens U ∈ O(X), V ∈ O(Y ), where [U b V ] denotes the set of
continuous maps f such that U b f−1(V ). When X is locally compact, the core-open
topology coincides with the more familiar compact-open topology.

Topological functors. We need to recall the notion of a topological functor | | [AHS09].
As an illustration in the sequel, think of C as Top, D as Set, | | as the underlying set
functor. We shall call this the topological example.

Let | | be a faithful functor from a category C to a category D. A morphism
g : |A| → |B| in D lifts to a (necessarily unique) f : A→ B if and only if |f | = g. In
the topological example, the maps that have liftings are the continuous maps.

The fiber over an object D of D is the class of objects A of C such that |A| = D.
In the topological example, one may think as objects in the fiber of D as topologies
added on the setD. The fiber overD is preordered byA ≤ B if and only if the identity
morphism on |A| = |B| = D has a lifting from A to B: if so, we say that A is finer
than B, and that B is coarser than A.

There are several equivalent definitions of a topological functor. One states that
| | is topological if and only if every | |-source (gi : D → |Ai|)i∈I (where I is any
class of indices) has a unique | |-initial lift (see [AHS09, Definition 21.1]). Such a
functor is automatically faithful, and amnestic, meaning that ≤ is an ordering, not just
a preorder, on each fiber. It is also uniquely transportable: given an object A of C, and
an isomorphism g : |A| → D in D, there is a unique element B of the fiber of D such
that g lifts to an isomorphism between A and B. In the topological example, the latter
means that we can transport topologies along any bijection.

An equivalent definition, which matches topological uses better, is as follows. A
functor | | is topological if and only if it is faithful, amnestic, and for every | |-source
(gi : D → |Ai|)i∈I , there is an objectB in the fiber ofD such that gi lifts to a morphism
fi : B → Ai for every i ∈ I , and satisfying the following universal property: For every
morphism g : |C| → |B| in D, g lifts to a (unique) morphism from C to B in C if and
only if gi ◦ g lifts to a morphism from C to Ai for every i ∈ I . In this case, B is the
coarsest object in the fiber of D such that gi lifts to a morphism fi : B → Ai for every
i ∈ I .

This corresponds to the familiar construction in Top that there is a coarsest topol-
ogy B on D that makes all the functions gi continuous; and the universal property
states that to show that a map g with codomain D (with topology B) is continuous, it
is equivalent to show that gi ◦ g is continuous for every i ∈ I .

When every gi is an identity map, this also implies that every family of objects
in the fiber has a greatest lower bound. Consequently, ≤ endows the fiber over each
object D with the structure of a complete lattice. The largest (coarsest) element in the
fiber is the indiscrete object over D, which we write D1, and the smallest (finest) one
is the discrete object D0 over D. In general, we define an indiscrete object over D as a
greatest lower bound D1 of the empty | |-source; explicitly, D1 is indiscrete over D iff
|D1| = D, and every morphism g : |B| → D lifts to one from B to D1. Similarly for
discrete objects.

In the definition of topological functors, we are not requiring the class I on which
the | |-source is indexed to be a set. This does not make a difference for fiber-small
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topological functors, i.e., those where every fiber is a set, not a proper class [AHS09,
Proposition 21.34]. In particular, a fiber-small functor is topological | | if and only if it
is faithful, amnestic, and every small | |-source (gi : D → |Ai|)i∈I defines a coarsest
object B in the fiber of D such that every gi lifts to a morphism from B to Ai, and
satisfying the same universal property as above. This is the case in the topological
example: the class of topologies on a set forms a set.

A dual statement exists, too. Let | | be a topological functor from C to D. For
every | |-sink (gi : |Ai| → D)i∈I (where I is a class of indices), there is an object B
in the fiber of D such that gi lifts to a morphism fi : Ai → B for every i ∈ I , and
satisfying the following universal property: For every morphism g : |B| → |C| in D, g
lifts to a (unique) morphism from B to C in C if and only if g ◦ gi lifts to a morphism
from Ai to C for every i ∈ I . B is the finest object in the fiber of D such that gi lifts
to a morphism fi : Ai → B for every i ∈ I .

A topological functor | | is both left adjoint (to the indiscrete object functor) and
right adjoint (to the discrete object functor), and as such preserves both limits and
colimits. It also lifts limits (uniquely), meaning that, given any functor F : J → C
such that |F | = | | ◦ F has a limit D in D, there is a (unique) limit A of F in C
such that |A| = D. In fact, a functor | | is topological if and only if it is faithful,
lifts limits uniquely, and has indiscrete objects D1 over each object D of D [AHS09,
Theorem 21.18].

In the sequel, instead of saying that | | : C → D is topological, or amnestic, or
has any other property, we shall say that C is topological, resp. amnestic, resp. has any
other property, over D, leaving the functor | | implicit. For example, we say that Top
is topological over Set. We shall see that the categories of streams and prestreams are
topological over Top, hence also over Set.

A construct is a pair (C, | |) where C is a category, and | | is a faithful functor from
C to Set. The construct is topological if and only if the functor | | is.

When D has a terminal object 1, and | | is topological, then C also has a terminal
object, which happens to be 11, the indiscrete object on 1. A topological functor | | has
discrete terminal objects if and only if 11 is discrete, iff 10 = 11, iff 10 is terminal, iff
the fiber over 1 contains only one element. A construct (C, | |) is well-fibered if and
only if it is fiber-small and has discrete terminal objects [AHS09, Definition 27.20].
This is the case of the topological example.

3 The Escardó-Lawson-Simpson Construction
Escardó, Lawson and Simpson [ELS04] provide a useful construction of a Cartesian-
closed category MapC , from which one can easily derive construction of Cartesian-
closed categories TopC of Top. When C is the class of compact Hausdorff spaces,
TopC is the familiar category of compactly generated spaces.

We observe that the same constructions work, almost without modification, in case
we replace Top by a category C that is topological over Set.

Barr also provided a general categorical construction for building monoidal closed
categories, and in particular Cartesian-closed categories [Bar78]. The Map| |,C and
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C| |,C constructions below rely on different assumptions, and are hopefully easier to
apply.

3.1 The Category Map| |,C

Definition 3.1 (Map| |,C) Let | | be a faithful functor from a category C to a category
D, and let C be a class of objects of C. Call C-probe (onX) any morphism k : C → X
in C, where C ∈ C.

For any two objects X and Y of C, a C-map from X to Y is a morphism g : |X| →
|Y | such that, for every C-probe k : C → X , g ◦ |k| has a (necessarily unique) lifting.
We write g • k for this lifting, so that |g • k| = g ◦ |k|.

The category Map| |,C has all objects of C as objects, and as morphisms from X
to Y all C-maps from X to Y . Identities and composition are given as in D.

This is clearly a category. Map| |,C is like C, except with possibly more morphisms:

Lemma 3.2 Let | | be a faithful functor from a category C to a category D, and let C
be a class of objects of C. Every morphism f : X → Y of C defines a morphism |f |
from X to Y in Map| |,C .

Proof. For every C-probe, f • k is just f ◦ k. ut

Lemma 3.3 Let | | be a topological functor from a category C to a category D, and
let C be a class of objects of C. Assume that D has all finite products.

The category Map| |,C has all finite products. For all objects X1, . . . , Xn, the
product X1 × . . . × Xn in C is a product in Map| |,C , and projections and pairing
maps are defined as in D.

Proof. Since | | lifts limits, C has all finite products, and | | preserves them on the
nose.

LetX1, . . . ,Xn be n objects in Map| |,C (equivalently, in C). WriteX1×. . .×Xn

for their product in C, πi for ith projection, and 〈g1, . . . , gn〉 : Z → X1× . . .×Xn for
the pairing of gi : Z → Xi, 1 ≤ i ≤ n. We also use similar notations in D.

Let gi be morphisms from Z to Xi in Map| |,C (i.e., from |Z| to |Xi| in D), 1 ≤
i ≤ n. By the definition of products in D, 〈g1, . . . , gn〉 is the unique morphism h in
Map| |,C such that πi ◦h = gi for every i, 1 ≤ i ≤ n. We must show that it is a C-map.
Let k : C → X be any C-probe. 〈g1 • k, . . . , gn • k〉 is a lifting of 〈g1, . . . , gn〉 ◦ k,
since |〈g1 • k, . . . , gn • k〉| = 〈|g1 • k|, . . . , |gn • k|〉 = 〈g1 ◦ |k|, . . . , gn ◦ |k|〉 =
〈g1, . . . , gn〉 ◦ |k|: the first equality is since | | preserves products (hence pairings), the
second equality is by definition of •, the third one because pairings always distribute
with composition on the right. ut

In particular, there is no ambiguity in writing × for product, whether in C, D, or
Map| |,C .

Let us write Y X for the exponential object from X to Y when it exists, whether in
C or in D, and let App: Y X ×X → Y be the application (or evaluation) morphism,
Λ(h) : Z → Y X be the currification of h : Z×X → Y . Write ∗ for the unique element
of the terminal object 1 in Set. When D = Set, for every object Z of C, for every
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element z ∈ |Z|, write z1 for the unique morphism from 10 to Z such that |z1| maps ∗
to z. This exists and is unique because 10 is the discrete object on {∗}. We characterize
exponentials in a topological construct:

Lemma 3.4 Let (C, | |) be a topological construct, and let C, X be two objects in C
such that some exponential from C to X exists.

There is a unique such exponential XC with |XC | = HomC(10×C,X). Applica-
tion App is such that |App|(h, c) = |h|(∗, c) for all h ∈ |XC | and c ∈ |C|. Currifica-
tion is such that for every morphism f : Z×C → X in C, |Λ(f)|(z) = f ◦ (z1× idC).

Proof. We first fix an exponential A (we refrain from writing it XC , so as to avoid
any possible confusion), and build an isomorphism with some element in the fiber of
HomC(10 × C,X). To do so, we build its image θ by | |.

Let App: A × X → C be application, Λ(f) : Z → A be the currification of
f : Z × C → X . For every h ∈ |A|, let θ(h) be the morphism App ◦ (h1 × idC), i.e.,

10 × C
h1×idC // A× C

App // X . We claim that its inverse is θ′, defined by
θ′(f) = |Λ(f)|(∗), for every f : 10 ×C → X . Note that θ′(f)1 = Λ(h), by definition
of z1 as the unique object such that |z1|(∗) = z. We check the following:

θ(θ′(f)) = App ◦ (θ′(f)1 × idC)

= App ◦ (Λ(h)× idC) = h

by (β). Conversely,

θ′(θ(h)) = |Λ(App ◦ (h1 × idC))|(∗)
= |Λ(App) ◦ h1|(∗) (by (σ))
= |h1|(∗) (by (η))
= h.

Therefore θ is a bijection. Since | | is topological, it is uniquely transportable, and
therefore there is a unique exponential object, call it XC , in the fiber of HomC(10 ×
C,X). This is isomorphic to A through (the unique lifting of) θ.

Applying | |, |θ(h)| = |App| ◦ (|h1| × id|C|), using the fact that | | preserves
products on the nose. It follows that, for every c ∈ |C|, |θ(h)|(∗, c) = |App|(h, c).
Moreover, for every morphism f : Z × C → X in C, for every z ∈ Z, Λ(f) ◦ z1 =
Λ(f ◦ (z1 × idC)) by (σ), so |Λ(f)|(z) = |Λ(f) ◦ z1|(∗) = |Λ(f ◦ (z1 × idC))|(∗) =
θ−1(f ◦ (z1× idC)), by definition of θ−1 = θ′. When A = XC itself, θ is the identity,
which allows us to conclude. ut

In a topological construct with discrete terminal objects, 10 is terminal, and 10×X
is naturally isomorphic toX , via π2 : 10×X → X in one direction, and 〈!, idX〉 : X →
10×X in the other (we write ! : X → 10 for the unique morphism to the terminal object
10).

Corollary 3.5 Let (C, | |) be a topological construct with discrete terminal objects,
and let C, X be two objects in C such that some exponential from C to X exists.
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There is a unique such exponential XC with |XC | = HomC(C,X). Application
App is such that |App|(h, c) = |h|(c) for all h ∈ |XC | and c ∈ |C|. Currification is
such that for every morphism f : Z × C → X in C, |Λ(f)|(z) = f ◦ 〈z1◦!, idC〉.

The construction Map| |,C is interesting when C is a strongly productive class,
defined below. We shall see later that we can instead require C to satisfy a weaker
requirement called productivity.

Definition 3.6 (Strongly Productive) Let C be a category with finite products. A
class C of objects of C is strongly productive if and only if every object of C is ex-
ponentiable in C, and products of pairs of elements of C are in C.

Theorem 3.7 Let (C, | |) be a well-fibered topological construct, and let C be a strongly
productive class of objects of C. The category Map| |,C is Cartesian-closed.

More precisely, for any two objects X and Y of C, let C[X,Y ] be the set of all
C-maps from X to Y . Given any C-probe k : C → X , let • k be the map from
C[X,Y ] to HomC(C, Y ) that sends f to f • k. An exponential object from X to
Y is the coarsest object, written [Y X ]C , in the fiber of C[X,Y ] such that the map

C[X,Y ]
•k // HomC(C, Y ) lifts to a morphism from [Y X ]C to Y C in C, for every

C-probe k : C → X .
Application AppC : [Y X ]C ×X → Y (in Map| |,C) is given by ordinary function

application (in Set), namely AppC(f, x) = f(x). Currification ΛC(f) : Z → [Y X ]C
of a morphism f : Z ×X → Y in Map| |,C (i.e., of a map f : |Z| × |X| → |Y |) is the
map that sends each z ∈ |Z| to f(z, ).

Proof. Every object C of C is exponentiable, so Y C exists, and can be chosen in
the fiber of HomC(C, Y ) by Corollary 3.5. Also, among the objects E in the fiber

of C[X,Y ] such that C[X,Y ]
•k // HomC(C, Y ) lifts to a morphism k̂, E from

E to Y C in C, for every C-probe k : C → X , there is a coarsest one, because | | is
topological. So [Y X ]C is well defined.

Let AppC : C[X,Y ] × |X| → |Y | (in Set) be defined by AppC(f, x) = f(x).
To show that AppC is a morphism in Map| |,C , we must check that AppC ◦ |k| lifts
to a morphism AppC • k : C → Y for every C-probe k : C → [Y X ]C × X . Let
k1 = π1 ◦ k : C → [Y X ]C , k2 = π2 ◦ k : C → X . Both are C-probes. We claim that
AppC • k is the composite:

C
〈k1,idC〉 // [Y X ]C × C

k̂2×idC // Y C × C
App // Y

where k̂2 is the unique lifting of • k2 : C[X,Y ]→ HomC(C, Y ). Temporary call this
composite f . We must check that |f | = AppC ◦ |k|. For every c ∈ |C|,

|f |(c) = |App|(|k1|(c) • k2, c)

=
∣∣|k1|(c) • k2

∣∣(c) (by Corollary 3.5 again)
= |k1|(c)(|k2|(c))
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while, by definition,

(AppC ◦ |k|)(c) = AppC(|k1|(c), |k2|(c)) = |k1|(c)(|k2|(c)).

Let us turn to currification. Fix an arbitrary C-map f from Z × X to Y (i.e., f
is a map from |Z| × |X| to |Y | whose compositions with all relevant C-probes have
liftings).

For each z ∈ |Z|, there is a map f(z, ) from |X| to |Y |. We first check that it is a
C-map. For every C-probe k : C → X , 〈z1◦!, k〉 : C → Z ×X is a C-probe, and since
f is a C-map, f • 〈z1◦!, k〉 exists. For every c ∈ |C|,

|f • 〈z1◦!, k〉|(c) = (f ◦ 〈|z1◦!|, |k|〉)(c) (since | | preserves products)
= f(z, |k|(c)) = (f(z, ) ◦ |k|)(c).

This means that f • 〈z1◦!, k〉 lifts f(z, ) ◦ |k|, showing that f(z, ) is a C-map.
The map z 7→ f(z, ) is therefore one from |Z| to C[X,Y ] = |[Y X ]C |. Call this

map ΛC(f). We claim that this is a C-map, too. Fixing a C-probe k1 : C1 → Z, we
must show that ΛC(f) ◦ |k1| lifts to a morphism from C1 to [Y X ]C . By the universal
property for | |-sources, applied to the definition of [Y X ]C , we only have to check
that ( • k2) ◦ ΛC(f) ◦ |k1| lifts to a morphism from C1 to Y C2 for every C-probe
k2 : C2 → X .

We claim that the required lifting is Λ(f • (k1 × k2)). Note that this makes sense:
since C is strongly productive, C1 ×C2 is in C, so that k1 × k2 : C1 ×C2 → Z ×X is
a C-probe, whence f • (k1 × k2) exists. Also, the latter can be currified, because C2 is
exponentiable.

Let us compute. For every c1 ∈ |C1|,

|Λ(f • (k1 × k2))|(c1) = (f • (k1 × k2)) ◦ 〈c11◦!, idC2
〉 (by Corollary 3.5)

and we must show that this is equal to:

(( • k2) ◦ ΛC(f) ◦ |k1|) (c1) = f(|k1|(c1), ) • k2.

Since both are elements of HomC(C2, Y ), and | | is faithful, it suffices to check that
their images under | | are the same. For every c2 ∈ |C2|,∣∣|Λ(f • (k1 × k2))|(c1)

∣∣(c2) =
∣∣(f • (k1 × k2)) ◦ 〈c11◦!, idC2

〉
∣∣(c2)

= (f ◦ (|k1| × |k2|))(c1, c2)

= f(|k1|(c1), |k2|(c2)),

while ∣∣ (( • k2) ◦ ΛC(f) ◦ |k1|) (c1)
∣∣(c2) =

∣∣f(|k1|(c1), ) • k2

∣∣(c2)

= (f(|k1|(c1), ) ◦ |k2|)(c2)

= f(|k1|(c1), |k2|(c2))

and we are done. We conclude that ΛC(f) is a C-map from Z to [Y X ]C .
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The equations (β), (η), (σ) are obvious from the fact that they hold in Set. E.g.,
for (β), we must show that AppC ◦ (ΛC(f)× idX) = f for every C-map f from Z×X
to Y . For every pair (z, x) in |Z| × |X|, the left-hand side applied to (z, x) yields
AppC ◦ (f(z, ), x) = f(z, x), hence equals the right-hand side (f ) applied to (z, x).
ut

3.2 C-Generated Objects
Map| |,C is not a subcategory of C. We build a subcategory of C that is equivalent to
Map| |,C .

Definition 3.8 Let | | be a topological functor from a category C to a category D, and
let C be a class of objects of C. For every object X of C, let CX be the finest object in
the fiber of |X| such that, for every C-probe k : C → X , |k| lifts to a morphism from C
to CX .

An object X of C is C-generated if and only if CX = X .
The category C| |,C is the full subcategory of C whose objects are the C-generated

objects.

The following properties hold:

• CX ≤ X , i.e., there is a morphism iX from CX to X that lifts the identity on
|X|. Indeed, X itself is among the objects X ′ such that for every C-probe k to
X ′, |k| lifts to a probe to X ′; CX is the finest such object, hence is finer than X .

• Every C-probe k : C → X factors through iX : CX → X , i.e., there is a mor-
phism k′ : C → CX such that k = iX◦k′, namely the lifting of |k| to a morphism
from C to CX .

Lemma 3.9 Under the assumptions of Definition 3.8, every object of C is C-generated.

Proof. Let X ∈ C. The identity morphism on X is a C-probe, so |idX | lifts to a
morphism from X to CX , that is, X ≤ CX . We conclude since CX ≤ X , and | | is
amnestic. ut

Lemma 3.10 Under the assumptions of Definition 3.8, for every C ∈ C, a morphism
g : |C| → |X| in D lifts to one from C to X if and only if it lifts to one from C to CX .

Proof. If g lifts to f : C → CX , then iX ◦ f : C → X lifts g as well. Conversely, if g
lifts to f : C → X , then f is a C-probe, hence factors through ix, yielding a lifting of
g to a morphism from C to CX . ut

Lemma 3.11 Under the assumptions of Definition 3.8, every object of the form CX is
C-generated.

Proof. For every C-probe k : C → X , |k| lifts to a morphism from C to CX , hence to
one from C to CCX by Lemma 3.10. That is, CCX is an object Y in the fiber of |X|
such that for every C-probe k : C → X , |k| lifts to a morphism from C to Y . CX is the
finest, so CX ≤ CCX . Since CCX ≤ CX and | | is amnestic, CX = CCX . ut
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Lemma 3.12 Under the assumptions of Definition 3.8, the C-maps from X to Y are
exactly the morphisms in D that lift to a morphism from CX to Y in C.

Proof. Let g be a C-map from X to Y (in particular, a morphism from |X| to |Y |
in D). For every C-probe k : C → X , by definition g ◦ |k| lifts to some morphism
g • k : C → Y . By the universal property of | |-sinks, and Definition 3.8, g lifts to a
morphism from CX to Y .

Conversely, assume g lifts to a morphism f from CX to Y . For every C-probe
k : C → X , one can write k as iX◦k′ for some morphism k′ : C → CX , and |k′| = |k|,
so |f ◦ k′| = g ◦ |k|, showing that f ◦ k′ lifts g ◦ |k|: g is a C-map. ut

Proposition 3.13 Let | | be a topological functor from a category C to a category D,
and let C be a class of objects of C. The categories Map| |,C and C| |,C are equivalent.

The equivalence is given, in one direction, by the functor C : Map| |,C → C| |,C
that maps each object X to CX and each morphism g from X to Y in Map| |,C (i.e.,
from |X| to |Y | in D) to iY ◦f where f is the unique lifting of g as a morphism from CX
to Y ; in the other direction, by the functor that is the identity on objects and coincides
with | | on morphisms.

Proof. We must show that C is a well-defined functor. The existence and uniqueness
of f follow from Lemma 3.12, and the fact that | | is faithful. The fact that C preserves
identities and composition is because | | is faithful, again. In the converse direction,
the functor I that is the identity on objects and coincides with | | on morphisms is
well-defined: we need to check that if f : X → Y is a morphism in C| |,C , then |f | is
a C-map from X to Y , and this is by Lemma 3.12, together with CX = X .

Finally, for every object X of Map| |,C , id|X| is a (natural) isomorphism from X
to ICX (i.e., from |X| to |ICX| = |X| in D): we need only check that id|X| is both
a C-map from X to ICX = CX and from CX to X . The first claim follows from
Lemma 3.12, and the second one from CX ≤ X .

Finally, for every object X of C| |,C , idX is a (natural) isomorphism from X to
CIX = CX , since X is C-generated. ut
Together with Theorem 3.7, we obtain:

Theorem 3.14 Let (C, | |) be a well-fibered topological construct, and let C be a
strongly productive class of objects of C. The category C| |,C is Cartesian-closed.

The terminal object of C| |,C is the terminal object of C, products X ×C Y are
defined as C(X × Y ) where × is product in C, and the exponential object from X to
Y is C[Y X ]C .

Proof. Only the second part remains to be checked. A terminal object of C| |,C is C1
where 1 is terminal in C. Observe that C1 = 1, since there is only one object in the
fiber of |1|, by well-fiberedness and amnesticity. For products, remember that product
in Map| |,C coincides with product in C. The rest is clear. ut
The largest possible choice for C is the class of all exponentiable objects. We observe
that this is indeed a strongly productive class: for any two exponentiable objectsX and
Y , × (X × Y ) is left adjoint to ( X)Y , or to ( Y )X , so X × Y is exponentiable as
well.
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Lemma 3.15 Let | | be a topological functor from a category C to a category D, and
let C be a class of objects of C.

The category C| |,C is coreflective in C. The right adjoint to the inclusion functor
is the functor, again written C, that maps each object X to CX , and each morphism
f : X → Y to the unique lifting of |f | as a morphism from CX to CY .

Proof. We must first check that CX is indeed an object of C| |,C : this is Lemma 3.11.
Then, we must check that for every morphism f : X → Y in C, |f | lifts to a morphism
from CX to CY . For every C-probe k : C → X , iY ◦ f ◦ k is a lifting of |f | ◦ |k| to a
morphism from C to CY , so |f | is a C-map from X to CY . Lemma 3.12 then implies
the desired conclusion.

Write I for the inclusion functor. The unit of the coreflection is defined on each
objectX as the identity morphism fromX to CIX = X (sinceX is C-generated). The
counit is defined as iX : ICX → X on each object X of C. ut
Since C is a left adjoint, it preserves all colimits, whence:

Lemma 3.16 Let (C, | |) be a topological construct. Given any class C of topological
spaces, C| |,C has all colimits, and they are computed as in C. Every colimit of C-
generated objects in C is again C-generated.

3.3 C-Generation as Colimits
It is well-known that the compactly generated spaces are exactly the quotients of com-
pact Hausdorff spaces. More generally, given a (strongly) productive class C of topo-
logical spaces containing a non-empty space, the C-generated spaces are exactly the
colimits of spaces from C [ELS04]. A similar phenomenon occurs here.

We say that an objectA in C is non-empty, where (C, | |) is a construct, if and only
if |A| is a non-empty set. In the sequel, we shall always consider that the elements of a
set-theoretic coproduct X =

∐
i∈I Xi are pairs (i, x) where x ∈ Xi. This comes with

canonical injections ιi : Xi → X defines by ιi(x) = (i, x).

Proposition 3.17 Let (C, | |) be a well-fibered topological construct, and let C be a
class of objects of C containing a non-empty object A.

The C-generated objects of C are exactly the small colimits, taken in C, of objects
of C.

Proof. First, C is also cocomplete and finitely complete, since Set is. Every small
colimit of objects in C is a colimit of C-generated objects by Lemma 3.9, hence is itself
C-generated, by Lemma 3.16.

Conversely, let X be a C-generated object of C. Let I be the set of objects X ′ in
the fiber of |X| such that X 6≤ X ′: this is a set, since | | is fiber-small. For every object
X ′ ∈ I , pick a C-probe kX′ : CX′ → X such that |kX′ | does not lift to a morphism
from CX′ to X ′. This exists: an object X ′ in the fiber of |X| for which such a kX′
does not exist is by definition one such that for every C-probe k : C → X , |k| lifts to
a morphism from C to X ′, which implies CX ≤ X ′ (Definition 3.8); since CX = X ,
this would contradict the fact that X ′ ∈ I . Finally, we use the Axiom of Choice to
collect one C-probe kX′ per object X ′ in I .
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For every x ∈ |X|, {x} is terminal in Set, and since | | lifts limits, there is a
terminal object 1(x) in C such that |1(x)| = {x}. There is a unique morphism from
A to 1(x), and since | | is well-fibered, 1(x) is discrete, so there is a lifting of the
inclusion map, from {x} to |X|, to a morphism from 1(x) to X . Their composition is
a morphism cx : A→ X such that |cx| is the constant x map from |A| to |X|.

Let Z be the coproduct
∐
X′∈I CX′ t

∐
x∈|X|A, and q be the unique morphism

from Z to X such that q ◦ ιX′ = kX′ for every X ′ ∈ I and q ◦ ιx = cx, where ιX′ ,
resp. ιx, is the canonical morphism from CX′ , resp. A, to the coproduct Z. We claim
that q is a regular epi.

If it is, then it must be the coequalizer of its kernel pair. Form the latter; this is the
following pullback (≡) of two morphisms equal to q:

(≡)
π2 //

π1

��

Z

q

��
Z

q
// X

We must show that q is a coequalizer of the pair of parallel maps π1, π2 : (≡)→ Z. To
this end, let p : Z → Y be any other morphism such that p ◦ π1 = p ◦ π2. Applying | |,
we obtain the following diagram:

|(≡)|
|π2| //

|π1|
��

|Z|

|q|
��

|p|

��

|Z|
|q|
//

|p|
((

|X|

g

  
|Y |

where the upper left square is again a pullback, since | | preserves limits. The existence
of the dotted g morphism is justified as follows. The elements of |Z| are the pairs
(X ′, z) with z ∈ |CX′ |, plus the pairs (x, a) where x ∈ |X| and a ∈ |A|. Since |q|
maps (X ′, z) to z, and (x, a) to x, |q| is surjective. In Set, the surjective maps are the
regular epis, which implies that g exists and is unique. (Concretely, we define g(x),
where x ∈ |X|, as |p|(x, a), where a is any fixed element of |A|, which exists since A
is non-empty.)

Consider the one-morphism | |-source (g). This lifts to a morphism f : X ′ → Y ,
where X ′ is coarsest in the fiber of X with this property. The universal property of X ′

is: for every morphism g′ : |X ′′| → |X ′| in Set, g′ lifts to a morphism from X ′′ to X ′

iff g ◦ g′ lifts to a morphism from X ′′ to Y .
If X 6≤ X ′, by definition X ′ is in I , so kX′ : CX′ → X is such that |kX′ | does

not lift to a morphism from CX′ to X ′. Observing that kX′ = q ◦ ιX′ , and taking
X ′′ = CX′ and g′ = |kX′ | in the above universal property, we see that, since g ◦ g′ =
g◦|q|◦|ιX′ | = |p|◦|ιX′ | lifts to p◦ιX′ : CX′ → Y , g′ = |kX′ |must lift to a morphism
from CX′ to X ′. This is a contradiction, so X ≤ X ′.
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SinceX ≤ X ′, there is a lifting i : X → X ′ of the identity. Note that |(f ◦ i)◦q| =
|p|, which follows from |i| = id|X|, |f | = g, and g ◦ |q| = |p|. Since | | is faithful,
p = (f ◦ i) ◦ q. The fact that f ◦ i is the unique morphism h such that p = h ◦ q follows
from the fact that g is unique such that |p| = g ◦ |q| and that | | is faithful. Therefore, q
is regular epi.

This exhibits X as a coequalizer of (≡)
π2 //
π1

// Z . Since Z is a small coproduct

of objects in C, X is a small colimit of objects of C. ut
It is time we relaxed the strong productivity condition.

Definition 3.18 (Productive) Let | | be a topological functor from a category C with
finite products to a category D. A class C of objects of C is productive if and only
if every object of C is exponentiable in C, and products of pairs of elements of C are
C-generated.

As every object of C is C-generated (Lemma 3.9), strongly productive classes are pro-
ductive.

Proposition 3.19 Let (C, | |) be a well-fibered topological construct, and C be a pro-
ductive class of objects of C containing a non-empty object. The class C of all expo-
nentiable C-generated objects is the largest class C′ of exponentiable objects such that
the C-generated objects are exactly the C′-generated objects.

Proof. If X is C-generated, then it is a colimit of objects in C by Proposition 3.17.
Each such space is exponentiable by definition, and C-generated by Lemma 3.9, hence
in C. Using Lemma 3.16, we conclude that X is C-generated. Conversely, if X is
C-generated, then it is a colimit of objects from C by Proposition 3.17, hence a colimit
of C-generated objects, so X is itself C-generated by Lemma 3.16.

If C′ is another class of exponentiable objects such that the C′-generated objects are
C-generated, then in particular every object of C′ is both exponentiable and C-generated
(Lemma 3.9), hence in C, whence the claim of maximality. ut

We need the following proposition to prove Lemma 3.21 below, but this is of inde-
pendent interest. It describes a case where products X ×C Y are ordinary products in
C. This is analogous to (and generalizes) the fact that the product of two compactly
generated spaces X , Y in the category of compactly generated spaces is their ordinary
topological product as soon as X or Y is locally compact.

Proposition 3.20 Let (C, | |) be a well-fibered topological construct, and C be a pro-
ductive class of objects of C containing a non-empty object. For any two C-generated
objects X and Y , the product X × Y in C is C-generated whenever X or Y is expo-
nentiable.

Proof. We first claim that X × C is C-generated for every C ∈ C. Since X is C-
generated, it is a colimit of objects Ci, i ∈ I , of C by Proposition 3.17. Since C is
exponentiable (as every object of C is), × C is left adjoint, hence preserves colimits.
It follows that X ×C is a colimit of objects of the form Ci×C. Since the latter are all
C-generated by productivity, X × C is C-generated, by Lemma 3.16.
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Without loss of generality, assume X is exponentiable. Since Y is C-generated, Y
is a colimit of objects C ′j , j ∈ J , of C, by Proposition 3.17. Since X is exponentiable,
X × is a left adjoint, hence preserves colimits. It follows that X × Y is a colimit of
objects X ×Cj , j ∈ J . We have seen that each was C-generated, so X × Y is, too, by
Lemma 3.16. ut

Lemma 3.21 Let (C, | |) be a well-fibered topological construct, and C be a produc-
tive class of objects of C containing a non-empty object. The class C is strongly pro-
ductive.

Proof. Every binary productX×Y of objects of C is C-generated by Proposition 3.20,
and exponentiable (the right adjoint to (X × Y ) × being ( Y )X , or equivalently
( X)Y ). ut

This allows us to relax the conditions on Theorem 3.7.

Theorem 3.22 Let (C, | |) be a well-fibered topological construct, and let C be a pro-
ductive class of objects of C containing a non-empty object. The category Map| |,C
coincides with Map| |,C , and is Cartesian-closed. The exponentials are as in Theo-
rem 3.7.

Proof. We must first show that the C-maps are exactly the C-maps. Since C ⊆ C, every
C-map is a C-map. Conversely, let g be a C-map from X to Y , and k : C → X be a
C-probe: we wish to show that g ◦ |k| lifts to a morphism from C to Y . Since C is C-
generated, by the universal property of | |-sinks, it suffices to show that (g ◦ |k|) ◦ |k′|
lifts to a morphism from C ′ to Y for every C-probe k′ : C ′ → C. Since k ◦ k′ is a
C-probe, and g is a C-map, g • (k ◦ k′) is a lifting of (g ◦ |k|) ◦ |k′|.

We have established that Map| |,C is the same category as Map| |,C . It is, in
particular, Cartesian-closed.

It also follows that C[X,Y ] = C[X,Y ], and that application and currification are
given by the same formulas as in Theorem 3.7. Finally, we know that an exponential
of X and Y is [Y X ]C , but we wish to show that [Y X ]C is one, too. It is enough to
check that [Y X ]C is isomorphic to [Y X ]C . To this end, we first prove that C[Y X ]C ≤
[Y X ]C ≤ [Y X ]C .

[Y X ]C ≤ [Y X ]C . [Y X ]C is an object in the fiber of C[X,Y ] such that • k lifts to a
morphism from [Y X ]C to Y C for every C-probe k : C → X , and in particular for every
C-probe k : C → X . [Y X ]C is the coarsest, whence the inequality.
C[Y X ]C ≤ [Y X ]C . This is the complicated part. By Lemma 3.12, it is enough

to show that the identity map idC[X,Y ] on C[X,Y ] is a C-map from [Y X ]C to [Y X ]C .
We have seen that it was equivalent to show that it was a C-map, i.e., a morphism in
Map| |,C from [Y X ]C to [Y X ]C . Since Map| |,C is Cartesian-closed, and since [Y X ]C
is the exponential from X to Y there (Theorem 3.7), we only have to exhibit idC[X,Y ]

as the currification of a morphism from [Y X ]C ×X to Y in Map| |,C . The latter, as a
morphism in Set, must be the function app that maps (f, x) ∈ C[X,Y ]× |X| to f(x).
To show that this is indeed a morphism in Map| |,C , we must show that app is a C-map.
Let k : C → [Y X ]C ×X be a C-probe, which we write as 〈k1, k2〉. We must show that
app◦|k|, the map that sends c ∈ |C| to |k1|(c)(|k2|(c)) ∈ |Y |, lifts to a morphism from
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C to Y in C. Using Proposition 3.17, write C as the colimit of a functor F : J → C
such that F (J) ∈ C for every object J of J; let also ιJ : F (J) → C be the colimit
maps.

Since k2 ◦ ιJ is a C-probe, from F (J) to X , • (k2 ◦ ιJ) is a morphism from [Y X ]C
to Y F (J) in C. Let fJ be the morphism App ◦ 〈( • (k2 ◦ ιJ)) ◦ k1 ◦ ιJ , idF (J)〉. We
claim that fJ : F (J)→ Y lifts app ◦ |k| ◦ |ιJ |. To this end, we compute the following,
for every a ∈ |F (J)|:

|fJ |(a) = |App|(| • (k2 ◦ ιJ)|(|k1|(|ιJ |(a))), a)

= |App|(|k1|(|ιJ |(a)) ◦ |k2 ◦ ιJ |, a)

= |k1|(|ιJ |(a))(|k2|(|ιJ |(a))) = (app ◦ |k|)(|ιJ |(a)).

We check that fK ◦ F (j) = fJ for every morphism j : J → K in J. Since | | is
faithful, it is enough to check that |fK | ◦ |F (j)| = |fJ |, which follows from the fact
that |ιJ | ◦ |F (j)| = |ιJ ◦ F (j)| = |ιK |. By the construction of C as a colimit of
F , there is a unique morphism f : C → Y such that fJ = f ◦ ιJ for every object
J of J. We claim that f is the desired lifting of app ◦ |k|. It suffices to check that
|f |(c) = (app ◦ |k|)(c) for every c ∈ |C|. Since | | preserves colimits, it suffices
to show that |f |(|ιJ |(a)) = (app ◦ |k|)(|ιJ |(a)) for every object J of J, and every
a ∈ |F (J)|. We have seen that both sides of this equation were equal to |fJ |(a). This
concludes the argument that C[Y X ]C ≤ [Y X ]C .

Now that we know that C[Y X ]C ≤ [Y X ]C ≤ [Y X ]C , we claim that the three objects
are isomorphic in Map| |,C . There are liftings of idC[X,Y ], from C[Y X ]C to [Y X ]C , and
from [Y X ]C to [Y X ]C . In particular, idC[X,Y ] is a C-map from C[Y X ]C to [Y X ]C , and
from [Y X ]C to [Y X ]C . It is also a C-map from [Y X ]C to C[Y X ]C , by Lemma 3.12.
These three identities therefore form a circle of three isomorphisms in Map| |,C be-
tween C[Y X ]C , [Y X ]C , and [Y X ]C . Since the second one is an exponential of X and
Y , so is the third one. ut

Theorem 3.23 Let (C, | |) be a well-fibered topological construct, and let C be a pro-
ductive class of objects of C containing a non-empty object. The category C| |,C coin-
cides with C| |,C , and is Cartesian-closed. The finite products and exponentials are as
in Theorem 3.14.

Proof. We first show that C| |,C is the same category as C| |,C . This amounts to the
fact that an object is C-generated, i.e., a colimit of objects from C (Proposition 3.17), if
and only if it is a colimit of objects from C, which is clear.

It follows that C| |,C is Cartesian-closed, by Theorem 3.14.
To check that the finite products and exponentials are as in Theorem 3.14 (e.g., that

C(X × Y ) = C(X × Y )), we show that CX = CX for every object X of C. This is
obvious, since the functor C : Map| |,C → C| |,C is inverse to the functor I that is the
identity on objects and coincides with | | on morphisms (Proposition 3.13), and so is
the functor C : Map| |,C → C| |,C . Since Map| |,C = Map| |,C (Theorem 3.22) and
C| |,C = C| |,C , the two functors C and C are the same. ut

When C = Top, we retrieve the results of [ELS04], and indeed our arguments
are categorical versions of theirs (up to our introduction of strongly productive classes,
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in an attempt to make the presentation simpler). In particular, if C is taken to be the
class of compact Hausdorff spaces, then Top| |,C is the Cartesian-closed category of
compactly-generated spaces.

We shall now apply all this to streams and prestreams.

4 Streams, Prestreams
A prestreamX is a topological spaceX with a precirculation, i.e., a collection (vU )U∈O(X),
indexed by open subsets U of X , where vU is a preorder on U , and such that when-
ever U ⊆ V then x vU y implies x vV y. The space X itself is the carrier of the
prestream.

Prestreams form a category Prestr. The prestream morphisms f from X =
(X, (vU )U∈O(X)) to Y = (Y, (�V )V ∈O(Y )) are those continuous maps f : X → Y
that are locally monotonic, in the sense that, for every open subset V of Y , for all
x, y ∈ f−1(V ), if x vf−1(V ) y then f(x) �V f(y).

Example 4.1 Call preordered space any topological space X with a partial ordering
v. Any preordered space defines a canonical prestream, where vU is the restriction of
v to U , for every open subset U of X .

Example 4.2 (
−→
R ) Consider the real line R, and let vR

U be defined by t vR
U t′ if and

only if the whole interval [t, t′] is included in U . This is a prestream (which we shall
denote as

−→
R ) that does not arise from a preordered space. E.g., for U = (−3,−1) ∪

(1, 3), the inequality−2 vR
U 2 fails. We define similar prestreams

−−→
[a, b] on any compact

subinterval [a, b] of R: these prestreams were introduced by Haucourt [Hau09b, text
before Proposition 3.8]. This is a fundamental example. We shall come back to it again
later.

Proposition 4.3 Prestr is topological over Top. More precisely, the forgetful functor
that maps each prestream (X, (vU )U∈O(X)) to the underlying topological space, and
each prestream morphism to the underlying continuous map, is topological.

Proof. This forgetful functor, call it | |, is clearly faithful and amnestic. Given a | |-
source (gi : X → |Ai|)i∈I , whereX is a topological space (and each gi is continuous),
let (vU )U∈O(X) be the coarsest precirculation on X that makes every gi a prestream
morphism, namely: x vU y if and only if, for every i ∈ I and every open subset V
of |Ai| such that U ⊆ g−1

i (V ), gi(x) �iV gi(y), where (�iV )V ∈O(|Ai|) is the pre-
circulation on Ai. Let Z = (Z, (≤W )W∈O(Z)) be a prestream. For every continuous
map g : Z → X , if gi ◦ g is a prestream morphism (i.e., lifts to morphism in Prestr)
from Z to Ai for every i ∈ I , the definition of vU makes it clear that g is a prestream
morphism from Z to (X, (vU )U∈O(X)). ut

Corollary 4.4 Prestr is both complete and cocomplete.

Moreover, the carrier of prestream limits (resp., colimits) are computed as the corre-
sponding topological limit (resp., colimit) of the carriers. We give explicit definitions
below.
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Prestream limits. We start with products. For any element ~x of a product X =∏
i∈I Xi of sets, write xi for its ith component, so that ~x = (xi)i∈I . The ith projection

πi : X → Xi maps ~x to xi. When every Xi is a topological space, and X is equipped
with the product topology, πi is both continuous and open. We write f [A] for the image
of the set A under the map f . In particular, for every open subset V of

∏
i∈I Xi, πi[V ]

is open.
The following is Example 3.25 of [Kri09].

Proposition 4.5 Given a family of prestreams, Xi = (Xi, (viU )U∈O(Xi)
), i ∈ I ,

their product in Prestr is
∏
i∈I Xi, defined as (X, (vV )V ∈O(X)) where X is the

topological product
∏
i∈I Xi, and ~x vV ~y if and only if for every i ∈ I , xi viUi

yi,
where Ui = πi[V ].

Prestream products are fairly strange. For instance, in a binary productX×Y , to decide
whether (x, y) vW (x′, y′), we need to find an enclosing open rectangle U × V ⊇ W
(U ∈ O(X), V ∈ O(Y )) such that x would be below x′ relatively to U , and y below
y′ relatively to V . Although streams are more complex beasts, stream products will be
more intuitive (see Lemma 4.24 below).

For every topological subspace A of a prestream X = (X, (vV )V ∈O(X)), define
the preorder v|A,U on the open subset U of A by x v|A,U y if and only if x vV y for
every open subset V of X such that U = V ∩ A. (A, (v|A,U )

U∈O(A)
) is a prestream:

this is the subprestream of X with carrier A.
The following is easy to see.

Proposition 4.6 Let X = (X, (vV )V ∈O(X)) be a prestream, A be a subspace of X ,
and let A be the subprestream (A, (v|A,U )

U∈O(A)
). The canonical injection ι : A →

X is a prestream morphism, and for every prestream morphism f from a prestream
Z = (Z, (�W )W∈O(Z)) to X such that f [Z] ⊆ A, there is a unique prestream mor-
phism f |A from Z to A such that ι ◦ f |A = f .

Now we can construct any (small) limit in Prestr as a subprestream of a product pre-
stream, just as in Top. Given any functor F : J → Prestr, where J is any small
category, the limit of F is the subprestream of

∏
A object of J F (A) consisting of all vec-

tors ~x such that, for every morphism f : A→ B in J, xB = F (f)(xA).

Prestream colimits. Coproducts are particularly elementary.

Proposition 4.7 Given a family of prestreams Xi = (Xi, (viU )U∈O(Xi)
), i ∈ I ,

their coproduct
∐
i∈I Xi is (X, (vV )V ∈O(X)) where X is the topological coproduct∐

i∈I Xi, and (i, x) vV (j, y) if and only if i = j and x vi ι−1
i (V ) y.

(Recall that the elements of
∐
i∈I Xi are the pairs (i, x) with i ∈ I , x ∈ Xi.)

Quotients are more interesting. Given an equivalence relation ≡ on a space X ,
X/≡ is the space of equivalence classes q≡(x) of elements x of X under ≡, and the
topology of X/≡ is the finest that makes q≡ continuous. In other words, a subset V of
X/≡ is open if and only if q−1

≡ (V ) is open in X .
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Given a binary relation R on some set, its reflexive-transitive closure R∗ is the
preorder with smallest graph containing the graph of R. Equivalently, x R y if and
only if there is a path x0 R x1 R . . . R xn, for some n ∈ N, such that x0 = x and
xn = y. We shall build a relation of the form (v ∪ ≡)

∗, where v is a preorder and ≡
is an equivalence relation. It is easy to check that x (v ∪ ≡)

∗
y if and only if there is

a path x0 ≡ x1 v x2 ≡ x3 v . . . v x2n ≡ x2n+1 for some n ∈ N, with x = x0 and
y = x2n+1.

For every equivalence relation≡ on the carrierX of a prestreamX = (X, (vU )U∈O(X)),
define the preorder v≡V on the open subset V of X/≡ by q≡(x) v≡V q≡(y) if and only
if x (vq−1

≡ (V ) ∪ ≡|q−1
≡ (V ))

∗
y. We call quotient prestream of X by ≡ the prestream

X/≡ defined as (X/≡, (v≡V )V ∈O(X/≡)).

Proposition 4.8 The map q≡ is a prestream morphism, and for every prestream mor-
phism f from X to a prestream Z = (Z, (�W )W∈O(Z)), there is a unique prestream
morphism f≡ from X/≡ to Z such that f≡ ◦ q≡ = f .

Proof. It is easy to see that v≡V is well defined, i.e., that q≡(x) v≡V q≡(y) does not
depend on the chosen representatives x and y in their equivalence classes.

To check that q≡ is a prestream morphism, we must verify that it is locally mono-
tonic. Let V be any open subset of X/≡, and check that whenever x vq−1

≡ (V ) y, then
q≡(x) vV q≡(y). This is clear since x vq−1

≡ (V ) y implies x (vq−1
≡ (V ) ∪ ≡|q−1

≡ (V ))
∗

y.
Let us check the universal property. The map f≡ is uniquely determined by f≡(q≡(x)) =

f(x), is continuous, and we must check that it is locally monotonic. Let W be an open
subset ofZ, and assume that q≡(x) vf≡−1(W ) q≡(y). There is a path x0 ≡|q−1

≡ (f≡−1(W ))

x1 vq−1
≡ (f≡−1(W )) x2 ≡|q−1

≡ (f≡−1(W )) x3 vq−1
≡ (f≡−1(W )) . . . vq−1

≡ (f≡−1(W )) x2n ≡|q−1
≡ (f≡−1(W ))

x2n+1 with x0 = x and x2n+1 = y. Since q−1
≡ (f≡−1(W )) = (f≡ ◦ q≡)−1(W ) =

f−1(W ), we have x2i ≡|f−1(W ) x2i+1 for each i, 0 ≤ i ≤ n, so f(x2i) = f≡(q≡(x2i)) =
f≡(q≡(x2i+1)) = f(x2i+1); and x2i+1 vf−1(W ) x2i+2 for each i, 0 ≤ i ≤ n− 1, so
f(x2i+1) vW f(x2i+2). As a consequence, f(x) vW f(y), which is what we wanted
to prove. ut
It follows that given any functor F : J→ Prestr, where J is a small category, the col-
imit of F is the quotient prestream of

∐
A object of J F (A) by the equivalence relation ≡

defined as the smallest such that (A, x) ≡ (B, y) whenever f : A → B is a morphism
in J and y = F (f)(x).

Example 4.9 Define ≡Z on R by t ≡Z t′ iff t − t′ ∈ Z. The prestream quotient−→
R/≡Z (see Example 4.2 for

−→
R ) is a good candidate for a directed circle, i.e., the

one-dimensional circle with a preferred direction of rotation, say counterclockwise.
Equating points of the circle with complex numbers eit, t ∈ R, one can check that eit

is less than or equal to eit
′

relatively to an open subset U if and only if one can pick t
and t′ modulo 2π so that t ≤ t′ and U contains the arc {ei(rt′+(1−r)t) | r ∈ [0, 1]}.
See Figure 1 (left), where U is shown as a union of fat arcs. One can go from one point
eit to another one eit

′
provided we can reach the latter, turning counterclockwise while

remaining in the current fat arc.
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0

Figure 1: Two versions of the directed circle

Example 4.10 One might instead try and build a directed circle as (R,≤)/≡Z, i.e., as
a quotient of R as a preordered space, but this is uninteresting. Its precirculation is
trivial: given any open subset U of R/≡, x vU y for all points x and y.

Example 4.11 Another directed circle candidate is the quotient ([0, 1],≤)/≡Z. (This
is due to Krishnan, using streams instead of prestreams. This difference is inconse-
quential: we shall see that quotients are the same in streams and in prestreams.) This
one is not trivial, but produces a prestream with a distinguished base point. Indeed,
equate the carrier of ([0, 1],≤)/≡Z with [0, 1). The quotient precirculation is then
given as (vU )U∈O([0,1)), where: if 0 6∈ U , then x vU y iff x ≤ y (one can jump from
one fat arc to the next one, see Figure 1, right); if 0 ∈ U , then vU is trivial (x vU y
for all x, y ∈ U ).

Streams. A stream [Kri09] is a prestream X = (X, (vU )U∈O(X)) whose precircu-
lation (vU )U∈O(X) is a circulation, i.e., satisfies v⋃

i∈I Ui
= (
⋃
i∈I vUi

)
∗, for every

family (Ui)i∈I of open subsets of X . Here is a definition that is operationally slightly
simpler.

Lemma 4.12 A precirculation (vU )U∈O(X) on a topological space X is a circulation
if and only if, for every open subset U of X , for all points x, y in U such that x vU y,
for every open cover (Ui)i∈I of U , x (

⋃
i∈I vU∩Ui

)∗ y.

In other words, to compare two points x and y in vU , one can divide U infinitely, by
taking an open cover (Ui)i∈I of U (with U =

⋃
i∈I Ui), and finding a path from x to y

such that any two consecutive points will be related by some vUi
.

Example 4.13 A preordered space (Example 4.1) is almost never a stream. For exam-
ple, R with its canonical ordering is not a stream. Consider U = (−3,−1) ∪ (1, 3),
with its obvious two open covering. If R were a stream, since −2 ≤ 2 in U , then there
would exist a point x such that −2 ≤ x in (−3,−1) and x ≤ 2 in (1, 3). This is
impossible since (−3,−1) ∩ (1, 3) is empty.

One can show that the prestream
−→
R = (R, (vR

U )U∈O(R)) of Example 4.2 is a
stream. It is more than that:
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Definition 4.14 A Haucourt circulation on X is a precirculation (vU )U∈O(X) such
that, for every open subset U , for all x, y ∈ U , x vU y if and only if there is a
prestream morphism γ : ([0, 1],≤) → (X, (vU )U∈O(X)) such that γ(0) = x, γ(1) =
y, and the image of γ lies entirely inside U . (Such a map γ is called a dipath from
x to y in U .) A Haucourt stream is a prestream whose precirculation is a Haucourt
circulation.

Haucourt streams arise from work by Haucourt [Hau09b] on the comparison be-
tween streams and Grandis’ d-spaces [Gra03, Gra09]: see Appendix A. The following
justifies the names ‘Haucourt stream’ and ‘Haucourt circulation’, rather than ‘Haucourt
prestream’ and ‘Haucourt precirculation’.

Lemma 4.15 Every Haucourt stream is a stream.

Proof. Let (Ui)i∈I be an open cover of an open subset U of X , and let x, y ∈ U be
such that x vU y. Since X is a Haucourt stream, there is a dipath γ from x to y in
U . The open subset γ−1(U ∩ Ui) can be written as the intersection of [0, 1] with some
union of open intervals of R, say as [0, 1] ∩

⋃
j∈Ji(aij , bij). Since [0, 1] is compact,

there is a finite set E of pairs (i, j), i ∈ I , j ∈ Ji such that [0, 1] ⊆
⋃
i,j(aij , bij). It

is easy to check that there is a finite, non-decreasing sequence of elements tk in [0, 1],
0 ≤ k ≤ N , with t0 = 0, tN = 1, and such that for every k, 1 ≤ k ≤ N , tk−1

and tk both lie in some interval (aij , bij), (i, j) ∈ E. In particular, the whole interval
[tk−1, tk] is included in (aij , bij) ⊆ γ−1(U ∩ Ui), so γ(tk−1) vU∩Ui γ(tk). This
implies that x (

⋃
i∈I vU∩Ui

)∗ y. We conclude by Lemma 4.12. ut

Example 4.16 The prestream
−→
R = (R, (vR

U )U∈O(R)) of Example 4.2 is a Haucourt
stream, hence a stream. Indeed, if t vR

U t′, then [t, t′] ∈ U , and it suffices to consider
the dipath γ defined by γ(r) = rt′ + (1− r)t, r ∈ [0, 1].

Together with stream morphisms (which are just prestream morphisms between
two streams), streams form a category Str. Krishnan shows that Str is complete and
cocomplete, as a consequence of the fact that the forgetful functor from Str to Top is
topological [Kri09, Lemma 3.22].

While this is more complicated than in Prestr, it is still instructive to obtain as
concrete a description of limits and colimits in Str. We start by examining the so-
called cosheafification functor, from Prestr to Str.

Definition 4.17 Given any precirculation (vU )U∈O(X) on a space X , its one-step
cosheafification (v̂U )U∈O(X) is defined by: for all x, y ∈ U , x v̂U y if and only if,
for every open cover (Ui)i∈I of U , x (

⋃
i∈I vU∩Ui

)
∗
y; equivalently, for every such

open cover, there is a path x = x0 vUi1
x1 vUi2

. . . vUin
xn = y, for some n ∈ N,

i1, . . . , in ∈ I , and xj ∈ Uij ∩ Uij+1
whenever 1 ≤ j ≤ n− 1.

We write Sh1(X, (vU )U∈O(X)) for (X, (v̂U )U∈O(X)), all also call it the one-step
cosheafification of the prestream (X, (vU )U∈O(X)).

The one-step cosheafification map is a monotonic map on the complete lattice that is
the fiber of X . Moreover, if |X | = X , then Sh1(X ) ≤ X . By Tarski’s fixed point
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theorem, Sh1 has a largest fixed point Sh∞(X ) below X , which one can obtain by
iterating Sh1 transfinitely, starting from X . Alternatively, Sh∞(X ) is the largest post-
fixed point of Sh1 below X , namely, the coarsest object Y in the fiber of X such that
Y ≤ X and Y ≤ Sh1(Y).

By definition Sh∞(X ) is a stream, and its (pre)circulation is the coarsest circu-
lation finer than the precirculation of X . Therefore Sh∞(X ) is exactly Krishnan’s
cosheafification X ! of X .

Lemma 4.18 Sh1 defines a functor on Prestr, whose action on morphisms is the
identity.

Proof. Let f be a prestream morphism from (X, (vU )U∈O(X)) to (Y, (�V )V ∈O(Y )).
We claim that whenever x v̂f−1(V ) y, f(x) �̂V f(y). For every open cover (Vi)i∈I
of V , (f−1(Vi))i∈I is an open cover of f−1(V ), so, if x v̂f−1(V ) y, then there is a
path x = x0 vf−1(V )∩f−1(Vi1

) x1 vf−1(V )∩f−1(Vi2
) . . . vf−1(V )∩f−1(Vin ) xn = y.

Clearly, f(x) = f(x0) �V ∩Vi1
f(x1) �V ∩Vi2

. . . ≺V ∩Vin
f(xn) = f(y). ut

This is, of course, a categorical construction on any fiber-small topological functor
| | : C → D. Let | | : C → D be a fiber-small topological functor. Call a functor
S from C to C deflationary if and only if S(X) ≤ X for every object X of C (in
particular, |S(X)| = |X|), and |S(f)| = |f | for every morphism f . Let Fix(S) be the
full subcategory of C whose objects are the fixed points of S.

Given any deflationary functor S1 on C, S1 is monotonic on the fibers, that is, if
X ≤ Y , then S1(X) ≤ S1(Y ). Indeed, letting i be the lifting of the identity, from X
to Y , |S1(i)| = |i| is the identity. Since S1(X) ≤ X , S1 restricts to a monotonic map
on the complete lattice of objects Y such that Y ≤ X . In particular, S1 has a largest
fixed point S∞(X) below X; S∞(X) is the coarsest fixed point of S1 finer than X in
the fiber of |X|.

Lemma 4.19 Let | | : C→ D be a fiber-small topological functor, and S1 be a defla-
tionary functor on C. For every object X of Fix(S1), for every object Y of C, and for
every morphism g : X → Y , |g| lifts to a morphism from X to S∞(Y).

Proof. LetA be the set of objects Z in the fiber of |Y| such that |g| lifts to a morphism
from X to Z . In particular, Y is in A. Also, for every Z ∈ A, S1(Z) is in A, because
|g| lifts to S1(g) : S1(X ) = X → S1(Y). The family (id|Y| : |Y| → |Z|)Z∈Z is a | |-
source, so we can build the coarsest object Z0 in the fiber of |Y| such that the identity
lifts from Z0 to every object of A: this is the greatest lower bound of A. By the
universal property for | |-sources, |g| lifts to a morphism g0 from X to Z0. This shows
that Z0 is in A, and is therefore the smallest element of A.

SinceZ0 is inA, S1(Z0) is also inA, soZ0 ≤ S1(Z0). In other words,Z0 is a post
fixed point of S1. Since S∞(Y ) is the largest, Z0 ≤ S∞(Y ). Write i : Z0 → S∞(Y)
for the lifting of the identity: then i ◦ g0 : X → S∞(Y) lifts |g|. ut

Proposition 4.20 Let | | : C → D be a fiber-small topological functor, and S1 be a
deflationary functor on C.

S∞ defines a functor from C to Fix(S) such that |S∞(g)| = |g| for every mor-
phism g.
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S∞ is right adjoint to the inclusion functor. The unit at the object X of Fix(S1) is
the identity map from X to S∞(X ) = X , the counit at the object X of C is the unique
lifting of the identity as a morphism from S∞(X ) to X .

In particular, Fix(S1) is a coreflective subcategory of C.

Proof. The action of the functor S∞ on morphisms is as follows. For every morphism
g : X → Y in C, g ◦ j is a morphism from S∞(X ) → Y , where j : S∞(X ) → X
lifts the identity, and then |g ◦ j| = |j| lifts to a unique morphism from S∞(X ) to
S∞(Y) by Lemma 4.19. This is S∞(g). Checking that this defines an adjunction
is straightforward: as usual, we check identity of morphisms f = f ′ by checking
|f | = |f ′|. ut

Corollary 4.21 Cosheafification is right adjoint to inclusion. Str is a coreflective
subcategory of Prestr.

It follows that Str is complete, as shown by Krishnan [Kri09]. Another way of
arriving at this result is to show that Str is also topological over Top. This was
Krishnan’s way of proving completeness, and follows from a more general categorical
result:

Lemma 4.22 Let | | : C→ D be a fiber-small topological functor, and S1 be a defla-
tionary functor on C. The functor | | : Fix(S1)→ D is topological.

Proof. To make things clearer, write | |′ for the restriction of | | to Fix(S1). The func-
tor | |′ is clearly faithful and amnestic. Consider an arbitrary | |′-source (gi : D → |Ai|′)i∈I .
This means that Ai is an object of Fix(S1) for each i ∈ I , and (gi : D → |Ai|)i∈I is
a | |-source. There is a coarsest object B in the | |-fiber of D such that gi | |-lifts to a
morphism fi : B → Ai for each i ∈ I . (We prefix “fiber” and “lift” with the intended
functor, for readability.) Let j : S∞(B) → B be the unique | |-lifting of the identity,
then gi | |′-lifts to fi ◦ j for each i ∈ I .

Let us show the universal property for | |′-sources. Let g : |C|′ → D (where C is
an object of Fix(S1)), and assume that gi ◦ g | |′-lifts to a morphism hi from C to Ai
in Fix(S1) for every i ∈ I . The morphism gi ◦ g trivially | |-lifts to hi in C, and by
the universal property for | |-sources, g | |-lifts to a morphism from C to B in C. By
Lemma 4.19, g also | |-lifts to a morphism h from C to S∞(B) in C. It follows that h
is a morphism in Fix(S1), and | |′-lifts g. ut

We therefore retrieve:

Proposition 4.23 (Krishnan) Str is topological over Top, and therefore complete
and cocomplete.

Corollary 4.21 tells us a bit more: Sh∞ preserves limits. Since Sh∞(X ) = X for
every stream X , one deduces immediately that limits of streams are computed as the
cosheafification of the corresponding prestream limits. This is how Krishnan builds
them [Kri09, Section 3.2]. For example, the stream product of the streams X and Y
is Sh∞(X × Y), where × denotes prestream product. In this case, we only need one
iteration of Sh1 to reach the fixpoint defining Sh∞, as we shall see.

Recall that the open subsetsW of a productX×Y are the unions of open rectangles
U × V , U ∈ O(X), V ∈ O(Y ).
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Ui

(xi, yi−1)

(xi, yi)

(xi−1, yi−1)

Figure 2: The construction of Lemma 4.24

Lemma 4.24 LetX = (X, (vU )U∈O(X)) andY = (Y, (�V )V ∈O(Y )) be two streams.
Define (v ⊗ �)W , for every W ∈ O(X × Y ), as the following preorder on W :
(x, y) (v ⊗ �)W (x′, y′) if and only if there are finitely many open rectangles U1×V1,
. . . , Un × Vn included in W , and paths x = x0 vU1

x1 vU2
. . . vUn

xn = x′,
y = y0 vV1

y1 vV2
. . . vVn

yn = y′, of the same length.
The family ((v ⊗ �)W )W∈O(X×Y ) is a circulation.

Proof. That it is a precirculation is obvious. Let (Wj)j∈J be an open covering of
W . Each Wj is a union of open rectangles, so one can refine this covering by another
one, (U ′k × V ′k)k∈K , consisting of open rectangles. (By refining, we mean that every
U ′k × V ′k is included in some Wj .) Assume (x, y) (v ⊗ �)W (x′, y′), and consider
paths x = x0 vU1 x1 vU2 . . . vUn xn = x′, y = y0 vV1 y1 vV2 . . . vVn yn = y′,
where U1 × V1, . . . , Un × Vn are open rectangles included in W .

The idea of the construction below is given in Figure 2, where Ui × Vi is the
gray rectangle, and some of the rectangles U ′k × V ′k are shown as smaller rectan-
gles covering Ui × Vi. For each i, 1 ≤ i ≤ n, we have xi−1 vUi xi. Now
Ui × Vi ⊆ W ⊆

⋃
k∈K(U ′k × V ′k), and yi−1 is in Vi, so Ui ⊆

⋃
k∈Ki−1

U ′k, where
Ki−1 = {k ∈ K | yi−1 ∈ V ′k}. (The rectangles U ′k × V ′k with k ∈ Ki−1 are
shown with fat borders, at the bottom of the figure.) Since X is a stream, there is a
path xi−1 (

⋃
k∈Kj−1

vUi∩U ′k)
∗
xi. By pairing all the points on this path with yi−1,

we obtain a path (xi−1, yi−1) (
⋃
k∈Kj−1

(vUi∩U ′k × �Vi∩V ′k))
∗

(xi, yi−1). In partic-
ular, (xi−1, yi−1) (

⋃
k∈K(v ⊗ �)W∩(U ′k×V

′
k))
∗

(xi, yi−1), and since (U ′k × V ′k)k∈K
refines (Wj)j∈J , (xi−1, yi−1) (

⋃
j∈J(v ⊗ �)W∩Wj

)
∗

(xi, yi−1).
Symmetrically, (xi, yi−1) (

⋃
j∈J(v ⊗ �)W∩Wj )

∗
(xi, yi). By concatenating these

paths, we obtain (x, y) (
⋃
j∈J(v ⊗ �)W∩Wj )

∗
(x′, y′). ut
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Proposition 4.25 Given any two streams X and Y , their product in Str is given by the
construction v ⊗ � of Lemma 4.24, and coincides with Sh1(X × Y).

Proof. Let X be the carrier of X , Y be that of Y . Let Z denote X × Y with the
circulation given in Lemma 4.24. Clearly, Z ≤ X × Y , and since Z is a circulation, it
follows that Z ≤ Sh∞(X × Y).

Conversely, let Z ′ be any stream such that Z ′ ≤ X × Y . Write (/W )W∈O(X×Y )

for the circulation on Z ′. If x /W y, then x (
⋃
i∈I /(Ui×Vi))

∗
y, where (Ui × Vi)i∈I

is the collection of open rectangles included in W , since Z ′ is a stream. Any two pairs
related by /(Ui×Vi) are related by vUi × �Vi , since Z ′ ≤ X × Y . It follows that
x (v ⊗ �)W y, where we take the notation from Lemma 4.24. We have proved that
Z ′ ≤ Z . As this holds for every stream Z ′ ≤ X × Y , it holds for the largest one,
Sh∞(X × Y). We conclude that Z = Sh∞(X × Y).

Finally, Sh∞(X × Y) ≤ Sh1(X × Y) ≤ Z , so all three are equal. ut
While we are considering explicit constructions, we note that the situation is ex-

tremely simple for colimits.

Proposition 4.26 Colimits in Str are computed as in Prestr: any colimit in of streams
taken in Prestr is a stream.

Proof. It suffices to show this for coproducts and for quotients. This is clear for
coproducts, in the light of Proposition 4.7. For quotients, let X = (X, (vU )U∈O(X))

be a stream, and recall that the precirculation on X/≡ is defined by q≡(x) v≡V q≡(y)
if and only if x (vq−1

≡ (V ) ∪ ≡|q−1
≡ (V ))

∗
y. If so, then there is a path x = x0 ≡|q−1

≡ (V )

x1 vq−1
≡ (V ) x2 ≡|q−1

≡ (V ) x3 vq−1
≡ (V ) . . . vq−1

≡ (V ) x2n ≡|q−1
≡ (V ) x2n+1 = y in V . For

every open cover (Vi)i∈I of V , we observe that: for j odd, xj vq−1
≡ (V ) xj+1 implies

that xj (
⋃
i∈I vq−1

≡ (V ∩Vi)
)
∗
xj+1, so q≡(xj) (

⋃
i∈I v≡V ∩Vi

)
∗
q≡(xj+1); for j even,

xj ≡|q−1
≡ (V ) xj+1 implies that q≡(xj) = q≡(xj+1) is in V , hence in some Vi, i ∈ I ,

whence q≡(xj) v≡V ∩Vi
q≡(xj+1). Combining these results, q≡(x) (

⋃
i∈I v≡V ∩Vi

)
∗

q≡(y). ut
One can play exactly the same game with Haucourt streams, and the situation is even
simpler. One possibility is to define S1(X, (vU )U∈O(X)) now as X together with the
precirculation (v1

U )U∈O(X) defined by: for all x, y ∈ U , x v1
U y if and only if there

is a dipath from x to y inside U , and replay the arguments above.
We can do better using Haucourt’s notion of directed path from x to y inX (resp., in

an open subset U ). By definition, this is a prestream morphism γ from
−−→
[0, 1] to X such

that γ(0) = x and γ(1) = y (resp., and the image of γ lies entirely inside U ); we have
introduced the stream

−−→
[0, 1] in Example 4.2. Our dipaths are prestream morphisms

from ([0, 1],≤) to X instead. Since the identity map is a prestream morphism from
−−→
[0, 1] to ([0, 1],≤), every dipath is a directed path, but the converse may fail. However,
it does not make a difference whether we define Haucourt streams with dipaths or with
directed paths:

Lemma 4.27 Let X be a prestream. For every open subset U , for all points x, y ∈ U ,
the dipaths from x to y in U coincide with the directed paths from x to y in U .
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Proof. Let (vU )U∈O(X) be the precirculation on X . Every dipath from x to y in U
is a directed path from x to y in U . Conversely, if γ is a directed path from x to y in
U , then by definition for all t, t′ ∈ [0, 1] such that t vR

γ−1(U) t
′, γ(t) ≤U γ(t′). Since

[0, 1] ⊆ γ−1(U), and vR
[0,1] is the usual ordering ≤, we obtain that t ≤ t′ implies

γ(t) ≤U γ(t′). It follows that γ is a dipath from x to y in U . ut

Definition 4.28 Given any precirculation (vU )U∈O(X) on a space X , its haucourtifi-

cation (
−→vU )U∈O(X) is defined by: for all x, y ∈ U , x

−→vU y if and only if there is a
directed path from x to y inside U .

We writeH(X, (vU )U∈O(X)) for (X, (
−→vU )U∈O(X)), and also call it the haucour-

tification of the prestream (X, (vU )U∈O(X)).

Example 4.29 The haucourtification of ([0, 1],≤) is
−−→
[0, 1]. Similarly, H(R,≤) =

−→
R .

Indeed, we have seen in Example 4.16 that
−−→
[0, 1] and

−→
R are Haucourt streams, and

one easily checks that any Haucourt stream finer that ([0, 1],≤), resp., (R,≤), must be
finer than

−−→
[0, 1], resp.,

−→
R .

The following says in particular that any iteration of H starting from X will stop
after the first step, i.e., H(H(X )) = H(X ). We are in the nice case where, by taking
S1 = H, S∞ is equal to S1 itself.

Lemma 4.30 The haucourtification of a prestream X is a Haucourt stream.

Proof. Assume x
−→vU y. By definition there is a directed path γ :

−−→
[0, 1] → X from x

to y in U . We must show that it is a prestream morphism from
−−→
[0, 1] to H(X ). Let V

be any open subset of the carrier of X , and write (vU )U∈O(X) for the precirculation
on X . We must show that for all t, t′ ∈ [0, 1] such that t ≤ t′ and [t, t′] ⊆ γ−1(V ),
γ(t)

−→vV γ(t′), i.e., we must find a directed path γ′ :
−−→
[0, 1] → X from γ(t) to γ(t′) in

γ−1(V ). We just take the reparameterization γ′(r) = γ(rt′ + (1− r)t). ut
It is clear that H defines a deflationary functor on Prestr. The fact that it is a

functor such that |H(f)| = |f | follows from the fact that if there is a directed path γ
from x to y in f−1(V ), where V is open in Y , and f is a prestream morphism from X
to Y , then f ◦ γ is a directed path from f(x) to f(y) in V . Lemma 4.22 then applies,
so:

Proposition 4.31 HStr is topological over Top, and therefore complete and cocom-
plete.

Proposition 4.20 also applies:

Proposition 4.32 Haucourtification, as a functor from Prestr to the category HStr
of Haucourt streams, is right adjoint to inclusion. HStr is a coreflective subcategory
of Prestr.

In particular, HStr is complete, and limits are computed as the haucourtifications of
the corresponding prestream limits. This time, H(X × Y) is directly the product in
HStr of the two Haucourt streams X and Y , and we do not need an intermediate
result such as Lemma 4.24. The latter, nonetheless, has an analog here.
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Lemma 4.33 Let X = (X, (vU )U∈O(X)) and Y = (Y, (�V )V ∈O(Y )) be two Hau-
court streams. The circulation ((v ⊗ �)W )W∈O(X×Y ) defined in Lemma 4.24 is a
Haucourt circulation, and coincides with the circulation onH(X × Y).

Proof. It suffices to prove the second claim. Write (/W )W∈O(X×Y ) for the circulation
onH(X ×Y). Let W ∈ O(X × Y ), and assume (x, y) /W (x′, y′). SinceH(X ×Y)
is a Haucourt stream (Lemma 4.30), hence a stream (Lemma 4.15), there is a path
(x, y) = (x0, y0) /U1×V1

(x1, y1) /U2×V2
. . . /Un×Vn

(xn, yn) = (x′, y′). It follows
easily that (x, y) (v ⊗ �)W (x′, y′).

Conversely, if (x, y) (v ⊗ �)W (x′, y′), then by definition there are finitely many
open rectangles U1 × V1, . . . , Un × Vn included in W , and two paths x = x0 vU1

x1 vU2
. . . vUn

xn = x′, y = y0 vV1
y1 vV2

. . . vVn
yn = y′. (Without loss of

generality, assume n ≥ 1.) SinceX and Y are Haucourt streams, for each i, 1 ≤ i ≤ n,
there is a directed path γi from xi−1 to xi in Ui, and a directed path δi from yi−1 to yi
in Vi. The pairing 〈γi, δi〉 :

−−→
[0, 1] → X × Y is then a directed path from (xi−1, xi) to

(yi−1, yi) in Ui × Vi, hence in W . Build the concatenation of these directed paths. By
definition, this is the map κ : [0, 1]→ X × Y such that κ(t) = 〈γi, δi〉(nt− i+ 1) for
all t ∈ [(i− 1)/n, i/n], 1 ≤ i ≤ n. It is easy to see that κ is a directed path from (x, y)
to (x′, y′) in W , so (x, y) /W (x′, y′). ut
We finish with colimits.

Proposition 4.34 Colimits in HStr are computed as in Prestr: any colimit in of
Haucourt streams taken in Prestr is a Haucourt stream.

Proof. This is clear for coproducts. For quotients, let X = (X, (vU )U∈O(X)) be a
stream, and recall that the precirculation on X/≡ is defined by q≡(x) v≡V q≡(y) if
and only if x (vq−1

≡ (V ) ∪ ≡|q−1
≡ (V ))

∗
y. If so, then there is a path x = x0 ≡|q−1

≡ (V )

x1 vq−1
≡ (V ) x2 ≡|q−1

≡ (V ) x3 vq−1
≡ (V ) . . . vq−1

≡ (V ) x2n ≡|q−1
≡ (V ) x2n+1 = y in V .

Since X is a Haucourt stream, there are dipaths γj from xj to xj+1 in q−1
≡ (V ) for

each odd j. They induce dipaths q≡ ◦ γj from q≡(xj) to q≡(xj+1) in V . For j even,
q≡(xj) = q≡(xj+1). By concatenating the dipaths q≡ ◦ γ1, q≡ ◦ γ3, . . . , q≡ ◦ γ2n−1,
we obtain a dipath from q≡(x) to q≡(y) in V . ut

5 Exponentiable Prestreams
Since Prestr is topological over Top, hence over Set, and there is only one prestream
in the fiber over the terminal object {∗}, Corollary 3.5 applies: for all prestreams X ,
Y such that the exponential YX exists in Prestr, up to isomorphism this exponen-
tial must be the set [X → Y] of all prestream morphisms from X to Y , with some
topology, and some precirculation. Moreover, and omitting any explicit mention of the
functor | |, App must be ordinary function application, and Λ(f) must be defined by
Λ(f)(z) = f(z, ).

Let S be Sierpiński space, i.e., {0, 1}with opens all subsets except {0}. This has the
important property that a subset U of a space X is open if and only if the characteristic
map χU : X → S is continuous.
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Let the Sierpiński stream be S with the trivial precirculation at all open subsets.
Since any open cover of a non-empty open subset V of S must contain V , S is trivially
a stream, not just a prestream. The following lemma therefore applies to both Prestr
and Str.

Lemma 5.1 Let C be any full subcategory of Prestr with finite products. Assume
that 1 = {∗}, with the obvious topology and precirculation, is an object of C, and that
the Sierpiński stream is an object of C.

The carrier X of any exponentiable object in C is core-compact.

Proof. Let X = (X, (vU )U∈O(X)) be exponentiable in C. The continuous maps
from X to S are the characteristic maps χU of open subsets of X , and they all define
prestream morphisms. Up to isomorphism, the exponential object, which is [X → Y],
must be the set O(X), with some topology and some precirculation.

The application map App: [X → Y ] × X → Y is then continuous, and Λ(f) is
continuous from Z to [X → Y ] ∼= O(X) for every continuous map f : Z ×X → Y .
In this case, X must be core-compact [GL13, Proposition 5.3.3]; see also [GHK+03,
Theorem II.4.12] (for T0 spaces) or [EH02, Theorem 4.3]. ut

Recall thatX is exponentiable in Top if and only if it is core-compact. The unique
exponential object Y X is [X → Y ]o, the space of all continuous maps from X to Y
with the core-open topology. For a prestream X with core-compact carrier X and a
prestream Y with carrier Y , write [X → Y]o for [X → Y] with the subspace topology
induced from [X → Y ]o. This is generated by subbasic opens sets that we again write
[U b V ] (U ∈ O(X), V ∈ O(Y )), now denoting the set of prestream morphisms f
such that U b f−1(V ).

Theorem 5.2 The exponentiable objects in Prestr are the preordered core-compact
spaces, i.e., the prestreams X = (X, (vU )U∈O(X)) such that X is core-compact and
vU is the restriction to U of the preorder vX , for every open subset U of X .

For every prestream Y = (Y, (�V )V ∈O(Y )), for every open subset V of Y , let 3V
be the set of prestream morphisms f from X to Y whose image f [X] intersects V . The
exponential objectYX in Prestr is (up to isomorphism) ([X → Y]o, (≤o

W )W∈O([X→Y]o)),
where ≤o

W is defined by:

for all f, g ∈W , f ≤o
W g iff for every open subset V of Y such that W ⊆ 3V , for all

x, x′ ∈ X such that f(x) and g(x′) are in V and x vX x′, f(x) �V g(x′).

Proof. Let X = (X, (vU )U∈O(X)) be an exponentiable object in Prestr, and
Y = (Y, (�V )V ∈O(Y )) be a prestream. Let YX be the exponential object. We can
assume that its carrier is [X → Y], with some topology, and we decide to write
(≤W )W∈O([X→Y]) for its precirculation.

Since the application map App: YX×X → Y is a prestream morphism, and recall-
ing the definition of products in Prestr (Proposition 4.5), we have that for all opens V
of Y , for all f, g ∈ [X → Y], if f and g are in π1[App−1(V )] then f ≤π1[App−1(V )] g

implies that for all x, x′ ∈ π2[App−1(V )] such that (f, x) and (g, x′) are in App−1(V )
and x vπ2[App−1(V )] x

′, f(x) �V g(x′).
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This definition is simplified slightly once we realize that, whenever V is non-empty,
π2[App−1(V )] is the whole of X . Indeed, pick y ∈ V , and note that for every x ∈ X ,
there is a prestream morphism h such that App(h, x) = h(x) is in V , namely, the
constant map with value y. Also, π1[App−1(V )] is the set of all h ∈ [X → Y] whose
image h[X] intersects V . We have decided to write 3V for this set. It follows that for
every open subset W of [X → Y], if f ≤W g then f ≤o

W g.
We now examine currifications. Given any third prestream Z = (Z, (/O)O∈O(Z)),

and any prestream morphism h : Z × X → Y , Λ(h) should be a prestream morphism
from Z to YX . Recall that Λ(h) = h(z, ). If this is a prestream morphism, then for
every open subset W of [X → Y], we must have:

for all z /Λ(h)−1(W ) z
′, h(z, ) ≤W h(z′, ),

in particular,

for all z /Λ(h)−1(W ) z
′, h(z, ) ≤o

W h(z′, ).

The latter expands to the following formula, where z and z′ are arbitrary points of Z,
V is an arbitrary open subset of Y , x and x′ are arbitrary points of X:

if z /Λ(h)−1(W ) z
′, (a)

if W ⊆ 3V , (b)
if x vX x′, (c)

and if h(z, x) ∈ V and h(z′, x′) ∈ V , (d)
then h(z, x) �V h(z′, x′). (e)

We claim that this implies that X is a preordered space, i.e., that vU is the restric-
tion to U of the preorder vX , for every open subset U of X . Assume the contrary.
Let Z be the terminal object 1, Y = X , and h be the map that sends (∗, x) to x.
This is just second projection π2, hence is a prestream morphism. Since X is not a
preordered space, there is an open subset U of X and there are two points x, x′ ∈ U
such that x vX x′ but x 6vU x′. Take z = z′ = ∗, so that condition (a) is trivially
satisfied. Take V = U , and W = 3U , so that (b) holds. By assumption, (c) holds.
Also, h(z, x) = x, h(z′, x′) = x′ are in V = U , so (d) holds. Since x 6vU x′,
h(z, x) vU h(z′, x′) fails.

It follows that X is a preordered space. X is core-compact by Lemma 5.1.
In the other direction, assume that X is a preordered core-compact space. We claim

that ([X → Y]o, (≤o
W )W∈O([X→Y]o)) is an exponential from X to Y . This reduces to

showing that the usual formulas for application and for currification define prestream
morphisms.

In the case of application, we must first show that ordinary function application
App is continuous from [X → Y]o×X to Y . This is because App is continuous from
the larger space [X → Y ]o ×X (X is core-compact), and [X → Y]o has the subspace
topology from [X → Y ]o. We proceed to local monotonicity, and show that for every
open subset V of Y , for all (f, x), (g, x′) ∈ App−1(V ) (i.e., if f(x) and g(x′) are in
V ), if f ≤o

π1[App−1(V )]
g and x vπ2[App−1(V )] x

′, then f(x) �V g(x′). Recall that

π1[App−1(V )] = 3V , and that if V is non-empty, then π2[App−1(V )] = X . Since
f ≤o

π1[App−1(V )]
g, f ≤o

3V g. In particular, 3V is non-empty, so V is non-empty, so
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π2[App−1(V )] = X . Since f ≤o
3V g, x vX x′, and f(x) and g(x′) are in V , the

definition of ≤o
3V yields f(x) �V g(x′) immediately.

In the case of currification, for every prestream morphism h : Z × X → Y , the
map Λ(h) : z 7→ h(z, ) is continuous, again because X is core-compact and [X →
Y]o has the subspace topology from [X → Y ]o. It remains to show that Λ(h) is
locally monotonic, i.e., that for all z /Λ(h)−1(W ) z

′, h(z, ) ≤o
W h(z′, ). We have

seen that this amounts to showing (e) from assumptions (a)–(d). From (a) and (b),
z /Λ(h)−1(3V ) z

′. Note that Λ(h)−1(3V ) = {z ∈ Z | ∃x ∈ X · h(z, x) ∈ V } =
π1[h−1(V )]. By (d), x and x′ are in π2[h−1(V )], and by (c), x vX x′. Since X is
a preordered space, vπ2[h−1(V )] is the restriction to π2[h−1(V )] of the preorder vX ,
so x vπ2[h−1(V )] x

′. Together with z /π1[h−1(V )] z
′ and the fact that h is a prestream

morphism, we obtain (e). ut
We now return to the construction of Section 3. Theorem 3.23, together with The-

orem 5.2, immediately implies the following. (We write | | for the forgetful functor
from Prestr to Set here. The part about small colimits is by Proposition 3.17.)

Theorem 5.3 Let C be any class of preordered core-compact spaces, and such that any
binary prestream product of objects in C is C-generated (equivalently, when C contains
at least one non-empty space, such that every binary product of objects of C is a small
colimit in Prestr of objects of C).

The category Prestr| |,C is Cartesian-closed.

In this category, product of X and Y is given by C(X × Y). When X or Y is core-
compact (e.g., locally compact), this is just ordinary prestream product X ×Y (Propo-
sition 3.20).

We have the following examples, inter alia. All are in fact strongly productive: the
product of any two objects of C will always be in C.

Example 5.4 The largest example of this construction is obtained by taking C to be
the class of all preordered core-compact spaces. It is fair to call these spaces, a.k.a.,
the prestream quotients of coproducts of preordered core-compact spaces, the core-
compactly generated prestreams.

Example 5.5 Instead, take C to be the class of all preordered compact Hausdorff
spaces. Call compactly generated prestreams those prestreams that are C-generated.
This is again a Cartesian-closed category. Every coproduct of compact Hausdorff
spaces is locally compact Hausdorff. Since the carriers of coproducts of prestreams are
the coproducts of the carriers, and since coproducts in Prestr of preordered spaces
are preordered spaces, every compactly generated prestream is the quotient in Prestr
of a preordered locally compact Hausdorff space. An argument similar to Proposi-
tion 5.7 below shows that the compactly generated prestreams are exactly the quotients
in Prestr of preordered locally compact Hausdorff spaces.

Example 5.6 We can restrict C further, and take it to be the class of all compact
pospaces. A pospace is a preordered topological space whose preorder is an order-
ing, and also one whose graph is closed in the product. (They are all Hausdorff.)
Compact pospaces have a rich theory, see [Nac65], or [GL13, Chapter 9]. We call the
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objects of Prestr| |,C the orderly compactly generated prestreams in this case. These
again form a Cartesian-closed category, and one whose objects are easy to describe,
as the following Proposition shows. Moreover, despite the fact that it is smaller than
all the previous categories, it is large enough to build geometric realizations of cubical
sets, since all the standard directed cubes are compact pospaces [Hau12].

Proposition 5.7 The orderly compactly generated prestreams are exactly the quotients,
taken in Prestr, of the locally compact pospaces.

Proof. Let X be an orderly compactly generated prestream, i.e., a quotient of some
coproduct

∐
i∈I Xi in Prestr, where each Xi = (Xi,≤i) is a compact pospace. By

Proposition 4.7,
∐
i∈I Xi is obtained as the topological coproduct

∐
i∈I Xi, with the

coproduct ordering
∐
i∈I ≤i, defined by (i, x)

∐
i∈I ≤i (j, y) iff i = j and x ≤i j.

We show that the graph of
∐
i∈I ≤i is closed in (

∐
i∈I ≤i)2 by showing that its

complement W is open. Let ((i, x), (j, y)) be a pair of points in W . Either i 6= j,
in which case ({i} × Xi) × ({j} × Xj) is an open neighborhood of the pair that is
included inW , or i = j, in which case the set of all pairs of points ((i, x′), (i, y′)) such
that x′ 6≤i y′ is an open neighborhood of ((i, x), (j, y)) included in W .

Conversely, we claim that every prestream quotient of a locally compact pospace is
orderly compactly generated. By Proposition 3.17, it suffices to show that every locally
compact pospace (X,≤) is orderly compactly generated, or equivalently, is a quotient
of a coproduct of compact pospaces. Since X is locally compact Hausdorff, pick a
compact neighborhood Kx of x, for each point x ∈ X , and consider the equivalence
relation ≡ on

∐
x∈X Kx given by (x, y) ≡ (x′, z) iff y = z. We equip each Kx with

the restriction of ≤ to Kx, and claim that the map f≡ : (
∐
x∈X Kx,≤|Kx

)/≡ → X
defined by f≡(q≡(x, y)) = y is a prestream isomorphism. (The notation f≡ is from
Proposition 4.8, with f : (

∐
x∈X Kx,≤|KX

) → X defined by f(x, y) = y.) Clearly,
f≡ is bijective, and its inverse is given by f≡ −1(x) = q≡(x, x).

To check that f≡ is a prestream morphism, we only need to check that f is, and by
the universal property of coproducts, this boils down to checking that, for every x ∈ X ,
the function that maps (x, y) to y is a prestream morphism from (Kx,≤|Kx

) to (X,≤),
i.e., a continuous monotonic map. This is obvious.

To check that f≡ −1 is a prestream morphism, we first check that it is continuous.
Let V be any open subset of

∐
x∈X Kx/≡, and x be a point in the inverse image

of V , i.e., such that q≡(x, x) ∈ V . Note that ι−1
x (q−1

≡ (V )) is an open subset of Kx,
meaning that one can write it asKx∩U for some open subset U ofX . The intersection
W of the interior of Kx with U is then an open neighborhood of x in X (since Kx

is a neighborhood of x). W is included in the inverse image of V , i.e., for every
point y ∈ W , f≡ −1(y) is in V : indeed, f≡ −1(y) = q≡(y, y) = q≡(x, y) (since
x ≡ y, and (x, y) makes sense since y ∈ Kx) = q≡(ιx(y)) is in V since y ∈ Kx ∩
U = ι−1

x (q−1
≡ (V )). We conclude that the inverse image of V by f≡ −1 contains open

neighborhoods of each of its points, and is therefore open.
Finally, we check that for every open subset V of

∐
x∈X Kx/≡, for all x, y in

the inverse image U of V by f≡ −1, if x ≤ y then f≡ −1(x) v≡V f≡ −1(y), where
(v≡V )V ∈O((

∐
x∈X Kx,≤|Kx )/≡) is the quotient precirculation. Using Proposition 4.8,

f≡ −1(x) v≡V f≡ −1(y) is equivalent to (x, x) (v|q−1
≡ (V ) ∪ ≡|q−1

≡ (V ))
∗ (y, y), where
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v is the coproduct ordering ((x1, x2) v (x3, x4) iff x1 = x3 and x2 ≤ x4). If
x ≤ y, then (x, x) v|q−1

≡ (V ) (x, y) ≡|q−1
≡ (V ) (y, y) (where the only subtlety to check is

(x, y) ∈ q−1
≡ (V ), which follows from q≡(x, y) = q≡(y, y) = f≡ −1(y) ∈ V ), hence

(x, x) (v|q−1
≡ (V ) ∪ ≡|q−1

≡ (V ))
∗ (y, y). ut

6 Exponentiable Streams
As for prestreams, Corollary 3.5 implies that for all streams X , Y such that the expo-
nential YX exists in Str, YX must be the set [X → Y] of all stream morphisms fromX
to Y , with some topology, and some circulation (up to isomorphism). By Lemma 5.1,
if YX exists then the carrier of X must be core-compact.

We must keep in mind that binary products in Str are very different from binary
products in Prestr (compare Proposition 4.25 with Proposition 4.5). As a result, the
exponentiable objects are very different, too. Remarkably, no condition at all on the
circulation is required for exponentiability.

Theorem 6.1 The exponentiable objects in Str are exactly the core-compact streams,
i.e., the streams X = (X, (vU )U∈O(X)) whose carrier X is core-compact.

For every stream Y = (Y, (�V )V ∈O(Y )), the exponential object YX in Str is (up
to isomorphism) the cosheafification of ([X → Y]o, (≤s

W )W∈O([X→Y]o)), where ≤s
W

is defined by:

for all f, g ∈W , f ≤s
W g iff for all open subsets U of X and V of Y such that

W × U ⊆ App−1(V ), for all x, x′ ∈ U such that x vU x′, f(x) �V g(x′).

Proof. The only thing left to prove is that App is a stream morphism, and that Λ(f)
is a stream morphism for every stream morphism f : Sh∞(Z × X ) → Y , using the
above definition, and assumingX core-compact. (Recall that we write× for product in
Prestr, so the product of Z and X in Str is Sh∞(Z ×X ).) Continuity follows from
general topology (and the fact that cosheafification does not change the topology), and
we only need to check local monotonicity.

For short, write [X → Y]′ for ([X → Y]o, (≤s
W )W∈O([X→Y]o)), so that YX is

Sh∞([X → Y]′).
Application. We first show that App is locally monotonic from Sh1([X → Y]′ ×

X ) to Y . Let V ∈ O(Y ) and assume that (f, x) is less than or equal to (g, x′) relatively
to App−1(V ) in Sh1([X → Y]′×X ). There is a path (f, x) = (f0, x0) (≤s

W1
× vU1

)
(f1, x1) (≤s

W2
× vU2) . . . (≤s

Wn
× vUn) (fn, xn) = (g, x′), for some n ∈ N, and

some open rectangles Wi × Ui included in App−1(V ), 1 ≤ i ≤ n. By definition of
≤s
Wi

, for each i, fi−1(xi−1) �V fi(xi), so f(x) �V g(x′).
Since YX = Sh∞([X → Y]′) ≤ [X → Y]′, App is also locally monotonic from

Sh1(YX ×X ) to Y . We conclude since Sh1(YX ×X ) is the product of YX and X in
Str, by Proposition 4.25.

Currification. Let Z = (Z, (/O)O∈O(Z)) be a third stream, and assume a stream
morphism h : Z × X → Y . We must show that Λ(h) is locally monotonic from Z to
YX = Sh∞([X → Y]′). By Lemma 4.19 applied to S1 = Sh1, it suffices to show that
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Λ(h) is locally monotonic fromZ to [X → Y]′. LetW be an open subset of [X → Y]′.
Assume z/Λ(h)−1(W )z

′. We wish to show that for all opens U ∈ O(X) and V ∈ O(Y )

such that W × U ⊆ App−1(V ), for all x vU x′, h(z, x) �V h(z′, x′). Fix U and
V as above, i.e., W × U ⊆ App−1(V ). It is easy to check that Λ(h)−1(W ) × U ⊆
h−1(V ). Since h is a stream morphism, and z /Λ(h)−1(W ) z

′, for all x vU x′ we obtain
h(z, x) �V h(z′, x′). ut

We deal with Haucourt streams right away. Lemma 5.1 does not apply in this
setting, since the Sierpiński stream is not a Haucourt stream. Indeed, because [0, 1] is
connected, there is no directed path from 0 to 1, or from 1 to 0, in S. As a result, it may
well be that there are exponentiable Haucourt streams with non-core-compact carriers.
We only have the following partial result.

Theorem 6.2 The core-compact Haucourt streams are exponentiable in HStr.
For every core-compact Haucourt stream X = (X, (vU )U∈O(X)), and every Hau-

court stream Y = (Y, (�V )V ∈O(Y )), the exponential object YX in Str is (up to iso-
morphism) the haucourtification of ([X → Y]o, (≤s

W )W∈O([X→Y]o)).

Proof. The proof is the same as for Theorem 6.1. We only give indications of changes.
As before, App is locally monotonic from Sh1([X → Y]′ × X ) to Y , so it is also
locally monotonic from Sh1(YX × X ) to Y , where YX is now the exponential in
HStr. This is because YX = H([X → Y]′) ≤ [X → Y]′. Since H(Z) is a stream
and H(Z) ≤ Z for every Haucourt stream Z , H(Z) ≤ Sh∞(Z) ≤ Sh1(Z), so App
is locally monotonic from H(YX × X ) to X . We show that currification maps stream
morphisms to stream morphisms as in Theorem 6.1, replacing Sh1 byH. ut

As for Theorem 6.3, we apply the constructions of Section 3 and obtain the follow-
ing. Recall that the colimits in Str and in HStr are computed exactly as in Prestr
(Proposition 4.26, Proposition 4.34).

Theorem 6.3 Let C be any class of core-compact streams (resp., core-compact Hau-
court streams), and such that any binary product (in Str, resp. HStr) of objects in C
is C-generated (equivalently, when C contains at least one non-empty space, such that
every binary product in Str, resp. HStr, of objects of C is a small colimit of objects of
C).

The category Str| |,C (resp., HStr| |,C) is Cartesian-closed.

In this category, product of X and Y is given by C(Sh1(X ×Y)), resp., C(H(X ×Y)).
When X or Y is core-compact (e.g., locally compact), this is just ordinary stream
product Sh1(X × Y) (Proposition 3.20, Proposition 4.25, Lemma 4.33).

Example 6.4 The largest example of this construction is obtained by taking C to be the
class of all core-compact streams. It is fair to call these spaces, namely the quotients
of coproducts of core-compact streams (in Str, equivalently, in Prestr), the core-
compactly generated streams. There is no a priori relationship with the core-compactly
generated prestreams of Example 5.4, in particular a core-compactly generated stream
need not be a core-compactly generated prestream.
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Similarly, the core-compactly generated Haucourt streams are the quotients of co-
products of core-compact Haucourt streams, and form again a Cartesian-closed cate-
gory. Every core-compactly generated Haucourt stream is a core-compactly generated
stream.

Example 6.5 When C is the class of all compact Hausdorff streams, we call the C-
generated streams compactly generated streams. This is again a Cartesian-closed cat-
egory, and again is unrelated to the compactly generated prestreams of Example 5.5.
Reasoning as in that example, we see that the compactly generated streams are the
quotients (in Str, equivalently in Prestr) of locally compact Hausdorff streams.

Similarly, the compactly generated Haucourt streams are the quotients of locally
compact Hausdorff Haucourt streams. They are generated by the compact Hausdorff
Haucourt streams, and form a Cartesian-closed category. Every compactly generated
Haucourt stream is a compactly generated stream.

Example 6.6 Krishnan defines compactly flowing streams [Kri09, Section 5] as the
streams whose carrier X is weak Hausdorff (i.e., such that continuous images of com-
pact Hausdorff spaces in X are closed) and whose circulation (vU )U∈O(X) is such
that vU= (

⋃
K v�K)

∗, where K ranges over the compact Hausdorff subspaces of
U . The notation v�K denotes the preorder ≤K , where (≤V )V ∈O(K) is the circula-
tion of the cosheafification of K, seen as a subprestream of X (see Proposition 4.6).
Compactly flowing streams form a Cartesian-closed category [Kri09]. Using weak
Hausdorffness, it is fairly easy to see that a weak Hausdorff stream is compactly flow-
ing if and only if it is C-generated, where C is the class of all its compact Hausdorff
substreams. (A substream is the cosheafification of a subprestream.) It follows that
Krishnan’s compactly flowing streams are exactly those compactly generated streams
(Example 6.5) that are weak Hausdorff.

7 Conclusion
We have given a categorical reformulation of a construction due to Escardó, Lawson,
and Simpson [ELS04]. This construction allows us to build (many) Cartesian-closed
subcategories of certain topological constructs. The original Escardó-Lawson-Simp-
son construction allows one to build Cartesian-closed categories of Top, including the
prominent category of compactly-generated spaces, but also many more.

We have applied this to categories of prestreams, Krishnan and Haucourt streams,
providing several examples of Cartesian-closed subcategories, of which Krishnan’s
construction of compactly flowing streams is one instance. Rather fortunately, all these
categories share the same notion of colimit, so that taking a geometric realization, say
of cubical sets, in any of these categories, always yields the same prestream.

The main import of our work, and that which made the above results possible, is
our characterization of those prestreams, and of those streams, that are exponentiable:
the exponentiable prestreams are the preordered core-compact spaces, and the expo-
nentiable streams are the core-compact streams.

We leave the following problems open:
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1. While all core-compact Haucourt streams are exponentiable in HStr, must an
exponentiable Haucourt stream be core-compact? This is unlikely, but finding
an explicit counterexample seems hard.

2. The cosheafification Sh∞(X ) of a prestreamX was built as a fixed point of Sh1,
therefore a priori requiring transfinitely many iterations of Sh1. All our examples
of cosheafifications were obtained in one step, as Sh1(X ). Is there any example
of a prestream such that Sh1(X ) is not a stream? Where no finite iteration of
Sh1 on X ever yields a stream? What is the least ordinal number α at which
iterating Sh1 α-times yields the cosheafification? Recall that haucourtification
always produces a Haucourt stream in one step.

3. The notions of (core-compactly, resp. compactly) generated streams and pre-
streams appear unrelated. What inclusions do hold between these classes of
objects?
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[EH02] Martı́n Escardó and Reinhold Heckmann. Topologies on spaces of contin-
uous functions. Topology Proceedings, 26(2):545–564, 2001–2002.
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A Haucourt Streams and d-Spaces
The notion of Haucourt streams arises from Haucourt’s work [Hau09b] on comparing
two models of directed algebraic topology, Krishnan’s streams [Kri09] on the one hand,
and Grandis’ d-spaces [Gra03, Gra09] on the other hand.

A d-space is a pair (X, dX) of a topological space X and a family dX of contin-
uous maps γ from [0, 1] to X containing all the constant maps, and stable under repa-
rameterization and concatenation. (A reparameterization of γ is any map γ ◦ δ, where
δ : [0, 1] → [0, 1] is continuous and increasing.) The elements of dX are called the d-
paths. A d-space morphism from (X, dX) to (Y, dY ) is a continuous map f : X → Y
such that f ◦ γ ∈ dY for every γ ∈ dX . The d-spaces and their morphisms form a
category dTop.

For every prestream X = (X, (vU )U∈O(X)), Haucourt defines the directed paths

in X as the prestream morphisms from
−−→
[0, 1] to X (not from ([0, 1],≤) to X , which

would define dipaths instead). Taking dX to consist exactly of the directed paths in X ,
we obtain a d-space D(X ). This defines the object part of a functor D : Prestr →
dTop. Conversely, given a d-space (X, dX), one defines a precirculation (vU )U∈O(X)

on X by x vU y if and only if there is a d-path γ ∈ dX such that γ(0) = x,
γ(1) = y, and the image of γ lies entirely in U . (X, (vU )U∈O(X)) is a stream
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[Hau09b, Lemma 5.1], which one writes S(X, dX). This defines the object part of
a functor S : dTop→ Str.

Haucourt shows that S is left adjoint to D [Hau09b, Lemma 5.9]., whether these
are considered as functors between dTop and Prestr, or as functors between dTop
and Str.

Moreover, DSD = D and SDS = S [Hau09b, Proposition 5.10]. This implies
that the full subcategory Str∗ of Str whose objects are those of the form S(X, dX) for
some d-space (X, dX), is isomorphic to the full subcategory dTop∗ of dTop whose
objects are those of the form D(X ) for some stream X [Hau09b, Theorem 5.13].

By definition, the objects of Str∗ are the prestreams X = (X, (vU )U∈O(X)) such
that for every open subset U , for all x, y ∈ U , x vU y if and only if there is a directed
path γ :

−−→
[0, 1] → X such that γ(0) = x, γ(1) = y, and the image of γ lies entirely

inside U . This differs from Definition 4.14 only in the fact that γ is a directed path
from x to y in U , while Definition 4.14 uses dipaths from x to y in U . However, the
two notions agree, as we show in Lemma 4.27. So the objects of Str∗ are exactly what
we have called the Haucourt streams.

Since Str∗ = HStr is a subcategory of Str, this also provides another proof that
every Haucourt stream is a stream.
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