
ar
X

iv
:1

30
1.

65
72

v1
 [

cs
.L

O
]

28
 J

an
 2

01
3 ω-Petri nets

G. Geeraerts1 A. Heußner2 M. Praveen3 J.-F. Raskin1

1 Université Libre de Bruxelles (ULB), Belgium
2 Otto-Friedrich Universität Bamberg, Germany

3Laboratoire Spécification et Vérification, ENS Cachan, France

Abstract

We introduceω-Petri nets (ωPN), an extension ofplain Petri nets withω-
labeled input and output arcs, that is well-suited to analyse parametric concur-
rent systems with dynamic thread creation. Most techniques (such as the Karp and
Miller tree or the Rackoff technique) that have been proposed in the setting ofplain
Petri netsdo not apply directly toωPN becauseωPN define transition systems that
haveinfinite branching. This motivates a thorough analysis of the computational
aspects ofωPN. We show that anωPN can be turned into an plain Petri net that
allows to recover the reachability set of theωPN, but that does not preserve ter-
mination. This yields complexity bounds for the reachability, (place) boundedness
and coverability problems onωPN. We provide a practical algorithm to compute
a coverability set of theωPN and to decide termination by adapting the classical
Karp and Miller tree construction. We also adapt the Rackofftechnique toωPN,
to obtain the exact complexity of the termination problem. Finally, we consider
the extension ofωPN with reset and transfer arcs, and show how this extension
impacts the decidability and complexity of the aforementioned problems.

1 Introduction

In this paper, we introduceω-Petri nets (ωPN), an extension ofplain Petri nets (PN)
that allows input and output arcs to be labeled by the symbolω, instead of a natu-
ral number. Anω-labeled input arc consumes, non-deterministically, any number of
tokens in its input place while anω-labeled output arc produces non-deterministically
any number of tokens in its output place. We claim thatωPN are particularly well suited
for modelingparametric concurrent systems(see for instance our recent work on the
Grand Central Dispatch technology [12]), and to performparametric verification[14]
on those systems, as we illustrate now by means of the examplein Fig 1. The example
present a skeleton of a distributed program, in which amain function forksP parallel
threads (whereP is a parameter of the program), each executing theone task func-
tion. Many distributed programs follow this abstract skeleton that allows to perform
calculations in parallel, and being able to model preciselysuch concurrent behaviors is
an important issue. In particular, we would like that the model captures the fact thatP
is a parameter, so that we can, for instance, check that the execution of theprogram

1

http://arxiv.org/abs/1301.6572v1

1 one_task(int k) {
2 // some work...
3 }
4 main() {
5 for i := 1 to P step 1
6 fork(one_task(i))
7 }

fork K

p1

p2

one task

(a)

fork •

p1

p2

one task

(b)

fork •

p1

p2

one task

(c)

ω

Figure 1: An example of a parametric system with three possible models

always terminates (assuming each individual execution ofone task does),for all
possible values ofP . Clearly, the Petri net (a) in Fig. 1 does not capture the parametric
nature of the example, as placep1 contains a fixed numberK of tokens. The PN (b),
on the other hand captures the fact that the program canfork an unbounded number
of threads, butdoes not preserve termination: (post)ω is an infinite execution of PN
(b), while the programme terminates (assuming eachone task thread terminates)
for all values ofP , because thefor loop in line 5 executes exactlyP times. Finally,
observe that theωPN (c) has the desired properties: firing transitionfork createsnon-
deterministicallyanunboundedalbeitfinite number of tokens inp2 (to model all the
possible executions of the for loop in line 5), and all possible executions of thisωPN
terminate, because the number of tokens produced inp2 remainsfinite and no further
token creation inp2 is allowed after the firing of thefork transition.

While close to Petri nets,ωPN are sufficiently different that a thorough and careful
study of their computational properties is required. This is the main contribution of the
paper. A first example of discrepancy is that the semantics ofωPN is an infinite transi-
tion system which isinfinitely branching. This is not the case for plain PN: their tran-
sition systems can be infinite but they are finitely branching. As a consequence, some
of the classical techniques for the analysis of Petri nets cannot be applied. Consider for
example thefinite unfolding of the transition system[10] that stops the development
of a branch of the reachability tree whenever a node with a smaller ancestor is found.
This tree is finite (and effectively constructible) for any plain Petri net and any initial
marking because the set of markingsNk is well-quasi ordered, andfinite branchingof
plain Petri nets allows for the use of König’s lemma1. However, this technique cannot
be applied toωPN, as they are infinitely branching. Such peculiarities ofωPN motivate
our study of three different tools for analysing them. First, we consider, in Section 3,
a variant of the Karp and Miller tree [15] that applies toωPN. In order to cope with
the infinite branching of the semantics ofωPN, we need to introduce in the Karp and
Miller tree ω’s that are not the result of accelerations but the result ofω-output arcs.
Our variant of the Karp and Miller construction isrecursive, this allows us to tame the
technicality of the proof, and as a consequence, our proof when applied toplain Petri
nets, provides a simplification of the original proof by Karpand Miller. Second, in
Section 4, we show how to construct, from anωPN, a plain Petri net that preserve its
reachability set. This reduction allows to prove that many bounds on the algorithmic

1In fact, this construction is applicable to any well-structured transition system which is finitely branching
and allows to decide the termination problem for example.

2

Table 1: Complexity results onωPN (with the section numbers where the results are
proved). ωIPN+R (ωOPN+R) andωIPN+T (ωOPN+T) denote resp. Petri nets with
reset (R) and transfer (T) arcs withω on input (output) arcs only.

Problem ωPN ωPN+T ωPN+R

Reachability Decidable and EX-
PSPACE-hard (4)

Undecidable (6)
Undecidable (6)

Place-boundedness
EXPSPACE-c (4)Boundedness Decidable (6)

Coverability Decidable and Ackerman-hard (6)

Problem ωPN ωOPN+T,ωOPN+R ωIPN+T,ωIPN+R

Termination EXPSPACE-c (5) Undecidable (6) Decidable and
Ackerman-hard (6)

complexity of (plain) PN problems apply toωPN too. However, it does not preserve
termination. Thus, we study, in Section 5, as a third contribution, an extension of the
self-covering path technique due to Rackoff [19]. This technique allows to provide a
direct proof of EXPSPACEupper bounds for several classical decision problems, and in
particular, this allows to prove EXPSPACE completeness of the termination problem.

Finally, in Section 6, as a additional contribution, and to get a complete picture,
we consider extensions ofωPN with resetandtransferarcs [7]. For those extensions,
the decidability results for reset and transfer nets (without ω arcs) also apply to our
extension with the notable exception of the termination problem that becomes, as we
show here, undecidable. The summary of our results are givenin Table 1.

Related works ωPN are well-structured transition systems [10]. The set saturation
technique [1] and so symbolic backward analysis can be applied to them while the finite
tree unfolding is not applicable because of the infinite branching property ofωPN. For
the same reason,ωPN arenot well-structured nets [11].

In [3], Bradzil et al. extends the Rackoff technique to VASS games withω output
arcs. While this extension of the Rackoff technique is technically close to ours, we
cannot directly use their results to solve the termination problem ofωPN.

Several works (see for instance [4, 5] rely on Petri nets to model parametric sys-
temsand performparametrised verification. However, in all these works, the dynamic
creation of threads uses the same pattern as in Fig. 1 (b), anddoes not preserve ter-
mination.ωPN allow to model more faithfully the dynamic creation of an unbounded
number of threads, and are thus better suited to model new programming paradigms
(such as those use in GCD [12]) that have been recently proposed to better support
multi-core platforms.

Remark: due to lack of space, most proofs can be found in the appendix.

3

2 ω-Petri nets

Let us define the syntax and semantics of our Petri net extension, calledω Petri nets
(ωPN for short). Letω be a symbol that denotes ‘any positive integer value’. We extend
the arithmetic and the≤ ordering onZ to Z ∪ {ω} as follows:ω + ω = ω − ω = ω;
and for allc ∈ Z: c + ω = ω + c = ω − c = ω; c − ω = c; andc ≤ ω. The fact
that c − ω = c might sound surprising but will be justified later when we introduce
ωPN . An ω-multiset(or simplymultiset) of elements fromS is a functionm : S 7→
N∪{ω}. We denote multisetsm of S = {s1, s2, . . . , sn} by extension using the syntax
{m(s1) ⊗ s1,m(s2) ⊗ s2, . . . ,m(sn) ⊗ sn} (whenm(s) = 1, we writes instead of
m(s)⊗ s, and we omit elementsm(s)⊗ s whenm(s) = 0). Given two multisetsm1

andm2, and an integer valuec we letm1 +m2 be the multiset s.t.(m1 +m2)(p) =
m1(p) +m2(p); m1 −m2 be the multiset s.t.(m1 −m2)(p) = m1(p)−m2(p); and
c ·m1 be the multiset s.t.(c ·m1)(p) = c×m1(p) for all p ∈ P .

Syntax Syntactically,ωPN extend plain Petri nets [18, 20] by allowing (input and
output) arcs to be labeled byω. Intuitively, if a transitiont hasω as output (resp. input)
effect on placep, the firing of t non-deterministically creates (consumes) a positive
number of tokens inp.

Definition 1 A Petri net withω-arcs(ωPN) is a tupleN = 〈P, T 〉 where:P is a finite
set ofplaces; T a finite set oftransitions. Each transition is a pairt = (I, O), where:
I : P → N ∪ {ω} andO : P → N ∪ {ω}, give respectively the input (output) effect
I(p) (O(p)) of t on placep.

By abuse of notation, we denote byI(t) (resp.O(t)) the functions s.t.t = (I(t), O(t)).
When convenient, we sometimes regardI(t) or O(t) asω-multisetsof places. When-
ever there isp s.t. O(t)(p) = ω (resp. I(t)(p) = ω), we say thatt is anω-output-
transition (ω-input-transition). A transitiont is anω-transition iff it is anω-output-
transition or anω-input-transition. Otherwise,t is a plain transition. Remark that
a (plain) Petri net is anωPN with plain transitions only. Moreover, when anωPN
contains noω-output-transitions (resp. noω-input transitions), we say that it is anω-
input-PN (ω-output-PN), orωIPN (ωOPN) for short. For all transitionst, we denote by
effect(t) the functionO(t)− I(t). Remark thateffect(t)(p) could beω for somep (in
particular whenO(t)(p) = I(t)(p) = ω). Intuitively, effect(t)(p) = ω models the fact
that firing t can increase the marking ofp by an arbitrary number of tokens. Finally,
observe thatO(t)(p) = c 6= ω andI(t)(p) = ω implieseffect(t)(p) = c − ω = c.
This models the fact that firingt can at most increase the marking ofp by c tokens.
Thus, intuitively, the valueeffect(t)(p) models themaximal possible effectof t on p.
We extend the definition ofeffect to sequences of transitionsσ = t1t2 · · · tn by letting
effect(σ) =

∑n
i=1 effect(ti).

A marking is a functionP 7→ N. An ω-marking is a functionP 7→ N ∪ {ω},
i.e. anω-multiset onP . Remark that any marking is anω-marking, and that, for all
transitionst = (I, O), I andO are bothω-markings. We denote by0 the marking
s.t. 0(p) = 0 for all p ∈ P . For allω-markingsm, we letω(m) be the set of places
{p | m(p) = ω}, and letnbω (m) = |ω(m)|. We definethe concretisationof m

4

•

p1 t1
p2 t2

p3

t4t3

ω 2

Figure 2: An exampleωPN N1. TheωPN N ′
1 is obtained by removing transitiont4

(red).

as the set of all markings that coincide withm on all placesp 6∈ ω(m), and take an
arbitrary value in any place fromω(m). Formally: γ(m) = {m′ | ∀p 6∈ ω(m) :
m′(p) = m(p)}. We further define a family of orderings onω-markings as follows.
For anyP ′ ⊆ P , we letm1 �P ′ m2 iff (i) for all p ∈ P ′: m1(p) ≤ m2(p), and
(ii) for all p ∈ P \ P ′: m1(p) = m2(p). We abbreviate�P by � (whereP is
the set of places of theωPN). It is well-known that� is awell-quasi ordering(wqo),
that is, we can extract, from any infinite sequencem1,m2, . . . ,mi, . . . of markings,
an infinite subsequencem1,m2, . . . ,mi, . . . s.t. mi � mi+1 for all i ≥ 1. For all
ω-markingsm, we let↓(m) be thedownward-closureof m, defined as↓(m) = {m′ |
m′ is a marking andm′ � m}. We extend↓ to sets ofω-markings:↓(S) = ∪m∈S ↓
(m). A setD of markings isdownward-closediff ↓(D) = D. It is well-known that
(possibly infinite) downward-closed sets of markings can always be represented by a
finite set ofω-markings, because the set ofω-markings forms anadequate domain of
limits [13]: for all downward-closed setsD of markings, there exists a finite setM of
ω-markings s.t.↓(M) = D. We associate, to eachωPN, anintial markingm0. From
now on, we consider mostly initialisedωPN 〈P, T,m0〉.

Example 1 An example of anωPN (actually anωOPN)N1 = 〈P, T,m0〉 is shown
in Fig. 2. In this example,P = {p1, p2, p3}, T = {t1, t2, t3, t4}, m0(p1) = 1 and
m0(p2) = m0(p3) = 0. t1 is the onlyω-transition, withO(t1)(p2) = ω. ThisωPN
will serve as a running example throughout the section.

Semantics Let m be anω-marking. A transitiont = (I, O) is firable fromm iff:
m(p) � I(p) for all p s.t. I(p) 6= ω. We consider two kinds of possible effects
for t. The first is theconcrete semanticsand applies only whenm is a marking. In
this case, firingt yields a new markingm′ s.t. for allp ∈ P : m′(p) = m(p) − i + o
where: i = I(t)(p) if I(t)(p) 6= ω, i ∈ {0, . . . ,m(p)} if I(t)(p) = ω, o = O(t)(p)

if O(t)(p) 6= ω ando ≥ 0 if O(t)(p) = ω. This is denoted bym
t
−→ m′. Thus,

intuitively, I(t)(p) = ω (resp. O(t)(p) = ω) means thatt consumes (produces) an
arbitrary number of tokens inp when fired. Remark that, in the concrete semantics,ω-
transitions arenon-deterministic: whent is anω-transitions that is firable inm, there
areinfinitely manym′ s.t. m

t
−→ m′. The latter semantics is theω-semantics. In this

case, firingt = (I, O) yields the (unique)ω-markingm′ = m − I + O (denoted

m
t
−→ω m′). Remark thatm

t
−→ m′ iff m

t
−→ω m′ whenm andm′ are markings.

5

We extend the→ and→ω relations to finite or infinite sequences of transitions in
the usual way. Also we writem

σ
−→ iff σ is firable fromm. More precisely, for a finite

sequence of transitionsσ = t1 · · · tn, we writem
σ
−→ iff there arem1, . . . ,mn s.t. for

all 1 ≤ i ≤ n: mi−1
ti−→ mi. For an infinite sequence of transitionsσ = t1 · · · tj · · · ,

we writem0
σ
−→ iff there arem1, . . . ,mj, . . . s.t. for alli ≥ 1: mi−1

ti−→ mi.
Given anωPN N = 〈P, T,m0〉, anexecutionof N is either a finite sequence of

the formm0, t1,m1, t2, . . . , tn,mn s.t. m0
t1−→ m1

t2−→ · · ·
tn−→ mn, or an infinite

sequence of the formm0, t1,m1, t2, . . . , tj,mj , . . . s.t. for allj ≥ 1: mj−1
tj
−→ mj .

We denote byReach(N) the set of markings{m | ∃σ s.t.m0
σ
−→ m} that are reachable

from m0 in N . Finally, afinite set ofω-markingsCS is acoverability setof N (with
initial markingm0) iff ↓(CS) =↓(Reach(N)). That is, any coverability setCS is a
finite representation of the downward-closure ofN ’s reachable markings.

Example 2 The sequencet1tK2 is firable for all K ≥ 0 in N1 (Fig. 2). Indeed, for

eachK ≥ 0, one possible execution corresponding tot1t
K
2 is given by〈1, 0, 0〉

t1−→

〈0, 3K, 0〉
t2−→ 〈0, 3K− 1, 2〉

t2−→ 〈0, 3K− 2, 4〉
t2−→ · · ·

t2−→ 〈0, 2K, 2K〉. Remark that
there are other possible executions corresponding to the same sequence of transitions,
because the number of tokens created byt1 in p2 is chosen non-deterministically. Also,
t1t2t

ω
4 is an infinite firable sequence of transitions. Finally, observe that the set of

reachable markings inN1 is Reach(N) = {〈1, 0, 0〉} ∪ {〈0, i, 2 × j〉 | i, j ∈ N}.
The set ofω markingsCS = {〈1, 0, 0〉, 〈0, ω, ω〉} is a coverability set ofN . Note that
↓(CS)) Reach(N): for instance,〈0, 1, 1〉 ∈↓(CS), but〈0, 1, 1〉 is not reachable.

Let us now observe two properties of the semantics ofωPN, that will be useful for
the proofs of Section 3. The first says that, when firing a sequence of transitionsσ that
have nonω-labeled arcs on to and from some placep, the effect ofσ on p is as in a
plain PN:

Lemma 1 Let m and m′ be two markings and letσ = t1 · · · tn be a sequence of
transitions of anωPN s.t. m

σ
−→ m′. Let p be a place s.t. for all1 ≤ i ≤ n:

O(ti)(p) 6= ω 6= I(ti)(p). Then,m′(p) = m(p) + effect(σ)(p).

The latter property says that the set of markings that are reachable by a given sequence
of transitionsσ is upward-closed w.r.t.�P ′ , whereP ′ is the set of places where the
effect ofσ is ω.

Lemma 2 Letm1, m2 andm3 be three markings, and letσ be a sequence of transi-
tions s.t.(i) m1

σ
−→ m2, (ii) m3 �P ′ m2 with P ′ = {p | effect(σ)(p) = ω}. Then,

m1
σ
−→ m3 holds too.

Problems We consider the following problems. LetN = (P, T,m0) be anωPN:

1. Thereachability problemasks, given a markingm, whetherm ∈ Reach(N).

2. Theplace boundedness problemasks, given a placep of N , whether there exists
K ∈ N s.t. for allm ∈ Reach(N): m(p) ≤ K. If the answer is positive, we say
thatp is bounded(fromm0).

6

3. Theboundedness problemasks whether all places ofN are bounded (fromm0).

4. Thecovering problemasks, given a markingm of N , whether there existsm′ ∈
Reach(N) s.t.m′ � m.

5. Thetermination problemasks whether all executions ofN are finite.

Remark that acoverability setof theωPN is sufficient to solveboundedness, place
boundednessandcovering, as in the case of Petri nets. IfCS is a coverability set ofN ,
then:(i) p is bounded iffm(p) 6= ω for all m ∈ CS; (ii) N is bounded iffm(p) 6= ω
for all p and for allm ∈ CS; and(iii), N can coverm iff there existsm′ ∈ CS s.t.
m � m′. As in the plain Petri nets case, a sufficient and necessary condition of non-
termination is the existence of aself covering execution. A self covering executionof

anωPNN = 〈P, T,m0〉 is afiniteexecution of the formm0
t1−→ m1 · · ·

tk−→ mk

tk+1
−−−→

· · ·
tn−→ mn with mn � mk:

Lemma 3 AnωPN terminates iff it admits no self-covering execution.

Example 3 Consider again theωPNN1 in Fig. 2. Recall from Example 2 that, for all
K ≥ 0, t1tK2 is firable and allows toreach〈0, 2K, 2K〉. All these markings are thus
reachable. These sequences of transitions also show thatp2 and p3 are unbounded
(hence,N1 is unbounded too), whilep1 is bounded. Marking〈0, 1, 1〉 is not reachable
but coverable, while 〈2, 0, 0〉 is neither reachable nor coverable. Finally,N1 does not
terminate (becauset1t2tω4 is firable), whileN ′

1 does. In particular,in N ′
1, t3 can fire

only afinite number of time, becauset1 will always create a finite (albeit unbounded)
number of tokens inp2. This an important difference betweenωPN and plain PN: no
unbounded PNs terminates, while there are unboundedωPN that terminate, e.g.N ′

1.

3 A Karp and Miller procedure for ωPN

In this section, we presents an extension of the classical Karp& Miller procedure [15],
adapted toωPN. We show that the finite tree built by this algorithm (coined theKM
tree), allows, as in the case of PNs, to decideboundedness, place boundednes, cover-
ability andterminationonωPN.

Before describing the algorithm, we discuss intuitively the KM trees of theωPN
N1 andN ′

1 given in Fig. 2. Their respectiveKM trees (for the initial markingm0 =
〈1, 0, 0〉) areT1 andT ′

1 , respectively the tree in Fig. 3 and itsblack subtree(i.e., ex-
cludingn7). As can be observed, the nodes and edges of aKM tree are labeled by
ω-markings and transitions respectively. The relationshipbetween aKM tree and the
executions of the correspondingωPN can be formalised using the notion ofstutter-
ing path. Intuitively, a stuttering path is a sequence of nodesn1, n2, . . . , nk s.t. for
all i ≥ 2: eitherni is a son ofni−1, or ni is anancestorof ni−1 that has the same
label asni−1. For instance,π = n1, n2, n4, n2, n3, n6, n3, n5, n3, n5 is a stuttering
path in T ′

1 . Then, we claim(i) that every execution of theωPN is simulated by a
stuttering pathin its KM tree, and that(ii) every stuttering path in theKM tree cor-
responds to a family of executions of theωPN, where an arbitrary number of tokens

7

〈1, 0, 0〉

n1

〈0, ω, 0〉

n2

〈0, ω, ω〉

n3

〈0, ω, 0〉

n4

〈0, ω, ω〉

n5

〈0, ω, ω〉

n6

〈0, ω, ω〉

n7

t1

t2 t3

t2 t4
t3

Figure 3: TheKM treesT1 (whole tree) andT ′
1 (black subtree) of resp.N1 andN ′

1.

can be produced in the places marked byω in theKM tree. For instance, the execution
m0, t1, 〈0, 42, 0〉, t3, 〈0, 41, 0〉, t2, 〈0, 40, 2〉, t3, 〈0, 39, 2〉, t2, 〈0, 38, 4〉, t2, 〈0, 37, 6〉, of
N ′

1 is witnessed inT ′
1 by the stuttering pathπ given above – observe that the se-

quence of edge labels inπ’s equals the sequence of transitions of the execution, and
that all markings along the execution arecoveredby the labels of the corresponding
nodes inπ: m0 ∈ γ(n1), 〈0, 42, 0〉 ∈ γ(n2), and so forth. On the other hand, the
stuttering pathn1, n2, n3 of N1 summarises all the (infinitely many) possible execu-
tions obtained by firing a sequence of the formt1tn2 . Indeed, for allk ≥ 1, ℓ ≥ 0:
m0, t1, 〈0, k + ℓ, 0〉, t2, 〈0, k + ℓ − 1, 2〉, t2, . . . , t2, 〈0, k, 2 × ℓ〉 is an execution of
N1, so, an arbitrary number of tokens can be obtained in bothp2 andp3 by firing se-
quences of the formt1tn2 . Finally, observe that aself-covering executionof N1, such as
m0, t1, 〈0, 1, 0〉, t2, 〈0, 0, 2〉, t4, 〈0, 0, 2〉 can be detected inT1, by considering the path
n1, n2, n3, n7, and noting that the label of(n3, n7) is t4 with effect(t4) � 0.

The Build-KM algorithm Let us now show how to build algorithmically theKM
of anωPN. Recall that,in the case of plain PNs, the Karp& Miller tree [15] can be
regarded as afinite over-approximation of the (potentially infinite) reachability tree of
the PN. Thus, the Karp& Miller algorithm works by unfolding the transition relation of
the PN, and adds two ingredients to guarantee that the tree isfinite. First, a noden that
has an ancestorn′ with the same labelis not developed(it has no children). Second,
when a noden with labelm has an ancestorn′ with labelm′ ≺ m, anacceleration
function is applied to produce a markingmω s.t. mω(p) = ω if m(p) > m′(p) and
mω(p) = m(p) otherwise. This acceleration issoundwrt to coverability since the
sequence of transition that has produced the branch(n, n′) can be iterated an arbitrary
number of times, thus producing arbitrary large numbers of tokens in the places marked
by ω in mω. Remark that these two constructions are not sufficient to ensure termina-
tion of the algorithm in the case ofωPN, asωPN arenot finitely branching(firing an
ω-output-transition can produce infinitely many different successors). To cope with

8

this difficulty, our solution unfolds theω-semantics→ω instead of the concrete seman-
tics→. This has an important consequence: whereas the presence ofa node labeled by
m with m(p) = ω in theKM tree of a PNN impliesthatN does not terminate, this is
not true anymorein the case ofωPN. For instance, all nodes butn1 in T ′

1 (Fig. 3) are
marked byω, yet the correspondingωPNN ′

1 (Fig. 2)does terminate.
Our version of the Karp& Miller tree adapted toωPN is given in Fig. 4. It builds a

treeT = 〈N,E, λ, µ, n0〉 where:N is a set of nodes;E ⊆ N × N is a set of edges;
λ : N 7→ (N ∪ {ω})P is a function that labels nodes byω-markings2; µ : E 7→ T is
a labeling function that labels arcs by transitions; andn0 ∈ N is the root of the tree.
For each edgee, we leteffect(e) = effect(µ(e)). LetE+ andE∗ be respectively the
transitive and the transitive reflexive closure ofE. A stuttering pathis a finite sequence
n0, n1, . . . , nℓ s.t. for all1 ≤ i ≤ ℓ: either (ni−1, ni) ∈ E or (ni, ni−1) ∈ E+ and
λ(ni) = λ(ni−1). A stuttering pathn0, n1, . . . , nℓ is a(plain) pathiff (ni−1, ni) ∈ E
for all 1 ≤ i ≤ ℓ. Given two nodesn andn′ s.t. (n, n′) ∈ E∗, we denote byn n′

the (unique path) fromn to n′. Given a stuttering pathπ = n0, n1, . . . , nℓ, we denote
by µ(π) the sequenceµ(n0, n1)µ(n1, n2) · · ·µ(nℓ−1, nℓ) assumingµ(ni, ni+1) = ε

when(ni, ni+1) 6∈ E; and byeffect(π) =
∑ℓ

i=1 effect(ni−1, ni), lettingeffect(ni−1, ni) =
0 when(ni, ni+1) 6∈ E.

Build-KM follows the intuition given above. At all times, it maintains a fron-
tier U of tree nodes that are candidate for development (initially, U = {n0}, with
λ(n0) = m0). Then,Build-KM iteratively picks up a noden fromU (see line 4), and
develops it (line 6 onwards) ifn has no ancestorn′ with the same label (line 5).De-
velopinga noden amounts to computing all the markingm s.t.λ(n) →ω m (line 17),
performing accelerations (line 19) if need be, and inserting the resulting children in the
tree. Remark thatBuild-KM is recursive(see line 9): every time a markingm with
an extraω is created, it performs a recursive call toBuild-KM(N ,m), usingm as
initial marking3.

The rest of the section is devoted to proving that this algorithm is correct. We start
by establishing termination, then soundness (every stuttering path in the tree corre-
sponds to an execution of theωOPN) and finally completeness (every execution of the
ωOPN corresponds to a stuttering path in the tree). To this end, we rely on the follow-
ing notions. Symmetrically toself-covering executionswe define the notion ofself-
covering (stuttering) pathin a tree: a (stuttering) pathπ is self-coveringiff π = π1π2

with effect(π2) ≥ 0. A self-covering stuttering pathπ = π1π2 isω-maximaliff for all
nodesn, n′ alongπ2: nbω (n) = nbω (n′).

Termination Let us show thatBuild-KM always terminates. First observe that the
depth of recursive calls is at most by|P | + 1, as the number of places marked byω
along a branch does not decrease, and since we perform a recursive call only when a
place gets marked byω and was not before. Moreover, the branching degree of the tree
is bounded by the number|T | of transitions. Thus, by König’s lemma, an infinite tree
would contain an infinite branch. We rule out this possibility by a classical wqo argu-

2We extendλ to set of nodesS in the usual way:λ(S) = {λ(n) | n ∈ S}.
3Although this differs from classical presentations of the Karp& Miller technique, we have retained it

because it simplifies the proofs of correctness.

9

Input anωOPNN = 〈P, T 〉 and anω-markingm0

Output theKM of N , starting fromm0

Build-KM (N ,m0):
1 T := 〈N,E, λ, µ, n0〉 where N = {n0} with λ(n0) = m0

2 U := {n0}
3 while U 6= ∅:
4 select and remove n from U
5 if ∄n st (n, n) ∈ E+ and λ(n) = λ(n):
6 forall t in T s.t. ∀p ∈ P: I(t)(p) 6= ω implies λ(n)(p) ≥ I(t)(p):
7 m′ := Post(N,λ(n), t)
8 if nbω (m′) > nbω (λ(n)):
9 T ′ := Build-KM(N,m′)

10 add all edge and nodes of T ′ to T
11 let n′ be the root of T ′

12 else
13 n′ := new node with λ(n′) = m′

14 U := U ∪ {n′}
15 E := E ∪ (n, n′) s.t. µ(n, n′) = t.
16 return T

Post(N ,n,t):
17 m′ := λ(n)− I(t) +O(t)
18 if ∃n :

(

n, n) ∈ E+ ∧ λ(n) ≺ λ(n)
)

:

19 mw(p) :=

{

m′(p) if effect(n n · t)(p) ≤ 0

ω otherwise

20 return mw

21 else:
22 return m′

Figure 4: The algorithm to build theKM of anωPN.

ment: if there were an infinite branch in the tree computed byBuild-KM(N ,m0),
then there would be two nodesn1 along the branchn2 (wheren1 is an ancestor of
n2) s.t. λ(n1) � λ(n2) andeffect(n1 n2) � 0. Since the depth of recursive calls
is bounded, we can assume, wlog, thatn1 andn2 have been built during the same
recursive call, henceλ(n1) ≺ λ(n2) is not possible, because this would trigger an ac-
celeration, create an extraω and start a new recursive call. Thus,λ(n1) = λ(n2), but
in this case the algorithm stops developing the branch (line5). See the appendix for a
full proof.

Proposition 1 For all ωPN N and for all markingm0, Build-KM(N ,m0) termi-
nates.

Then, following the intuition that we have sketched at the beginning of the section,
we show thatKM is sound(Lemma 4) andcomplete(Lemma 6). Note that we first
establish these results assuming that theωPNN given as parameter is anωOPN, then

10

prove that the results extend to the general case ofωPN.

Soundness To establishsoundnessof our algorithm, we show that, for every path
n0, . . . , nk in the tree returned byBuild-KM(N ,m0), and for every target marking
m ∈ γ(λ(nk)), we can find an execution ofN reaching a markingm′ ∈ γ(nk) that
coversm. This implies that, ifλ(nk)(p) = ω for somep, then, we can find a family
of executions that reach a marking inγ(nk) with an arbitrary number of tokens inp.
For instance, consider the pathn1, n2, n3 in T ′

1 (Fig. 3), and letm = 〈0, 2, 4〉. Then,

a corresponding execution is〈1, 0, 0〉
t1−→ 〈0, 4, 0〉

t2−→ 〈0, 3, 2〉
t2−→ 〈0, 2, 4〉. Remark

that the execution is not necessarily the sequence of transitions labeling the path in
the tree: in this case, we need to iteratet2 to transfer tokens fromp2 to p3, which is
summarised in one edge(n2, n3) in T1, by the acceleration.

Lemma 4 LetN be anωOPN, letm0 be anω-marking and letT be the tree returned
byBuild-KM(N ,m0). Letπ = n0, . . . , nk be a stuttering path inT , and letm be

a marking inγ(λ(nk)). Then, there exists an executionρπ = m0
t1−→ m1 · · ·

tℓ−→ mℓ

of N s.t. mℓ ∈ γ(λ(nk)), mℓ � m andm0 ∈ γ(λ(n0)). Moreover, when for all
0 ≤ i ≤ j ≤ k: nbω (ni) = nbω (nj), we have:t1 · · · tℓ = µ(π).

Completeness Proving completeness amounts to showing that every execution (start-
ing fromm0) of anωPNN is witnessed by a stuttering path inBuild-KM(N ,m0).
It relies on the following property:

Lemma 5 LetN be anωOPN, letm0 be anω-marking, and letT be the tree returned
byBuild-KM(N ,m0). Then, for all nodesn of Build-KM(N ,m0):

• eithern has no successor in the tree and has an ancestorn s.t.λ(n) = λ(n).

• or the set of successors ofn corresponds to all the→ω possible successors of

λ(n), i.e.: {µ(n, n′) | (n, n′) ∈ E} = {t | λ(n)
t
−→ω}. Moreover, for eachn′

s.t. (n, n′) ∈ E andµ(n, n′) = t: λ(n′) � λ(n) + effect(t).

We can now state the completeness property:

Lemma 6 LetN be anωOPN with set of transitionsT , let m0 be an initial marking

and letm0
t1−→ m1

t2−→ · · ·
tn−→ mn be an execution ofN . Then, there are astuttering

pathπ = n0, n1, . . . , nk in Build-KM(N ,m0) and a monotonic increasing mapping
h : {1, . . . , n} 7→ {0, . . . , k} s.t.: µ(π) = t1t2 · · · tn and mi � λ(nh(i)) for all
0 ≤ i ≤ n.

From ωOPN toωPN We have shown completeness and soundness of theBuild-KM
algorithm forωOPN. Let us show that eachωPN N can be turned into anωOPN
remIω(N) that(i) terminates iffN terminates and(ii) that has the same coverability
sets asN . TheωOPNremIω(N) is obtained fromN by replacing each transitiont ∈
T by a transitiont′ ∈ T ′ s.t. O(t′) = O(t) andI(t′) = {I(t)(p) ⊗ p | I(t)(p) 6= ω}.
Intuitively, t′ is obtained fromt by deleting allω input arcs. Sincet′ always consumes
less tokensthant does, the following is easy to establish:

11

Lemma 7 LetN be anωPN. For all executionsm0, t
′
1,m1, . . . , t

′
n,mn of remIω(N):

m0, t1,m1, . . . , tn,mn is an execution ofN . For all finite (resp. infinite) executions
m0, t1,m1, . . . , tn,mn (m0, t1,m1, . . . , tj ,mj , . . .) of N , there exists an execution
m0, t

′
1,m

′
1, . . . , t

′
n,m

′
n (m0, t1,m

′
1, . . . , tj ,m

′
j, . . .) of remIω(N), s.t. mi � m′

i for
all i.

Intuitively, this means that, when solving coverability, (place) boundedness or ter-
mination on anωPNN , we can analyseremIω(N) instead, becauseN terminates iff
remIω(N) terminates, and removing theω-labeled input arcs fromN does not allow
to reach higher markings. Finally, we observe that, for allωPNN , and all initial mark-
ingm0: the trees returned byBuild-KM(N ,m0) andBuild-KM (remIω(N ,m0))
respectively are isomorphic4. This is because we have definedc − ω to be equal toc:
applying this rule when computing the effect of a transitiont (line 17), is equivalent to
computing the effect of the correspondingt′ in remIω(N), i.e. lettingI(t′)(p) = 0 for
all p s.t. I(t)(p) = ω. Thus, we can lift Lemma 4 and Lemma 6 toωPN. This establish
correctness of the algorithm for the generalωPN case.

Applications of the Karp& Miller tree These results allow us to conclude that the
Karp& Miller can be used to compute a coverability set and to decide termination of
anyωPN.

Theorem 1 LetN be anωPN with initial markingm0, and letT be the tree returned
by〈N,E, λ, µ, n0〉 = Build-KM(N ,m0). Then:(i) λ(N) is a coverability set ofN
and(ii) N terminates iffT contains anω-maximal self-covering stuttering path.

Proof. Point (i) follows from Lemma 4 (lifted toωPN). Let us now prove both
directions of point(ii).

First, we show that ifBuild-KM(N ,m0) contains anω-maximal self-covering
stuttering path, thenN admits a self-covering execution fromm0. Let n0, . . . , nk,
nk+1, . . . , nℓ be an ω-maximal self-covering stuttering path, and assume
effect(nk+1, . . . , nℓ) ≥ 0. Let us apply Lemma 4 (lifted toωPN), by lettingm = 0

andπ = π2, and letm1 andm2 be markings s.t.m1
µ(π2)
−−−→ m2. The existence of

m1 andm2 is guaranteed by Lemma 4 (lifted toωPN), because all the nodes alongπ2

have the same number ofω’s as we are considering anω-maximalself-covering stut-
tering path. Sinceeffect(π2) is positive, so iseffect(µ(π2)). Thus, there exists5 m′

2

s.t.m1
µ(π2)
−−−→ m′

2 andm′
2 � m1. By invoking Lemma 4 (lifted toωPN) again, letting

π = π1 andm = m1, we conclude to the existence of a sequence of transitionsσ, a
markingm0 and a markingm′

1 � m1 s.t.m0
σ
−→ m′

1. Sincem′
1 � m1, µ(π2) is again

4That is, if Build-KM(N , m0) returns 〈N,E, λ, µ, n0〉 and Build-KM (remIω(N ,m0))
returns〈N ′, E′, λ′, µ′, n′

0〉, then, there is a bijectionh : N 7→ N ′ s.t. (i) h(n0) = n′

0, (ii) for all
n ∈ N : λ(n) = λ(h(n)), (iii) for all n1, n2 in N : (n1, n2) ∈ E iff (h(n1), h(n2)) ∈ E′, (iv) for all
(n1, n2) ∈ E: µ(n1, n2) = µ′(h(n1), h(n2)).

5Remark that, althougheffect(µ(π2)) � 0, we have no guarantee thatm2 � m1, as we could have
effect(µ(π2)) = ω for somep, and maybe the amount of tokens that has been produced inp by µ(π2) to
yield m2 does not allow to havem2(p) ≥ m1(p). However, in this case, it is always possible to reach a
marking with enough tokens inp to coverm1(p), sinceeffect(µ(π2)) = ω.

12

firable fromm′
1. Letm2 = m2 +m′

1 −m1. Clearly,m′
1

µ(π2)
−−−→ m2, with m2 � m′

1.

Hence,m0
σ
−→ m′

1

µ(π2)
−−−→ m2 is a self-covering execution ofN .

Second, let us show that, ifN admits a self-covering execution fromm0, then
Build-KM(N ,m0) contains anω-maximal self-covering stuttering path. Letρ =

m0
t1−→ m1 · · ·

tn−→ mn be a self-covering execution and assume0 ≤ k < n is a
position s.t.mk � mn. Let σ1 denotet1, . . . tk andσ2 denotetk+1, . . . tn. Let us
consider the executionρ′, defined as follows

ρ′ = m0
σ1−→ mk

tk+1
−−−→ mk+1 · · ·

tn−→ mn
︸ ︷︷ ︸

σ2

tk+1
−−−→ mn+1 · · ·

tn−→ m2n−k
︸ ︷︷ ︸

σ2

· · ·

· · ·
tk+1
−−−→ m(|P |+1)n−|P |k+1 · · ·

tn−→ m(|P |+2)n−(|P |+1)k
︸ ︷︷ ︸

σ2

where for alln+1 ≤ j ≤ (|P |+2)n−(|P |+1)k: mj−mj−1 = mf(j)−mf(j−1) with
f the function defined asf(x) =

(
(x− k) mod (n− k)

)
+ k for all x. Intuitively,ρ′

amounts to firingσ1(σ2)
|P |+1 (whereP is the set of places ofN) fromm0, by using,

each time we fireσ2, the same effect as the one that was used to obtainρ (remember
that the effect ofσ2 is non-deterministic whenω’s are produced). It is easy to check
thatρ′ is indeed an execution ofN , becauseρ is a self-covering execution.

Letn0, n1, . . . nℓ andh be the stuttering path inBuild-KM(N ,m0) and the map-
ping corresponding toρ′ (and whose existence is established by Lemma 6). Since,
mk � mn, effect(tk+1 · · · tn) ≥ 0 and by Lemma 6 (lifted toωPN), all the following
stuttering paths are self-covering:

n0, . . . , nh(k), . . . , nh(n)

n0, . . . , nh(k), . . . , nh(n), . . . , nh(2n−k)

n0, . . . , nh(k), . . . , nh(n), . . . , nh(2n−k), . . . , nh(3n−2k)

...

n0, . . . , nh(k), . . . , nh(n), . . . , nh(2n−k), . . . , nh(3n−2k), . . . , nh((|P |+2)n−(|P |+1)k)

Let us show that one of them isω-maximal, i.e. that there is1 ≤ j ≤ |P | + 1 s.t.
nbω

(
nh(jn−(j−1)k)

)
= nbω

(
nh((j+1)n−jk)

)
. Assume it is not the case. Since the

number ofω’s can only increase along a stuttering path, this means that

0 ≤ nbω
(
nh(n)

)
< nbω

(
nh(2n−k)

)
< nbω

(
nh(3n−2k)

)
< nbω

(
nh((|P |+2)n−(|P |+1)k)

)

However, this implies thatnbω
(
nh((|P |+2)n−(|P |+1)k)

)
> |P |, which is not possible

asP is the set of places ofN . Hence, we conclude that there exists anω-maximal
self-covering stuttering path inBuild-KM(N ,m0). �

13

t

q

q1

q2

p

p1

p2

ω

ω

ω

ω
lockt

t′ tendq
lockg

p

tp1

+ω

tp2

+ω

tq1−ω

tq2−ω

p1q1

p2q2

Figure 5: Transforming anωPN into a plain PN.

4 From ωPN to plain PN

Let us show that we can, from anyωPNN , build a plain PNN ′ whose set of reach-
able markings allows to recover the reachability set ofN . This construction allows to
solve reachability, coverability and (place) boundednes.The idea of the construction
is depicted in Fig. 5. More precisely, we turn theωPNN = 〈P, T,m0〉 into a plain
PNN ′ = 〈P ′, T ′,m′

0〉 using the following procedure. Assume thatT = Tplain ⊎ Tω,
whereTω is the set ofω-transitions ofN . Then:

1. We add to the net one place (called theglobal lock) lockg, and for eachω-
transitiont, one placelockt. That is,P ′ = P ∪ {lockg} ∪ {lockt | t ∈ Tω}.

2. Each transitiont in N is replaced by a set of transitionsTt in N ′. In the case
wheret is a plain transition,Tt contains a single transition that has the same
effect ast, except that it also tests for the presence of a token inlockg. In the
case wheret is anω-transition,Tt is a set of plain transitions that simulate the
effect oft, as in Fig. 5. Formally,T ′ = ∪t∈TTt, where theTt sets are defined as
follows:

• If t is a plain transition, thenTt = {t′}, where,I(t′) = I(t) ∪ {lockg} and
O(t′) = O(t) ∪ {lockg}.

• If t is anω-transition, then:

Tt = {t′, tend} ∪ {tp−ω | I(t)(p) = ω} ∪ {tp+ω | O(t)(p) = ω}

whereI(t′) = I(t) + {lockg}; O(t′) = I(tend) = {lockt}; O(tend) =
{lockg} + O(t). Furthermore, for allp s.t. I(t)(p) = ω: I(tp−ω) =
{p, lockt} andO(tp−ω) = {lockt}. Finally, for all p s.t. O(t)(p) = ω:
I(tp+ω) = {lockt} andO(tp−ω) = {p, lockt}.

3. We letf be the function that associates each markingm of N to the marking
f(m) of N ′ s.t. m′(lockg) = 1; for all p ∈ P : m′(p) = m(p); and for all
p 6∈ P ∪ {lockg}: m′(p) = 0. Then, the initial marking ofN ′ is f(m0).

It is easy to check that:

14

Lemma 8 LetN be anωPN and letN ′ be its corresponding PN. Thenm ∈ Reach(N)
iff f(m) ∈ Reach(N ′).

The above construction can be carried out in polynomial time. Thus,ωPN generalise
Petri nets, the known complexities for reachability [16, 17], (place) boundedness and
coverability [19] carry on toωPN:

Corollary 1 Reachability forωPN is decidable andEXPSPACE-hard. Coverability,
boundedness and place boundedness forωPN areEXPSPACE-c.

This justifies the result given in Table 1 for reachability, coverability and (place) bound-
edness, forωPN.

However, the above construction fails for deciding termination. For instance, as-
sume that the leftmost part of Fig. 5 is anωPN N = 〈P, T,m0〉 with m0(q) = 1.
Clearly, all executions ofN are finite, whilet′(tp1

+ω)
ω is an infinite transition sequence

that is firable inN ′. Termination, however is decidable, by theKM technique of Sec-
tion 3, and EXPSPACE-hard, asωPN generalise Petri nets. In the next section, we show
that the Rackoff technique [19] can be generalised toωPN, and prove that termination
is EXPSPACE-c forωPN.

5 Extending the Rackoff technique forωPN

In this section, we extend the Rackoff technique toωPN to prove the existence of short
self-covering sequences. For applications of interest, such as the termination problem,
it is sufficient to considerωOPN, as proved in Lemma 7. Hence, we only consider
ωOPN in this section.

As observed in [19], beyond some large values, it is not necessary to track the
exact value of markings to solve some problems. We use threshold functionsh :
{0, . . . , |P |} → N to specify such large values. Letnbω (m) = |{p ∈ P | m(p) ∈
N}|.

Definition 2 Leth : {0, . . . , |P |} → N be a threshold function. Given anω-marking
m, the markings[m]h→ω and[m]ω→h are defined as follows:

([m]h→ω)(p) =

{

m(p) if m(p) < h(nbω (m)),

ω otherwise.

([m]ω→h)(p) =

{

m(p) if m(p) ∈ N,

h(nbω (m) + 1) otherwise.

In [m]h→ω, values that are too high are abstracted byω. In [m]ω→h, ω is replaced
by the corresponding natural number. This kind of abstraction is formalized in the
following threshold semantics.

Definition 3 Given anωPN N , a transitiont, anω-markingm that enablest and a

threshold functionh, we define the transition relation
t
−→h asm

t
−→h [m+effect(t)]h→ω .

15

The transition relation
t
−→h is extended to sequences of transitions in the usual way.

Note that ifm
t
−→h m′, thenω(m) ⊆ ω(m′). In words, a place markedω will stay that

way along any transition in threshold semantics.
Let R = max{| effect(t)(p)| | t ∈ T, p ∈ P, effect(t)(p) < ω}. The following

proposition says thatω can be replaced by natural numbers that are large enough so
that sequences are not disabled. The proof is by a routine induction on the length of
sequences, using the fact that in anωOPN, any transition can reduce at mostR tokens
from any place.

Proposition 2 For someω-markingsm1 andm2, supposem1
σ
−→h m2 andω(m2) =

ω(m1). If m′
1 is a marking such thatm′

1 �ω(m1) m1 and m′
1(p) ≥ R|σ| for all

p ∈ ω(m1), thenm′
1

σ
−→ m′

2 such thatm′
2 �ω(m2) m2 andm′

2(p) ≥ m′
1(p)−R|σ|.

Definition 4 Given anω-markingm1 and a threshold functionh, anω-maximal thresh-
old pumping sequence(h-PS) enabled atm1 is a sequenceσ of transitions such that
m1

σ
−→h m2, effect(σ) ≥ 0 andω(m2) = ω(m1).

In the above definition, note that we requireeffect(σ)(p) ≥ 0 for anyplacep, irrespec-
tive of whetherm1(p) = ω or not.

Definition 5 Supposeσ is anω-maximalh-PS enabled atm1 andσ = σ1σ2σ3 such
that m1

σ1−→h m3
σ2−→h m3

σ3−→h m2. We callσ2 a simple loopif all intermediate
ω-markings obtained while firingσ2 fromm3 (except the last one, which ism3 again)
are distinct from one another.

In the above definition, sincem3
σ2−→h m3 andm1

σ1σ3−−−→h m2, one might be tempted
to think thatσ1σ3 is also anω-maximalh-PS enabled atm1. This is however not true in
general, since there might be somep ∈ ω(m1) such thateffect(σ1σ3)(p) < 0 (which
is compensated byσ2 with effect(σ2)(p) > 0). The presence of the simple loopσ2 is
required due to its compensating effect. The idea of the proof of the following lemma
is that if there are a large number of loops, it enough to retain a few to get a shorter
ω-maximalh-PS.

Lemma 9 There is a constantd such that for anyωPN N , any threshold functionh
and anyω-maximalh-PSσ enabled at someω-markingm1, there is anω-maximal
h-PSσ′ enabled atm1, whose length is at most(h(nbω (m1))2R)d|P |3 .

Proof. [Sketch] This proof is similar to that of [19, Lemma 4.5], with some modifica-
tions to handleω-transitions. It is organized into the following steps.

Step 1: We first associate a vector with a sequence of transitions to measure the effect
of the sequence. This is the step that differs most from that of [19, Lemma 4.5].
The idea in this step is similar to the one used in [3, Lemma 7].

Step 2: Next we remove some simple loops fromσ to obtainσ′′ such that for every
intermediateω-markingm in the runm1

σ
−→h m2, m also occurs in the run

m1
σ′′

−−→h m2.

16

Step 3: The sequenceσ′′ obtained above need not be ah-PS. With the help of the
vectors defined in step 1, we formulate a set of linear Diophantine equations that
encode the fact that the effects ofσ′′ and the simple loops that were removed in
step 2 combine to give the effect of ah-PS.

Step 4: Then we use the result about existence of small solutions to linear Diophan-
tine equations to construct a sequenceσ′ that meets the length constraint of the
lemma.

Step 5: Finally, we prove thatσ′ is ah-PS enabled atm1.

Step 1: Let Pω ⊆ ω(m1) be the set of placesp such that some transitiont in σ
haseffect(t)(p) = ω. If we ensure that for each placep ∈ Pω, some transitiont
with effect(t)(p) = ω is fired, we can ignore the effect of other transitions onp. This
is formalized in the following definition of the effect of anysequence of transitions
σ1 = t1 · · · tr. We define the function∆Pω

[σ1] : ω(m1) → Z as follows.

∆Pω
[σ1](p) =

1 p ∈ Pω , ∃i ∈ {1, . . . , r} : effect(ti)(p) = ω

0 p ∈ Pω , ∀i ∈ {1, . . . , r} : effect(ti)(p) 6= ω
∑

1≤i≤r effect(ti)(p) otherwise

Applying the above definition to simple loops, it is possibleto remove some of them to
get shorter pumping sequences. Details about how to do it arein the remaining steps
of the proof, which are moved to the appendix. �

Definition 6 Let c = 2d. The functionsh1, h2, ℓ : N → N are as follows:

h1(0) = 1 ℓ(0) = (2R)c|P |3 h2(0) = R

h1(i + 1) = 2Rℓ(i) ℓ(i+ 1) = (h1(i+ 1)2R)c|P |3 h2(i+ 1) = Rℓ(i)

All the above functions are non-decreasing. Due to the selection of the constantc
above, we have(2xR)c|P |3 ≥ x|P | + (2xR)d|P |3 for all x ∈ N.

The goal is to prove that if there is a self-covering execution, there is one whose
length is at mostℓ(|P |). That proof uses the result of Lemma 9 and the definition ofℓ
above reflects it. For the intuition behind the definition ofh1 andh2, suppose that the
proof of the length upper bound ofℓ(|P |) is by induction on|P | and we have proved
the result for|P | = i. For the case ofi+ 1, we want to decide the value beyond which
it is safe to abstract by replacing numbers byω. As shown in Fig. 6, suppose the initial
prefix of a self-covering execution fori places is of length at mostℓ(i). Also suppose
the pumping portion of the self-covering execution is of length at mostℓ(i). The total
length is at most2ℓ(i). Since each transition can reduce at mostR tokens from any
place, it is enough to have2Rℓ(i) tokens inpi+1 to safely replace numbers byω.

The following lemma shows that if someω-marking can be reached in threshold
semantics, a corresponding marking can be reached in the natural semantics whereω
is replaced by a value large enough to solve the termination problem.

17

p1

pi

pi+1

≥ 2Rℓ(i) → ω

≤ ℓ(i) ≤ ℓ(i)

Figure 6: Intuition for the threshold functions

Lemma 10 For someω-markingsm3 and m4, supposem3
σ
−→h1 m4. Then there

is a sequenceσ′ such that[m3]ω→h1

σ′

−→ m′
4, m′

4 �ω(m4) [m4]ω→h2 and |σ′| ≤

h1(nbω (m3))
|P |.

Lemma 11 If an ωPNN admits a self-covering execution, then it admits one whose
sequence of transitions is of length at mostℓ(|P |).

Proof. Supposeσ = σ1σ2 is the sequence of transitions in the given self-covering
execution such thatm0

σ1−→ m1
σ2−→ m2 andm2 � m1. A routine induction on the

length of any sequence of transitionsσ shows that ifm3
σ
−→ m4, we havem3

σ
−→h1 m′

4

with m′
4 −m3 � m4 −m3. Hence, we havem0

σ1−→h1 m′
1

σ2−→h1 m′
2 with m′

2 � m′
1.

By monotonicity, we infer that for anyi ∈ N+, m′
i

σ2−→h1 m′
i+1 with m′

i+1 � m′
i.

Let j ∈ N+ be the first number such thatω(m′
j) = ω(m′

j+1). We havem0
σ1σ

j−1
2−−−−−→h1

m′
j

σ2−→h1 m′
j+1 andσ2 is anω-maximalh1-PS enabled atm′

j .
By Lemma 9, there is ah1-PS σ′

2 enabled atm′
j whose length is at most

(h1(nbω
(
m′

j

)
)2R)d|P |3. By Lemma 10, there is a sequenceσ′

1 such thatm0
σ′

1−→ m′′
j ,

m′′
j �ω(m′

j)
[m′

j]ω→h2 and |σ′
1| ≤ (h1(|P |))|P |. By Definition 6 and Definition 2,

we infer thatm′′
j (p) = Rℓ(nbω

(
m′

j

)
) = R(h1(nbω

(
m′

j

)
)2R)c|P |3 ≥ R|σ′

2| for all

p ∈ ω(m′
j). Hence, we infer from Proposition 2 thatm0

σ′

1−→ m′′
j

σ′

2−→ m′′
j+1. Since

σ′
2 is a h1-PS,effect(σ′

2) � 0, and som′′
j+1 � m′′

j . Therefore, firingσ′
1σ

′
2 at m0

results in a self-covering execution. The length ofσ′
1σ

′
2 is at most(h1(|P |))|P | +

(h1(nbω
(
m′

j

)
)2R)d|P |3 ≤ ℓ(|P |). �

Lemma 12 Letk = 3c. Thenℓ(i) ≤ (2R)k
i+1|P |3(i+1)

for all i ∈ N.

Theorem 2 The termination problem forωPN isEXPSPACE-c.

The idea of the proof of the above theorem is to construct a non-deterministic Turing
machine that guesses and verifies a self-covering sequence.By Lemma 11, the length
of such a sequence can be limited and hence made to work in EXPSPACE. Full proof
can be found in the appendix.

18

6 Extensions with transfer or reset arcs

In this section, we consider two extensions ofωPN, namely:ωPN with transfer arcs
(ωPN+T) andωPN withreset arcs(ωPN+R). These extensions have been considered in
the case of plain Petri nets: Petri nets with transfer arcs (PN+T) and Petri nets with reset
arcs (PN+R) have been extensively studied in the literature[7, 1, 8, 21]. Intuitively, a
transfer arcallows, when the corresponding transition is fired totransfer all the tokens
from a designated placep to a given placeq, while areset arc consumes all tokensfrom
a designated placep.

Formally, anextendedωPN is a tuple〈P, T 〉, whereP is a finite set of places and
T is finite set of transitions. Each transition is a pairt = (I, O) whereI : P 7→ N ∪
{ω,T,R}; O : P 7→ N ∪ {ω,T}; |{p | I(p) ∈ {T,R}}| ≤ 1; |{p | O(p) ∈ {T}}| ≤ 1;
there isp s.t. I(p) = T iff there isq s.t.O(q) = T; andif there isp s.t. I(p) = R, then,
O(p) ∈ N{ω} for all p. A transition(I, O) s.t. I(p) = T (resp.I(p) = R) for somep
is called atransfer(reset). An ωPN with transfer arcs(resp.with reset arcs), ωPN+T
(ωPN+R) for short, is an extendedωPN that contains no reset (transfer). AnωPN+T
s.t. I(t)(p) 6= ω for all transitionst and placesp is anωOPN+T. The classωIPN+T
is defined symmetrically. AnωPN+T which is both anωOPN+TandanωIPN+T is a
(plain) PN+T. The classesωOPN+R,ωIPN+R and PN+R are defined accordingly.

Let t = (I, O) be a transfer or a reset.t is enabledin a markingm iff for all p:
I(p) 6∈ {ω,T,R} impliesm(p) ≥ I(p). In this case firingt yields a markingm′ =

m−mI +mO (denotedm
t
−→ m′) where for allp: mI(p) = m(p) if I(p) ∈ {T,R};

0 ≤ mI(p) ≤ m(p) if I(p) = ω; mI(p) = I(p) if I(p) 6∈ {T,R, ω}; mO(p) = m(p′)
if O(p) = I(p′) = T ; mO(p) ≥ 0 if O(p) = ω; andmO(p) = O(p) if O(p) 6∈ {T, ω}.
The semantics of transitions that are neither transfers norresets is as defined forωPN.

Let us now investigate the status of the problems listed in Section 2, in the case of
ωPN+T andωPN+R. First, sinceωPN+T (ωPN+R) extend PN+T (PN+R), the lower
bounds for the latters carry on: reachability and place-boundedness are undecidable [6]
for ωPN+T andωPN+R; boundedness is undecidable forωPN+R [8]; and coverability
is Ackerman-hard forωPN+T andωPN+R [21]. On the other hand, the construction
given in Section 4 can be adapted to turn anωPN+T (resp.ωPN+R)N into a PN+T
(PN+R)N ′ satisfying Lemma 8 (i.e., projectingReach(N ′,m0) on the set of places
of N yieldsReach(N ,m0)). Hence, boundedness forωPN+T [8], and coverability for
bothωPN+T andωPN+R are decidable [1].

As far astermination is concerned, it is decidable [7] and Ackerman-hard [21]
for PN+R and PN+T. Unfortunately, the construction presented in Section 4 does not
preserve termination, so we cannot reduce termination ofωPN+T (resp.ωPN+R) to
termination of PN+T (PN+R). Actually, termination becomesundecidable when con-
sideringωOPN+R orωOPN+T:

Theorem 3 Termination is undecidable forωOPN+T andωOPN+R with oneω-output-
arc

Proof. We first prove undecidability forωOPN+T. The proof is by reduction from the
parameterised termination problemfor Broadcast protocols(BP) [9]. It is well-known
that PN+T generalise broadcast protocols, hence the following parameterised termina-
tion problem for PN+Tis undecidable: ‘given a PN+T〈P, T 〉 and anω-markingm0,

19

does〈P, T,m0〉 terminatefor all m0 ∈↓(m0) ?’ From a PN+TN = 〈P, T 〉 and anω-
markingm0, we build theωOPN+T (with only oneω-output-arc)N ′ = 〈P ′, T ′,m′

0〉
whereP ′ = P ⊎{pinit}, T ′ = T ⊎{(I, O)}, I = {pinit},O = {ω⊗p | m0(p) = ω},
andm′

0 = {m0 ⊗ p | m0(p) 6= ω}. Clearly, N ′ terminates iff〈P, T,m0〉 ter-
minates for allm0 ∈↓ (m0). Hence, termination forωOPN+T is undecidabletoo.
Finally, we can transform anωOPN+RN = 〈P, T,m0〉 into anωOPN+T N ′ =
〈P ⊎ {ptrash}, T ′,m0〉, wheret′ ∈ T ′ iff either (i) t′ ∈ T and t′ is not a reset,
or (ii) there is a resett ∈ T and a placep ∈ P s.t. I(t)(p) = R, I(t′)(p) = T,
O(t′)(ptrash) = T, for all p′ 6= p: I(t′)(p′) = I(t)(p′) and for allp′′ 6= ptrash:
O(t′)(p′′) = O(t)(p′′). Intuitively, the construction replaces each reset (resetting place
p) in N by a transfer fromp to ptrash in N ′, whereptrash is a fresh place from which
no transition consume. SinceN ′ terminates iffN terminates, termination is undecid-
able forωPN+R too. � However, the construction of Section 4 can
be applied toωIPN+T andωIPN+R to yield a corresponding PN+T (resp. PN+R) that
preserves termination. Hence, termination is decidable and Ackerman-hard for those
models. This justifies the results onωPN+T andωPN+R given in Table 1.

References

[1] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General Decidability The-
orems for Infinite-state Systems. InLICS’96. IEEE, 1996.

[2] I. Borosh and L. Treybig. Bounds on positive integral solutions of linear diophan-
tine equations.Proceedings of the American Mathematical Society, 55(2):299–
304, March 1976.

[3] T. Brázdil, P. Jančar, and A. Kučera. Reachability games on extended vector
addition systems with states. InICALP’10, volume 6199 ofLNCS, Springer,
2010.

[4] G. Delzano, J.-F. Raskin and L. Van Begin. Towards the Automated Verification
of Multithreaded Java Programs InTACAS’02, volume 2280 ofLNCS, Springer,
2002

[5] G. Delzano. Constraint-Based Verification of Parameterized Cache Coherence
ProtocolsFMSD23(3). Springer, 2003

[6] C. Dufourd.Réseaux de Petri avec reset/transfert : Décidabilit́e et ind́ecidabilit́e.
PhD thesis, ENS de Cachan, 1998.

[7] C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset Nets Between Decidability
and Undecidability. InICALP’98, volume 1443 ofLNCS, Springer, 1998.

[8] C. Dufourd, P. Jančar, and Ph. Schnoebelen. Boundedness of reset P/T nets. In
ICALP’99, volume 1644 ofLNCS. Springer, 1999.

[9] J. Esparza, A. Finkel, and R. Mayr. On the Verification of Broadcast Protocols.
In LICS’99. IEEE, 1999.

20

[10] A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere!
TCS, 256(1-2):63–92, 2001.

[11] A. Finkel, P. McKenzie, and C. Picaronny. A well-structured framework for
analysing petri net extensions.Inf. Comput., 195(1-2):1–29, November 2004.

[12] G. Geeraerts, A. Heußner and J.F. Raskin. Queue-Dispatch Asynchronous Sys-
tems. Submitted, 2012.http://arxiv.org/abs/1201.4871v3

[13] G. Geeraerts, J.-F. Raskin, and L.Van Begin. Expand, enlarge and check: New
algorithms for the coverability problem of wsts.J. Comput. Syst. Sci., 72(1),
2006.

[14] S. German and A. Sistla. Reasoning about systems with many processes.J. ACM,
39(3):675–735, 1992.

[15] R. M. Karp and R. E. Miller. Parallel Program Schemata.JCSS, 3:147–195, 1969.

[16] R. Lipton. The reachability problem requires exponential space Tech. Report.
Yale University, 1963.

[17] E.W. Mayr. An algorithm for the general petri net reachability problem. SIAM J.
of Computing, 3(13):441–460, 1984.

[18] C. A. Petri.Kommunikation mit automaten. PhD thesis, Institut fur Instrumentelle
Mathematik, Bonn, 1962.

[19] C. Rackoff. The covering and boundedness problems for vector addition systems.
TCS, 6:223–231, 1978.

[20] W. Reisig.Petri Nets: An Introduction. Springer-Verlag, 1985.

[21] Ph. Schnoebelen. Revisiting ackermann-hardness for lossy counter machines and
reset petri nets. InMFCS’10, volume 6281 ofLNCS, Springer, 2010.

21

http://arxiv.org/abs/1201.4871v3

A Proof of Lemma 3

An ωPN terminates iff it admits no self-covering execution. Proof. AssumeN =

〈P, T,m0〉 admits an infinite executionm0
t1−→ m1 → t2 · · ·

tj
−→ mj

tj+1
−−−→ · · · . Since

� is a well-quasi ordering on the markings, there are two positionsα andβ in the

execution s.t.α ≤ β andmα � mβ . Hence,m0
t1−→ m1

t2−→ · · ·
tβ
−→ mβ is a

self-covering execution.
For the reverse implication, assumeN = 〈P, T,m0〉 admits a self-covering execu-

tion m0
t1−→ m1 → t2 · · ·

tn−→ mn and assume0 ≤ k < n is a position s.t.mk � mn.
Then, by monotonicity, it is possible to fire infinitely oftenthe tk+1 · · · tn sequence
frommk. More precisely, one can check that the following is infiniteexecution ofN :

m0
t1−→ m1 · · ·

tk−→ mk
tk+1
−−−→ m0

k+1 · · ·
tn−→ m0

n

tk+1
−−−→ m1

k+1 · · ·
tn−→ m1

n
tk+1
−−−→ m2

k+1 · · ·
tn−→ m2

n · · ·
tk+1
−−−→ mj

k+1 · · ·
tn−→ mj

n · · ·

where for all1 ≤ i ≤ n− k: m0
k+i = mk+i, for all j ≥ 1, mj

k+1 = mj−1
n + (mk+1 −

mk) and for all2 ≤ i ≤ n− k: mj
i = mj

i−1 + (mk+i −mk+i−1). �

B Proof of Proposition 1 (Termination)

For all ωPNN and for all initial markingm0, Build-KM(N ,m0) terminates. Proof.
The proof is by contradiction. AssumeBuild-KM(N ,m0) does not terminate. First
observe that the recursion depth is always bounded: since a recursive call is performed
only when a newω has been created, the recursion depth is, at any time, at mostequal
to |P |+ 1, whereP is the set of places ofN

Thus, ifBuild-KM(N ,m0) does not terminate, it is necessarily because the main
while loop does not terminate (the other loop of the algorithm is the forall starting in
line 6, which always execute at most|T | iterations, whereT is the set of transitions of
N). In this loop, one node is removed fromU at each iteration. Since the algorithm
builds a tree, a node that has been removed fromU will never be inserted again inU.
Hence, the treeT built by Build-KM(N ,m0) is infinite.

By König’s lemma, and sinceT is finitely branching, it contains an infinite path
π. Since the recursion depth is bounded,π can be split into a finite prefixπ1 and an
infinite suffixπ2 s.t. all the nodes inπ2 have been built during the same recursive call.

Let us assumeπ2 = n0, n1, . . . , nm, . . . Since� is a well-quasi-ordering onω-
markings, there arek andℓ s.t.0 ≤ k < ℓ andλ(nk) � λ(nℓ). Clearly,λ(nk) = λ(nℓ)
is not possible because of the test of line 5 that prevents thedevelopment ofnℓ in this
case. Thus,λ(nk) ≺ λ(nℓ). This means that, for allp ∈ P : λ(nk)(p) ≤ λ(nℓ)(p),
and that there existsp s.t.λ(nk)(p) < λ(nℓ)(p). Let p< be such a place. By definition
of the Post function, and of the acceleration (line 19), the only possibility is that
λ(nℓ)(p

<) = ω 6= λ(nk)(p
<). However, in this case, whenλ(nℓ) is returned by

Post, a new recursive call is triggered, which contradicts the hypothesis thatnℓ and
nk have been built during the same recursive call. Contradiction. �

22

C Proof of Lemma 4 (soundness)

Recall that, in the present section, we prove the soundness of Build-KM, when ap-
plied toωOPN only. Hence, throughout the sectionI(t)(p) 6= ω for all placesp and
transitionst. To prove Lemma 4, we need ancillary results and definitions.First, we
state theplace monotonicityproperty ofωPN. Letm1 andm2 be two markings, and
let P ′ ⊆ P be a set of places s.t.m2 �P ′ m1. Let σ be a sequence of transitions and
let m3 be a marking6 s.t.m1

σ
−→ m3. Then, there exists a markingm4 s.t. m2

σ
−→ m4

andm4 �P ′ m3.
Then, we observe, that, when noω’s are introduced in the labels of the nodes, the

sequence of labels along a branch coincides with the effect of the transitions labelling
this branch. Formally:

Lemma 13 LetN be anωOPN, letm0 be anω-marking and letT be the tree returned
by Build-KM(N ,m0). Let n1, n2 be two nodes ofT s.t. (n1, n2) ∈ E+. Then,
for all p s.t. λ(n1)(p) 6= ω andλ(n2)(p) 6= ω, we have:λ(n2)(p) = λ(n1)(p) +
effect(σ)(p).

The next technical definitions allows to characterise when asequence of transition
is firable from a given marking. Letσ = t1 · · · tn be a sequence of transitions of an
ωOPN, s.t. for all1 ≤ i ≤ n−1, for all p ∈ P : O(ti)(p) 6= ω. Letm be a marking and
let p be a place. Then, we letAllowsFiring be the predicate s.t.AllowsFiring(σ,m, p)
is true iff:

∀1 ≤ i ≤ n : m(p) + effect(t1 · · · ti−1)(p) ≥ I(ti)(p)

Remark thatσ is firable fromm iff for all p ∈ P : AllowsFiring(σ,m, p). We extend
the definition ofAllowsFiring to sequences of transitions containing oneω-output-
transition. Letσ = t1 · · · tn be a sequence of transitions, letp be a place, and let
1 ≤ j ≤ n be the least position s.t.O(tj)(p) = ω. ThenAllowsFiring(σ,m, p) holds
iff AllowsFiring(t1 · · · tj ,m, p) holds. Again,σ is firable fromm iff for all p ∈ P :
AllowsFiring(σ,m, p). Indeed,AllowsFiring(t1 · · · tj ,m, p) ensures that, when firingσ
from m, p will never be negative alongt1 · · · tj . Moreover,tj can create an arbitrary
large number of tokens inp, sinceO(tj)(p) = ω, which allows to ensure thatp will
never be negative alongtj+1 · · · tn. Given this definition ofAllowsFiring it is easy to
observe that:

1. m(p) ≥ I(σ)(p) implies thatAllowsFiring(σ,m, p),

2. if AllowsFiring(σ,m, p) holds andeffect(σ)(p) ≥ 0, thenAllowsFiring(σK ,m, p)
holds too for allK ≥ 1.

Lemma 14 LetN be anωOPN, letm0 be anω-marking, and letT be the tree returned
by Build-KM(N ,m0), let e = (n1, n2) be an edge ofT and letm be a marking
in γ(λ(n2)). Then, there arem1 ∈ γ(λ(n1)), m2 ∈ γ(λ(n2)) and a sequence of
transitionsσπ of N s.t. m1

σπ−−→ m2 andm2 � m. Moreover, whennbω (λ(n1)) =
nbω (λ(n2)), σπ = µ(e) is a sequence of transitions meeting these properties.

6Remark that, due to theω’s, the effect ofσ is now non-deterministic, and there can be several suchm3.

23

Proof. Edges are created byBuild-KM in line 15 only. Thus, by the test of the
forall loop (line 6), and since we are considering anωOPN:

λ(n1) ≥ I(µ(e)) (1)

Moreover, when creating an edge(n, n′) (line 15),n′ is either a fresh node s.t.λ(n′) is
theω-marking returned byPost(N , λ(n), t), orn′ is the root of the subtreeT ′ returned
by the recursive callBuild-KM(N ,m′), withµ(n, n′) = t in both cases. However, in
the latter case, the root ofT ′ ism′, i.e., the marking returned byPost(N , λ(n), t) too.
Since this holds for all edges, we conclude thatλ(n2) is theω-markingm′ returned by
Post(N , λ(n1), µ(e)). Considering the definition of thePost function, we see thatm′

is eitherλ(n1)− I(t) +O(t) (when the condition of theif in line 18 is not satisfied),
or the resultmω of an acceleration (when the condition of theif in line 18 is satisfied).
We consider these two cases separately.
CASE A: the condition of the if in line 18 has not been satisfied (i.e., no accelera-
tion has occurred).Then,λ(n2) is the markingm′ computed in line 17:

λ(n2) = λ(n1)− I(µ(e)) +O(µ(e)) (2)

We letm1 be the marking s.t. for all placesp ∈ P :

m1(p) =

{

λ(n1)(p) if λ(n1)(p) 6= ω

I(µ(e))(p) +m(p) otherwise

And we letm2 be the marking s.t., for all placesp ∈ P :

m2(p) =

{

m1(p) +O(µ(e))(p) − I(µ(e))(p) if O(µ(e))(p) 6= ω

m1(p)− I(µ(e))(p) +m(p) otherwise

Finally, we let:

σπ = µ(e)

Let us show thatm1, m2 andσπ = µ(e) satisfy the lemma. First, we observe that
m1 ∈ γ(λ(n1)), by definition. Then, we further observe that there are only four possi-
bilities regarding the possible values ofλ(n1)(p), λ(n2)(p) andO(µ(e))(p), as shown
in the following table. Indeed,n2 is a successor ofn1 in the tree, soω(n2) ⊇ ω(n1).
Moreover,λ(n2)(p) = ω 6= λ(n1)(p) holds for somep iff O(µ(e))(p) = ω, as we
have assumed that the condition of theif in line 18 has not been satisfied:

Case λ(n1)(p) λ(n2)(p) O(µ(e))(p)

1 = ω = ω = ω
2 = ω = ω 6= ω
3 6= ω = ω = ω
4 6= ω 6= ω 6= ω

For these four different cases, we obtain the following values form1(p) andm2(p), by
definition:

m1(p) =

{

I(µ(e))(p) +m(p) cases 1 and 2

λ(n1)(p) cases 3 and 4
(3)

24

m2(p) =

2×m(p) case 1

m(p) +O(µ(e))(p) case 2

λ(n1)(p)− I(µ(e))(p) +m(p) case 3

λ(n1)(p) +O(µ(e))(p) − I(µ(e))(p) case 4

(4)

To prove thatm2 ∈ γ(λ(n2)), we must show thatm2(p) = λ(n2)(p) for all p s.t.
λ(n2)(p) 6= ω, which corresponds only to case 4, where we have:

m2(p) = λ(n1)(p) +O(µ(e))(p) − I(µ(e))(p) By (4)

= λ(n2)(p) By (2)

Then, it remains to show thatm1
µ(e)
−−−→ m2. First, we show that,µ(e) is firable

from m1, i.e. that for allp ∈ P : m1(p) ≥ I(µ(e))(p). In case 1 and 2, we have
m1(p) = I(µ(e))(p) + m(p) ≥ I(µ(e))(p). In cases 3 and 4, we havem1(p) =
λ(n1)(p), with λ(n1)(p) ≥ I(µ(e))(p) by (1). Thus,µ(e) is firable fromm1. Then,
we must show thatm2 can be obtained as a successor ofm1 by µ(e). In cases 1
and 3, the effect ofµ(e) is to removeI(µ(e))(p) tokens fromp and to produce an
arbitrary numberK of tokens inp. Hence, in case 1, by firingµ(e) fromm1, we obtain
I(µ(e))(p) +m(p) − I(µ(e))(p) +K = m(p) +K tokens inp. In case 3, by firing
µ(e) from m1, we obtainλ(n1)(p) − I(µ(e))(p) + K tokens inp. In both cases, by
lettingK = m(p), we obtainm2(p). In cases 2 and 4, the effect ofµ(e) on placep is
equal toO(µ(e))(p)−I(µ(e))(p). Hence, in case 2, by firingµ(e) fromm1, we obtain
I(µ(e))(p) +m(p)− I(µ(e))(p) +O(µ(e))(p) = m(p) +O(µ(e))(p) tokens inp. In
case 4, by firingµ(e) fromm1, we obtainλ(n1)(p)− I(µ(e))(p)+O(µ(e))(p) tokens
in p. In both cases, these values correspond exactly tom2(p).

We conclude this case by observing thatnbω (λ(n1)) = nbω (λ(n2)) implies that
no acceleration has been performed, which is the present case. We have thus shown
that whennbω (λ(n1)) = nbω (λ(n2)), σπ = µ(e) is a sequence of transitions that
satisfies the lemma.

CASE B: the condition of the if in line 18 has been satisfied (an acceleration has
occurred). Remark that, in this case,n1 is the node calledn in the condition of the
if , andµ(e) is the transition calledt in the same condition. Letσ be the sequence of
transitions labelling the path fromn to n1. LetPAcc denote the set of places:

PAcc = {p | effect(σ(p)) > 0 ∧ λ(n2)(p) 6= ω ∧O(µ(e))(p) 6= ω} (5)

Then, letK be the value defined as:

K = max
p∈PAcc

{m(p)} (6)

This value allows us to define the sequence of transitionsσπ :

σπ = µ(e)
(
σ · µ(e)

)K
(7)

25

From those definitions ofn,n1,n2, σ andµ(e), we conclude that only the following
cases are possible, for all placesp:

case λ(n)(p) λ(n1)(p) λ(n2)(p) effect(σ)(p) effect(µ(e))(p) Remark

1 ω ω ω ∈ Z ∪ {ω} ∈ Z ∪ {ω}
2 6= ω 6= ω 6= ω 6= ω 6= ω
3 6= ω 6= ω ω 6= ω ω
4 6= ω 6= ω ω 6= ω 6= ω effect(σ · µ(e))(p) > 0

Those cases are the only possible becausen is an ancestor ofn1, which is itself an
ancestor ofn2. Moreover, by construction,nbω (n) = nbω (n1), since those two
nodes have been computed during the same recursive call. Thus, the occurrence of a
freshω can only appear betweenn1 andn2, either becauseeffect(µ(e))(p) = ω (case
3), or because we have performed an acceleration (case 4). Remark that the latter only
occurs wheneffect(σ · µ(e))(p) > 0.

Let us next define the markingm1, as:

m1(p) =

{
λ(n1)(p) if λ(n1)(p) 6= ω
I(σπ)(p) +m(p) otherwise

(8)

whereI(σπ)(p) denotes
∑n

i=1 I(ti)(p) for σπ = t1, . . . , tn. Observe that, by defini-
tion: m1 ∈ γ(λ(n1)). Then, let us prove thatσπ is firable fromm1. First observe that,
if p is a place s.t.λ(n1)(p) = ω, thenAllowsFiring(σπ ,m1, p) holds, because, in this
case,m1(p) ≥ I(σπ)(p), by (8). Then, assumep is a place s.t.λ(n1)(p) 6= ω. In this
case, by definition,m1(p) = λ(n1). First observe that, by construction, and since we
considerωOPN (see line 6 of the algorithm):

∀p : λ(n1)(p) ≥ I(µ(e))(p) (9)

Let us now consider all the possible cases, which are cases 2,3 and 4 from the table
above (case 1 cannot occur since we have assumed thatλ(n1)(p) 6= ω):

• In case 2, since the condition of theif (line 18) is satisfied, we know thateffect(σ·
µ(e))(p) ≥ 0. Sinceλ(n)(p) 6= ω, andλ(n1)(p) 6= ω, we can apply Lemma 13,
and conclude that:

λ(n2)(p) = λ(n)(p) + effect(σ · µ(e))(p)

= λ(n)(p) + effect(σ)(p) + effect(µ(e))(p)

= λ(n1)(p) + effect(µ(e))(p)

Thus:

λ(n1)(p) + effect(µ(e))(p) ≥ λ(n)(p) (10)

sinceeffect(σ · µ(e))(p) ≥ 0. By applying CASE A (above) iteratively along
the branch fromn to n1, we deduce thatAllowsFiring(σ, λ(n), p) holds. Hence,
AllowsFiring(σ, λ(n1)(p)+effect(µ(e))(p), p) holds too, by (10). Finally, by (9),
we conclude thatAllowsFiring(µ(e)·σ, λ(n1)(p), p) holds. However,effect(µ(e)·

26

σ)(p) = effect(σ · µ(e))(p) ≥ 0. Thus, sinceµ(e) · σ has a positive effect on
p, we conclude thatAllowsFiring

(
(µ(e) · σ)K , λ(n1)(p), p

)
holds too, for all

K ≥ 1. Finally, sinceeffect
(
(µ(e) · σ)K

)
(p) ≥ 0, we conclude that

λ(n1)(p) + effect
(
(µ(e) · σ)K

)
≥ λ(n1)(p)

Thus, by (9), we have

λ(n1)(p) + effect
(
(µ(e) · σ)K

)
≥ I(µ(e))

and we can thus fireµ(e) once again after firing(µ(e) · σ)K . Hence,

AllowsFiring
(
(µ(e) · σ)K · µ(e), λ(n1), p

)

holds, withσπ = (µ(e) · σ)K · µ(e).

• In case 3: by (9), sinceO(µ(e))(p) = ω, and sinceµ(e) is the first transition of
σπ , we immediately conclude thatAllowsFiring(σπ , λ(n1), p).

• In case 4, we can adapt the reasoning of case 2 as follows. First remember, that,
in case 4,effect(σ · µ(e))(p) > 0. Sinceλ(n)(p) 6= ω, andλ(n1)(p) 6= ω, we
can apply Lemma 13, and conclude thatλ(n1)(p) = λ(n)(p) + effect(σ)(p).
Thus:

λ(n1)(p) + effect(µ(e))(p) = λ(n)(p) + effect(σ)(p) + effect(µ(e))(p)

= λ(n)(p) + effect(σ · µ(e))(p)

with effect(σ · µ(e))(p) > 0. Hence:

λ(n1)(p) + effect(µ(e))(p) > λ(n)(p)

This implies (10), and we can thus reuse the arguments of case2 to conclude that
AllowsFiring (σπ , λ(n1), p) holds in the present case too.

Thus, for allp s.t.λ(n1)(p) 6= ω: AllowsFiring(σπ , λ(n1), p) holds. However,λ(n1)(p) 6=
ω implies thatm1(p) = λ(n1)(p), hence,AllowsFiring(σπ ,m1, p) holds in those cases.
Thus, we conclude thatAllowsFiring(σπ ,m1, p) holds for all placesp, and thus, that
σπ is firable fromm1.

To conclude the proof let us build a markingm2 that respects the conditions given
in the statement of the lemma. Letm be a marking s.t.m1

σπ−−→ m. We know that such
a marking exists sinceσπ is firable fromm1. We first observe that, by Lemma 1:

∀p s.t. effect(σπ)(p) 6= ω : m(p) = m1(p) + effect(σπ)(p) (11)

Fromm, we definem2 as follows:

m2(p) =

{

m(p) if effect(σπ)(p) 6= ω

max {m(p),m(p)} otherwise
(12)

27

Clearly,m2 �P ′ m, for P ′ = {p | effect(σπ)(p) = ω. Hence, by Lemma 2,m1
σπ−−→

m2 holds. Let us conclude the proof by showing thatm2 ∈ γ(λ(n2)), and thatm2 ≥
m, as requested. Sincem has been assumed to be inγ(λ(n2)) too, it is sufficient to
show that for all placep: (i) λ(n2)(p) = ω impliesm2(p) ≥ m, and(ii) λ(n2)(p) 6= ω
impliesm2(p) = λ(n2)(p).

Thus, we consider each placep separately, by reviewing the four cases given in the
table above:

• In case 1, m1(p) = I(σπ)(p) + m(p) andλ(n2)(p) = ω. Let us show that
m2(p) ≥ m(p). We consider two further cases:

1. eithereffect(σπ)(p) 6= ω. In this case:

m2(p) = m(p) By (12)

= m1(p) + effect(σπ)(p) By (11)

= I(σπ)(p) + effect(σπ)(p) +m(p) By (8)

≥ m(p)

2. oreffect(σπ)(p) = ω. Then,m2(p) ≥ m(p) by (12)

• In case 2, we know thateffect(µ(e))(p) 6= ω and effect(σ)(p) 6= ω, hence
effect(σ · µ(e)) 6= ω andeffect(σπ) 6= ω either. Then:

m2(p) = m(p) By (12)

= m1(p) + effect(σπ)(p) By (11)

= λ(n1)(p) + effect(σπ)(p) By (8)

= λ(n2)(p) Lemma 13 andeffect(σ · µ(e)) 6= ω

• In case 3, λ(n2)(p) = ω andeffect(σπ)(p) = ω too. Hence,m2(p) ≥ m(p) by
(12).

• In case 4, λ(n2)(p) = ω again, andm1(p) = λ(n1)(p), by (8). Moreover, we
haveeffect(σπ)(p) 6= ω, becauseeffect(σ)(p) 6= ω andeffect(µ(e))(p) 6= ω.
Finally, since in case 4, we haveeffect(σ ·µ(e))(p) > 0, and sinceσπ = µ(e)

(
σ ·

µ(e)
)K

, we conclude thateffect(σπ)(p) ≥ K − effect(µ(e))(p). Thus:

m2(p) = m(p) By (12)

= m1(p) + effect(σπ)(p) By (11)

≥ m1(p) +K − effect(µ(e))(p) See above

= m1(p) +K − I(µ(e))(p) +O(µ(e))(p) Def. of effect

≥ K +m1(p)− I(µ(e))(p)

≥ K + λ(n1)(p)− I(µ(e))(p) By (8)

≥ K By (9)

≥ m(p) p ∈ PAcc and by (5) and (7)

�

28

We are now ready to prove Lemma 4:

Let N be anωOPN, letm0 be anω-marking and letT be the tree returned by
Build-KM(N ,m0). Let π = n0, . . . , nk be a stuttering path inT , and letm be

a marking inγ(λ(nk)). Then, there exists an executionρπ = m0
t1−→ m1 · · ·

tℓ−→ mℓ

of N s.t. mℓ ∈ γ(λ(nk)), mℓ � m andm0 ∈ γ(λ(n0)). Moreover, when for all
0 ≤ i ≤ j ≤ k: nbω (ni) = nbω (nj), we have:t1 · · · tℓ = µ(π).
Proof. We build, by induction on the lengthk of the path in the tree, a corresponding
execution ofN . The induction works backward, starting from the end of the path.
Base case,k = 0. Sincenk = n0, we can takem0 = m, which clearly satisfies the
Lemma sincem ∈ λ(nk) = λ(n0).
Inductive case,k > 0. The induction hypothesis is that there are a sequence of tran-
sitionsσ and two markingsm1 andmk s.t. m1

σ
−→ mk, m1 ∈ γ(λ(n1)), mk ∈

γ(λ(nk)), andmk ≥ m. In the case where(n0, n1) is not an edge ofT (i.e., n1 is
an ancestor ofn0), we know thatλ(n0) = λ(n1) by definition of stuttering and let
ρpi = m1

σ
−→ mk. Otherwise, we can apply Lemma 14, and conclude that there are

σ′, m0 andm′
1 s.t. m0

σ′

−→ m′
1, m0 ∈ γ(λ(n0)), m′

1 ∈ γ(λ(n1)) andm′
1 � m1.

Sincem′
1 � m1, σ is also firable fromm′

1. Let m′
k = m′

1 + (mk − m1). Clearly,

m0
σ′

−→ m′
1

σ
−→ m′

k. Moreover,m′
k � mk � m, by monotonicity. Let us show that

m′
k ∈ γ(λ(nk)). Sincem′

1 andm1 are both inγ(λ(n1)): m1(p) = m′
1(p) for all p s.t.

λ(n1)(p) 6= ω. Thus, by strong monotonicity, we conclude thatmk(p) = m′
k(p)

for all p s.t. λ(n1)(p) 6= ω. However, for all placesp, λ(nk)(p) 6= ω implies
λ(n1)(p) 6= ω, as the number ofω’s increase along a path in the tree. Thus we con-
clude thatmk(p) = m′

k(p) for all p s.t. λ(nk)(p) 6= ω. Sincemk(p) = λ(nk)(p) for
all p s.t.λ(nk)(p) 6= ω becausemk ∈ γ(λ(nk)) by induction hypothesis, we conclude
thatm′

k ∈ γ(λ(nk)) too. Thus,m0, m′
k andσ′ · σ fulfill the statement of the lemma.

Finally, observe that, when all the nodes along the pathπ have the same number of
ω’s, Lemma 14 guarantees thatµ(π) can be chosen for the sequence of transitionsσ.�

D Proof of Lemma 5

Let N be anωOPN, letm0 be anω-marking, and letT be the tree returned by
Build-KM(N ,m0). Then, for all nodesn of T :

• eithern has no successor in the tree and has an ancestorn s.t.λ(n) = λ(n).

• or the set of successors ofn corresponds to all the→ω possible successors of

λ(n), i.e.: {µ(n, n′) | (n, n′) ∈ E} = {t | λ(n)
t
−→ω}. Moreover, for eachn′

s.t. (n, n′) ∈ E andµ(n, n′) = t: λ(n′) � λ(n) + effect(t).

Proof. Observe that each time a node is created, it is inserted intoU, or a recursive
call is performed on this node. In both cases, the node will eventually be considered
in line 5. If the condition of theif in line 5 is not satisfied,n has an ancestorn s.t.
λ(n) = λ(n). Otherwise, all transitionst that are firable fromλ(n) are considered
in the loop in lines 6 onward, and a corresponding edge(n, n′) with µ(n, n′) = t is

29

added to the tree in line 15. The labelλ(n′) of this node is eitherλ(n) + effect(t),
or a�-larger marking, in the case where an acceleration has been performed during
thePost, in line 19. Thus in both cases,λ(n′) � λ(n) + effect(t). The algorithm
terminates becauseU has become empty. Thus, all the nodes that have eventually been
constructed by the algorithm fall into these two cases. Hence the Lemma. �

E Proof of Lemma 6 (completeness)

Let N be anωOPN with set of transitionsT , let m0 be an initial marking, letT be

the tree returned byBuild-KM(N ,m0) and letm0
t1−→ m1

t2−→ · · ·
tn−→ mn be

an execution ofN . Then, there are astutteringpathπ = n0, n1, . . . , nk in T and a
monotonic increasing mappingh : {1, . . . , n} 7→ {0, . . . , k} s.t.: µ(π) = t1t2 · · · tn
andmi � λ(nh(i)) for all 0 ≤ i ≤ n. Proof. The proof is by induction on the length
of the execution.
Base case:n = 0 We leth(0) = 0. By constructionλ(n0) = m0, hence the lemma.
Inductive case:n > 0 The induction hypothesis is that there are a pathπ = n0, . . . nℓ

and a mappingh : {0, . . . , n− 1} 7→ {0, . . . , ℓ} satisfying the lemma for the execution

prefixm0
t1−→ m1

t2−→ · · ·
tn−1
−−−→ mn−1. By Lemma 5, we consider two cases fornℓ:

• Either the set of successors ofnℓ corresponds to the set of all transitions that are
firable fromλ(nℓ). Since, by induction hypothesis,nℓ � mn−1, and sincetn is
firable frommn−1, we conclude thattn is firable fromλ(nℓ) by monotonicity.
Hence,nℓ has a successorn s.t.µ(nℓ, n) = tn. Still by Lemma 5,

λ(n) � λ(nℓ) + effect(tn)

� mn−1 + effect(tn)

� mn

Hence, we letnℓ+1 = n, andh(n) = ℓ+ 1.

• Or the set of successors ofnℓ is empty. In this case, by Lemma 5, there exists
an ancestorn of nℓ s.t. λ(n) = λ(nℓ). Let nℓ+1 be such a node. Moreover, as
nℓ+1 6= nℓ, andnℓ+1 is an ancestor ofnℓ, nℓ+1 must have at least one successor.
Hence, by Lemma 5,nℓ+1 is fully developed, and we can apply the same reason-
ing as above to conclude that there is a successorn′ of nℓ+1 s.t.λ(n′) � mn and
µ(nℓ+1, n

′) = tn. Letnℓ+2 be such a node. We conclude by lettingh(n) = ℓ+2.
�

F Proof of Lemma 7

Let N be anωPN. For all executionsm0, t
′
1,m1, . . . , t

′
n,mn of remIω(N): m0, t1,

m1, . . . , tn,mn is an execution ofN . For all finite (resp. infinite) executionsm0, t1,m1,
. . . , tn,mn (m0, t1,m1, . . . , tj,mj , . . .) of N , there is an executionm0, t

′
1,m

′
1, . . . ,

30

t′n,m
′
n (m0, t1,m

′
1, . . . , tj,m

′
j , . . .) of remIω(N), s.t. mi � m′

i for all i. Proof.
The first point follows immediately from the definition ofremIω(N) and from the fact
that consuming0 tokens in each placep s.t. I(ti)(p) = ω is a valid choice when firing
each transitionti in N . The second point is easily shown by induction on the execu-
tion, because firing eachti produces the same amount of tokens thatt′i; consumes the
same amount of token as eacht′i in all places s.t.I(ti)(p) 6= ω, and consumes, in each
placep s.t. I(ti)(p) = ω a number of tokens that is larger than or equal to the number
of tokens consumed byt′i. �

G Proofs for Lemmas in Section 5

Proof. [Lemma 9] This proof is similar to that of [19, Lemma 4.5], with some modifi-
cations to handleω-transitions. It is organized into the following steps.

Step 1: We first associate a vector with a sequence of transitions to measure the effect
of the sequence. This is the step that differs most from that of [19, Lemma 4.5].
The idea in this step is similar to the one used in [3, Lemma 7].

Step 2: Next we remove some simple loops fromσ to obtainσ′′ such that for every
intermediateω-markingm in the runm1

σ
−→h m2, m also occurs in the run

m1
σ′′

−−→h m2.

Step 3: The sequenceσ′′ obtained above need not be ah-PS. With the help of the
vectors defined in step 1, we formulate a set of linear Diophantine equations that
encode the fact that the effects ofσ′′ and the simple loops that were removed in
step 2 combine to give the effect of ah-PS.

Step 4: Then we use the result about existence of small solutions to linear Diophan-
tine equations to construct a sequenceσ′ that meets the length constraint of the
lemma.

Step 5: Finally, we prove thatσ′ is ah-PS enabled atm1.

Step 1: Let Pω ⊆ ω(m1) be the set of placesp such that some transitiont in σ
haseffect(t)(p) = ω. If we ensure that for each placep ∈ Pω, some transitiont
with effect(t)(p) = ω is fired, we can ignore the effect of other transitions onp. This
is formalized in the following definition of the effect of anysequence of transitions
σ1 = t1 · · · tr. We define the function∆Pω

[σ1] : ω(m1) → Z as follows.

∆Pω
[σ1](p) =

1 p ∈ Pω , ∃i ∈ {1, . . . , r} : effect(ti)(p) = ω

0 p ∈ Pω , ∀i ∈ {1, . . . , r} : effect(ti)(p) 6= ω
∑

1≤i≤r effect(ti)(p) otherwise

Step 2: Letm1
σ
−→h m2. From Definition 4, we haveω(m2) = ω(m1). From Defi-

nition 2, infer that for anyω-markingm in the runm1
σ
−→h m2, m(p) < h(nbω (m1))

for all p ∈ P \ ω(m1). Now we remove some simple loops fromσ to obtainσ′′. To

31

obtain some bounds in the next step, we first make the following observations on loops.
Let |P \ω(m1)| = r1. Supposeπ is a simple loop. There can be at mosth(nbω (m1))

r1

transitions inπ, so−h(nbω (m1))
r1R ≤ ∆Pω

[π](p) ≤ h(nbω (m1))
r1R for anyp ∈

P . Let ~B be the matrix whose set of columns is equal to{∆Pω
[π] | π is a simple loop}.

There are at most(h(nbω (m1))
r12R)|P | columns in~B. We use~b,~b′, . . . to denote the

columns of~B.
Now we remove simple loops fromσ according to the following steps. Let~x0 = 0

be the zero vector whose dimension is equal to the number of columns in ~B. Begin the
following steps withi = 0 andσi = σ.

a. Think of the first(h(nbω (m1))
|P |+1)2 transitions ofσi ash(nbω (m1))

|P |+1
blocks of lengthh(nbω (m1))

|P | + 1 each.

b. There is at least one block in which allω-markings also occur in some other
block.

c. Letπ be a simple loop occurring in the above block.

d. Letσi+1 be the sequence obtained fromσi by removingπ.

e. Let~xi+1 be the vector obtained from~xi by incrementing~xi(∆Pω
[π]) by 1.

f. Incrementi by 1.

g. If the length of the remaining sequence is more than or equal to (h(nbω (m1))
|P |

+ 1)2, go back to step a. Otherwise, stop.

Let n be the value ofi when the above process stops. Letσ′′ = σn and~x = ~xn.
We remove a simple loopπ starting at anω-markingm only if all the intermediate
ω-markings occurring while firingπ fromm occur at least once more in the remaining
sequence. Hence, for everyω-markingm arising while while firingσ fromm1, m also
arises while firingσ′′ from m1. We have|σ′′| ≤ (h(nbω (m1))

|P | + 1)2. For each
column~b of ~B, ~x(~b) contains the number of occurrences of simple loopsπ removed
from σ such that∆Pω

[π] = ~b.
Step 3: For everyp ∈ Pω , we want to ensure that there is some transitiont in the

shorterh-PS that we will build, such thateffect(t)(p) = ω. For the other places, we
want to ensure that the effect of the shorterh-PS is non-negative. These requirements
are expressed in the following vector~d.

~d(p) =

{

1 p ∈ Pω

0 p /∈ Pω

Recall that for each column~b of ~B, ~x(~b) contains the number of occurrences of simple
loopsπ removed fromσ such that∆Pω

[π] = ~b and thatσ′′ is the sequence remaining
after all removals. Hence,∆Pω

[σ] = ~B~x +∆Pω
[σ′′]. Sinceσ is ah-PS and for every

32

p ∈ Pω, there is a transitiont in σ such thateffect(t)(p) = ω, we have

∆Pω
[σ] ≥ ~d

⇒ ~B~x+∆Pω
[σ′′] ≥ ~d

⇒ ~B~x ≥ ~d−∆Pω
[σ′′] . (13)

Step 4:We use the following result about the existence of small integral solutions
to linear equations [2], which has been used by Rackoff to give EXPSPACEupper bound
for the boundedness problems in Petri nets [19, Lemma 4.4].

Let d1, d2 ∈ N+, let ~A be ad1 × d2 integer matrix and let~a be an integer vector
of dimensiond1. Letd ≥ d2 be an upper bound on the absolute value of the integers
in ~A and~a. Suppose there is a vector~x ∈ Nd2 such that~A~x ≥ ~a. Then for some
constantc independent ofd, d1, d2, there exists a vector~y ∈ Nd2 such that~A~y ≥ ~a
and~y(i) ≤ dcd1 for all i between1 andd2.

We apply the above result to (13). Each entry of∆Pω
[σ′′] is of absolute value at

most(h(nbω (m1))
|P | + 1)2R. Recall that there are at most(h(nbω (m1))

r12R)|P |

columns in~B, with the absolute value of each entry at mosth(nbω (m1))
r1R. There

are |P | − r1 rows in ~B. Hence, we conclude that~x can be replaced by~y such that
~B~y ≥ ~d −∆Pω

[σ′′] and the sum of all entries in~y is at most(h(nbω (m1))2R)d
′|P |3

for some constantd′. This expression is obtained from simplifying

(h(nbω (m1))
r12R)|P |((h(nbω (m1))

|P | + 1)22R)d
′′|P |2

for some constantd′′.
For each column~b of ~B, let π~b be a simple loop ofσ such that∆Pω

[π~b] = ~b.
Recall from step 2 that there is some intermediateω-markingm~b

occurring while fir-
ing σ′′ from m1 such thatm~b

is theω-marking from which the simple loopπ~b is
fired in σ. Let i~b be the position inσ′′ wherem~b

occurs. Letσ′ be the sequence

obtained fromσ′′ by inserting~y(~b) copies ofπ~b into σ′′ at the positioni~b for each

column~b of ~B. Since we insert at most(h(nbω (m1))2R)d
′|P |3 simple loops, each

of length at mosth(nbω (m1))
r1 , |σ′| ≤ (h(nbω (m1))2R)d

′|P |3h(nbω (m1))
r1 +

(h(nbω (m1))
|P | + 1)2. Choose the constantd s.t. |σ′| ≤ (h(nbω (m1))2R)d

′|P |3 ×

h(nbω (m1))
r1 + (h(nbω (m1))

|P | + 1)2 ≤ (h(nbω (m1))2R)d|P |3. Now we have
|σ′| ≤ (h(nbω (m1))2R)d|P |3.

Step 5:Now we prove thatσ′ is ah-PS enabled atm1. Recall thatm1
σ
−→h m2

and thatσ′ is obtained fromσ by removing or adding extra copies of some simple

loops. We infer thatm1
σ′

−→h m2. Now we show thateffect(σ′) � 0. Since for any
simple loopπ in σ, effect(π)(p) = 0 for all p ∈ P \ ω(m1), we haveeffect(σ′)(p) =
effect(σ)(p) ≥ 0.

For anyp ∈ Pω, we have(~B~y+∆Pω
[σ′′])(p) ≥ ~d(p) ≥ 1. Hence,~y(∆Pω

[π]) ≥ 1
and∆Pω

[π](p) = 1 for some simple loopπ or ∆Pω
[σ′′](p) = 1. From the definitions

of ∆Pω
[π] and∆Pω

[σ′′], the only way this can happen is for some transitiont in either
some simple loopπ or σ′′ to haveeffect(t) = ω. Hence, there is some transitiont in
σ′ such thateffect(t)(p) = ω. Hence,effect(σ′)(p) = ω.

33

For anyp ∈ ω(m1)\Pω , we haveeffect(σ′)(p) = (~B~y+∆Pω
[σ′′])(p) ≥ ~d(p) ≥ 0.

Hence,effect(σ′)(p) ≥ 0. �

Proof. [Lemma 10] Letσ′ be obtained fromσ by removing all transitions between any
two identicalω-markings occurring in the runm3

σ
−→h1 m4. The number of distinct

ω-markings appearing in the runm3
σ′

−→h1 m4 is an upper bound on|σ′|. Among the
ω-markings in this run,m3 has the maximum number of places not markedω. Since
h1 is non-decreasing, we infer from the definition of thresholdsemantics (Definition 3)
thath1(nbω (m3))

|P | is an upper bound on the number of possible distinctω-markings.

Hence,|σ′| ≤ h1(nbω (m3))
|P |. We will now prove that for any runm3

σ′

−→h1 m4

where all intermediateω-markings are distinct from one another,[m3]ω→h1

σ′

−→ m′
4

andm′
4 �ω(m4) [m4]ω→h2 . The proof is by induction onnbω (m4) − nbω (m3) (the

number of places whereω is newly introduced).
Base casenbω (m4) − nbω (m3) = 0: We have|σ′| ≤ h1(nbω (m3))

|P | ≤
ℓ(nbω (m3)). For anyp′ ∈ ω(m3), we have by Definition 2 and Definition 6 that
[m3]ω→h1(p

′) = h1(nbω (m3) + 1) = 2Rℓ(nbω (m3)). We conclude from Proposi-

tion 2 that[m3]ω→h1

σ′

−→ m′
4 andm′

4 �ω(m4) [m4]ω→h2 .
Induction step: Let m5 be the firstω-marking afterm3 such thatnbω (m5) >

nbω (m3). Let σ′ = σ1tσ2 wherem3
σ1−→h1 m6

t
−→h1 m5

σ2−→h1 m4. Note that
due to our choice ofm5, we haveω(m6) = ω(m3). In any intermediate marking
m 6= m3 in the runm3

σ1−→h1 m6, m(p) < h1(nbω (m3)) for all p ∈ P \ ω(m3)
(otherwise,p would have been markedω, contradictingω(m6) = ω(m3)). Hence
we have|σ1| ≤ h1(nbω (m3))

|P |. For anyp′ ∈ ω(m3), we have by Definition 2
and Definition 6 that[m3]ω→h1(p

′) = h1(nbω (m3) + 1) = 2Rℓ(nbω (m3)). We
conclude from Proposition 2 that[m3]ω→h1

σ1−→ m′
6 wherem′

6 �ω(m6) m6 and for
all p′ ∈ ω(m6), m′

6(p
′) ≥ 2Rℓ(nbω (m3)) − Rh1(nbω (m3))

|P |. Transitiont is

enabled atm′
6. Letm′

6
t
−→ m′

5, where for anyp such thateffect(t)(p) = ω, we chose
m′

5(p) ≥ h1(nbω (m5) + 1). We now conclude thatm′
5 �ω(m5) [m5]ω→h1 due to the

following reasons:

1. p ∈ P \ ω(m5): we havep ∈ P \ ω(m6).

m′
5(p) = m′

6(p) + effect(t) [semantics ofωPN]

= m6(p) + effect(t) [m′
6 �ω(m6) m6]

= m5(p) [[m6 + effect(t)]h1→ω = m5,m5(p) 6= ω]

= [m5]ω→h1(p)

2. p ∈ ω(m5), effect(t)(p) = ω: m′
5(p) ≥ h1(nbω (m5) + 1) by choice.

3. p ∈ ω(m5), effect(t)(p) 6= ω, p /∈ ω(m6): since[m6 + effect(t)]h1→ω = m5

34

andm5(p) = ω,

m6(p) + effect(t)(p) ≥ h1(nbω (m6))

⇒ m6(p) + effect(t)(p) ≥ h1(nbω (m5) + 1) [nbω (m5) > nbω (m6)]

⇒ m′
6(p) + effect(t)(p) ≥ h1(nbω (m5) + 1) [m′

6 �ω(m6) m6]

⇒ m′
5(p) ≥ h1(nbω (m5) + 1) [semantics ofωPN]

4. p ∈ ω(m5), effect(t)(p) 6= ω, p ∈ ω(m6):

m′
5(p) = m′

6(p) + effect(t)(p) [semantics ofωPN]

≥ m′
6(p)−R [Definition ofR]

≥ 2Rℓ(nbω (m3))−Rh1(nbω (m3))
|P | −R [p ∈ ω(m6)]

≥ Rℓ(nbω (m3))−Rh1(nbω (m3))
|P |

= R(h1(nbω (m3))2R)c|P |3 −Rh1(nbω (m3))
|P | [Definition 6]

≥ h1(nbω (m3))

≥ h1(nbω (m5) + 1)

The last inequality follows sincenbω (m5) > nbω (m3).

Sincenbω (m4) − nbω (m5) < nbω (m4) − nbω (m3) and all intermediateω-
markings in the runm5

σ2−→h1 m4 are distinct from one another, we have by induction
hypothesis that[m5]ω→h1

σ2−→ m′′
4 andm′′

4 �ω(m4) [m4]ω→h2 . Since[m3]ω→h1

σ1−→

m′
6

t
−→ m′

5, m′
5 �ω(m5) [m5]ω→h1 and[m5]ω→h1

σ2−→ m′′
4 , we infer by strong mono-

tonicity that[m3]ω→h1

σ1tσ2−−−→ m′
4 andm′

4 �ω(m4) [m4]ω→h2 . �

Proof. [Lemma 12] By induction oni. For the base casei = 0, the result is obvious
since by Definition 6,ℓ(0) = (2R)c|P |3.

Induction step:

ℓ(i+ 1) = (h1(i+ 1)2R)c|P |3 [Definition 6]

= (2Rℓ(i) · 2 ·R)c|P |3 [Definition 6]

= (4R2)c|P |3(ℓ(i))c|P |3

= (2R)2c|P |3(ℓ(i))c|P |3

≤ (2R)2c|P |3((2R)k
i+1|P |3(i+1)

)c|P |3 [Induction hypothesis]

= (2R)2c|P |3(2R)ck
i+1|P |3(i+2)

≤ (2R)3ck
i+1|P |3(i+2)

= (2R)k
i+2|P |3(i+2)

�

Proof. [Theorem 2] SinceωPN generalise Petri nets, and since termination is EX-
PSPACE-c for Petri nets [19], termination is EXPSPACE-hard forωPN. Let us now

35

show that termination forωPN is in EXPSPACE. We have from Lemma 3 that anωPN
N does not terminate iff it admits a self-covering execution.From Lemma 11, it admits
a self-covering execution iff it admits one whose sequence of transitions is of length
at mostℓ(|P |). The following non-deterministic algorithm can guess and verify the
existence of such a sequence. It works withω-markings, storingω in the respective
places whenever anw-transition is fired.

Input An ωPNN , with initial markingm0.

Output SUCCESS if a self-covering execution is guessed, FAIL otherwise.

1 counter := 0
2 m := m0

3 if counter > ℓ(|P |)
4 return FAIL
5 else
6 non-deterministically choose a transition t

7 if t is not enabled at m

8 return FAIL
9 else

10 m := m+ effect(t)
11 counter := counter + 1
12 non-deterministically go to line 3 or line 13
13 in m, replace ω by Rℓ(|P |)
14 m1 := m

15 if counter > ℓ(|P |)
16 return FAIL
17 else
18 non-deterministically choose a transition t

19 if t is not enabled at m1

20 return FAIL
21 else
22 m1 : = m1 + effect(t)
23 counter := counter + 1
24 non-deterministically go to line 15 or line 25
25 if m1 � m

26 return SUCCESS
27 else
28 return FAIL

The above algorithm tries to guess a sequence of transitionsσ1σ2 such thatm0
σ1−→

m
σ2−→ m1, guessingσ1 in the loop between lines 3 and 12 andσ2 in the loop between

lines 15 and 24. IfN admits a self-covering execution with sequence of transitions
σ1σ2 such that|σ1σ2| ≤ ℓ(|P |), then the execution of the above algorithm that guesses
σ1σ2 will return SUCCESS. If all executions ofN are finite, then all executions of the
above algorithm will return FAIL.

The space required to store the variable “counter” in the above algorithm is at
most log(ℓ(|P |)). The space required to storem andm1 is at most|P |(‖m0‖∞ +
log(Rℓ(|P |))). Using the upper bound given by Lemma 12, we conclude that themem-
ory space required by the above algorithm isO(|P | log‖m0‖∞+k|P |+1|P |3|P |+4 logR).

36

This can be simplified toO(2c
′|P | log |P |(logR + log‖m0‖∞)). Using the well known

Savitch’s theorem to determinize the above algorithm, we get an EXPSPACE upper
bound for the termination problem inωPN. �

37

	1 Introduction
	2 -Petri nets
	3 A Karp and Miller procedure for PN
	4 From PN to plain PN
	5 Extending the Rackoff technique for PN
	6 Extensions with transfer or reset arcs
	A Proof of Lemma ??
	B Proof of Proposition ?? (Termination)
	C Proof of Lemma ?? (soundness)
	D Proof of Lemma ??
	E Proof of Lemma ?? (completeness)
	F Proof of Lemma ??
	G Proofs for Lemmas in Section ??

