
Information and Computation 208 (2010) 797–816

Contents lists available at ScienceDirect

Information and Computation

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / i c

Uniform satisfiability problem for local temporal logics

over Mazurkiewicz traces<

Paul Gastin a, Dietrich Kuskeb,∗,1
a
LSV, ENS Cachan & INRIA & CNRS, 61, Av. du Président Wilson, F-94235 Cachan Cedex, France

b
CNRS, LaBRI, Université Bordeaux I, 351, cours de la Libération, F-33405 Talence, France

A R T I C L E I N F O A B S T R A C T

Article history:

Received 08 October 2007

Revised 14 April 2009

Available online 11 February 2010

Wecontinueour studyof the complexityofMSO-definable local temporal logics over concur-

rent systems that can be described by Mazurkiewicz traces. In previous papers, we showed

that the satisfiability problem for any such logic is in PSPACE (provided the dependence

alphabet is fixed, Gastin and Kuske (2003) [10]) and remains in PSPACE for all classical lo-

cal temporal logics even if the dependence alphabet is part of the input, Gastin and Kuske

(2007) [8]. In this paper, we consider the uniform satisfiability problem for arbitrary MSO-

definable local temporal logics. For this problem, we prove multi-exponential lower and

upper bounds that depend on the number of alternations of set quantifiers present in the

chosen MSO-modalities.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Executions of distributed systems can be modeled as Mazurkiewicz traces [4] where the architecture of the system is

mirrored by the dependence alphabet. Then a trace is a partial order execution of such a system. Over the past 15 years, a lot

of papers have been devoted to the study of temporal logics over partial orders and in particular over Mazurkiewicz traces

(cf. [1–3,5,8–11,19,22,23]). This is motivated by the need for specification languages that are suited for concurrent systems

where a property should not depend on the ordering between independent events. Hence, logics over linearizations of

behaviors are not adequate and logics over partial orders were developed. In particular local temporal logics are of interest

here due to their good algorithmic properties (as opposed to global temporal logics [24]). The common feature of these

logics is that formulas are evaluated at single events corresponding to local views of processes. In [10], we proposed a

unified treatment of all those local temporal logics that can be presented in the spirit of [7]. Basically, a local temporal logic

is given by a finite set of modality names. The semantics of any such modality name is described by a monadic second order

(MSO) formula having a single individual free variable. For any fixed dependence alphabet (i.e., architecture of a distributed

system) we showed that the satisfiability problem of any such logic is in PSPACE. For (almost) all temporal logics considered

in the literature so far, this was known before. Our contribution was a uniform proof that would also be applicable for not-

yet-defined temporal logics. This proof constructs a finite automaton from a formula of the temporal logic such that a word

is accepted iff its associated trace satisfies the formula. This construction is similar to the one considered in [14]; it does not

rely on alternating automata (a technique that goes back to [20]), but onmodality automata. The idea can be best explained

in terms of transducers: given a formula, we aim at a transducer that marks all positions in a word where the formula holds.

Given two such transducers for the formulas ϕ andψ and given a modalityM(ϕ, ψ) of the temporal logic (e.g., until or any

< Work partly supported by projects DAAD-PROCOPE, ARCUS Île de France-Inde and ANR-06-SETIN-003 DOTS.∗ Corresponding author.

Email addresses: Paul.Gastin@lsv.ens-cachan.fr (P. Gastin), kuske@labri.fr (D. Kuske).
1 This work was done when the second author was affiliated with Universität Leipzig, Germany.

0890-5401/$ - see front matter © 2010 Elsevier Inc. All rights reserved.

doi:10.1016/j.ic.2009.12.003

http://www.sciencedirect.com/science/journal/08905401
www.elsevier.com/locate/ic
http://dx.doi.org/10.1016/j.ic.2009.12.003

798 P. Gastin, D. Kuske / Information and Computation 208 (2010) 797–816

other MSO-definable modality), a modality automaton is a transducer that takes as input the outputs of the transducers for

ϕ and ψ (i.e., it knows for each position in the word which of the two formulas hold) and produces the marking for the

combined formula M(ϕ, ψ). These modality automata depend on the architecture of the system, i.e., on the dependence

alphabet (�,D). But if this dependence alphabet is fixed, their construction does not contribute to the complexity of the

satisfiability problem.

Amore realistic setting is the uniform satisfiability problemwhere both, the temporal formula and the architecture form

the input. In other words, this uniform satisfiability problem for the local temporal logic TL asks whether a given property

ϕ ∈ TL can be satisfied in a given architecture (�,D) (described as a trace alphabet). Differently from the non-uniform

case, now the modality automata cannot be computed in a preprocessing step, but their computation contributes to the

complexity. In [8], we presented a sufficient condition on the modalities (polynomial variance) that allowed an efficient

construction of modality automata and therefore an efficient solution of the uniform satisfiability problem. Since, as we also

showed, all local temporal logics considered in the literature satisfy our sufficient condition, we obtained that the uniform

satisfiability problem for any of them is in PSPACE (due to the compositionality of our method, this applies even to the logic

that features all modalities considered in the literature).

In this paper,we study the uniform satisfiability problem for arbitraryMSO-definable local temporal logics. Recall that the

semantics of the modality names of TL are given by MSO formulas. We prove lower and upper bounds for the complexity of

the associateduniformsatisfiability problem that dependon thenumber of alternations of set quantifiers in thesemodalities.

To state our results more precisely, recall that M�1
n is the set of MSO-formulas that can be written as ∀−→

X1∃−→
X2 · · · ∃/∀−→

Xn ϕ

where ϕ does not contain any set quantifiers, and BoolM�1
n is the set of Boolean combinations of formulas fromM�1

n. If the

semantics of everymodality name in the local temporal logic TL belongs to BoolM�1
n , then the uniform satisfiability problem

can be solved in n-fold exponential space (Theorem 3.1 and Remark 2.6). This result is optimal since, for every n > 0 we

present a local temporal logic TL whose modalities belong to M�1
n and whose uniform satisfiability problem is hard (and

therefore complete) for n-fold exponential space (Theorem 4.1 and Remark 2.6).

Again, the decision procedure for the upper bound is based on modality automata. Schwentick and Bartelmann [21]

give a normal form for the first-order kernel of the MSO-formulas that describe the semantics of modalities. This normal

form allows to compute these automata more efficiently than expected (cf. discussion before Proposition 3.4). The lower

bound is shown by a reduction of the word problem from an arbitrary Turing machine working in n-fold exponential space.

The reduction is based on an adaptation of Matz’ method [16,17] of n-fold exponential counting by n monadic quantifier

alternations.

An extended abstract presenting weaker results appeared as [12].

2. Preliminaries

Throughout this paper, we fix some countably infinite set N of action names. A dependence alphabet is a pair (�,D)where

� ⊂ N is a finite set of action names and the dependence relation D ⊆ �2 is symmetric and reflexive. The independence

relation is I = �2\D. For A ⊆ �, we let D(A) = {b ∈ � | (a, b) ∈ D for some a ∈ A} be the set of letters that depend

on some letter in A, and we let I(A) = �\D(A) be the set of letters independent from all letters in A. A trace over (�,D) is
a labeled at most countably infinite partial order t = (V,�, λ) such that (V,�) is a partial order and λ : V → � is the

labeling function satisfying for all x, y ∈ V

• ↓x = {z ∈ V | z � x} is finite
• (λ(x), λ(y)) ∈ D implies x � y or y � x
• x � y implies (λ(x), λ(y)) ∈ D,

where � = <\<2 is the immediate successor relation. The alphabet of the trace t is alph(t) = λ(V) and the set of letters

occurring infinitely often in t is denoted alphinf(t). The set M(�,D) comprises all finite traces while R(�,D) contains all
finite or infinite traces over (�,D).

Trace concatenation is an operation · : M(�,D) × R(�,D) → R(�,D) defined by (V,≤, λ) · (V ′,≤′, λ′) = (V �
V ′, (≤ ∪ ≤′ ∪ E)∗, λ∪ λ′)with E = {(v, v′) ∈ V × V ′ | (λ(v), λ′(v′)) ∈ D}. Its restriction to finite traces is associative and

the empty trace ε is a unit, i.e., (M(�,D), ·) is a monoid, called trace monoid.

We can identify a letter a ∈ � with the trace [a] = ({0},≤, λ) with λ(0) = a. In this sense, the trace monoid

M(�,D) is generated by the set of letters a ∈ �. The canonical homomorphism [·] : �∗ → M(�,D) can be extended

naturally to infinite words: for a (finite or infinite) word u = a0a1 . . . with ai ∈ �, the trace [u] = (V,�, λ) is given by

V = {i ∈ N | 0 � i < |u|}, λ(i) = ai, and � = E∗ with (i, j) ∈ E iff i < j and (ai, aj) ∈ D.

In the following, we are interested in the logic MSO(N,�) that speaks about nodes and sets of nodes of a trace. The logic

has individual and set variables. The syntax of MSO(N,�) is given by

ϕ ::= λ(x) = a | x � y | x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x ϕ | ∃X ϕ | ∃finX ϕ

where a ranges over N, x, y are individual variables, and X is a set variable.

P. Gastin, D. Kuske / Information and Computation 208 (2010) 797–816 799

Formulas of the logic MSO(N,�) will be interpreted over traces. Formally, the semantics is defined for a trace t =
(V,�, λ) and an assignment σ that maps first order variables to positions in V and set variables to subsets of V by:

t, σ |� λ(x) = a if λ(σ(x)) = a

t, σ |� x � y if σ(x)� σ(y)

t, σ |� x = y if σ(x) = σ(y)

t, σ |� x ∈ X if σ(x) ∈ σ(X)
t, σ |� ¬ϕ if t, σ �|� ϕ

t, σ |� ϕ ∨ ψ if t, σ |� ϕ or t, σ |� ψ

t, σ |� ∃x ϕ if there exists v ∈ V such that t, σ [x �→ v] |� ϕ

t, σ |� ∃X ϕ if there exists U ⊆ V such that t, σ [X �→ U] |� ϕ

t, σ |� ∃finX ϕ if there exists U ⊆ V with U finite and t, σ [X �→ U] |� ϕ

where σ [x �→ v] is the assignment that differs from σ only in the value of x that now equals v, and similarly for σ [X �→ U].
To make formulas more readable, we will freely use abbreviations such as α ∧ β , X ⊆ Y , X ∩ Y �= ∅, … whose obvious

intended meaning can easily be expressed by formulas from MSO(N,�).
Sometimes, we write ϕ(X1, . . . , Xk, x1, . . . , x�) to stress the fact that the free variables in ϕ are among {X1, . . . , Xk,

x1, . . . , x�}. In this case, we may also write t |� ϕ(U1, . . . ,Uk, v1, . . . , v�) instead of t, σ |� ϕ where σ is an assignment

satisfying σ(Xi) = Ui ⊆ V for 1 � i � k and σ(xj) = vj ∈ V for 1 � j � �.
Usually, anMSO-logic over partial orders is definedwith the atomic proposition x � y instead of x� y and x = y. Clearly,

the formulas x � y and x = y can be expressed by first-order formulas using the partial order �, only. Conversely, � is the

reflexive and transitive closure of �, i.e., x � y is equivalent to

∀X [(y ∈ X ∧ ∀y1, y2 (y1 � y2 ∧ y2 ∈ X → y1 ∈ X)) → x ∈ X].
Thus, using x � y instead of x � y and x = y does not change the expressive power of the logic. We have chosen not to

include the atomic proposition x � y directly in the syntax of MSO(N,�) since our upper bound proof relies on the fact

that the number of nodes y that are directly related with a fixed node x is bounded by some value which does not depend

on the trace but depends on the dependence alphabet only. This would not be the case if we included ≤ since the number

of nodes dominated by a node x is arbitrary large.

Example 2.1. Consider the following two formulas:

upset(x, X) = ∀y (y ∈ X ↔ y = x ∨ ∃z(z ∈ X ∧ z � y)) and

downset(x, X) = ∀y (y ∈ X ↔ y = x ∨ ∃z(z ∈ X ∧ y � z)).

of MSO(N,�). Let t = (V,≤, λ) be any trace and u ∈ V a vertex. Then, for any subset U ⊆ V we have t |� upset(u,U) iff
U =↑u where ↑u={v∈V | u� v}. Similarly, for any finite subset U ⊆V , we have t |�downset(u,U) iff U =↓u={v∈V |
v�u}.

Indeed, it is easy to see that t |� upset(u,↑u). Conversely, assume that t |� upset(u,U). For v ∈ ↑u, an easy induction

on the length of a shortest �-path from u to v shows that v ∈ U, i.e., ↑u ⊆ U. For the converse inclusion, assume that

U\↑u �= ∅ and let v be minimal in U\↑u (since ↓w is finite for any w ∈ V , such a minimal node exists). Then, v �= u

and since t |� upset(u,U) we find w ∈ U with w � v. Since v was chosen minimal, we get w ∈ ↑u. Hence, v ∈ ↑u, a

contradiction. Therefore, we obtain U = ↑u.

Now consider the formula downset(x, X) that is just the dual of upset(x, X) and let U be finite. Then also the proof is dual

to the one above. When one shows U ⊆ ↓u, one assumes v ∈ U\↓umaximal. Such a maximal node exists since U is finite.

In the following, we will write X = ↓x and X = ↑x as a more intuitive abbreviation for the formulas downset(x, X) and
upset(x, X).

Definition 2.2. AnMSO(N,�)-formula is anm-ary modality if it hasm free set variables X1, . . . , Xm and one free individual

variable x.

Definition 2.3. An MSO(N,�)-definable temporal logic is given by

• a finite set B of modality names together with a mapping arity : B → N giving the arity of each modality name and
• a mapping [[−]] : B → MSO(N,�) such that [[M]] is anm-ary modality whenever arity(M) = m for M ∈ B.

800 P. Gastin, D. Kuske / Information and Computation 208 (2010) 797–816

Then the syntax of the temporal logic TL(B) is defined by the grammar

ϕ ::= M(ϕ, . . . , ϕ︸ ︷︷ ︸
arity(M)

) | a

where M ranges over B and a over N.

Let t = (V,≤, λ) be a trace over some finite dependence alphabet (�,D) and ϕ ∈ TL(B) a formula of TL(B). The
semantics ϕt of ϕ in t is the set of positions in V where ϕ holds. The inductive definition is as follows. If ϕ = a ∈ N, then

ϕt = {v ∈ V | λ(v) = a}. If ϕ = M(ϕ1, . . . , ϕm)where M ∈ B is of aritym � 0, then

ϕt =
{
v ∈ V | t |� [[M]]

(
ϕt
1, . . . , ϕ

t
m, v

)}
.

We also write t, v |� ϕ for v ∈ ϕt .

For notational convenience and consistency, we consider elements of N as modality names as well and write [[a]] =
(λ(x) = a) for a ∈ N.

This definition of an MSO(N,�)-definable temporal logic is very much in the style of [7]. It differs in as far as we allow

(finite) set quantifications in our modalities. On the other hand, we do not allow to use the order relation ≤ explicitly (but

implicitly using set quantification).

Example 2.4. First, the boolean connectives negation and conjunction can be expressed by [[¬]](X1, x) = ¬(x ∈ X1) and[[∨]](X1, X2, x) = (x ∈ X1) ∨ (x ∈ X2).

Existential next: EXϕ is one of the simplest temporalmodalities. Intuitively, EXϕmeans that there is an immediate successor

of the current vertex where ϕ holds. Formally, we can set [[EX]](X1, x) = ∃y (x � y ∧ y ∈ X1) which is even a first-order

formula since it does not use set quantifications.

Concurrent: The unary modality Ecoϕ claims that ϕ holds for some vertex concurrent to the current vertex x. Thus, its

semantics can be defined as

[[Eco]](X1, x) = ∃X∃Z∃z (X = ↑x ∧ Z = ↑z ∧ z /∈ X ∧ x /∈ Z ∧ z ∈ X1).

Universal strict until: ϕ SUψ is a binary modality claiming the existence of a vertex y in the strict future of the current one x

such thatψ holds at y and ϕ holds for all vertices strictly between x and y. Since the partial order� cannot be used directly,

we cannot write a first-order formula for the semantics of SU. Instead, the semantics [[SU]](X1, X2, x) can be written as an

existential formula:

∃X∃finY∃y (X = ↑x ∧ Y = ↓y ∧ y ∈ X ∩ X2

∧ ∀z(z ∈ X ∩ Y\{x, y} → z ∈ X1)).

The classical non-strict version of universal until is ϕ U ψ = ψ ∨ (ϕ ∧ (ϕ SU ψ)). Note also that EXϕ = false SU ϕ.

Existential until: ϕ EU ψ is another binary modality. It claims the existence of some finite path x0 � x1 · · · � xn starting at

the current node x0 and such thatψ holds at xn and ϕ holds at xi for all 0 � i < n. Formally, we can define this modality by

[[EU]](X1, X2, x) = ∃P (P ∩ X2 �= ∅ ∧ x ∈ P ∧ P ⊆ X1 ∪ X2 ∧
∀z (z ∈ P → (z = x ∨ ∃y (y ∈ P ∧ y � z)))).

Existential globally. The formula EGϕ claims the existence of amaximal �-path in the trace, starting from the current vertex,

where ϕ always holds. The corresponding modality can be defined similarly to [[EU]] by

[[EG]](X1, x) = ∃P (x ∈ P ∧ P ⊆ X1 ∧
∀z (z ∈ P → (z = x ∨ ∃y (y ∈ P ∧ y � z))

∧ (∃y (y ∈ P ∧ z � y) ∨ ¬∃y (z � y)))).

For more examples, see [10] wheremost modalities met in the literature on local temporal logics for traces are expressed

in terms of MSO(N,≤)-modalities. As ≤ can be expressed using �, any of those formulas can be transformed into an

equivalent one from MSO(N,�).

P. Gastin, D. Kuske / Information and Computation 208 (2010) 797–816 801

In [10, Theorem 9], we showed that the following problem belongs to PSPACE where the size |ϕ| of a temporal formula

ϕ is the number of its subformulas. 2

Non-uniform satisfiability problem for temporal logics. Let TL(B) be an MSO(N,≤)-definable temporal logic and let (�,D)
be a finite dependence alphabet.

input: a formula ϕ of TL(B)
question: Is there a trace t ∈ R(�,D) and an event v in t with t, v |� ϕ?

By the above discussion, any MSO(N,�)-definable temporal logic is also MSO(N,≤)-definable, i.e., the PSPACE upper

bound holds for these logics as well. In this paper, we will also consider the finite dependence alphabet as part of the input,

i.e., we study the complexity of the following problem:

Uniform satisfiability problem for temporal logics. Let TL(B) be an MSO(N,�)-definable temporal logic.

input: a finite dependence alphabet (�,D) and a formula ϕ of TL(B)
question: Is there a trace t ∈ R(�,D) and an event v in t with t, v |� ϕ?

Analyzing the proof of [10, Theorem 9], one obtains the following:

Theorem2.5 (cf. [10]). For anyMSO(N,�)-definable temporal logic, the uniform satisfiability problem is elementarily decidable.

Proof. The proof of [10, Theorem 9] is based on computing automata from the MSO-descriptions of the modalities in a

preprocessing step. These computations depend elementarily on the dependence alphabet. Hence, the remaining procedure

from [10] can be applied and yields the result. �

For temporal logics based on the classical modalities from Example 2.4 as well as on Thiagarajan’s process-basedmodali-

ties from [22],we solved theuniformsatisfiability problem inPSPACE [8]. In this paper,wepresentmatching lower andupper

bounds for the uniform satisfiability problemof arbitraryMSO(N,�)-definable temporal logics. These bounds are expressed

in terms of the number of monadic quantifier alternations in the formulas [[M]]. Following [6], M�1
n(N,�) comprises all

MSO(N,�)-formulae that are logically equivalent to one of the form ∃−→
X1∀−→

X2 . . . ∃/∀−→
Xnϕ where ϕ does not contain any

second-order quantification. Here,
−→
Y stands for a tuple of set variables. For instance, all modalities from Example 2.4 have

been defined by M�1
1(N,�)-formulae.

Dually, a formula belongs to M�1
n(N,�) if and only if its negation is an element of M�1

n(N,�). Finally, BoolM�
1
n(N,�)

is the set of Boolean combinations of formulas from M�1
n(N,�). We write FO(N,�) for M�1

0(N,�) = M�1
0(N,�), i.e.,

for those formulas that can be written without set quantification. When L is a logic such as FO(N,�), M�1
n(N,�), …, we

speak of an L-modalityM if [[M]] ∈ L, and of an L-definable temporal logic TL(B)whenever all modalities are L-modalities.

Remark 2.6. Let TL(B) be some BoolM�1
n(N,�)-definable temporal logic. Then there is a finite set H of M�1

n(N,�)-
modalities such that, for every M ∈ B, [[M]] is a Boolean combination of formulas from H. In addition, we can assume

¬,∨ ∈ H. Now let ϕ be a TL(B)-formula. Replacing every occurrence in ϕ of a modalityM ∈ Bwith the equivalent Boolean

combination of formulas from H yields an equivalent formula ψ from TL(H). Recall that the size of ϕ is the number of its

subformulas; hence |ψ | is linear in |ϕ|, i.e., we reduced the uniform satisfiability problem for the BoolM�1
n(N,�)-definable

temporal logic TL(B) to that of the M�1
n(N,�)-definable temporal logic TL(H).

As a consequence, it will suffice to prove the upper complexity bound for M�1
n(N,�)-definable temporal logics. Dually,

the lower bound will be proved for M�1
n(N,�)-definable temporal logics, only. From the same reduction, we obtain that it

holds for M�1
n(N,�)-definable temporal logics as well.

3. n-EXPSPACE upper bound for M�1
n-logics

It is the aim of this section to prove an upper bound for the uniform satisfiability problem sharper than that given in

Theorem 2.5. To state this upper bound, let poly(n) denote the set of polynomial functions of one argument. The function

tower : N
2 → N is defined inductively by tower(0,m) = m and by tower(�,m) = 2tower(�−1,m) for � > 0. Now we can

state the main result of this section:

Theorem 3.1. Let TL be someM�1
n(N,�)-definable temporal logic. Then the uniform satisfiability problem for TL can be solved

in space poly(|ϕ|) · tower(n, poly(|�|)), i.e., it is in n-EXPSPACE.

Remark 3.2. To avoid unnecessary complications, we give the proof for infinite traces only. Hence, we use Büchi automata

over ω-words representing infinite traces. We can also deal with finite traces similarly, using automata over finite words.

This is left to the reader.

2 In [10], we did not allow the restriction of set quantification to finite sets in the modalities [[M]], but the necessary additions are obvious.

802 P. Gastin, D. Kuske / Information and Computation 208 (2010) 797–816

3.1. The decision procedure – Proof of Theorem 3.1

The decision procedure we propose refines ideas from [10] that can also be found (although in a different presentation)

in [14]. The main ingredient of the decision procedure are modality automata defined below. Let w = a0a1 · · · ∈ �ω be a

word over � and Xi ⊆ N be sets for 1 � i � m. Then (w, X1, . . . , Xm) denotes the word b0b1 . . . over � × {0, 1}m with

bi = (ai, x
1
i , x

2
i , . . . , x

m
i) and x

j
i = 1 iff i ∈ Xj .

Definition 3.3. Let (�,D) be a finite dependence alphabet and α an m-ary MSO(N,�)-modality. A Büchi-automaton

A over � × {0, 1}m+1 is called modality automaton for α over (�,D) if a word (w, X0, X1, . . . , Xm) is accepted by A iff

[w] |� ∀x (x ∈ X0 ↔ α(X1, X2, . . . , Xm, x))where [w] is the trace induced by w.

Our decision procedure will have to construct modality automata for all M�1
n(N,�)-modalities α in the temporal logic.

The modality automaton Aα for α over (�,D) is a Büchi automaton for the M�1
n+1(N,�)-formula

α′ = ∀x (x ∈ X0 ↔ α(X1, . . . , Xm, x)).

In α we find atomic propositions of the form y � z. Reading a word w we can check whether two positions i, j < |w| are
consecutive (i.e., satisfy i � j) in the trace [w] by keeping a subset of � in the state. Then, using classical constructions

on automata (projection for existential quantification, complement for negation and disjoint union for disjunction) we can

construct a modality automaton for α over (�,D). Note that a universal quantification ∀ = ¬∃¬ needs two complements

andyields twoexponentials.Hence, this naïve approachyields anexponential towerwhoseheight is thenumber of quantifier

alternations in α′ (including first-order quantifiers), even for FO(N,�)-modalities. Since the space bound in Theorem 3.1

mentions only alternations of set quantifiers, we need the following more efficient construction.

Proposition 3.4. Let n�1 and α be an M�1
n(N,�)-modality. Then the following problem can be solved in space tower(n,

poly(|�|))
input: a finite dependence alphabet (�,D)
output: a modality automaton for α over (�,D).

The proof of this proposition will be presented in Section 3.4 and use the concepts and results from Sections 3.2 and 3.3.

Before we explain how to use modality automata to solve the uniform satisfiability problem, we fix somemore notation.

Letϕ and ξ be TL(B)-formulas. Then topM(ξ)denotes the outermostmodality nameof ξ .Wewrite ξ ≤ ϕ if ξ is a subformula

of ϕ (this includes the case ϕ = ξ). Furthermore, Sub(ϕ) = {ξ ∈ TL(B) | ξ ≤ ϕ} is the set of subformulas of ϕ. For an
alphabet �, we will consider words of the form (w, (Xξ)ξ�ϕ) with w ∈ �ω and Xξ ⊆ N, i.e., words over the extended

alphabet �ϕ = � × {0, 1}Sub(ϕ). For a subformula ξ = M(ξ1, . . . , ξm) ≤ ϕ and a letter a = (a, (xξ)ξ≤ϕ) ∈ �ϕ , let

a�ξ = (a, xξ , xξ1 , . . . , xξm). Similarly, for a word w = (w, (Xξ)ξ≤ϕ) ∈ �ωξ , let w�ξ = (w, Xξ , Xξ1 , . . . , Xξm).

Recall the following decision procedure from [8] that we repeat here for the sake of completeness. Let ϕ be some TL(B)-
formula and (�,D) some finite dependence alphabet. Furthermore, suppose that for each M ∈ B, we are given a modality

automaton AM for [[M]] over (�,D) with set of states QM . From these modality automata, we construct an automaton A
over �ϕ . The set of states is Q = ∏

ξ≤ϕ QtopM(ξ). For a letter a ∈ �ϕ and states p = (pξ)ξ≤ϕ and q = (qξ)ξ≤ϕ , we have

a transition p
a−→ q in A if and only if, for all ξ ≤ ϕ, we have pξ

a�ξ−→ qξ in the modality automaton AtopM(ξ). With this

definition, a sequence of states p0, p1, . . . is a run of A on a wordw = (w, (Xξ)ξ≤ϕ) ∈ �ωϕ if and only if for each ξ � ϕ, its

projection p0ξ , p
1
ξ , . . . on ξ is a run of the modality automaton AtopM(ξ) for the wordw�ξ . A run p0, p1, . . . of A is accepting

if and only if for each ξ � ϕ, its projection p0ξ , p
1
ξ , . . . is accepting in themodality automaton AtopM(ξ). So A is a generalized

Büchi automaton which has the following useful property:

Proposition 3.5 ([8, Proposition 4.1]). The formula ϕ ∈ TL(B) is satisfiable by some trace over (�,D) if and only if A accepts

some word w = (w, (Xξ)ξ�ϕ) ∈ �ϕ with Xϕ �= ∅.
Sketch of proof. Let w = (w, (Xξ)ξ�ϕ) ∈ �ωϕ . Then one shows that w is accepted by A if and only if for each ξ � ϕ we

have Xξ = ξ [w] = {p ∈ N | [w], p |� ξ} [8, Lemma 4.1]. This immediately implies the statement.

Proof of Theorem 3.1. The satisfiability of ϕ is (essentially) equivalent to the non-emptiness problem for the automaton A.

To solve it non-deterministically, we only need to keep in memory a few |ϕ|-tuples of states of our modality automata,

and some counter (counting up to |ϕ|) to check the generalized Büchi condition. By Proposition 3.4, modality automata

can be computed in space tower(n, poly(|�|)). Hence, the transition relation of the automaton A can be decided in space

poly(|ϕ|) ·tower(n, poly(|�|)). Thus, its non-emptiness can be decided in space poly(|ϕ|) ·tower(n, poly(|�|))which

finishes the proof of Theorem 3.1. �

P. Gastin, D. Kuske / Information and Computation 208 (2010) 797–816 803

Fig. 1. Update of TOP1(s).

Fig. 2. Update of TOP1(t).

The still missing proof of Proposition 3.4 will be given in Section 3.4. It relies on a locality theorem by Schwentick

and Bartelmann [21] (cf. Proposition 3.15). In essence, it says that an FO(N,�)-formula is effectively equivalent to the

possibility of placing some pebbles such that any sphere in the structure extended by these pebbles satisfies some first-

order property. Therefore, the following section defines spheres in traces and shows how they can be computed by an

automaton.

3.2. Spheres

Throughout this section, fix some dependence alphabet (�,D) and write M for M(�,D) and similarly R for R(�,D).
The trace graph of a trace t = (V,≤, λ) is the structureG(t) = (V,≤,�, λ). The restriction of a structureM = (V,≤,�, λ)
to U ⊆ V is the structure

M�U = (U,≤ ∩ U2,� ∩ U2, λ�U).

If M = G(t) is a trace graph, M�U need not be a trace graph itself. In particular, the relation � ∩ U2 need not be the

covering relation of ≤ ∩ U2. We let �� = (� ∪ �). A path of length n in M is a sequence x0 �� x1 . . . �� xn with xi ∈ V , i.e.,

consecutive elements are related by � in any direction. For x, y ∈ V , the distance dM(x, y) is the minimal length of a path

from x to y. The distance is generalized to x ∈ V and U ⊆ V by dM(x,U) = min{dM(x, y) | y ∈ U}. For r ∈ N and U ⊆ V ,

let sphr(M,U) = {x ∈ V | dM(x,U) � r} consist of all elements of V whose distance to U is at most r. Then the sphere

SPHr(M,U) around U denotes the substructure M�sphr(M,U).
Let t=(V,≤, λ) be a finite trace. For a∈alph(t), let lasta(t)=max(λ−1(a)) be the≤-maximal a-labeled node occurring

in t. Let last(t) = {lasta(t) | a ∈ alph(t)}. Then topr(t) denotes sphr(t, last(t)) and TOPr(t) = SPHr(t, lastr(t)). Hence,
topr(t)={x ∈ V | dG(t)(x, last(t))� r} and TOPr(t)=G(t)�topr(t). We will first show in Lemma 3.7 that the top spheres

can be computed incrementally reading an arbitrary linearization of a trace.

Example 3.6. Let � = {a, b, c, d} with independence relation I = {(b, d), (d, b), (a, c), (c, a)} and consider the trace

s = [aabbcccbbbb]. In Fig. 1, the trace graph of sd is depicted in the first line. There, solid edges denote the covering

relation�. Furthermore, black nodes are those in last(sd). In the second line, the structure TOP1(sd) is depicted. There, solid
arrows have the same meaning as in the first picture, but the partial order relation ≤ is the reflexive and transitive closure

of all arrows (including the dashed ones). If, in this second picture, we erase the d-labeled node, we obtain TOP1(s). Note
the similarity of these pictures with those of Fig. 2 with t = [ccbbaaabbbb]: In particular, the covering relation � restricted

to TOP1(s) and TOP1(t) are equal, but they differ in TOP1(sd) and TOP1(td). Thus, although we are only interested in the

relation �, in order to update this information, we also have to keep the order � in the top sphere. Lemma 3.7 shows that

this information is sufficient to compute TOPr(sd) from TOPr(s) and d.

Lemma 3.7. Let s be a finite trace, a ∈ �, and r ∈ N. Then TOPr(sa) can be computed from TOPr(s) and the letter a in time

polynomial in |TOPr(s)| + |�|.
Proof. Let G(sa) = (V � {x},�,�, λ)with x = lasta(sa). Note that G(s) = G(sa)�V . We first show that for y ∈ V , we have

y � x if and only if y ∈ last(s) and λ(y) ∈ D(a) and y < z implies λ(z) ∈ I(a) for all z ∈ last(s). Note that this necessary

and sufficient condition for y � x can be checked using TOPr(s) and the letter a, only.

Assume y � x and let b = λ(y). Then, (a, b) ∈ D and y � lastb(s) < x. We deduce that y = lastb(s). Now, if y < z then

z �� x and it follows λ(z) ∈ I(a). Conversely, let y ∈ last(s) with λ(y) ∈ D(a) such that y < z implies λ(z) ∈ I(a) for all

804 P. Gastin, D. Kuske / Information and Computation 208 (2010) 797–816

z ∈ last(s). We have y < x because of (λ(y), a) ∈ D. Now, let z be such that y � z � x. Then, c = λ(z) ∈ D(a) and since

z � lastc(s) < x we get z = lastc(s) ∈ last(s). We deduce that y = z and y � x.

Next we prove that a vertex is in topr(sa) if it is either x, or its distance from some y � x is at most r − 1, or its distance

from some lastb(s) for b �= a is at most r, i.e.,

topr(sa) = {x} ∪ sphr−1(TOPr(s), {y | y � x})
∪ sphr(TOPr(s), {lastb(s) | b ∈ alph(s)\{a}}).

Note again that this set can be computed from TOPr(s) and a.

The inclusion ⊇ is clear. Conversely, let y ∈ topr(sa)\{x} and let y = y0 �� · · · �� yp ∈ last(sa) be a shortest path from

y to last(sa). We have p � r. If yp = x then p > 0, the path y = y0 �� · · · �� yp−1 is in TOPr(s) and yp−1 � x. Therefore,

y ∈ sphr−1(TOPr(s), {y | y � x}). If yp �= x then the whole path y = y0 �� · · · �� yp is in TOPr(s), yp ∈ last(s) and
λ(yp) �= a. Therefore, y ∈ sphr(TOPr(s), {lastb(s) | b ∈ alph(s)\{a}}).

Finally, it remains to show that the relations �sa and �
sa in TOPr(sa) can also be computed from the relations �s and

�
s in TOPr(s). Again, we use the fact that we know how to decide y � x from TOPr(s) and a. For y, z ∈ topr(sa), we have

• y <sa z if and only if y, z ∈ topr(s) and y <s z or y ∈ topr(s), z = x and y ≤s y′
� x for some y′ ∈ last(s).

• y �
sa z if and only if y, z ∈ topr(s) and y �

s z or y � x = z. �

Letw = a0a1a2 · · · ∈ �ω and t = [w] = (V,�, λ) ∈ R(�,D)with V = N. Fix also some r ∈ N. Amodality automaton

will have to check properties of spheres of the form SPHr(G(t), x). For each x ∈ V , we can find a finite prefix u of w such

that SPHr(G(t), x) is contained in TOP2r([u]). Indeed, let j be minimal with sphr(G(t), x) ⊆ {0, . . . , j} and let u = a0 · · · aj
be the corresponding finite prefix of w. We have j ∈ last([u]) and dG(t)(x, j) � r, hence also dG([u])(x, j) � r. Therefore,

sphr(G(t), x) ⊆ top2r([u]).
From Lemma 3.7, the structures TOP2r([u]) for all finite prefixes ofw can be computed by an automaton. But, in order to

check properties of spheres, we also need to determine when a vertex x in TOP2r([u]) is such that SPHr(G(t), x) is contained
in TOP2r([u]). This is the purpose of the following definitions and lemmas. We give two sufficient conditions (r-critical and

r-safe) ensuring the above containment. The first one requires that the distance from x to last([u]) is r and will increase

when we add a new letter to the prefix u of w.

Definition 3.8. Let s ∈ M be a finite trace, x be a vertex in s and a ∈ �. Then, x is r-critical for (s, a) if x ∈ topr(s) but
x /∈ topr(sa).

Note that we can determine in polynomial time whether a vertex x ∈ topr(s) is r-critical for (s, a) just knowing TOPr(s)
and a since by Lemma 3.7, we can determine topr(sa) from TOPr(s) and a.

Lemma 3.9. Let s ∈ M be a finite trace, x be a vertex in s and a ∈ �. If x is r-critical for (s, a) then for all t ∈ R, we have

SPHr(sat, x) = SPHr(TOP2r(s), x).

Proof. We first show that sphr(sat, x) ⊆ top2r(s). Let y ∈ sphr(sat, x) and let x = x0 �� · · · �� xn = y be a shortest path

in G(sat) from x to y. We have n � r. We show by contradiction that this path must be in G(s). So assume that this is not the

case and consider the least kwith xk in G(s) and xk+1 not in G(s). We must have xk � xk+1. With b = λ(xk), we deduce that

xk � lastb(s) < xk+1 and by definition of�we get xk = lastb(s). Now, if b �= a then xk ∈ last(sa) and dG(sa)(x, xk) � k < r

since the path x = x0 �� · · · �� xk is in G(s), hence also in G(sa). This is a contradiction with x being r-critical for (s, a).
Assume now b = a. Then xk � xk+1 implies (a, λ(xk+1)) ∈ D and xk+1 ∈ G(sat)\G(s) implies xk+1 �< lasta(sa). Together,
we obtain lasta(sa) � xk+1. From xk ∈ G(s) and λ(xk) = a, we infer xk < lasta(sa) � xk+1 and using xk � xk+1 again

we deduce xk+1 = lasta(sa). But then dG(sa)(x, xk+1) � k + 1 � r, which is again a contradiction with x being r-critical

for (s, a). Therefore, the whole path x = x0 �� · · · �� xn = y is in G(s) and dG(s)(x, y) = n � r. Since x is r-critical for (s, a)
we have x ∈ topr(s) and we deduce that y ∈ top2r(s) as desired.

Next, for y, z ∈ sphr(sat, x) we have y � z (respectively, y � z) in SPHr(sat, x) iff the same holds in G(sat) iff the same

holds in G(s) iff the same holds in TOP2r(s). Therefore, SPHr(sat, x) = SPHr(TOP2r(s), x). �

The above condition deals with vertices that will eventually leave the top r-sphere. But there are vertices that may stay

forever in the top r-sphere. This fact depends on the alphabet B of the trace that remains to be read.

Definition 3.10. Let s ∈ M be a finite trace, x be a vertex in s and B ⊆ �. Then, x is r-safe for (s, B) if x ∈ topr(s), B ⊆ alph(s)
and for all b ∈ B, dG(s)(x, lastb(s)) > r and if lastb(s) � lasta(s) for some a ∈ alph(s) then a ∈ B.

Note that we can determine in polynomial time whether a vertex x ∈ topr(s) is r-safe for (s, B) just knowing TOPr(s)
and B.

P. Gastin, D. Kuske / Information and Computation 208 (2010) 797–816 805

Lemma 3.11. Let s ∈ M be a finite trace, x be a vertex in s and B ⊆ �. If x is r-safe for (s, B) then for all t ∈ R such that

alph(t) ⊆ B, we have SPHr(st, x) = SPHr(TOP2r(s), x).

Proof. As in the proof of Lemma 3.9, it is enough to show that sphr(st, x) ⊆ top2r(s). Let y ∈ sphr(st, x) and let x = x0 ��
· · · �� xn = y be a shortest path in G(st) from x to y. We have n � r. We show by contradiction that this path must be

in G(s). First note that this will conclude the proof since in this case we get dG(s)(x, y) = n � r and using x ∈ topr(s) we

obtain y ∈ top2r(s).
So assume that the path is not in G(s) and consider the least k with xk in G(s) and xk+1 not in G(s). Then, the path

x = x0 �� · · · �� xk is in G(s), k < r, and xk � xk+1. With a = λ(xk), we deduce that xk � lasta(s) < xk+1 and by

definition of � we get xk = lasta(s). Hence, dG(s)(x, lasta(s)) = k < r, which implies a /∈ B since x is r-safe for (s, B).
Now, b = λ(xk+1) ∈ alph(t) ⊆ B. Since xk � xk+1, we have (a, b) ∈ D and lasta(s) and lastb(s) must be ordered. Since

lastb(s) < xk+1 and lasta(s) = xk � xk+1, the ordering must be lastb(s) � lasta(s). Using again the fact that x is r-safe for

(s, B)we get a ∈ B, a contradiction since we have already obtained a /∈ B. �

Lemma 3.12. Let w ∈ �ω be an infinite word and let x be a vertex in the associated trace [w]. Then,
1. either we find a factorization w = uav such that x is r-critical for ([u], a),
2. or we find a factorization w = uv such that x is r-safe for ([u], alph(v)).

Proof. Write w = a0a1a2 · · · and [w] = (V,�, λ) with V = N. We have x ∈ topr([a0 · · · ax]). If there exists i � x such

that x /∈ topr([a0 · · · ai+1]) then take the least such i and let u = a0 · · · ai. By definition, we have x is r-critical for ([u], ai+1)
and we are in the first case.

Assumenow that x ∈ topr([a0 · · · ai]) for all i � x. Let B = alphinf(w). Since sphr([w], x) is finite, we find a factorization

w = u1u2v with sphr([w], x) contained in [u1] and alph(u2) = alph(v) = B. We show that x is r-safe for ([u], B) with

u = u1u2. We have x ∈ topr([u]) since by hypothesis, this is true of all prefixes extending u1. Clearly, B = alph(u2) ⊆
alph([u]). Now let b ∈ B. The vertex lastb([u]) must be in [u2] since alph(u2) = B. We deduce dG([u])(x, lastb([u])) > r

since sphr([w], x) is contained in [u1]. Finally, if lastb([u]) � lasta([u]) for some a ∈ alph([u]) then lasta([u])must be in

[u2] and a ∈ alph([u2]) = B. �

3.3. Automata for ϕ and for ∀x ϕ with ϕ ∈ M�1
n(N,�)

Recall that a modality automaton for the M�1
n(N,�)-modality α is an automaton for the formula ∀x (x ∈ X0 ↔

α(X1, . . . , Xm, x))which can be rewritten into

∀x (x /∈ X0 ∨ α(X1, . . . , Xm, x)) ∧ ¬∃x (α(X1, . . . , Xm, x) ∧ x /∈ X0).

This is a conjunction of formulas of the form ∀x ϕ and ¬ϕ with ϕ ∈ M�1
n(N,�). Therefore, the following two propositions

will be beneficial in the construction of modality automata.

Proposition 3.13. Let ϕ(X1, . . . , Xm) be a formula from M�1
n(N,�) with n � 1. Then the following problem can be solved in

space tower(n − 1, poly(|�|))
input: a finite dependence alphabet (�,D)
output: a Büchi-automaton Aϕ over � × {0, 1}m that accepts precisely the words (w, X1, . . . , Xm) with [w] |�

ϕ(X1, . . . , Xm).

Proposition 3.14. Let ϕ(X1, . . . , Xm, x) be a formula from M�1
n(N,�). Then the following problem can be solved in space

tower(n, poly(|�|))
input: a finite dependence alphabet (�,D)
output: a Büchi-automaton Bϕ over � × {0, 1}m that accepts precisely the words (w, X1, . . . , Xm) with [w] |�

∀x ϕ(X1, . . . , Xm, x).

We first prove Proposition 3.14 using Proposition 3.13.

Proof. For n = 0, the formula ∀x ϕ belongs to FO(N,�) ⊆ M�1
1(N,�), hence the result follows from Proposition 3.13.

Assume now n ≥ 1. Consider the M�1
n(N,�)-formula

ϕ′(X1, . . . , Xm+1) = ∃x (Xm+1 = {x} ∧ ϕ).
From Proposition 3.13, we can construct in space tower(n − 1, poly(|�|)) a Büchi-automaton Aϕ′ for ϕ′. Note that

∀x ϕ(X1, . . . , Xm, x) is equivalent with ∀x ϕ′(X1, . . . , Xm, {x}). Therefore, we have to construct an automaton for the uni-

versal language of Aϕ′ :

806 P. Gastin, D. Kuske / Information and Computation 208 (2010) 797–816

L∀(Aϕ′) = {(w, X1, . . . , Xm) | ∀x (w, X1, . . . , Xm, {x}) ∈ L(Aϕ′)}.
By [8, Proposition 7.3], we know that givenAϕ′ this problem can be solved in spaceO(|Q | log |Q |)whereQ is the set of states

of Aϕ′ . 3 Since Aϕ′ can be constructed in space tower(n − 1, poly(|�|)), its number of states is in tower(n, poly(|�|)).
Therefore, the automaton for L∀(Aϕ′) can be constructed in space

poly(tower(n, poly(|�|))) = tower(n, poly(|�|)). �

The rest of this section is devoted to the proof of Proposition 3.13. Note that ϕ can be written as

∃(fin)−→Y1∀(fin)−→Y2 · · · ∀(fin)/∃(fin)−→Yn β ′ (
X0, . . . , Xm,

−→
Y1 , . . . ,

−→
Yn

)

for some formula β ′ ∈ FO(N,�) where ∃(fin)−→Y stands for a sequence of quantifications of the form ∃Yi and ∃finYj and

similarly for ∀(fin).
Using ∀ = ¬∃¬ and ∀fin = ¬∃fin¬, this can further be rewritten as

∃(fin)−→Y1¬∃(fin)−→Y2¬∃(fin)−→Y3 · · · ¬∃(fin)−→Yn β
(
X0, . . . , Xm,

−→
Y1 , . . . ,

−→
Yn

)

where β = β ′ if n is odd and β = ¬β ′ if n is even. To simplify the notation, we let
−→
Z = (Z1, . . . , Zp) = (X0, . . . , Xm,−→

Y1 , . . . ,
−→
Yn).Wewill show thatwe can construct an automaton forβ(

−→
Z) in spacepoly(|�|). Then, Proposition 3.13 follows

easily as shown at the end of this section.

We haveβ(
−→
Z) ∈ FO(N,

−→
Z ,�). Considering Z1, . . . , Zp as newpredicates, we use Schwentick and Bartelmann’s locality

theorem [21, Theorem 3.3] that allows to reduce first-order formulae to local formulae. 4 A first-order formula γ is r-

local around the variable y if it is obtained from some first-order formula δ by replacing any subformula of the form ∃z ϕ
(respectively,∀z ϕ)with∃z (d��(y, z) < r∧ϕ) (respectively,∀z (d��(y, z) < r → ϕ))whered��(y, z) < r is an abbreviation

for the straightforward FO(�) formula which expresses that there is some ��-path from y to z of length at most r − 1 (recall

that �� = � ∪ �).

Proposition 3.15 (cf. [21, Theorem 3.3]). Let β ∈ FO(N,
−→
Z ,�). There exist integers � ≥ 0, r ≥ 1 and a formula γ (x1, . . . ,

x�, y) ∈ FO(N,
−→
Z ,�) that is r-local around y such that for any structure t = (V,�, (Pa)a∈N,

−→
Z), we have

t |� β iff t |� ∃x1 · · · ∃x�∀y γ.
Note that these two formulas are in particular equivalent for any trace t whatever the dependence alphabet is.

Remark 3.16. Keisler and Lotfallah [13, Corollary 6.2] gave bounds for � and r in the above proposition: Let r be theminimal

integer of the form n · 4n such that the quantifier rank of β is at most log(r)+ 1. Then β is equivalent to a finite conjunction

of formulas ∃x1 · · · ∃x�∀y γ with � � n and γ r-local around y. This finite conjunction can then be brought into the above

form at the expense of a larger value of �.

We will build an automaton for the formula ∀y γ in space poly(|�|). The idea is, reading a word w, to compute the top

2r-spheres of all its prefixes with an automaton. Then, using the results in the previous section, we are able to check all

r-spheres in the trace [w]. Since γ is r-local around y, its truth value depends on the r-sphere around y and also on the truth

values of atomic propositions involving only variables that are free in ∀y γ , such as xi � xj or xi = xj or xi ∈ Zj or λ(xi) = a.

We will guess the truth values of these atomic propositions so that we can check ∀y γ just knowing the r-spheres. Let H be

the set of atomic propositions in γ involving only variables that are free in ∀y γ . Then the formula ∀y γ is equivalent to a

disjunction
∨

E⊆H γ
1
E ∧ ∀y γ 2

E where γ 1
E = ∧

δ∈E δ ∧ ∧
δ∈H\E ¬δ and γ 2

E is obtained from γ by replacing any occurrence of

δ ∈ E with true and δ ∈ H\E with false. Note that H does not depend on � so the number of elements in the disjunction∨
E⊆H γ

1
E ∧ ∀y γ 2

E is constant.

We fix some E ⊆ H and define the automaton AE for the formula γ 1
E ∧ ∀y γ 2

E . The free variables in this formula are−→
Z = (Z1, . . . , Zp) and

−→
x = (x1, . . . , x�) hence the automaton needs to readwords over the alphabet�′ = �×{0, 1}p+�.

As in the beginning of this section, we will write w = (w,
−→
Z ,

−→
x) a word over �′. Actually, the lines for the variables

x1, . . . , x� define sets. The automaton AE will check that these sets are singletons so that they define the assignment of the

first order variables as usual.

3 Actually, [8, Proposition 7.3] gives a more precise space bound using the notion of special variance. Here, we only use the fact that the special variance is

always bounded by the number of states of the automaton.
4 Schwentick and Bartelmann [21, Theorem 3.3] presuppose a finite signature. But one can check that what is really needed is that there are only finitely

many non-unary predicates. Since � is the only such relation in our signature, the result can indeed be applied here.

P. Gastin, D. Kuske / Information and Computation 208 (2010) 797–816 807

A state of AE is a tuple q = (M, (Vi)1�i�p+�, B, C, (εi)1�i��) satisfying the following conditions:

(S1) M = TOP2r(s) = (W,�,�, λ) for some finite trace s = (V,≤, λ) ∈ M(�,D) (the intuition is that M =
TOP2r([w]) if the automaton has read a finite word w = (w,

−→
Z ,

−→
x)),

(S2) Vi ⊆ W for each 1 � i � p + � (the intuition is that Vi is the intersection of W with the set defined by the i-th line

of w), and |Vp+i| � 1 for 1 � i ≤ �,
(S3) B, C ⊆ � (the intuition is that B is used to guess the alphabet of the word that remains to be read and C is used to

check the correctness of this guess),

(S4) εi ∈ {0, 1} is a flag signaling whether a one has already been seen on the line for the variable xi; it will be used to

check that these lines define singletons.

A state q = (M, (Vi)1�i�p+�, B, C, (εi)1�i��) is initial if M = TOP2r(ε) is empty (which implies that each Vi = ∅), and C

is empty and εi = 0 for each 1 � i � �. The state q is accepting if C = ∅ and εi = 1 for each 1 � i � �.
Before defining the transitions ofAE , we give two definitions keeping the notations as above, in particular, q = (TOP2r(s),

(Vi)1�i�p+�, B, C, (εi)1�i��) is a state and a ∈ � is a letter. We say that a vertex v ∈ W is r-safe for q if it is r-safe for (s, B)
(recall that being r-safe for (s, B) only depends on B and TOPr(s)which can be determined from q). Next, we say that a vertex

v ∈ W is r-critical for (q, a) if it is r-critical for (s, a) (recall that being r-critical for (s, a) only depends on a and TOPr(s)
which can be determined from q).

To define the transitions ofAE , let a = (a, (bi)1�i�p+�) ∈ �′ be a letter and consider two states q = (M, (Vi)1�i�p+�, B,
C, (εi)1�i��) and q′ = (M′, (V ′

i)1�i�p+�, B′, C′, (ε′i)1�i��) of the automaton AE . There is a transition q
a−→ q′ in AE iff the

following conditions hold:

(T1) M = (W,�,�, λ) = TOP2r(s) and M′ = (W ′,�,�, λ) = TOP2r(sa) for some finite trace s ∈ M(�,D) (by
Lemma 3.7, M′ is uniquely defined by M and the letter a),

(T2) V ′
i = Vi ∩ W ′ if bi = 0 and V ′

i = (Vi ∩ W ′) � (W ′\W) if bi = 1 (note that, by the proof of Lemma 3.7, W ′\W is a

singleton corresponding to the added letter a),

(T3) B = B′ ∪ {a} (thus, B′ can be chosen non-deterministically),

(T4) C′ = C\{a} if C �= ∅ and C′ = B′ otherwise,

(T5) ε′i = εi + bp+i (in particular, there is no transition q
a−→ q′ if εi = bp+i = 1),

(T6) If v ∈ W is r-safe for q or r-critical for (q, a) and Vp+i = {v} for some 1 � i � �, then for each δ ∈ H in which xi
occurs, we have δ ∈ E if and only if one of the following hold:
• δ = (λ(xi) = b) and λ(v) = b,
• δ = (xi ∈ Zn) and v ∈ Vn,• δ = (xi = xn) and Vp+n = {v},
• δ = (xi � xn), Vp+n = {vn} is a singleton, and v � vn in M.

Lemma 3.11 ensures that the r-sphere around v is contained in M, hence legitimates the last constraint.

(T7) If v ∈ W is r-safe for q or r-critical for (q, a), then M, V1, . . . , Vp+�, v |� γ 2
E . Here, V1, . . . , Vp and v are the

assignments for the free variables Z1, . . . , Zp and y. We have to explain how to evaluate M, V1, . . . , Vp+�, v |� γ 2
E

although some sets Vp+i may be empty and do not define a proper assignment for the first order variable xi. Note

that if Vp+i �= ∅ then it is a singleton {vi} which encodes the assignment for xi. Hence, the only difficulty is when

Vp+i = ∅. In this case, we evaluate to false all atomic propositions of γ 2
E in which xi occurs. Note that such atomic

propositions must be of the form xi = z or xi � z or z � xi where z is either y or a variable that is bound in γ 2
E . Also,

since Vp+i = ∅, the assignment of xi is not in the r-sphere of v and since γ 2
E is r-local around y, the assignment u for

z satisfies d��(u, v) < r. Hence, the evaluation of these atomic propositions to false is justified.

Let AE denote the Büchi-automaton (Q , �′, I, F,→) defined so far. Since the essential information in a state is the first

component, i.e., a sphere in a trace, we will speak of the sphere automaton. The only non-determinism in the automaton AE

comes from the component B of the state but in fact, the automaton is unambiguous.

Proposition 3.17. Let w = (w, (Zi)1�i�p+�) ∈ �′ω . Then w is accepted by AE if and only if each Zp+i = {xi} is a singleton set

for 1 � i � � and

[w], Z1, . . . , Zp, x1, . . . , x� |� γ 1
E ∧ ∀y γ 2

E .

Proof. Assume first that w is accepted by AE . Write w = a1a2 · · · and let [w] = (V,�, λ) ∈ R(�,D). Consider an

accepting run q0
a1−→ q1

a2−→ q2 · · · for w in AE . Write qk = (Mk, (Vk
i)1�i�p+�, Bk, Ck, (εki)1�i��). By definition of the

transition function and the initial states we have Mk = TOP2r([a1 · · · ak]) = (Wk,�,�, λ) and Vk
i = Zi ∩ Wk . Since the

run is accepting, the set Zp+i = {xi} is a singleton for 1 � i � �. Moreover, Bk = alph(ak+1ak+2 · · ·) for all k � 0: Clearly,

808 P. Gastin, D. Kuske / Information and Computation 208 (2010) 797–816

Bk must contain all letters that remain to be read. Conversely, if for some k � 0,the set Bk contains some additional letters

then we can check that Cj = ∅ for at most one j � k, a contradiction. Therefore, AE is unambiguous.

For each vertex v of [w], we apply Lemma 3.12 andwe find k � 1 such that v is either r-critical for ([a1 · · · ak], ak+1) or r-

safe for ([a1 · · · ak], alph(ak+1ak+2 . . .)). From(T7),wegetMk, Vk
1 , . . . , V

k
p+�, v |� γ 2

E (recall that atomicpropositionsofγ 2
E

inwhich xi occurs are evaluated to false ifVk
p+i = ∅).We show that this implies [w],−→Z ,−→x , v |� γ 2

E . Indeed, the formulaγ 2
E

is r-local around y and by Lemmas 3.9 and 3.11 we know that SPHr([w], v) = SPHr(TOP2r([a1 · · · ak]), v) = SPHr(Mk, v).
Moreover, we have seen that Vk

i = Zi ∩ Wk . Finally, let 1 � i � � and assume that Vk
p+i = ∅. An atomic proposition

of γ 2
E in which xi occurs must be of the form xi = z or xi � z or z � xi where z is either y or a variable that is bound

in γ 2
E . Since Vp+i = ∅, we have dG([w])(v, xi) > r and because γ 2

E is r-local around y we know that the assignment u of z

satisfies dG([w])(u, v) < r. Hence, these atomic propositions evaluate to false in the context [w],−→Z ,−→x , v. We deduce that

[w],−→Z ,−→x , v |� γ 2
E . Since this holds for each vertex v of [w] we obtain [w],−→Z ,−→x |� ∀y γ 2

E .

For each 1 � i � �, we apply Lemma 3.12 to the vertex xi of [w] and we find k � 1 such that xi is either r-critical

for ([a1 · · · ak], ak+1) or r-safe for ([a1 · · · ak], alph(ak+1ak+2 . . .)). We have SPHr([w], xi) = SPHr(Mk, xi) in either case

and in particular Vk
p+i = {xi} ∩ Wk = {xi}. Therefore, by (T6), each conjunct of γ 1

E must evaluate to true. We deduce that

[w],−→Z ,−→x |� γ 1
E .

Conversely, assume that Zp+i = {xi} is a singleton set for 1 � i � � and that [w],−→Z ,−→x |� γ 1
E ∧ ∀y γ 2

E . Write

w = a1a2 · · · and let [w] = (V,�, λ) ∈ R(�,D). We show that w = (w, (Zi)1�i�p+�) is accepted by AE . We consider

temporarily the automaton A′
E defined as AE without (T6, T7).

Let q0 be the unique initial state with B-component alph(w). By definition of the transition function, there is exactly

one run q0
a1−→ q1

a2−→ q2 · · · for w in A′
E such that the B-component of qk is alph(ak+1ak+2 · · ·). As above, we write

qk = (Mk, (Vk
i)1�i�p+�, Bk, Ck, (εki)1�i��). By definition of the transition function and the initial states we have Mk =

TOP2r([a1 · · · ak]) = (Wk,�,�, λ) and Vk
i = Zi ∩ Wk . Also, since the sets Zp+i are singletons, there is some K such that

for each k > K and 1 � i � �we have εki = 1. Finally, since Bk = alph(ak+1ak+2 · · ·)we deduce from the definition of the

transition function that Ck = ∅ for infinitely many k’s. Therefore, the run is accepting in A′
E .

It remains to show that this run is actually in AE , i.e., that all transitions satisfy (T6, T7).

(T6) Let 1 � i � � and assume that Vp+i = {vi} is a singleton and that vi is either r-critical for (qk, ak+1) or r-safe for qk.

Wemust have vi = xi. By Lemmas 3.9 and 3.11we know that SPHr([w], xi) = SPHr(Mk, xi). Since [w],−→Z ,−→x |� γ 1
E ,

we deduce that (T6) is fulfilled.

(T7) Assume that v ∈ Wk is either r-critical for (qk, ak+1) or r-safe for qk . By hypothesis, we have [w],−→Z ,−→x , v |� γ 2
E .

We can show as in the first part of the proof that this implies Mk, Vk
1 , . . . , V

k
p+�, v |� γ 2

E (with atomic propositions

of γ 2
E in which xi occurs evaluated to false if Vk

p+i = ∅). Therefore, (T7) is fulfilled.
We deduce that w is accepted by AE as required. �

Lemma 3.18. Given �, the sphere automaton AE can be constructed in space poly(|�|). Hence, the number of states of AE is

in 2poly(|�|).

Proof. Let s = (V,�, λ) ∈ M(�,D). Any node v ∈ V has atmost hmany�-successors and hmany�-predecessors, where

h is the size of the largest independence clique that is contained in some D(a) for a ∈ �. Clearly, h ≤ |�| though it is usually

much smaller, e.g., h = 1 for words. Thus, the number of nodes at distance k from v is at most (2h)k . Hence, the number of

nodes in TOP2r(s) is at most K = |�|
(
1 + 2h + · · · + (2h)2r

)
. Since h � |�|, we get K � (2|�|)2r+1. We deduce that the

�-labeled graph TOP2r(s)with n � K nodes and two edge relations � and ≤ can be stored in space poly(|�|). Therefore,
a state q = (M, (Vi)1�i�p+�, B, C, (εi)1�i��) of the sphere automaton can also be stored in space poly(|�|) (note that p

and � are constants which do not depend on�).

Now, from its definition, we can easily check that the transition relation of AE can be decided in space poly(|�|), i.e.,
given states q, q′ ∈ Q and a letter a ∈ �′, we can check whether there is a transition q

a−→ q′ in AE in space poly(|�|).
Therefore, we can enumerate all transitions of AE in space poly(|�|) (simply enumerate the triples (q, a, q′) and for each

of them check whether it is a valid transition of AE).

We deduce that, given�, the sphere automaton AE can be constructed in space poly(|�|). �

Proof of Proposition 3.13. Recall that the formula ∀y γ is equivalent to a disjunction
∨

E⊆H γ
1
E ∧ ∀y γ 2

E and the number of

elements in this disjunction does not depend on �. From Proposition 3.17 we deduce that we can construct an automaton

Aγ over the alphabet �′ for the formula ∀y γ as a disjoint union of the sphere automata AE . Using Lemma 3.18 we know

P. Gastin, D. Kuske / Information and Computation 208 (2010) 797–816 809

thatAγ can be constructed in space poly(|�|). ProjectingAγ to the subalphabet�×{0, 1}p of�′ we obtain an automaton

B for the formula β which is equivalent to ∃x1 · · · ∃x�∀y γ . Again, B can be constructed in space poly(|�|).
Recall that ϕ(X1, . . . , Xm) is equivalent to

∃(fin)−→Y1¬∃(fin)−→Y2¬∃(fin)−→Y3 · · · ¬∃(fin)−→Yn β
(
X0, . . . , Xm,

−→
Y1 , . . . ,

−→
Yn

)
.

Using the following classical constructions on automata, we can construct the automaton Aϕ:

• projection for existential quantification ∃,
• intersection with (� × {0, 1}j)∗(� × {0, 1}j−1 × {0})ω and projection for existential finite-set quantification ∃fin,
• complement for negation.

Note that each complement needs an exponential: as in the proof of Proposition 3.4, if a Büchi automaton B can be

constructed in space tower(k, poly(|�|)) then it has atmost tower(k+1, poly(|�|))many states and by Proposition 3.19

we can construct a Büchi automaton for the complement of L(B) in space poly(tower(k + 1, poly(|�|))) = tower(k +
1, poly(|�|)). Therefore, the automaton Aϕ can be constructed in space tower(n − 1, poly(|�|)). �

3.4. Construction of modality automata

Now we have almost all ingredients for the proof of Proposition 3.4. The only one that is still missing is the effective

complementation of Büchi-automata from [15]. We also sketch its proof in order to state precisely its complexity.

Proposition 3.19. Let B = (Q , ι, T, F) be a Büchi-automaton over the alphabet�. Then, in space poly(|Q |), one can compute

a Büchi-automaton C over� such that L(C) = �ω\L(B).

Proof. To obtain the automaton C, we consider B as an alternating Büchi-automaton, i.e., B = (Q , ι, δ, F)with

δ(p, a) = ∨
(p,a,q)∈T

q

for all p ∈ Q and a ∈ �. From this alternating Büchi-automaton, we obtain an alternating co-Büchi-automaton B1 =
(Q , ι, δ1, F)with L(B1) = �ω\L(B) setting

δ1(p, a) = ∧
(p,a,q)∈T

q

for all p ∈ Q and a ∈ �. Then, by [15], this alternating co-Büchi automaton can be transformed into an equivalent weak

alternating automaton B2 whose set of states equals Q × {0, 1, . . . , 2|Q |}. The transitions of this automaton are given by

δ2((p, n), a) =
{∧

(p,a,q)∈T

∨
n′�n(q, n

′) if p ∈ F or n is even

false otherwise.

Adapting the proof from [18], one can construct an equivalent Büchi-automaton C whose states consist of two subsets of

Q ′ = Q × {0, 1, . . . , 2|Q |}. To store one such state, space 2|Q ′| ∈ poly(|Q |) suffices. Moreover, from the construction

of [18], one can see that the transition function of C can be decided in space O(|Q ′|) = O(|Q |) from B. Finally, L(C) =
L(B2) = L(B1) = �ω\L(B). �

We are now ready to close the main gap in the proof of Theorem 3.1.

Proof of Proposition 3.4. First, the formula

α′(X0, X1, . . . , Xm) = ∀x (x ∈ X0 ↔ α(X1, . . . , Xm, x))

can be equivalently written as

∀x (x /∈ X0 ∨ α(X1, . . . , Xm, x)) ∧ ¬∃x (α(X1, . . . , Xm, x) ∧ x /∈ X0).

Since α ∈ M�1
n(N,�), this is a conjunction of a formula of the form ∀x ϕ and a formula of the form ¬ψ with ϕ,ψ ∈

M�1
n(N,�). From Proposition 3.14 (page 805), we can construct a Büchi automaton Bϕ for the first conjunct ∀x ϕ in space

tower(n, poly(|�|)). From Proposition 3.13 (page 805), we can construct a Büchi automaton B for ψ in space tower(n −

810 P. Gastin, D. Kuske / Information and Computation 208 (2010) 797–816

1, poly(|�|)).Wededuce that thenumber of states ofB is intower(n, poly(|�|)). Using Propositions 3.19we can construct

a Büchi automaton for the second conjunct ¬ψ in space poly(tower(n, poly(|�|))) = tower(n, poly(|�|)). The final

construction for the intersection does not change the space bound. �

4. n-EXPSPACE lower bound for M�1
n(N, �)-logics

This section is devoted to the proof of the following.

Theorem 4.1. Let n � 1. There is an M�1
n(N,�)-definable temporal logic TLn such that its uniform satisfiability problem is

n-EXPSPACE-hard (and therefore n-EXPSPACE-complete by Theorem 3.1).

Towards this aim, we will restrict ourselves to finite traces. Consider the M�1
1(N,�)-formula

[[finite]] = ∀X(X = ∅ ∨ ∃x(x ∈ X ∧ ∀y(x � y → y /∈ X))).

Since any infinite trace t over a finite dependence alphabet admits an infinite path x0 � x1 � x2 . . . , this formula holds in t iff

t is finite. Adding it as a constant modality to someM�1
n(N,�)-logic TL(B) reduces the finite uniform satisfiability problem

of TL(B) to the uniform satisfiability problem of the extended temporal logic TL(B ∪ {finite}). Thus, restricting attention to

finite traces is at least as complicated as the general case.

We consider functions Fn : N → N that are defined inductively by F0(m) = m and Fn+1(m) = Fn(m) · 2Fn(m) for n ≥ 0.

For m � 1 and n � 0 we have tower(n,m) � Fn(m). Hence, there is a Turing machine M that runs in space Fn(m) − 3

(wherem is the input-size) and accepts some n-EXPSPACE-hard problem. Then, Theorem 4.1 can be proved by a polynomial

reduction of the language of this Turing machine to the satisfiability problem of some temporal logic TLn to be defined later.

Notation. Let �tape be the tape alphabet including the blank symbol � and the end-of-tape markers � and � and let Q be

the set of states of the Turing machineM. We will write � = �tape �Q for the alphabet of the Turing machineM. Form � 1

(mwill be the length of the input word), anm-configuration is a word �αqβ� of length Fn(m)where αβ ∈ (�tape\{�, �})∗
is the tape content and q is the state of the Turing machine. The intuition is that the head is on the first letter of β�. An
m-computation is a word c0 c1 c2 . . . ck where ci arem-configurations with ci �M ci+1 for all 0 � i < k. Note that there is a

relation R ⊆ �6 such that a word

w ∈
(
�Fn(m) ∩ (�(�tape\{�, �})∗Q(�tape\{�, �})∗�))+

is anm-computation if and only if it satisfies

w ∈ �∗γ1γ2γ3�Fn(m)−3δ1δ2δ3�
∗ ⇒ (γ1, γ2, γ3, δ1, δ2, δ3) ∈ R

for all γ1, γ2, γ3, δ1, δ2, δ3 ∈ �.
Wewill encode these computations by interspersing themwith letters from another alphabet. So let A be some countably

infinite alphabet with A∩� = ∅. As abbreviation, we use the infinite alphabet� = � ∪ A and denote by π� the projection

from�∗ to �∗. Then, form � 1, we define the language

Lm = ⋃
(a1�a2� · · · am�)∗a1�a2� · · ·�ak

where the union ranges over all a1, . . . , am ∈ Awhich are pairwise distinct and all 1 � k � m. We also define L = ⋃
m≥1 Lm

and the set

C = {w ∈ L | π�(w) is anm-computation for somem � 1}
which serves as encoding of the set of computations of M. Section 4.1 deals with this set of words, Section 4.2 will give

a further encoding into traces. The remaining procedure (to be found in Section 4.3) is standard: from an input word v of

length m, we will define a formula ϕ of the temporal logic TLn (that we are going to construct from the Turing machine M)

and a finite alphabet (�m,D) of size O(m) such that ϕ is satisfiable in M(�m,D) iff M accepts the word v.

4.1. Encoding by words

In this section,wewill consider formulaswhosemodels arewords over the alphabet�. The syntax of ourmonadic second

order logic MSO(�,�,≺) is given by

ϕ ::= x ∈ X | λ(x) = γ | x � y | x ≺ y | ϕ ∨ ϕ | ¬ϕ | ∃xϕ | ∃Xϕ

P. Gastin, D. Kuske / Information and Computation 208 (2010) 797–816 811

where x and y are individual variables, X is a set variable, and γ ∈ � is a letter from �. Individual variables range over

positions in a word and set variables over sets of positions in a word. Note that formulas λ(x) = a for a ∈ A are not allowed.

More formally, the set of positions of a finite word w ∈ �∗ is pos(w) = {i | 0 � i < |w|}. Let w = a0a1 . . . a|w|−1 with

ai ∈ � and x, y ∈ pos(w). Then we define

w |� λ(x) = γ if ax = γ

w |� x � y if y = x + 1

w |� x ≺ y if ax = ay ∈ A and az �= ax for all x < z < y

Note that x ≺ y cannot be expressed in FO(�,<) or in MSO(�,�) since we cannot express λ(x) = λ(y) when λ(x) ∈ A.

We will freely use formulas like λ(x) ∈ E for E ⊆ � meaning
∨

e∈E λ(x) = e.

Lemma 4.2. The set L ⊆ �∗ can be defined in FO(�,�,≺), i.e., there is a sentence α ∈ FO(�,�,≺) such that L = {w ∈
�∗ | w |� α}.
Proof. Let α be the following formula:

∃x, y (λ(x) /∈ � ∧ λ(y) /∈ � ∧ ¬∃z (z � x ∨ y � z))

∧ ∀x, y (x � y → (λ(x) ∈ � ↔ λ(y) /∈ �)
∧ ∀x, y, x′, y′, x′′, y′′ (

x � x′
� x′′ ∧ y � y′

� y′′ →
(
x ≺ y ↔ x′′ ≺ y′′))

The first line of the formula expresses that the first and last letters of a word from�∗ belong to A, i.e., it defines the language

A�∗A ∪ A. The second line expresses that letters from � and A alternate, together with the first line, it defines the language

(A�)∗A. So let w = a1γ1a2γ2 . . . ak−1γk−1ak be a word from this set with ai ∈ A and γi ∈ �. Then the premise in the last

line expresses x′′ = x + 2 and y′′ = y + 2. Hence, the last formula is satisfied byw iff the projection ofw to A∗ is the prefix

of some word v� where no letter in v occurs twice. In summary, this FO(�,�,≺)-formula is satisfied by w iff w ∈ L. �

Lemma 4.3. There is a formula interval(x, y, X) in FO(�,�,≺) such that, for any finite word w ∈ �∗, any x, y ∈ pos(w) and
X ⊆ pos(w), we have w |� interval(x, y, X) iff x � y and X = {x, x + 1, . . . , y}.
Proof. Let interval(x, y, X) denotes the following formula:

x ∈ X ∧ ∀x′(x′ ∈ X → x′ = x ∨ ∃y′(y′
� x′ ∧ y′ ∈ X))

∧ y ∈ X ∧ ∀x′(x′ ∈ X → x′ = y ∨ ∃y′(x′
� y′ ∧ y′ ∈ X)).

Suppose w |� interval(x, y, X). The first line expresses that the set X is a nonempty downwards closed subset of {x, x +
1, . . . , |w|−1}while the second line expresses that X is a nonempty upwards closed subset of {0, 1, . . . , y}. In otherwords,

X = {x, x + 1, . . . , y} as required. �

Lemma 4.4. For all n � 0, there exists a formula ϕn(x, y) ∈ M�1
n(�,�,≺) with two free individual variables x and y such

that, for all m � 1, w ∈ Lm and k, � ∈ pos(w), we have w |� ϕn(k, �) iff k is even and � = k + 2Fn(m).

The idea of the inductive proof is to split the interval [k, �) into blocks of length 2Fn−1(m) and to encode, in these blocks,

the binary representations of the numbers 0, 1, . . . , 2Fn−1(m) − 1. This idea was first used by Matz [16] (cf. also [17]) for

pictures and is significantly different fromWalukiewicz’s method of nested counters [24]. 5

Proof. For n = 0, we set

ϕ0(x, y) = (x ≺ y).

Let w = a0a1 . . . a|w|−1 ∈ Lm and k, � ∈ pos(w). Then w |� ϕ0(k, �) iff k ≺ �, i.e., iff ak = a� ∈ A, k < �, and there is no

occurrence of ak in between. Since w ∈ Lm, this is equivalent to saying k is even and � = k + 2m, i.e., � = k + 2F0(m).
For n ≥ 0, let ϕn+1(x, y) denotes the following formula (we advise to read the explanations below and look at Figs. 3 and

4 simultaneously with each line of the formula):

5 Using Walukiewicz’s method in a previous version of this paper, we needed one more quantifier alternation resulting in an exponentially weaker lower

bound in Theorem 4.1.

812 P. Gastin, D. Kuske / Information and Computation 208 (2010) 797–816

Fig. 3. Conjuncts (1–8). This picture visualizes somewordwith positions x, x′ , y′ , and y. There are sets X0 and Y0 that contain all the positions between x and x′ and
y′ and y, respectively, The nodes drawn (including x, x′ , etc.) form the set Z . Furthermore, there is a set B (“B” stands for “bit”): it contains all positions marked 1,

none marked 0, and possibly some positions in between. Finally, the top line indicates that successive elements of Z (i.e., drawn positions) have distance 2Fn(m).

Conjuncts (1–8) ensure this situation (as well as the fact that X contains all the positions between x and y).

∃X, X0, Y0, Z, B, x
′, y′ :

interval(x, y, X) (1)

∧ interval(x, x′, X0) ∧ ϕn(x, x′) ∧ X0 ⊆ X (2)

∧ interval(y′, y, Y0) ∧ ϕn(y′, y) (3)

∧ Z ∩ X0 = {x, x′} ∧ ∀z, z′ ∈ X : ϕn(z, z′) → (Z(z) ↔ Z(z′)) (4)

∧ Z(y) (5)

∧ B ∩ (X0\{x′}) = ∅ (6)

∧ Y0\(λ−1(�) ∪ {y}) ⊆ B (7)

∧ ∀z, z′ ∈ Z : ϕn(z, z′) → (B(z) ↔ ¬B(z′)) (8)

∧ ∀z1, z2, z3, z′1, z′2, z′3 ∈ X :
(ϕn(z1, z

′
1) ∧ λ(z1) /∈ � ∧ z1 � z2 � z3 ∧ z′1 � z′2 � z′3 ∧ ¬Z(z3))

→ ((B(z1) ∧ ¬B(z′1)) ↔ (¬B(z3) ↔ B(z′3))) (9)

∧ ∀z1, z2, z3, z′1 ∈ X :
(ϕn(z1, z

′
1) ∧ z1 � z2 � z3 ∧ Z(z3) ∧ B(z1)) → B(z′1) (10)

Let m � 1 and w ∈ Lm. Furthermore, assume X, X0, Y0, Z, B ⊆ pos(w) and x′, y′ ∈ pos(w). Then (1) expresses

x � y and X = {x, x + 1, . . . , y}. By the induction hypothesis for ϕn, (2) says that x is even, x′ = x + 2Fn(m), X0 =
{x, x+ 1, . . . , x+ 2Fn(m)}, and, because of X0 ⊆ X , also x′ = x+ 2Fn(m) � y. Similarly, (3) expresses y′ = y− 2Fn(m) and
Y0 = {y′, y′ +1, . . . , y}. From (4), we obtain Z ∩X = (x+2Fn(m)N)∩X which, together with (5) ensures y = x+2kFn(m)
for some k > 0. In other words, the set Z divides the interval X into blocks of length 2Fn(m) each. The first block starts

at position x and the last one at position y′. With any such block, we can associate a natural number depending on the

set B: if the block starts at position z ∈ Z and H = {i < Fn(m) | z + 2i ∈ B}, then the associated number is
∑

i∈H 2i.

In other words, we understand each block as a binary number (least significant bit first) where B contains those bits set

to 1. Recalling that X0\{x′} is the first block, (6) expresses that its associated number is 0. Dually, using (7) we deduce that∑
0�i<Fn(m) 2

i = 2Fn(m)− 1 is the number associated with the final block Y0\{y}. We show that the blocks “count” from 0 to

2Fn(m) − 1. By (8) the least significant bits of consecutive blocks alternate. Consider (9). The premise expresses that z1 and

z′1 mark the same position i in consecutive blocks and that this position is not the last one. Then the conclusion says that

the ith bit drops from 1 to 0 if and only if the (i + 1)th bit changes. Hence, (9) expresses that the number associated with

the following block is obtained by adding one modulo 2Fn(m). The final formula (10) ensures that the last (most significant)

bit never drops from 1 to 0. Hence, the number of blocks must be 2Fn(m). Since each of them is of length 2Fn(m), we obtain

y = x + 2Fn(m)2
Fn(m) = x + 2Fn+1(m).

By induction, ϕn ∈ M�1
n(�,�,≺). Note that this formula occurs in (2), (3), (4), (8), (9), and (10). At all these places, it

occurs either positively under the existential quantification in the very first line, or negatively under an additional universal

quantification. Hence, ϕn+1 ∈ M�1
n+1(�,�,≺) as required. �

We can now prove the main result of this section:

Proposition 4.5. The set C ⊆ �∗ of encodings of computations of the Turing machine M can be defined with a sentence

ψ ∈ M�1
n(�,�,≺), i.e., such that C = {w ∈ �∗ | w |� ψ}.

Proof. By Lemma 4.2, there is a formulaψ0 ∈ FO(�,�,≺)which defines the language L = ⋃
m�1 Lm ⊆ (A�)∗A. So below,

we restrict our attention to words w ∈ Lm for somem � 1. We use the abbreviations

P. Gastin, D. Kuske / Information and Computation 208 (2010) 797–816 813

(λr(x) = γ) = (∃x′ : (x � x′ ∧ λ(x′) = γ)) and

(λ�(x) = γ) = (∃x′ : (x′
� x ∧ λ(x′) = γ)).

Consider the formula

ψ1 = ∃x, y : λr(x) = � ∧ λ�(y) = � ∧ ¬∃z : (z � x ∨ y � z)

∧ ∀x, y, z : (x � y � z) → (λ(x) = � ↔ λ(z) = �).
Then, w |� ψ1 if and only if its projection π�(w) is in (�(�\{�, �})∗�)+. Next, we have to make sure that each factor

in �(�\{�, �})∗� is of length Fn(m). For this, we introduce for n � 1 a formula ϕ<n (x, y) defined as ϕn(x, y) in the proof

of Lemma 4.4 except that (7) is replaced by its negation Y0\{y} �⊆ λ−1(�) ∪ B so that the value associated with the last

block is strictly less than 2Fn−1(m) − 1. Therefore, w |� ϕ<n (x, y) if and only if x is even and y = x + 2kFn−1(m) for some

0 < k < 2Fn−1(m). We define

ψ2 = ∀x : λr(x) = � → ∃x′, X : (ϕn−1(x, x
′) ∧ interval(x, x′, X) ∧ X ∩ λ−1(�) = ∅)

∧ ∀x, x′, X, y, y′, Y :
⎛
⎝ λr(x) = � ∧ ϕ<n (x, x′) ∧ interval(x, x′, X)

∧ λ�(y) = � ∧ ϕn−1(y
′, y) ∧ interval(y′, y, Y)

⎞
⎠ → X ∩ Y ⊆ {x, x′}

∧ ∀x, y : (ϕn(x, y) ∧ λr(x) = �) → (λ�(y) = �)
and we show that a word w ∈ Lm with m � 1 satisfies ψ1 ∧ ψ2 if and only if its projection π�(w) is in (�

Fn(m) ∩ �(�\
{�, �})∗�)+.

First, assumethatw |� ψ1∧ψ2 for somew ∈ Lmwithm � 1. Fromψ1,wealreadyknowthatπ�(w) ∈ (�(�\{�, �})∗�)+
and we have to show that each factor is of length Fn(m). So let x ∈ pos(w) be such that λr(x) = � and let y ∈ pos(w) be
minimal with y > x and λ�(y) = �. By the first conjunct of ψ2 we deduce that y > x + 2Fn−1(m). Let k be maximal with

x+2kFn−1(m) � y.We have seen that k � 1. Towards a contradiction, assume that k < 2Fn−1(m) and let x′ = x+2kFn−1(m)
so that ϕ<n (x, x

′) holds. Further, let y′ = y − 2Fn−1(m), X = {x, x + 1, . . . , x′} and Y = {y′, y′ + 1, . . . , y}. Using the

second conjunct of ψ2 we get y′ � x′ which contradicts the maximality of k. Therefore, y � x + 2Fn(m). Finally, using the

third conjunct ofψ2, we get y = x + 2Fn(m) as desired.

Conversely, let w ∈ Lm be such that π�(w) ∈ (�Fn(m) ∩ �(�\{�, �})∗�)+. We already know that w |� ψ1. It is easy

to see that w satisfies the first and last conjuncts of ψ2. Finally, let x, x
′, y, y′ ∈ pos(w) and X, Y ⊆ pos(w) satisfying the

premise of the second conjunct of ψ2. Then, x
′ = x + 2kFn−1(m) for some 0 < k < 2Fn−1(m) and X = {x, x + 1, . . . , x′}.

Also, y′ = y − 2Fn−1(m) and Y = {y′, y′ + 1, . . . , y}. Now, either y � x and we get X ∩ Y ⊆ {x}. Or else y � x + 2Fn(m)
and we obtain X ∩ Y ⊆ {x′}. Therefore, w |� ψ2 as required.

Next, we consider

ψ3 = ∀x, y, X : (λr(x) = � ∧ ϕn(x, y) ∧ interval(x, y, X)) → |X ∩ λ−1(Q)| = 1

so that w |� ψ1 ∧ ψ2 ∧ ψ3 if and only if its projection π�(w) is in(
�Fn(m) ∩ (�(�tape\{�, �})∗Q(�tape\{�, �})∗�))+

.

The last formula is

ψ4 = ∀x0, . . . , x5, y0, . . . , y5 :
⎛
⎝ϕn(x0, y0) ∧ ∧

0�i<5

xi � xi+1 ∧ yi � yi+1

⎞
⎠

→ (
λ(x1), λ(x3), λ(x5), λ(y1), λ(y3), λ(y5)

) ∈ R

Fig. 4. Conjunct (9). This picture is a zoomed version of Fig. 3. The solid positions are consecutive positions from Z , z1, z2, and z3 are consecutive positions and

similarly for z′1, z′2, and z′3 where the distance between z1 and z′1 equals 2Fn(m). Again, the bottom lines denote membership in B, one line for each side of the

equivalence in (9).

814 P. Gastin, D. Kuske / Information and Computation 208 (2010) 797–816

Fig. 5. The traces η(a) and η(γ)/.

Now, w |� ∧
1�i�4 ψi if and only if its projection is an m-computation. Therefore, the formula ψ = ∧

0�i�4 ψi defines the

language C.

Moreover,ψ ∈ M�1
n(�,�,≺). Indeed,ψ0 andψ1 are first-order. In the first conjunct ofψ2, the conclusion is in M�1

n−1
and is under auniversal quantification. Finally, in all remaining conjuncts ofψ , the formulasϕn,ϕ

<
n andϕn−1 occurnegatively

under some universal quantifications. �

4.2. From words to traces

In this section, we will extend the infinite alphabet � to a dependence alphabet (�′,D) such that letters from � are

mutually dependent. 6 For a dependence clique � ⊆ �′ and a trace t ∈ M(�,D), the �-labeled nodes form a chain in t

and therefore define a word from �∗ that we denote π�(t). The main task will be the construction of a set of finite traces

C′ ⊆ M(�′,D) definable in M�1
n(N,�) such that π�(C

′) = C, the language from Lemma 4.5. For the construction of C′,
we consider a disjoint copy A = {a | a ∈ A} of A and we let

�′ = � � A � {†} = � � A � A � {†}.
The dependence relation is given by

D = (� ∪ {†})2 ∪ {(a, a), (a, a), (a, a) | a ∈ A}.
For simplicity, we write M for the trace monoid M(�′,D).

Define a homomorphism η : �∗ → M by

η(σ) =
{
a a † a if σ = a ∈ A

γ † if σ = γ ∈ �.
The traces η(a) and η(γ) for a ∈ A and γ ∈ � are depicted in Fig. 5. Note that, for σ ∈ � we have π�(η(σ)) = σ .
Since the letters from � are mutually dependent, we get π�(η(w)) = w for all words w ∈ �∗. Note also that for any

w ∈ �∗, we have π�∪{†}(η(w)) ∈ (�†)∗. The language C′ that we will define here is precisely †η(C) so that π�(C
′) = C

as claimed.

As in the previous section, we will not allow formulae λ(x) = σ for arbitrary letters σ ∈ �′ since we do not want our

formulae to depend on A ∪ A. Hence, these atomic propositions are restricted to letters in � ∪ {†} ⊆ N.

Lemma 4.6. There is a formula ϕ ∈ FO(N,�) such that for any trace t ∈ M, we have t |� ϕ iff t ∈ †η(�∗).

Proof. We will define ϕ as a conjunction ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4. The formula ϕ1 will be satisfied by a trace t ∈ M iff

π�∪{†}(t) ∈ †(�†)∗. It is defined by

ϕ1 = ∃x (x minimal ∧ λ(x) = †)

∧ ∀x (λ(x) = † → (x maximal ∨ ∃y∃z (x � y � z ∧ λ(y) �= † ∧ λ(z) = †))).

Let t = (V,≤, λ) ∈ M be a trace. If t |� ϕ1, then t contains a minimal node that is †-labeled, and from any non-maximal

†-labeled node, we reach another one in just two �-steps. Hence, t contains a maximal �-chain labeled in †((�′\{†})†)∗.
Since consecutive nodes in a maximal �-chain carry dependent letters, this chain actually belongs to †(�†)∗. Since� ∪ {†}
forms a dependence clique, all (� ∪ {†})-labeled nodes must be in the chain. We deduce that π�∪{†}(t) ∈ †(�†)∗.

Let, conversely,π�∪{†}(t) ∈ †(�†)∗. Let x be theminimal †-labeled node of t. Since the projection starts with †, this node

x does not dominate any �-labeled node. Since only letters from� ∪ {†} are dependent from †, the node x is minimal in t.

Now let x and z be two consecutive †-labeled nodes of t. Then, in between them, there is a unique node y with λ(y) ∈ �.

Since all neighbors of x and z have to carry labels in� ∪ {†}, this implies x � y� z. Since the last letter of the projection is †,

we showed that t |� ϕ1.
We restrict our attention below to traces t that satisfy ϕ1, i.e., such that π�∪{†}(t) ∈ †(�†)∗. In particular, a node x of t

is labeled in � if and only if ∃y (x � y ∧ λ(y) = †). We will simply write λ(x) ∈ � for this formula. We also use the

abbreviations λ(x) ∈ A for λ(x) ∈ �\�, and λ(x) ∈ A for λ(x) /∈ � ∪ {†}.
6 Since� is infinite, also the set�′ is infinite. Although we only defined traces over finite dependence alphabets, the definitions go through for infinite ones

as well.

P. Gastin, D. Kuske / Information and Computation 208 (2010) 797–816 815

The formulaϕ2 will ensure that any�-labeled node is the center of some factor η(σ). For�-labeled nodes, this is already

implied by ϕ1. For σ ∈ A, it turns out to be sufficient to require the existence of at least two upper and two lower neighbors.

Formally we define

ϕ2 = ∀y (λ(y) ∈ A → ∃x∃z : x � y � z ∧ λ(x) �= † ∧ λ(z) �= †).

Formula ϕ2 expresses that any a-labeled node y (with a ∈ A) has at least one lower and one upper neighbor x, z that are

not labeled †. Because of the structure of the dependence relation D, the only possibility is that λ(y) = λ(z) = a. Note

that D(a) ⊆ D(a). Hence, y is the only upper neighbor of x and the only lower neighbor of z. Thus, the neighborhood of y

excluding the †-labeled lower neighbor forms a factor of the form η(a).
Next, we express that any node in the trace t belongs to one of the factors η(σ)with σ ∈ �:

ϕ3 = ∀y (λ(y) ∈ A → ∃z (λ(z) ∈ A ∧ (y � z ∨ z � y))).

It remains to express that the factors considered above are mutually disjoint:

ϕ4 = ∀y (λ(y) ∈ A → ¬∃x∃z : (x � y � z ∧ λ(x) ∈ A ∧ λ(z) ∈ A)).

The only possibility for a node y of t to belong to two factors is that λ(y) = a for some a ∈ A and the two factors are of the

form η(a). But then y would have two a-labeled neighbors x and z – this is excluded by formula ϕ4.
Let †σ1†σ2† . . . σn† be the projection of t to � ∪ {†}. Then, by what we showed so far, we deduce that

t = †η(σ1)η(σ2) . . . η(σn). �

For any word w ∈ �∗ we have w = π�(†η(w)). Thus, the word w can be seen as a chain in the trace †η(w). Note that

the predicate λ(x) ∈ A can be expressed in †η(w) by λ(x) �= † ∧ ¬∃y (x � y ∧ λ(y) = †). We use it as a macro below. We

will next prove that the relations � and ≺ of w can be expressed by first-order formulas in †η(w). To this aim, we define

cover(x, y) = ∃z (λ(z) = † ∧ x � z � y),

nx(x, y) = ∃x′∃y′ (λ(x′) ∈ A ∧ λ(y′) ∈ A ∧ x � x′
� y′

� y).

Lemma 4.7. Let w ∈ �∗ and t = †η(w) = (V,≤, λ). Suppose furthermore x, y ∈ V with λ(x), λ(y) ∈ �. Then we have

1. w |� x � y iff t |� cover(x, y).
2. w |� x ≺ y iff t |� nx(x, y).

Proof. Let w = a1a2 . . . an with ai ∈ �. Note that those nodes that are labelled in � ∪ {†} form a maximal chain in t

corresponding to a word in †(�†)∗. This ensures the first statement.

Suppose x ≺ y in the word w. Then, by the definition of ≺, we have λ(x) = λ(y) = a ∈ A, x < y, and there is no z with

x < z < y and a = λ(z). The definition of η implies the existence of x′ and y′ with x � x′, y′
� y, and λ(x′) = λ(y′) = a.

Since no a occurs in between x and y, we obtain x′
� y′. Thus, t |� nx(x, y).

Conversely, suppose t |� nx(x, y). Then therearex′ andy′ withx�x′
�y′

�yandλ(x′), λ(y′) ∈ A. Since (λ(x′), λ(y′)) ∈ D,

the construction of η ensures λ(x′) = λ(y′) = a for some a ∈ A. For the same reason, we obtain λ(x) = a = λ(y) and there

cannot be a further occurrence of a in between x and y. Hence, x ≺ y in the word w. �

This allows immediately to derive the following consequence since C is definable in M�1
n(�,�,≺):

Proposition 4.8. The language †η(C) is M�1
n(N,�)-definable, i.e., there is a sentence ψ ′ ∈ M�1

n(N,�) such that C′ =
†η(C) = {t ∈ M | t |� ψ ′}.
Proof. By Lemma 4.5, there is a sentenceψ in M�1

n(�,�,≺) such that C = {w ∈ �∗ | w |� ψ}. For ξ ∈ MSO(�,�,≺),
we construct recursively ξ as follows:

(λ(x) = e) = (λ(x) = e)

x � y = cover(x, y)

x ≺ y = nx(x, y)

¬ϕ = ¬ϕ
ϕ ∨ ψ = ϕ ∨ ψ

∃xϕ = ∃x (ϕ ∧ λ(x) ∈ �)
∃Xϕ = ∃X (ϕ ∧ ∀x (x ∈ X → λ(x) ∈ �))

816 P. Gastin, D. Kuske / Information and Computation 208 (2010) 797–816

Then, by Lemma 4.7, we deduce that for w ∈ �∗ we have w |� ξ iff †η(w) |� ξ . Then, we let ψ ′ = ϕ ∧ ψ where ϕ is

the FO(N,�)-sentence from Lemma 4.6. Now the result follows immediately from Lemmas 4.5–4.7. �

4.3. The lower bound

Now we can prove the main theorem of this section.

Proof of Theorem 4.1. Recall that the deterministic Turing machine M works in space Fn(m)− 3 where m is the length of

the input word.

Consider theM�1
n(N,�)-definable temporal logic TLn based on themodality SU, the usual boolean connectives, and the

constant COMPUTATION with [[COMPUTATION]] = ψ ′, the formula from Proposition 4.8 defining †η(C).
We denote by q0 and q1 the initial state and the accepting state of M, respectively. Recall that � is the blank symbol of

the tape. Let v = v1 · · · vm be an input word of the Turing machine M and consider the formula

INITv = ¬� SU (� ∧ ¬� SU (q0 ∧ ¬� SU (v1 ∧ · · · ¬� SU (vm ∧ (¬� ∨ �) SU �) · · ·)))
which intuitively expresses the fact that the first configuration is actually the initial configuration ofM on the input word v.

Consider also the alphabets �m = Am ∪ � ⊆ � and �′
m = �m ∪ {†} ∪ Am where |Am| = m, Am = {a | a ∈ Am} and the

dependence relation D defined as in Section 4.2. We claim that v is accepted byM if and only if there is a trace in M(�m,D)
satisfying the formula COMPUTATION ∧ INITv ∧ � SU q1. Note that this formula can be constructed from v in linear time.

Therefore, the uniform satisfiability problem for TLn is n-EXPSPACE-hard. �

Remark 4.9. Note that, apart from the boolean connectives, the logic TLn contains only the constant COMPUTATION and

the binary modality SU. In our hardness proof, the binary SU is only used in the context ¬� SU −, (¬� ∨ �) SU − and

� SU −. Thus, we could have replaced the binary modality SU with these three unary filter modalities in the style of [9].

Furthermore, the temporal logic could be deprived of constant formulas a for a /∈ � ∪ {†} since they are not used in the

hardness proof.

References

[1] B. Adsul, M. Sohoni, Complete and tractable local linear time temporal logics over traces, in: Proceedings of the ICALP’02, LNCS, vol. 2380, Springer, Berlin,
2002, pp. 926–937.

[2] R. Alur, D. Peled, W. Penczek, Model-checking of causality properties, in: Proceedings of the LICS’95, IEEE Computer Society Press, Silver Spring, MD, 1995,
pp. 90–100.

[3] V. Diekert, P. Gastin, Local temporal logic is expressively complete for cograph dependence alphabets, Information and Computation 195 (2004) 30–52., a

preliminary version appeared at LPAR’01, LNAI 2250, Springer, Berlin, pp. 55–69.
[4] V. Diekert, G. Rozenberg (Eds.), The Book of Traces, World Scientific, Singapore, 1995.

[5] V. Diekert, P. Gastin, Pure future local temporal logics are expressively complete for Mazurkiewicz traces, in: Proceedings of the LATIN’04, LNCS, vol. 2976,
Springer, Berlin, 2004, pp. 232–241.

[6] H.-D. Ebbinghaus, J. Flum, Finite Model Theory, Springer, Berlin, 1991.
[7] D. Gabbay, I. Hodkinson, M. Reynolds, Temporal Logic, Oxford University Press, Oxford, 1994.

[8] P. Gastin, D. Kuske, Uniform satisfiability in PSPACE for local temporal logics over Mazurkiewicz traces, Fundamenta Informaticae 80 (1–3) (2007) 169–197.

[9] P. Gastin, M. Mukund, An elementary expressively complete temporal logic for Mazurkiewicz traces, in: Proceedings of the ICALP’02, LNCS, vol. 2380,
Springer, Berlin, 2002, pp. 938–949.

[10] P. Gastin, D. Kuske, Satisfiability and model checking for MSO-definable temporal logics are in PSPACE, in: Proceedings of the CONCUR’03, LNCS, vol. 2761,
Springer, Berlin, 2003, pp. 222–236.

[11] P. Gastin, M. Mukund, K. Narayan Kumar, Local LTL with past constants is expressively complete for Mazurkiewicz traces, in: Proceedings of the MFCS’03,
LNCS, vol. 2747, Springer, Berlin, 2003, pp. 429–438.

[12] P. Gastin, D. Kuske, Uniform satisfiability problem for local temporal logics over Mazurkiewicz traces, in: Proceedings of the CONCUR’05, LNCS, vol. 3653,
Springer, Berlin, 2005, pp. 533–547.

[13] H.J. Keisler, W.B. Lotfallah, Shrinking games and local formulas, Annals of Pure and Applied Logic 128 (1–3) (2004) 215–225.

[14] Y. Kesten, A. Pnueli, L. Raviv, Algorithmic verification of linear temporal logic specifications, in: Proceedings of the ICALP’98, LNCS, vol. 1443, Springer,
Berlin, 1998, pp. 1–16.

[15] O. Kupferman, M. Vardi, Weak alternating automata are not that weak, ACM Transaction on Computational Logic 2 (3) (2001) 408–429.
[16] O. Matz, Dot-depth and monadic quantifier alternation over pictures, Ph.D. Thesis, RWTH Aachen, 1999.

[17] O. Matz, N. Schweikardt, W. Thomas, The monadic quantifier alternation hierarchy over grids and graphs, Information and Computation 179 (2) (2002)
356–383.

[18] S. Miyano, T. Hayashi, Alternating finite automata on ω-words, Theoretical Computer Science 32 (1984) 321–330.

[19] M. Mukund, P. Thiagarajan, Linear time temporal logics over Mazurkiewicz traces, in: Proceedings of the MFCS’96, LNCS, vol. 13, Springer, Berlin, 1996, pp.
62–92.

[20] D.E. Muller, A. Saoudi, P. E. Schupp, Weak alternating automata give a simple explanation of why most temporal and dynamic logics are decidable in
exponential time, in: Proceedings of the LICS’88, IEEE Computer Society Press, Silver Spring, MD, 1988, pp. 422–427.

[21] T. Schwentick, K. Bartelmann, Local normal forms for first-order logic with applications to games and automata, Discrete Mathematics and Computer
Science 3 (1999) 109–124.

[22] P. Thiagarajan, A trace based extension of linear time temporal logic, in: Proceedings of the LICS’94, IEEE Computer Society Press, Silver Spring, MD, 1994,

pp. 438–447.
[23] P. Thiagarajan, A trace consistent subset of PTL, in: Proceedings of the CONCUR’95, LNCS, vol. 962, Springer, Berlin, 1995, pp. 438–452.

[24] I. Walukiewicz, Difficult configurations-on the complexity of LTrL, Formal Methods in System Design 26 (1) (2005) 27–43.

	Uniform satisfiability problem for local temporal logicsover Mazurkiewicz traces
	Introduction
	Preliminaries
	n-EXPSPACE upper bound for M1n-logics
	The decision procedure -- Proof of Theorem 3.1
	Spheres
	Automata for and for x with M1n(N,)
	Construction of modality automata

	n-EXPSPACE lower bound for Metapostn(N,)-logics
	Encoding by words
	From words to traces
	The lower bound

	References

