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In partially observed Petri nets, diagnosis is the task of detecting whether or not the given sequence of ob-
served labels indicates that some unobservable fault has occurred. Diagnosability is an associated property
of the Petri net, stating that in any possible execution an occurrence of a fault can eventually be diagnosed.

In this paper we consider diagnosability under the weak fairness (WF) assumption, which intuitively
states that no transition from a given set can stay enabled forever — it must eventually either fire or be
disabled. We show that a previous approach to WF-diagnosability in the literature has a major flaw, and
present a corrected notion. Moreover, we present an efficient method for verifying WF-diagnosability based
on a reduction to LTL-X model checking. An important advantage of this method is that the LTL-X formula
is fixed — in particular, the WF assumption does not have to be expressed as a part of it (which would make
the formula length proportional to the size of the specification), but rather the ability of existing model
checkers to handle weak fairness directly is exploited.
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1. INTRODUCTION

The diagnosability of systems has recently drawn the attention of many researchers
in both artificial intelligence and control theory communities. Diagnosis is the pro-
cess of explaining abnormal behaviours of a physical system, and diagnosability is an
important property that determines the possibility of detecting faults given a set of ob-
servations. If a system is diagnosable, it is always possible to determine whether the
fault has occurred by observing the system’s behaviour for sufficiently long time, and
then the diagnosis can find possible explanations for the given sequence of observa-
tions. Otherwise there are scenarios in which it is impossible to tell whether the fault
has occurred or not, no matter for how long the system is observed. Non-diagnosability
usually indicates that the system should be re-designed by e.g. changing the sensor
map and/or augmenting it with additional sensors to make more events observable or
to make the observations more discernable by distinguishing different transitions that
had previously been registered under the same observation label.
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The seminal work [Sampath et al. 1995] introduced a formal language framework
for diagnosis and analysis of diagnosability properties of discrete event systems rep-
resented by finite automata. The proposed method for diagnosability verification was
based on the construction of a diagnoser — an automaton with only observable tran-
sitions that allows one to estimate states of the system by observing its traces. Im-
provements based on the twin plant method have been introduced in [Jiang et al.
2001; Schumann and Pencolé 2007], where the basic idea was to build a verifier by
constructing the synchronous product of the system with itself on observable transi-
tions. This allowed to avoid constructing the exponentially big diagnoser, and reduce
the complexity of diagnosability checking to polynomial in the number of reachable
states [Yoo and Lafortune 2002]. The verifier compares every pair of executions in the
system that have the same projection on the observable transitions. If the original sys-
tem is given as a labelled Petri net, then the verifier can be constructed directly, by
synchronising the original net with its replica at the Petri net level, and the problem
reduces to model checking of a fixed LTL-X [Pnueli 1977; Lamport 1983] property of
the verifier [Madalinski and Khomenko 2010]. Further work on the twin-plant con-
struction for Petri nets include [Cabasino et al. 2012], where both diagnosability and
K-diagnosability (the fault must be diagnosed at most K steps after its occurrence) are
considered, and [Madalinski et al. 2010], where Petri net unfoldings are used to make
diagnosability checking faster.

Recent work [Haar et al. 2013] presented a diagnosis method that encompasses weak
fairness. There, concurrent systems are modelled by partially observable safe Petri
nets, and diagnosis is carried out under the assumption that all executions of the Petri
net are weakly fair, that is, the only infinite executions admitted are those in which
any transition enabled at some stage will be disabled at some later stage, i.e. either
it will actually fire later in that execution, or else some conflicting transition will fire.
Under this assumption, a given finite observation diagnoses a fault if no finite exe-
cution yielding this observation can be extended to a weakly fair fault-free execution.
The work in [Haar et al. 2013] gave a procedure for deciding this diagnosis problem.
It remained open for which systems this procedure reliably diagnoses faults, i.e. how
to determine whether a system is diagnosable under the weak fairness assumption. In
this paper, we address this problem.

Note that a first definition of diagnosability under weak fairness was proposed in
[Agarwal et al. 2012]. However, that definition is incompatible with the notion of diag-
nosis in [Haar et al. 2013] and contains a major flaw, as we shall point out below.

We make the following contributions in this paper:

— We develop a notion of weakly fair (WF) diagnosability, which corrects and super-
sedes the one in [Agarwal et al. 2012].

— We characterise executions that witness violations of WF-diagnosability.
— We further investigate the special case where fault transitions are not WF, i.e. a

fault is a possible outcome in the system but not one that is required to happen. (Our
examples in Sect. 5 suggest that this is a reasonable assumption in practice.) Under
this assumption, the notion of a witness can be significantly simplified.

— We develop a method for verifying WF-diagnosability in this case, and evaluate it
experimentally.

This paper is the full version of the conference paper [Germanos et al. 2014]. The
following additional contributions are made in this paper:

— An alternative (and more convenient) notion of a witness of WF-diagnosability viola-
tion, together with a proof of its equivalence to the notion in [Germanos et al. 2014].

— A general method for verifying WF-diagnosability, which allows faults to be WF.
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The paper is organised as follows: Sect. 2 discusses existing notions of diagnosabil-
ity and explains why they are problematic for concurrent systems. Sect. 3 develops our
notion of WF-diagnosability and witnesses of its violation. Sect. 4 presents the con-
struction of the verifier, which is evaluated in Sect. 5. Sect. 6 presents a generalised
method for verifying WF-diagnosability, which allows faults to be WF. We conclude in
Sect. 7.

2. PETRI NETS AND DIAGNOSABILITY

This section explains why the standard notion of diagnosability, as well as the notion
of WF-diagnosability developed in [Agarwal et al. 2012], are problematic, which moti-
vates our new definition, to be presented later.

Throughout the paper we assume that the system is modelled as a labelled Petri net
(LPN) N , where each transition is labelled with the performed action. The actions are
partitioned into observable and silent, i.e. there is a labelling function ℓ mapping the
LPN’s transitions to O ∪ {ε}, where O is an alphabet of observable actions and ε /∈ O is
the empty word denoting the silent action. (Intuitively, observable actions correspond
to controller commands and sensor readings, while the silent action models some inter-
nal activity that is not recorded by sensors.) This labelling function ℓ can be naturally
extended to finite and infinite executions of the LPN, projecting them to words in O∗

or Oω. We assume that the LPN is free from deadlocks and divergencies, i.e. every
execution of the LPN can be extended to an infinite one, and every infinite execution
of the LPN has infinitely many observable transitions. Some of the transitions are
designated as faults; w.l.o.g., we assume that none of them is observable. An example
in Fig. 1 shows an LPN with the observable transitions t3, t4 and t5 with ℓ(t3) = a,
ℓ(t4) = b and ℓ(t5) = tick (the other transitions are unobservable). Note that we draw
faults as black boxes, and the observable transitions are shaded.

Fig. 1: This LPN without t5 would be diagnosable, but t5 makes it undiagnosable.
Making t3 WF makes the LPN diagnosable.

The usual interleaving semantics is used in this paper; in particular, references to
time in temporal modalities like ‘eventually’ and ‘always’ are w.r.t. the ‘internal’ clock
that progresses when some transition of the LPN fires.

2.1. Standard diagnosability

Given a finite execution σ of the LPN, the observer sees the outputs of the system
ℓ(σ) ∈ O∗, and needs to conclude whether some fault transition t has definitely oc-
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curred in σ. In a diagnosable system, once a fault has occurred, the observer is able
to eventually detect this. That is, provided that the suffix of σ after the first occur-
rence of a fault in it is sufficiently long, the observer should be able to conclude that
each execution with the same projection ℓ(σ) contains a fault, i.e. a fault has either
already occurred or will definitely occur in the future. Let us first recall the definition
of standard diagnosability:1

Definition 2.1 (Diagnosability). An LPN is diagnosable iff for all its infinite traces
σ and ρ such that ℓ(σ) = ℓ(ρ), σ contains a fault iff ρ contains a fault.

In other words, a non-diagnosable LPN has two infinite executions having the same
projection onto the observable actions and such that one of them contains a fault and
the other does not; such a pair of traces constitutes a witness of diagnosability viola-
tion.

For example, the LPN in Fig. 1 is not diagnosable. Indeed, the diagnoser can only
conclude that the fault has occurred after observing a. However, the infinite execution
t2t

ω
5 contains a fault but never fires t3. Nevertheless, if t5 is removed, the LPN becomes

diagnosable.

2.2. Weak fairness

The example from Fig. 1 exhibits a pathological property of this notion of diagnosabil-
ity: a diagnosable system ceases to be such simply because some unrelated concurrent
activity is added to the specification. In practice, it is often reasonable to assume that
the system is keen to fire its enabled transitions, and cannot perpetually ignore an en-
abled transition. In other words, one can consider the LPN in Fig. 1 diagnosable, by
declaring the infinite execution t2t

ω
5 impossible.

To capture this idea formally, the notion of weak fairness is helpful [Vogler 1995].
Suppose the designer wants to disallow some of the transitions to be perpetually ig-
nored when enabled. We call such transitions weakly fair (WF). An infinite execution
σ of the LPN is called weakly fair (WF) if for each WF transition t, if t is enabled after
some prefix of σ then the rest of σ contains some transition in (•t)•, see Fig. 2. All
finite executions are regarded as WF. We now can use the set of WF executions as the
semantics of the LPN, i.e. other executions are considered impossible. Coming back to
the example in Fig. 1, if t3 is WF then the execution t2t

ω
5 is not WF and thus impossible,

and so the LPN becomes diagnosable.

Fig. 2: (i) The execution (t1t2t3)
ω is WF as no enabled transition is perpetually ignored

by it. (ii) The execution (t1t2)
ω is not WF as t3 is enabled but all the transitions in

(•t3)
• = {t3} are perpetually ignored. (iii) The execution (t1t3)

ω is WF: even though t2
is perpetually ignored, t1 ∈ (•t2)

• = {t1, t2} is fired.

1This definition is taken from [Madalinski and Khomenko 2010]. It is subtly different from the original
definition in [Sampath et al. 1995], but equivalent for finite state systems, and simpler to use in practice.
(An LPN has finitely many reachable markings iff it is bounded.)
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Fig. 3: This LPN is WF-diagnosable according to the definition from [Agarwal et al.
2012], but not according to the corrected definition (Def. 3.1 and Lemma 3.3). Note that
the observer cannot detect the fault in finite time.

It is tempting to derive the definition of WF-diagnosability simply by taking Def. 2.1
and restricting it to WF executions. In fact, such an approach was taken in [Agarwal
et al. 2012], where an LPN N was said to be WF-diagnosable iff for all its infinite WF
executions σ and ρ such that ℓ(σ) = ℓ(ρ), σ contains a fault iff ρ contains a fault.

Unfortunately, this definition contains a major flaw, demonstrated by the example
in Fig. 3. This LPN would be said to be diagnosable, while it is not possible for the
observer to detect a fault in finite time, as one would have to observe the infinite trace
aω to positively conclude that the fault has occurred.

3. WEAKLY FAIR DIAGNOSABILITY

To fix the problems exhibited in Sect. 2, we present a corrected definition of WF-diag-
nosability, where the possibility of detecting a fault in finite time is imposed. Intu-
itively, it states that each infinite WF execution containing a fault must have a finite
prefix after which it is possible to conclude unambiguously that the fault has either
occurred or will inevitably occur in future. Below we denote by ‘<’ the prefix relation
on sequences.

Definition 3.1 (WF-diagnosability). An LPN is WF-diagnosable iff each infinite WF
execution σ containing a fault has a finite prefix σ̂ such that every infinite WF execu-
tion ρ with ℓ(σ̂) < ℓ(ρ) contains a fault.

The LPN in Fig. 3 is not WF-diagnosable according to Def 3.1, as for each finite
prefix (say, t1t

n
3 for some n ∈ N) of the infinite WF execution t1t

ω
3 containing a fault,

there is a finite execution (t2t
n
3 ) with the same projection to observable actions, that

can be extended to an infinite WF execution without a fault (e.g. t2t
n
3 (t3t4)

ω).
In this example one can also identify a fault-free infinite execution t2t

ω
3 that is in

itself not WF, but each of its finite prefixes can be extended to an infinite fault-free WF
execution. As we shall see, such an execution can always be found in a bounded LPN
that is not WF-diagnosable.

Definition 3.2 (Witness for a bounded LPN). Let N be a bounded LPN. A pair of
infinite executions (σ, ρ) with ℓ(σ) = ℓ(ρ) is called witness (of WF-diagnosability viola-
tion) if σ is WF and contains a fault, and every prefix of ρ can be extended to an infinite
fault-free WF execution.

LEMMA 3.3 (WF-DIAGNOSABILITY OF A BOUNDED LPN). A bounded LPN N is
WF-diagnosable iff no witness of its WF-diagnosability violation satisfying the con-
ditions of Def. 3.2 exists.
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PROOF. If a witness satisfying Def. 3.2 exists then the condition of Def. 3.1 is vio-
lated, as for any prefix of σ one can choose a prefix of ρ with the same projection, which
can be extended to a fault-free WF execution, i.e. N is not WF-diagnosable.

In the reverse direction: Suppose N is not WF-diagnosable. Then, according to
Def. 3.1, there exists an infinite, WF, faulty execution σ such that for every finite prefix
σ̂ < σ there exists some infinite, WF, fault-free execution ρ with ℓ(σ̂) < ℓ(ρ). From σ, we
shall construct a pair of executions (σ′, ρ′) constituting a witness according to Def. 3.2.

Let K be the number of states (i.e. reachable markings) of N . Let m(σ, i) denote the
marking generated by the i-th observable transition in σ; since N has no divergencies,
it is well-defined for all i ≥ 1. Moreover, let s(σ, i, j) denote the interval of σ starting
after the i-th observable transition and ending at the j-th observable transition, for all
0 < i < j. Furthermore, let k be the number of observable transitions in σ before the
first occurrence of a fault.

By the pigeonhole principle, some marking m must satisfy m = m(σ, i) for infinitely
many i, and thus one can construct an infinite, strictly ascending sequence of indices
(ij)j≥0 such that i0 > k, and all j ≥ 0 satisfy (i) m(σ, ij) = m, and (ii) s(σ, ij , ij+1) ∩
(•t)• 6= ∅ for every WF transition t enabled in m (such a subsequence exists since σ is
WF and m appears infinitely often). Let σ̂ be the prefix of σ with |ℓ(σ̂)| = iK .

Now, let ρ be an infinite, WF, fault-free sequence with ℓ(σ̂) < ℓ(ρ). By the pigeonhole
principle, there must be two indices 0 ≤ j1 < j2 ≤ K with m(ρ, ij1) = m(ρ, ij2) =: m′.

We are now ready to conclude. Consider the execution σ′, identical to σ up to m(σ, ij1)
and then executing s(σ, ij1 , ij2)

ω. This execution is infinite, contains a fault, and is WF
by construction. Moreover, let ρ′ be an infinite execution identical to ρ up to m(ρ, ij1)
and then executing s(ρ, ij1 , ij2)

ω. By construction, ℓ(σ′) = ℓ(ρ′) but ρ′ does not contain
a fault. Also, every prefix of ρ′ can be extended to a WF fault-free execution by going to
the next occurrence of m′ and then appending any suffix of ρ starting at an occurrence
of m′. Thus, (σ′, ρ′) constitutes a witness.

Def. 3.2 is difficult to use due to the necessity to consider every prefix of ρ. Lemma 3.4
provides an alternative characterisation for ρ. Its advantage is that instead of consid-
ering infinitely many prefixes of ρ, it considers a single well chosen one.

LEMMA 3.4. Let N be a bounded LPN and ρ be an infinite execution. Then the
following two statements are equivalent:

(1) every prefix of ρ can be extended to an infinite fault-free WF execution;
(2) ρ is fault-free and has a prefix ρ̂ such that ρ passes through the marking reached by

ρ̂ infinitely many times, and ρ̂ can be extended to an infinite fault-free WF execution.

PROOF. (1) ⇒ (2) Suppose every prefix of ρ can be extended to an infinite fault-
free WF execution (∗). Then ρ must be fault-free, as otherwise some prefix of ρ would
contain a fault, contradicting (∗). Since the LPN is bounded and ρ is infinite, ρ passes
through some marking m infinitely many times. Let ρ̂ be a prefix of ρ that reaches m
first time. By (∗), ρ̂ can be extended to an infinite WF execution.
(1) ⇐ (2) Suppose ρ is fault-free and has a prefix ρ̂ such that ρ passes through the

marking m reached by ρ̂ infinitely many times, and ρ̂ can be extended to an infinite
fault-free WF execution ρ̂ρ′. Since ρ passes through m infinitely many times, every
prefix of ρ can be extended to a longer prefix reaching m. In turn, this longer prefix can
be extended by ρ′ to an infinite fault-free execution, as ρ′ is enabled from m. Moreover,
this execution is WF, as ρ̂ρ′ is WF, and ρ′ fully determines whether the execution is WF
or not.
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We note that in certain practical cases, the witness definition can be simplified. In
particular, we consider the case when no fault transition is WF: Then one can further
simplify the requirements imposed on ρ in Lemma 3.4.

LEMMA 3.5. Let N be a bounded LPN where no fault transition is WF, and let ρ be
an infinite execution. Then the following two statements are equivalent:

(1) every prefix of ρ can be extended to an infinite fault-free WF execution;
(2) ρ is fault-free.

PROOF. The proof of (1) ⇒ (2) is as in the proof of Lemma 3.4. As for the other
direction, suppose ρ is infinite and fault-free and take any finite prefix ρ̂ of ρ such
that ρ̂ρ′ = ρ. We construct an infinite, WF, fault-free continuation of ρ̂. If ρ itself is
WF then we are done. Otherwise there exists some WF transition t that is enabled at
some point in ρ after which ρ contains no more transition from (•t)•; note that t is not
a fault by the assumption. But this means that firing t cannot disable any transition
in the rest of the execution, so we can insert it anywhere into ρ′ without disabling
the rest of this execution. The repeated application of this insertion process yields the
required continuation of ρ̂, and it always can be done in such a way that no enabled
WF transition is perpetually ignored by the insertion process, and no transition from
ρ′ is indefinitely delayed by the newly inserted transitions.

Lemma 3.5 provides another characterisation of ρ in witnesses provided that the
net contains no WF fault transitions. This result is central for the WF-diagnosability
verification method proposed in Sect. 4. Note also that this characterisation is quite
similar to the (flawed) definition from [Agarwal et al. 2012], but with the following
important differences: (i) it is limited to bounded LPNs without WF faults, and (ii) ρ is
not required to be WF. As an example, a witness of WF-diagnosability violation for the
LPN in Fig. 3 would be (t1t

ω
3 , t2t

ω
3 ); note that the latter execution is not WF itself, but

that each of its prefixes can be extended to a WF execution.
It should be noted that the assumption that the faults are not WF is essential for

Lemma 3.5. Indeed, consider the LPN in Fig. 4, where tω1 constitutes an infinite, fault-
free execution as required by Lemma 3.5 (2) that has the same observations as the
faulty execution t2t

ω
1 . Nonetheless, this LPN is trivially WF-diagnosable, as all its in-

finite WF executions contain the WF fault transition. Thus, the assumption about the
absence of WF faults cannot be dropped in Lemma 3.5.

Fig. 4: A bounded LPN illustrating that the assumption about faults being non-WF
is essential for Lemma 3.5. Despite the presence of an infinite fault-free execution tω1 ,
this LPN is trivially WF-diagnosable, as the fault must occur in every infinite WF
execution.

Remark 3.6. The notion of WF-diagnosability is very different from fair diagnos-
ability in the sense of [Biswas 2013b; Biswas et al. 2010; Biswas 2013a]: The fairness
notion there concerns the behaviour of sequential systems w.r.t. choices — an execu-
tion is fair iff for every state that is visited infinitely often, every transition leading
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out of it is selected infinitely many times. Assuming this property makes diagnosis
more powerful, and leads to a notion of diagnosability for automata models that can be
shown to coincide with stochastic diagnosability in the sense of [Thorsley and Teneket-
zis 2005] when adding an appropriate Markov law. In this paper we are dealing with
very different issues; in fact, weak fairness is relevant only in concurrent systems,
since in sequential systems as in [Biswas 2013b; Biswas et al. 2010; Biswas 2013a]
every infinite run is WF. ✸

4. CHECKING WF-DIAGNOSABILITY

In this section we show how checking WF-diagnosability can be re-formulated in terms
of LTL-X [Pnueli 1977; Lamport 1983] model checking.

Our approach works for a bounded LPN N . We perform various operations on N to
obtain another bounded LPN V, called the verifier, which we check against a fixed LTL-
X formula (in particular, its size does not depend on N ). To achieve this, we exploit the
ability of many existing model checkers to handle weak fairness directly.2

We first introduce the operations on N needed to obtain V (Sect. 4.1), then recall the
approach for non-WF diagnosability (Sect. 4.2), and finally present the modifications
necessary to handle WF-diagnosability for the special case where no fault transition is
WF (Sect. 4.3). The general case of bounded nets is considered in Sect. 6.

We use the net in Fig. 5 as a running example.

Fig. 5: An LPN similar to that in Fig. 3, but with a different choice of a fault transition.
It is not diagnosable but WF-diagnosable, as an occurrence of a fault enables t4, which
can be perpetually ignored under the non-WF semantics, but must eventually fire —
thus diagnosing the fault — under the WF semantics.

4.1. Net operations

In this paper we are concerned with the state-based LTL-X verification. However, the
definition of diagnosability in Sect. 3 is action-based, and thus has to be re-formulated
in terms of states. The first operation is defined for this purpose.

Fault monitor. We will need to keep track whether some execution contains a fault
transition. Given N , the net N ft denotes N extended with two additional places pf and
pf of which pf is initially marked, indicating that no fault has happened so far. Then
we make every fault transition move a token from pf to pf , indicating that a fault has
occurred. Also, since a fault transition may fire several times in N , another transition
f ′ is added for each fault transition f , in order to simulate these subsequent firings in
N ft . The construction is illustrated in Fig. 6, where it is applied to Fig. 5.

2The algorithm looking for an accepting (lasso-shaped) execution of a Büchi automaton can be modified in
such a way as to ignore non-WF executions.
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In terms of behaviour, N and N ft are equivalent in a strong sense. Suppose that the
transitions of N are injectively labelled, and the transitions of N ft retain these labels,
with the label of f and f ′ being the same. Then these two nets are strongly bisimilar.
Moreover, if pf in N ft is unmarked then a fault occurred in the past.

Fig. 6: Fault tracking net N ft for the LPN in Fig. 5.

Stubs. We will want to know whether an infinite execution perpetually ignores cer-
tain enabled WF transitions. Given a subset of N ’s WF transitions and a ‘fresh’ ini-
tially marked place stub monitor , we can turn these transitions into stubs by removing
all their outgoing arcs and adding stub monitor to their presets.

Stubs are not meant to be executed: in fact, our LTL-X formulae will make such
executions ‘irrelevant’ by demanding that stub monitor remains always marked. Then,
a ‘relevant’ WF execution that keeps stub monitor marked cannot enable a stub forever.

Removing transitions. We can remove a given subset of transitions from an LPN,
together with their incoming and outgoing arcs.

Synchronising. Let N and N ′ be two LPNs with disjoint sets of places and transi-
tions. Intuitively, the synchronisation of N and N ′ puts N and N ′ side-by-side, and
then each observable transition t of N is fused with each transition t′ of N ′ that has
the same label (each fusion produces a new transition, and t and t′ remain in the re-
sult). Thus the synchronised net has three types of transitions: those from N , those
from N ′, and the fused ones.

4.2. Verifying ordinary diagnosability

We recall the verification of (non-WF) diagnosability from [Madalinski and Khomenko
2010] and show that it is unsuitable for WF-diagnosability. Let N be the original LPN.
The construction works in the following steps:

(1) Let N ft be the fault tracking net corresponding to N .
(2) Let N ′ be a copy of N .
(3) Let Ns be the result of synchronising N ft and N ′.
(4) Remove from Ns all observable transitions of N ft .
(5) Remove from Ns all observable and fault transitions of N ′.
(6) Call the resulting net V.

Note that after V has been built, it is no longer necessary to remember which actions
are visible and which are not, and so we can disregard all the labelling and treat V as
an unlabelled PN. This construction is illustrated in Fig. 7.
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Fig. 7: The (non-WF) verifier for the LPN in Fig. 5.

It turns out [Madalinski and Khomenko 2010] that N is diagnosable iff the following
LTL-X property holds for all traces of V:

diag
df
= ✷ pf ,

i.e. one simply requires that no infinite trace of V contains an occurrence of a fault.
Conversely, a counterexample satisfying ✸¬pf is an infinite execution of V contain-

ing a fault; when projected to the parts corresponding to N ft and N ′, it gives a witness
of (non-WF) diagnosability violation, i.e. two infinite executions of N that have the
same projection on the set of observable actions but the first contains a fault while the
second does not. Similarly, such a pair of executions corresponds to an infinite trace of
V, with the first being executed by the part of V corresponding to N ft , and the second
(without occurrences of faults) being executed by the part of V corresponding to N ′.

Unfortunately, this construction is not appropriate for WF-diagnosability, even if
the executions of the verifier are restricted to be WF. For example, consider the net in
Fig. 5. The verifier proposed in [Madalinski and Khomenko 2010] is shown in Fig. 7. It
has an infinite execution containing a fault, t2t

′
1t

ω
3 , which, when projected to N ft and

N ′, yields a pair of traces constituting a witness of diagnosability violation. However,
this verifier cannot be used for checking WF-diagnosability simply by restricting its
executions to be WF, as the same execution t2t

′
1t

ω
3 is actually WF, since t4 is not per-

manently enabled by it (in fact, it is a dead transition in the verifier). Therefore, this
execution is a false negative (the original LPN is in fact WF-diagnosable). Note that
when this WF execution of the verifier is projected to N ft and N ′, the resulting pair of
traces will not constitute a witness of WF-diagnosability, as the former projection will
be a non-WF execution of N ft that perpetually ignores an enabled transition t4.

Below, we amend V to fix this problem for bounded LPNs with no WF faults.

4.3. Verifier for non-WF fault transitions

Let N be a bounded LPN, in which no fault transition is WF. We keep the basic idea of
the verifier construction from Sect. 4.2, i.e. our verifier VWF will be the synchronisation
of two nets, and a counterexample to our LTL-X formula will give a faulty execution σ
in one net, and a fault-free execution ρ in the other net, such that (σ, ρ) is a witness.

The first important change is to check the formula only against WF executions. As
seen in Sect. 4.2, this alone is not enough: The false counterexample obtained for Fig. 5
comes from the fact that VWF allows σ to perpetually ignore a transition (here: t4) if ρ
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does not enable it. We use stubs to prevent this from happening. More precisely, V is
constructed as follows:

(1) Obtain the net Ns as in Sect. 4.2; its fused transitions are declared non-WF.
(2) Turn in Ns the observable WF transitions of N ft into stubs; they remain WF.
(3) Remove from Ns all observable and fault transitions of N ′.
(4) In Ns, make the remaining transitions of N ′ non-WF.
(5) Call the resulting net VWF .

Fig. 8 shows the verifier VWF for the LPN in Fig. 5.

Fig. 8: The WF verifier for the LPN in Fig. 5.

Now we can formulate WF-diagnosability of the original N as a fixed LTL-X formula
on VWF that has to be checked for infinite WF executions only:

diagWF

df
= ✷ pf ∨ ✸¬stub monitor .

Thus a counterexample is an infinite WF execution containing a fault but no stubs.

THEOREM 4.1 (CORRECTNESS OF SPECIALISED WF VERIFIER). Let N be a boun-
ded LPN where no fault transition is WF. Then N is WF-diagnosable iff all infinite WF
executions of VWF satisfy diagWF .

PROOF. According to Lemma 3.3, N is WF-diagnosable iff no witness (σ, ρ) exists.
Since no fault transition is WF, we can employ the simplified condition of Lemma 3.5.

First, suppose diagWF is false, i.e. VWF has an infinite WF execution τ that contains
a fault and no stubs. Let σ and ρ be the projections of τ to N ft and N ′, respectively.
We claim that (σ, ρ) is a witness. Indeed, since N has no divergencies, τ must contain
infinitely many observable transitions. Thus, both σ and ρ are infinite, and ℓ(σ) = ℓ(ρ)
holds; moreover, σ contains a fault but ρ does not. Finally, σ must be WF because τ is
and no stubs are fired.

For the reverse direction, it is fairly straightforward to see that any witness (σ, ρ)
gives rise to an execution τ of VWF violating diagWF , even if ρ satisfies only the sim-
plified condition from Lemma 3.5. Moreover, τ is WF because σ is. The fact that ρ is
not necessarily WF does not play a role, as ρ is executed in the part of the verifier
corresponding to N ′ and so contains no WF transitions by construction.
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Fig. 9: The COMMBOX (n) benchmark (left) and the corresponding verifier (right).

5. EXPERIMENTAL RESULTS

In this section we present experimental results for the proposed WF-diagnosability ap-
proach. Furthermore, we demonstrate that the proposed approach can easily be lifted
from low-level Petri nets to high-level ones: both the used benchmarks and the corre-
sponding verifiers were modelled using high-level LPNs.

For the verification, the MARIA (modular reachability analyser) tool [Mäkelä 2005]
was used. Since MARIA supports modular verification, it was possible to exploit the
modular structure of the verifier (recall that it is built by synchronising two LPNs, see
Sect. 4) to significantly speed up the verification.

It should be noted that finding interesting benchmarks was a challenging task: De-
spite a lot of theoretical work done in the area of diagnosability, rather few practi-
cal experiments have been conducted. Moreover, we wanted benchmarks where weak
fairness is essential, i.e. removing some transitions from the WF set would make the
system undiagnosable. Hence, we designed the following two new families of scalable
benchmarks, available from the authors upon request.

COMMBOX (n). Fig. 9 shows a high-level LPN modelling the system comprising com-
mutator boxes and an inspector, together with the verifier. It models n boxes commut-
ing telephone calls. Normally, a box just handles telephone calls (the normal execution
transition), but occasionally it may register a fault (the fault transition) in a telephone
line. Such an event, however, does not take the box out of action, and it still contin-
ues to commute calls (the normal execution transition) and register further faults (the
fault transition). Nevertheless, the registered faults have to be considered and fixed,
and so there is an inspector visiting the boxes on a round trip and fixing them if neces-
sary (the skip healthy and fix transitions). It is assumed that fix is the only observable
transition, and one can be sure that a fault has occurred once it fires. Nevertheless, it
is possible that the inspector indefinitely postpones visiting the boxes (i.e. its transi-
tions are always preempted by, e.g., normal execution which is always enabled), and so
the system is undiagnosable. However, if the transitions modelling the inspector are
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Fig. 10: The COMMBOXTECH (n) benchmark (top) and its verifier (bottom).
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WF, the system becomes diagnosable, as after a fault the fix transition is eventually
executed.

Vrf Vrf Modular
Benchmarks Time Time

COMMBOX (4) <1 <1
COMMBOX (5) 4 1
COMMBOX (6) 12 4
COMMBOX (7) 38 14
COMMBOXTECH (4) 17 6
COMMBOXTECH (5) 101 33
COMMBOXTECH (6) 561 162
COMMBOXTECH (7) 2995 Bug

Table I: Experimental results for COMMBOX and COMMBOXTECH

benchmarks (all nets are diagnosable).

COMMBOXTECH (n). Fig. 10 shows an elaborated version of the above system, to-
gether with its verifier: The inspector reports the faults to a technician, who then fixes
them. Again, the inspector’s and technician’s transitions must both be WF to make the
system diagnosable.

The experimental results are summarised in Table I, where the meaning of the
columns is as follows (from left to right): name of the benchmark, verification time,
and verification time using the modular representation of the verifier. (The time is
measured in seconds.) All experiments were conducted on a PC with 64-bit Windows
7 operating system, an Intel Core i7 2.8GHz Processor with 8 cores and 4GB RAM (no
parallelisation was used for the results in this table). The MARIA tool has confirmed
that the diagnosability property holds for these benchmarks. We also discovered a bug
in MARIA: for the COMMBOXTECH (7) benchmark there is a mismatch between the
verification outcomes in the standard and modular modes.

We also wanted to check that the WF constraint is essential for diagnosability, i.e.
that if even one transition is removed from the WF set then the system becomes un-
diagnosable. These results are summarised in Tables II and III. The MARIA tool con-
firmed that this is the case for the transitions skip healthy and fix for the COMMBOX

family, and for the transitions skip healthy, report and fix for the COMMBOXTECH

WF enabled Vrf Vrf Modular Diagnosable
Benchmarks skip healthy fix Time Time

COMMBOX (4) X × 1 <1 ×
× X 1 <1 ×

COMMBOX (5) X × 1 1 ×
× X 2 1 ×

COMMBOX (6) X × 2 1 ×
× X 2 2 ×

COMMBOX (7) X × 2 2 ×
× X 3 2 ×

Table II: Experimental results for COMMBOX with reduced WF set.
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WF enabled Vrf Diagnosable
skip skip Vrf Modular

Benchmarks healthy report reported fix Time Time

X X X × 2 1 ×
COMMBOX X X × X 17 6 X

TECH(4) X × X X 1 1 ×
× X X X 8 3 ×
X X X × 3 2 ×

COMMBOX X X × X 102 30 X

TECH(5) X × X X 2 1 ×
× X X X 42 14 ×
X X X × 3 2 ×

COMMBOX X X × X 560 147 X

TECH(6) X × X X 2 1 ×
× X X X 6 61 ×
X X X × 4 3 ×

COMMBOX X X × X 2853 Bug X

TECH(7) X × X X 3 2 ×
× X X X 1099 4 ×

Table III: Experimental results for COMMBOXTECH with reduced WF set.

family. However, to our surprise, the COMMBOXTECH benchmarks remain diagnos-
able even when the skip reported transition is removed from the WF set: This is in fact
correct, as skip reported can be enabled only after some fault has been reported, i.e.
some fault will be diagnosed due to the fix transition even if skip reported never fires.

6. GENERAL VERIFIER FOR BOUNDED LPNS

Let N be a bounded LPN whose fault transitions may or may not be WF. The conse-
quences of having WF faults are exemplified by Fig. 4. Notice that in both V and VWF ,
the fault transitions are removed from the component corresponding to N ′. However,
in Fig. 4, the fault transition is enabled in the initial marking and WF, hence unavoid-
able, so the LPN is trivially WF-diagnosable. However, both V and VWF violate their
respective LTL-X formulae in this example since they allow N ′ to ignore the perma-
nently enabled WF fault transition.

To fix this problem, we extend the construction of VWF as explained below. The gen-
eralised construction adds several places called control monitors. These will be added
to the presets and postsets of certain transitions, which allows one to distinguish differ-
ent phases of an execution. While such a transformation does not change the behaviour
of a standard Petri net, the presence of weak fairness requires a more elaborated con-
struction. To illustrate this issue, suppose t is WF and t′ is another transition with
•t ∩ •t′ = ∅. Thus, if t is enabled then firing t′ does not discharge an infinite WF exe-
cution from the obligation to fire a transition from (•t)•. However, if the same control
monitor place is added to the presets of t and t′, the set of WF executions can change.
To solve this problem we introduce the following notion.

Definition 6.1. A WF-preserving control monitor mon w.r.t. a set of transitions T is
a set of fresh places {mon0} ∪ {mont | t ∈ T is WF }.

We use the following net operations involving control monitors.
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(Simple) control. Let T be a set of transitions and p, p′ be two control monitor places
(which may be the same). To control T by (p, p′) means adding p to the preset and p′ to
the postset of each t ∈ T .

WF-preserving control. Let T be a set of transitions and mon,mon ′ be two WF-pre-
serving control monitors. We say that T is controlled by (mon,mon ′) if we control each
non-WF transition in T by (mon0,mon ′

0) and each WF transition t ∈ T by (mont,mon ′
t).

Activity monitor. Let T be a set of transitions and TWF
df
= {t ∈ T | t is WF}. An

activity monitor is used to make sure that an execution contains infinitely many occur-
rences of transitions from T . Formally, an activity monitor a is a tuple of WF-preserving
control monitors (idlea, activea) that controls T , where all places of idlea are initially
marked. Moreover, we add a number of fresh WF transitions: one that transfers a to-
ken from activea0 to idlea0 , and one for each t ∈ TWF that transfers a token from activeat
to idleat . With a we associate the LTL-X formula

φa
df
= ✷✸ (activea0 ∨

∨

t∈TWF

activeat )

expressing that an execution contains infinitely many occurrences of T .

The ideas behind the general verifier Vgen
WF capable of handling WF faults are as

follows. It has three copies of the original LPN N , corresponding to the executions σ,
ρ, and the infinite fault-free WF continuation ρ′ of ρ̂ as in the proof of Lemma 3.4.
The first two copies are transformed and synchronised as before and correspond to N ft

and N ′, to ensure that σ is WF, ρ is fault-free and ℓ(σ) = ℓ(ρ). The LTL-X formula, as
before, ensures that σ contains a fault. The third copy, N ′′, initially follows N ′, in the
sense that any transition modifying the marking of N ′ also modifies the marking of
N ′′ in the same way, so that the markings of N ′ and N ′′ are the same for some time.
Moreover, a separate set of places P̄ corresponding to those in N ′ is created, and it is
ensured in a similar way that the marking of P̄ is the same as that of N ′ and N ′′ for the
same period of time. However, at some non-deterministically chosen point of time, N ′′

starts running completely independently from N ′ and the marking of P̄ stops changing
(the projection of the verifier’s execution up to this point to N ′ corresponds to ρ̂). The
non-WF fault transitions of N ′′ are removed, and its WF fault transitions are turned
into stubs, and the LTL-X formula will ensure that these stubs do not fire and the
projection of the execution onto this LPN is WF. Moreover, the formula will ensure that
ρ periodically passes through the marking stored in P̄ as required by Lemma 3.4 (2).
For this, we employ the LTL-X formula

φmark
df
= ✷✸

∧

(p′,p̄)

#tok (p
′) = #tok (p̄),

where p′ runs through the places of N ′ and p̄ is the place of P̄ corresponding to p′. Note
that this formula uses elementary propositions checking whether two places contain
the same number of tokens; such comparisons are supported by mainstream model
checkers, e.g. MARIA. Lastly, two activity monitors are added to this construction, to
check whether the projections of any execution of the verifier satisfying the formula
to N ′ and N ′′ are infinite (this is unlike the construction of VWF in Sect. 4.3, where
the infinity of projections followed automatically from the assumptions about N ). This
implies the infinity of the projection to N ft , due to the assumptions about N .

We now describe the verifier’s construction in more detail:
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Fig. 11: The general verifier Vgen
WF capable of handling WF faults for the LPN in Fig. 4.

(1) Construct the net VWF as in Sect. 4.3, containing the two copies N ft and N ′ and
a place stub monitor . Let N ′′ be an additional copy of N . Add a fresh set of places

P̄
df
= { p̄ | p is a place of N ′ }.

(2) Remove from N ′′ all non-WF fault transitions, and turn the WF fault transitions
into stubs (re-using stub monitor ); they remain WF.

(3) Add an initially marked control monitor place in prefix and a WF-preserving mon-
itor after prefix w.r.t. the non-stub transitions T of N ′′. Control the transitions in T
by (after prefix , after prefix ). Moreover, add a fresh non-WF transition switch with
the preset {in prefix} and the postset after prefix .

(4) Let Tafter be the transitions of N ′, including the fused transitions. Add a set Tin

containing a fresh non-WF copy t′ for each t ∈ Tafter with the same label. For
each place p of N ′ in •t (resp. t•), add p and the corresponding places p′′ of N ′′

and p̄ ∈ P̄ to the preset (resp. postset) of t′. Furthermore, Tin is controlled by
(in prefix , in prefix ) and Tafter by (after prefix 0, after prefix 0).

(5) Introduce an activity monitor a′ that watches the fused transitions among Tafter .
(6) Introduce an activity monitor a′′ that watches all the visible transitions of N ′′.
(7) Call the resulting net Vgen

WF .

This construction is illustrated in Fig. 11.
As before, we formulate diagnosability of N as an LTL-X formula that needs to hold

for the infinite WF executions of Vgen
WF :

diag
gen
WF

df
= ✷ pf ∨✸¬stub monitor ∨ ¬φmark ∨ ¬φa′ ∨ ¬φa′′ .

The negation of this formula is

¬diaggenWF = ✸¬pf ∧✷ stub monitor ∧ φmark ∧ φa′ ∧ φa′′ .

A counterexample thus has to commit a fault in N ft (but not in N ′ as fault transitions
are removed from there), not execute any stub transitions, contain infinitely many
synchronised transitions and infinitely many visible transitions of N ′′. Additionally,
the N ′ part of Vgen

WF must pass through the marking stored in P̄ infinitely often.
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THEOREM 6.2 (CORRECTNESS OF GENERAL WF VERIFIER). A bounded LPN N is
diagnosable iff the corresponding verifier Vgen

WF satisfies diag
gen
WF .

PROOF. (⇒) Suppose Vgen
WF does not satisfy diag

gen
WF , i.e. it has a WF execution τ sat-

isfying ¬diaggenWF . Hence τ satisfies φa′ and thus contains infinitely many synchronised
transitions. Let σ and ρ be the projections of τ to N ft and N ′, respectively (the lat-
ter projection includes all fused transitions, including both Tin and Tafter ). We claim
that (σ, ρ) is a witness. Indeed, as in the proof of Thm. 4.1 we obtain that σ is an in-
finite WF faulty execution of N . It remains to prove that ρ satisfies the condition of
Lemma 3.4 (2). Clearly, ρ is fault-free by construction. Also, φa′ implies that τ contains
switch. Let ρ̂ be a finite prefix of ρ before the occurrence of switch, and m be the marking
of N ′ reached by ρ̂. (A copy of m is stored in P̄ and is never changed after this point
in time.) Then ρ goes through m infinitely often because τ satisfies φmark . Let ρ′ be the
projection of τ to the transitions of N ′′. These are controlled by after prefix , hence de-
scribe an execution starting at m. That execution is infinite because φa′′ is satisfied; it
is WF because τ is, and it is fault-free because no stub has fired. Thus, (σ, ρ) is indeed
a witness.
(⇐) Let (σ, ρ) be a witness according to Def. 3.2. According to Lemma 3.4, ρ goes

infinitely often through some marking m, and a prefix ρ̂ reaching m can be extended to
an infinite WF fault-free execution ρ̂ρ′. Such a witness can be transformed into an exe-
cution τ of Vgen

WF satisfying ¬diaggenWF as follows. Prefix ρ̂ is simulated by the transitions
in Tin . Upon reaching m, the verifier can fire switch. Up to this point, N ′ and N ′′ have
the same marking, which is m. Then, transitions from Tafter are used to simulate the
continuation of ρ̂ in ρ, and N ′′ is used to simulate its infinite WF continuation ρ′. By
assumption, σ and ρ′ are infinite and WF, hence so is τ ; thus no stub needs to be fired,
and φa′ ∧ φa′′ are satisfied. Since σ contains a fault, τ satisfies ✸¬pf . Also, ρ passes
through m infinitely often, thus satisfying φmark . Hence diag

gen
WF is violated by τ .

7. CONCLUSIONS

In this paper we have identified a major flaw in the previous definition of WF-diagnos-
ability in the literature, and proposed a corrected notion. Moreover, under a simplifying
assumption that the fault transitions are non-WF, we have presented an efficient tech-
nique for verifying WF-diagnosability based on a reduction to LTL-X model checking.
An important advantage of this method is that the LTL-X formula is fixed — in par-
ticular, the WF assumption does not have to be expressed as a part of it (which would
make the formula length proportional to the size of the specification), but rather the
ability of existing model checkers to handle weak fairness directly is exploited. Fur-
thermore, the construction has been generalised to arbitrary bounded LPNs.

We also created two families of scalable benchmarks, where the weak fairness is
essential for diagnosability. The proposed WF-diagnosability verification method has
been tested on these benchmarks, and the experimental results demonstrate its feasi-
bility in practice.

REFERENCES

A. Agarwal, A. Madalinski, and S. Haar. 2012. Effective Verification of Weak Diagnosability. In Proc. SAFE-
PROCESS’12. IFAC. DOI:http://dx.doi.org/10.3182/20120829-3-MX-2028.00083

S. Biswas. 2013a. Equivalence of Fair Diagnosability and Stochastic Diagnosability of Discrete Event Sys-
tems. In Proc. IEEE SMC. 378–383.

S. Biswas. 2013b. Fair Diagnosability in PN-Based DES Models. In Proc. ICCA. 378–383.

S. Biswas, D. Sarkar, S. Mudhopadhyay, and A. Patra. 2010. Fairness of transitions in diagnosability analy-
sis of discrete event systems. Discrete Event Dynamic Systems: theory and applications 20, 3 (September
2010), 349–376.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January 2015.



Diagnosability under Weak Fairness A:19

M.P. Cabasino, A. Giua, S. Lafortune, and C. Seatzu. 2012. A New Approach for Diagnosability Analysis of
Petri Nets Using Verifier Nets. IEEE Trans. on Automatic Control 57, 12 (December 2012), 3104–3117.

V. Germanos, S. Haar, V. Khomenko, and S. Schwoon. 2014. Diagnosability under Weak Fairness. In Proc.
ACSD’14, A. Mokhov and L. Bernardinello (Eds.). IEEE Computing Society Press, 132–141.

S. Haar, C. Rodrı́guez, and S. Schwoon. 2013. Reveal Your Faults: It’s Only Fair!. In Proc. ACSD’13. IEEE
Computer Society Press, 120–129. DOI:http://dx.doi.org/10.1109/ACSD.2013.15

S. Jiang, Z. Huang, V. Chandra, and R. Kumar. 2001. A polynomial algorithm for testing diagnosability of
discrete event systems. In IEEE Trans. on Autom. Control.

L. Lamport. 1983. What good is temporal logic?. In Proc. IFIP Congr.’83. Elsevier, 657–668.

A. Madalinski and V. Khomenko. 2010. Diagnosability Verification with Parallel LTL-X Model Checking
Based on Petri Net Unfoldings. In Proc. SysTol’10. IEEE Computer Society Press, 398–403.

A. Madalinski, F. Nouioua, and P. Dague. 2010. Diagnosability verification with Petri net unfoldings. KES
Journal 14, 2 (2010), 49–55. DOI:http://dx.doi.org/10.3233/KES-2010-0191
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