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ABSTRACT
We consider a set of views stating possibly conflicting facts.
Negative facts in the views may come, e.g., from functional
dependencies in the underlying database schema. We want
to predict the truth values of the facts. Beyond simple
methods such as voting (typically rather accurate), we ex-
plore techniques based on “corroboration”, i.e., taking into
account trust in the views. We introduce three fixpoint al-
gorithms corresponding to different levels of complexity of
an underlying probabilistic model. They all estimate both
truth values of facts and trust in the views. We present ex-
perimental studies on synthetic and real-world data. This
analysis illustrates how and in which context these methods
improve corroboration results over baseline methods. We
believe that corroboration can serve in a wide range of ap-
plications such as source selection in the semantic Web, data
quality assessment or semantic annotation cleaning in social
networks. This work sets the bases for a wide range of tech-
niques for solving these more complex problems.

Categories and Subject Descriptors
H2.5 [Database Management]: Heterogeneous Databases;
H2.8 [Database Management]: Database Applications—
data mining

General Terms
Algorithms, Experimentation
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Corroboration, view, confidence, probabilistic model, fix-
point, contradiction
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1. INTRODUCTION
The Web provides an interface to access a wide variety

of information and viewpoints from individual Web sources
that have different degree of trustworthiness based on their
origin or bias. The most daunting problem when trying to
answer a question seems not to be where to find an answer,
but which answer to trust among the ones reported by dif-
ferent Web sources. This happens not only when no true an-
swer exists, because of some opinion or context differences,
but also when one or more true answers are expected. Such
conflicting answers can arise from disagreement, outdated
information, or simple errors.

Simple questions often yield disagreeing answers from dif-
ferent sources. As an example, the birth date of Napoleon
Bonaparte, a contentious topic of importance to historians as
it determines whether Napoleon was born French or Italian,
is reported as August 15, 1769 or as January 7, 1768 de-
pending on the sources. A more familiar everyday example
is a simple professional contact information search: contact
information is time-dependent; yet because of the nature of
Web sources, many sources will continue to list outdated
information if a person has switched jobs. For instance, as
of the writing of this paper, a Google search for “Mor Naa-
man” lists three possible affiliations in the first ten results:
Stanford University, Yahoo! Research Berkeley, and SCILS,
Rutgers University. The correct current affiliation, SCILS,
does not appear in first position. In addition, sources may
identify the object incorrectly; in the case of a contact search
this can happen in the presence of homonyms (the first page
of Google results for “Mor Naaman Facebook” returns two
separate Facebook profiles), misspellings or name changes.

We consider each Web source as a separate view over the
data. To accurately answer a question in the presence of con-
flicting information, a natural approach is to simply count
the number of occurrences of each answer, i.e., the number
of views reporting each answer. This simple voting strat-
egy performs well in many scenarios but is easily misguided
in a Web environment where many sources can either ma-
lignantly collude to propagate false information, or naively
replicate outdated or wrong data. The quality of the views
should then be taken into account when corroborating an-
swers to identify the best answer to a query. Without a pri-
ori knowledge on the quality, or trustworthiness, of views,
or on the correctness of answers, we are left with a recur-
sive definition: a correct answer is returned by many trusted
views and a trustworthy view returns many correct answers.
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In this paper, we propose fixpoint computation techniques
that derive estimates of the truth value of facts reported
by a set of views, as well as estimates of the quality of the
views.

We believe that data corroboration can improve data qual-
ity in a wide range of domains, including source selection
in the semantic Web [17], semantic annotation cleaning in
social networks, and information extraction. For instance,
information extraction tools [5] typically return one or more
answers to an information extraction task; using several dif-
ferent tools might lead to different answers. By corrobo-
rating answers from different tools over a set of tasks, we
can not only identify the most likely answer, but also assess
the quality (trust) of each extraction tool. Our corrobora-
tive approach can also be useful for collaborative tagging
systems in social networks [12]. In such systems many inde-
pendent users assign tags to objects; the tags are aggregated
to create a description, or categorization, of the object. By
including not only frequency information but also user trust-
worthiness or expertise in the aggregation process, we can
improve the quality of the collaborative filtering system.

We first introduce a probabilistic data model for corrobo-
ration that takes into account the uncertainty associated to
facts reported by the views, as well as the limited coverage
of the views. Our main contribution consists in three al-
gorithms, namely Cosine, 2-Estimates and 3-Estimates,
that estimate the truth values of facts and the trust in
sources. They all refine these estimates iteratively until a
fixpoint is reached. Their particularities are as follows: Co-
sine is based on the cosine similarity measure that is popular
in Information Retrieval [16]; 2-Estimates uses two estima-
tors for the truth of facts and the error of views that are
proved to be perfect in some statistical sense; 3-Estimates
refines 2-Estimates by also estimating how hard each fact
is, i.e. the propensity of sources to be wrong on this fact.

We present an experimental evaluation of the algorithms
with respect to two baseline algorithms, Voting and Count-
ing, as well as a method from the literature, TruthFinder
[21], over both synthetic and real-world data. Our results
show that our three algorithms are able to predict correct
truth values better than the baseline algorithms in cases
where views have various degrees of trustworthiness. Fur-
thermore, we show that in general, 3-Estimates provides
better estimates than the other two, which demonstrates
the interest of taking into account the hardness of facts.

The paper is organized as follows. The probabilistic data
model is described in Section 2. Our three algorithms as well
as the base algorithms are presented in Section 3. Experi-
ments are discussed in Section 4. We discuss some related
work and conclude in Section 5.

A preliminary version of this work appears in [11] (na-
tional conference without proceedings).

2. MODEL
The opinion of sources can be seen as views over the real

world W . Views report beliefs that are of positive or neg-
ative statements. Based on these beliefs, the problem is to
“guess” what the real world actually is.

Let F be a set {f1 . . . fn} of facts. A view (over F) is
a (partial) mapping from F to the set {T, F} (T stands
for true, and F for false). We have a set of views V =
{V1 . . . Vm} and from them we try to estimate the real world
W , a total mapping from F to the set {T, F}. From a

mathematical viewpoint, based on some probabilistic model,
we want to estimate the most likely W given the views.

For instance, W may state that the fact “Paris is the cap-
ital city of France” holds. Some views may agree with W
on this fact while other views may believe that “Lyon is the
capital city of France”. A particular case is when views only
believe in positive facts, as is often the case on the Web.
Nevertheless, negative facts can still be introduced by func-
tional dependencies. Suppose we know that France has ex-
actly one capital city. If a source states “Paris is the capital
city of France”, then it also states implicitly that it does not
believe “Lyon is the capital city of France”. We explain the
relationship between functional dependencies and negative
statements in more detail further.

The underlying probabilistic model we assume is described
by Equation (1):8><>:

P(Vi(fj) is undefined) = ϕ(Vi)ϕ(fj)

P(Vi(fj) = ¬W (fj)) = (1− ϕ(Vi)ϕ(fj))ε(Vi)ε(fj)

P(Vi(fj) = W (fj)) = (1− ϕ(Vi)ϕ(fj))(1− ε(Vi)ε(fj))

(1)
In this model, views ignore some facts and make errors.

First, with some probability ϕ(Vi)ϕ(fj), view Vi ignores fact
fj , i.e., Vi(fj) is undefined. Now, when Vi(fj) is defined, Vi

makes an error on fj (with respect to W ) with probabil-
ity ε(Vi)ε(fj). The functions ϕ, ε define the ignorance and
error factors respectively. Besides estimating W , we are in-
terested in estimating these factors as well. Note that while
ε(Vi) and ε(fj) represent the error factors for views (how
trustworthy they are) and facts respectively (how difficult
they are), they cannot be interpreted as probabilities with-
out normalization, although their product is a probability
(and similarly for ϕ(Vi) and ϕ(fj)). We make the simpli-
fying hypothesis that sources and facts are all probabilisti-
cally independent. In an orthogonal way, some very recent
work [7] has dealt with the corroboration problem when er-
rors of views are correlated but when all facts are equally
hard. Another crucial hypothesis here is that we suppose
there is no a priori knowledge of any of these parameters.

In most scenarios, views only make positive statements,
typically giving, for some query, the answer they have the
most confidence in, but not giving the list of all possible false
answers (which can be of unbounded size). For instance, it
is unlikely that a view would return a list of all cities of
France (or of the world) that are not the correct answer to
the query “what is the capital city of France?” Nevertheless,
we focus on the situation where we have both positive and
negative statements and use functional dependency informa-
tion, if available, to infer possibly omitted negative facts. In
particular, we consider functional dependencies of the form
“there is one and only one true answer to this question”.
More formally, we define a set of queries Q and each fact is
associated with a reference query ref (fj) ∈ Q. Then for each
query q ∈ Q, we impose the following functional dependency
constraints:(

∃fj ∈ F , ref (fj) = q ∧W (fj) = T

∀f ∈ F − {fj}, ref (f) = q ⇒W (f) = F
(2)

These constraints express that each query has exactly one
answer. We show in Section 3 how we use Equation (2)
to transform a problem with functional dependencies into a
related problem with positive and negative statements.

in
ria

-0
04

29
54

6,
 v

er
si

on
 1

 - 
3 

N
ov

 2
00

9



3. ALGORITHMS
This section presents three algorithms to estimate the real

world W and error factors ε(fj), ε(Vi). In the model pre-
viously presented, ignorance factors ϕ(fj) and ϕ(Vi) are in-
dependent of these parameters and their estimation is rela-
tively straightforward given the structure of the views, S =
{(Vi, fj) ∈ V × F |Vi(fj) is defined}. In the following, Θ(·)
denotes the estimates (given by each algorithm) of the dif-
ferent parameters (notably, error factors and truth values).

Baseline Algorithms.
We will compare our algorithm to the following Voting

baseline:

Θ(W (fj)) =

8<:T if
|{Vi : Vi(fj) = T}|
|{Vi : (Vi, fj) ∈ S}| > 0.5

F otherwise

This algorithm corresponds to choosing the assessment of
the majority about the fact. Note that the estimated truth
of a fact only depends on the views stating something about
it. A straightforward estimate of the error factor of each
view would then make use of the estimated truth value for
each fact (say, by assigning as error factor of view i the
percentage of estimated true assertions of this view). It is
natural to use in turn this estimated error factor to improve
the precision of the estimated truth values of facts. This cor-
roboration process is the basis of the 2-Estimates method
presented further.

In some cases, we have no mapping to F , for example
because the views only give positive statements, in a context
where no functional dependencies are assumed. Obviously,
the Voting baseline maps all facts to T in this particular
case, which is not helpful. Another baseline is more adapted
to this case, namely Counting. The method ignores the
negative links. More precisely,

Θ(W (fj)) =

8<:T if
|{Vi : Vi(fj) = T}|

maxf |{Vi : Vi(f) = T}| > η

F otherwise

where η is a fixed threshold. It is difficult to set such a
threshold that should depend on the data distribution. In
our experiments, we fix it to 0.5. This basically consists in
assigning T to popular facts, i.e., often asserted facts.

Remark: link with PageRank. This popularity notion is
reminiscent of the PageRank [4] popularity score for pages
of the World Wide Web or, more generally, for nodes in a
graph. This suggests using PageRank on the positive votes.
PageRank is actually (up to the addition of random jumps,
that mostly serve to guarantee the convergence of the algo-
rithm) the equilibrium measure of the random walk in the
graph. Observe that, when there is no mapping to F , V
can be seen as a bipartite graph G between views and facts:
there is an edge between view Vi and fact fj if Vi(fj) = T .
Importance scores for views and facts can then be computed
as the PageRank scores in the view-view and fact-fact graphs
obtained by considering all paths of length 2 in G. However,
since these two graphs are undirected (G itself is an undi-
rected graph), it can be shown that the equilibrium measure
of the random walk is proportional to the degree of the nodes
in the graph [13]. Let us restate this result: in the case of
an undirected graph, such as those we obtain by considering

views that assert the same facts, or facts asserted by the
same views, PageRank amounts to the same as our Count-
ing baseline. This is actually only true if the damping factor
is close to 1, that is, if the probability of random jumps is
small. We experimented with a typical value for the damp-
ing factor (0.85, i.e., 15% probability of performing a ran-
dom jump) and obtained results very similar to Counting.
There is no obvious extension to PageRank with negative
links. Our fixpoint methods can be seen as an extension of
the random walk interpretation of PageRank to a case with
positive and negative links. We also considered an extension
based on the cash flow interpretation of PageRank developed
in [1] and the algorithm it suggests. We obtained improve-
ments over the baseline methods but chose not to present
that algorithm because our other techniques outperform it.

Finally, a last baseline of interest is TruthFinder [21].
TruthFinder is designed to distinguish between true and
false facts on the Web, using confidence in the sources. Re-
cursively, confidence in the sources is computed using the
expected truth of the facts. The main idea of TruthFinder
is to use some similarities between facts, to corroborate the
truth of a fact with the truth of correlated facts. This simi-
larity is given by some lexical distance and there is a positive
reinforcement between a fact and similar facts, but, as men-
tioned in [21], this can be adapted to the case of negative
correlations between facts, which models more or less our
notion of functional dependencies. When implementing this
algorithm, we follow this more elaborate version, with a cor-
relation coefficient of−1 for other answers to the same query.
All other parameters are kept as in [21]. A fact is predicted
true if the confidence is more than 0.5, false otherwise.

Estimation of Two Series of Parameters.
We present in this section two different algorithms that

aim to estimate two series of parameters: the truth of facts,
and the trustworthiness of views.

We first present a heuristic approach for estimating the
truth values of facts and the trustworthiness of views. It
is based on the classical cosine similarity measure that is
popular in information retrieval [16], hence the name Co-
sine for this method. We use an alternative representation
where these variables have values -1 (false facts, systemati-
cally wrong views), 0 (indeterminate facts, views with ran-
dom statements) or 1 (true facts, perfect views). The idea is
then to compute, for each view Vi, given a set of truth values
for facts, the similarity between the statements of Vi, viewed
as a set of ±1 statements on facts, and the predicted real
world. The technique is precisely described in Algorithm 1.
Observe that to improve the stability of the method, we set
the new value of the estimation to be a linear combination
of the old value and the predicted cosine similarity. As for
the estimate of the truth value of facts given the trustwor-
thiness of views, we use a simple averaging, except that we
give more weight to predictable views, that is views with
high Θ(ε(Vi))

2 (consistently often correct, or consistently
often wrong). We also experimented with a weighting of
|Θ(ε(Vi))|, with similar results. In the initialization phase,
estimates are set as if all facts were true. The alternative
representation (trustworthiness and truth values between -1
and 1) can easily be mapped to that of Section 2: trustwor-

thiness of the views are estimated as Θ(ε(Vi))+1
2

and facts are
predicted true when Θ(W (Vi)) > 0.
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Algorithm 1 Cosine

Require: F ,V,S
Ensure: an estimate of ε(Vi) for each view, an estimate of
W (fi) for each fact
for all Vi ∈ V do {Initialization}

Θ(ε(Vi))← |
{fj |Vi(fj)=T}|−|{fj |Vi(fj)=F}|

|{fj |Vi(fj)∈S}|
end for
for all fj ∈ F do

Θ(W (fj))← 1
end for
repeat {Core of the algorithm}

for all Vi ∈ V do {η is a constant (e.g., η = 0.2)}
posFacts←

P
fj∈F

Vi(fj)=T

Θ(W (fj))

negFacts←
P

fj∈F
Vi(fj)=F

Θ(W (fj))

norm←
r
|{fj ∈ F |Vi(fj) ∈ S}| ×

P
fj∈F

Vi(fj)∈S
Θ(W (fj))2

Θ(ε(Vi))← (1−η)×Θ(ε(Vi))+η× posFacts−negFacts
norm

end for
for all fj ∈ F do
posV iews←

P
Vi∈V

Vi(fj)=T

Θ(ε(Vi))
3

negV iews←
P

Vi∈V
Vi(fj)=F

Θ(ε(Vi))
3

norm←
P

Vi∈V
Vi(fj)∈S

Θ(ε(Vi))
3

Θ(W (fj))← posV iews− negV iews
norm

end for
until convergence
return Θ.

Our second algorithm is more closely related to our prob-
abilistic model. As with Cosine, it focuses on the esti-
mation of W (fj) (or, more precisely, the probability that
W (fj) = T ) for each fact fj , and ε(Vi) for each view Vi.
To simplify, we assume, for this algorithm, that error fac-
tors are independent of facts, that is, ε(fj) = 1 for all fj .
The idea is to iteratively find a good estimate of the ε(Vi)
given P(W (fj) = T ), and conversely, using a fixpoint com-
putation. As described in Algorithm 2, we first initialize the
parameters as if all the views where true about W , then suc-
cessively estimate one set of parameters given the other one
and the views, until convergence. It is possible to prove that
the estimates that are used in 2-Estimates are valid when
S is given, in the sense that the expectation of Θ(W (fj))
given the correct set of ε(Vi)’s and the views, is indeed the
expectation of P(W (fj) = T ); similarly for Θ(ε(Vi)) given
the correct set of W (fj)’s and the views.

Although based on valid estimates, the whole algorithm
needs to be tuned to avoid convergence on local optima.
Actually, it is relatively easy to see that one of the local op-
tima is a solution where ∀fj ∈ F , Θ(W (fj)) = 0.5, which
means that the truth values of the facts are undetermined,
and where ∀Vi ∈ F , Θ(W (Vi)) = 0.5, which means that the
views decide randomly. To avoid it, we normalize Θ(W (fi))
to the closest value in {0, 1}, which constrains W to map
each fact to either T or F , and Θ(ε(Vi)) to the whole range
[0, 1]. This is still not satisfactory because the estimation
becomes then quite unstable. We fixed the problem using
a linear combination between the non-normalized value and

Algorithm 2 2-Estimates

Require: F ,V,S
Ensure: an estimate of ε(Vi) for each view, an estimate of
W (fi) for each fact
for all Vi do {Initialization}

Θ(ε(Vi))← 0
end for
repeat {Core of the algorithm}

for all fj ∈ F do
posV iews←

P
Vi∈V

Vi(fj)=T

1−Θ(ε(Vi))

negV iews←
P

Vi∈V
Vi(fj)=F

Θ(ε(Vi))

nbV iews← |{Vi ∈ V | (Vi, fj) ∈ S}|
Θ(W (fj))← posV iews+ negV iew

nbV iews
end for
for all Vi ∈ V do
posFacts←

P
fj∈F

Vi(fj)=T

1−Θ(W (fj))

negFacts←
P

fj∈F
Vi(fj)=F

Θ(W (fj))

nbFacts← |{fj ∈ F | (Vi, fj) ∈ S}|
Θ(ε(Vi))←

posFacts+ negFacts

nbFacts
end for

until convergence
return Θ.

the normalized value, as described in Algorithm 3 for the
truth values of facts (a similar normalization is applied to
the trustworthiness of views). We use a weight λ progres-
sively (and linearly) decreasing from 1 to 0. Experiments
show that this technique brings to a good solution in a sta-
ble manner. Lastly, a remaining issue with 2-Estimates is
that, for one set of views, a given distribution of estimates
is always as likely its dual one, where W is replaced by its
negation and each error factor ε(Vi) is replaced by 1−ε(Vi).
We decided to keep the optimistic model, where the average
of error factors is assumed to be less than 0.5.

Algorithm 3 NormalizeWFacts

Require: F ,Θ, λ
Ensure: a normalized value of Θ
maxW ← maxfj∈F Θ(W (fj))
minW ← minfj∈F Θ(W (fj))
for all fj ∈ F do

value1 ← Θ(W (fj))−minW

maxW−minW

value2 ← round(Θ(W (fj)))
Θ(W (fj))← λ× value1 + (1− λ)× value2

end for
return Θ.

Though Cosine is a heuristic algorithm that cannot eas-
ily be linked to our probabilistic data model, we will show
in Section 4 that it is usually more precise and stable than
2-Estimates. In order to overcome the limitations of 2-
Estimates, we introduce next an algorithm with an addi-
tional series of parameters, namely, the error factor of facts.

Estimation of Three Series of Parameters.
Our third algorithm, 3-Estimates, is founded on the full

data model described by Equation (1) in Section 2. The al-
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gorithm estimates W (fj) (fj ∈ F), ε(fj) (fj ∈ F) and ε(Vi)
(Vi ∈ V). We present 3-Estimates in Algorithm 4. As
an initialization, we assume that the errors of the views are
null and that all the facts are easy to guess. Then we succes-
sively estimate one parameter given the other two (and the
views). We iterate until convergence with a fixpoint compu-
tation very similar to 2-Estimates. Here again, Θ(W (fj))
is more precisely given a numerical value that is an esti-
mation of P(W (fj) = T ). Again, as for 2-Estimates, we
proved that the three estimators used in 3-Estimates are
valid given the other correct sets of parameters.

Algorithm 4 3-Estimates

Require: F ,V,S
Ensure: an estimate of ε for each view and fact, an estimate

of W (fi) for each fact
for all Vi do {Initialization}

Θ(ε(Vi))← 0
end for
for all fj do

Θ(ε(fj))← 0.1
end for
repeat {Core of the algorithm}

for all fj ∈ F do
posV iews←

P
Vi∈V

Vi(fj)=T

1−Θ(ε(Vi))Θ(ε(fj))

negV iews←
P

Vi∈V
Vi(fj)=F

Θ(ε(Vi))Θ(ε(fj))

nbV iews← |{Vi ∈ V | (Vi, fj) ∈ S}|
Θ(W (fj))← posV iews+ negV iew

nbV iews
end for
for all fj ∈ F do

posV iews←
P

Vi∈V
Vi(fj)=T, Θ(ε(Vi))6=0

1−Θ(W (fj))

Θ(ε(Vi))

negV iews←
P

Vi∈V
Vi(fj)=F, Θ(ε(Vi))6=0

Θ(W (fj))

Θ(ε(Vi))

nbV iews← |{Vi ∈ V | (Vi, fj) ∈ S, Θ(ε(Vi)) 6= 0}|
Θ(ε(fj))← posV iews+ negV iews

nbV iews
end for
for all Vi ∈ V do

posFacts←
P

fj∈F
Vi(fj)=T, Θ(ε(fj))6=0

1−Θ(W (fj))

Θ(ε(fj))

negFacts←
P

fj∈F
Vi(fj)=F, Θ(ε(fj))6=0

Θ(W (fj))

Θ(ε(fj))

nbFacts← |{fj ∈ F | (Vi, fj) ∈ S, Θ(ε(fj)) 6= 0}|
Θ(ε(Vi))←

posFacts+ negFacts

nbFacts
end for

until convergence
return Θ.

As was the case with 2-Estimates, we need to apply ad-
ditionally a normalization procedure for ε(fj), similar to
those already presented in the previous section. With the
ensured condition maxfj∈F ε(fj) = 1, it can be shown that
the ε(Vi)’s and ε(fj)’s are uniquely identified from the set
of all products ε(Vi)ε(fj).

The three methods introduced here, since they involve fix-
point computation, are too costly to be run incrementally
as new data becomes available. It would be interesting to
adapt some iterative computation techniques for these meth-
ods. This is out of the scope of this paper.

Dealing with Functional Dependencies.
We explained in Section 2 how a model with both posi-

tive and negative assertions is relevant when only positive
statements are made, in the presence of functional depen-
dencies. Specifically, given a set of views V = {V1, . . . , Vm}
with no negative statements, and a set of queries Q verify-
ing the constraints of Equation (2), we apply the algorithms
described in the previous sections to a modified set of views
V ′ = {V ′1 , . . . , V ′m}, obtained as follows:8><>:
∀fj ∈ F , Vi(fj) = T ⇒ V ′i (fj) = T

∀fj ∈ F , (Vi(fj) undefined ∧ ∃f ∈ F ,
(ref (f) = ref (fj) ∧ V ′i (f) = T ))⇒ V ′i (fj) = F

In other words, positive statements are kept, and negative
statements are added for every unstated facts that refer to a
query for which a positive statement has been made. When
a view contradicts a functional dependency using more than
one positive statement for the same query, we keep all its
positive statements, even if they are inconsistent in such a
case.

In the presence of functional dependencies, an optional
post-filtering step that can be used is to impose that no two
facts referring to the same query are predicted true, since we
know that such a constraint holds in the real world. In this
case, we redefine the estimates of the truth values of facts,
after all computations are performed, as:8>><>>:

Θ(W (fj))← min(0.49, E(W (fj))) if some other f

with ref (f) = ref (fj) has a better estimate Θ(W (f))

Θ(W (fj))← max(0.51, E(W (fj))) otherwise

Only one fact per query can then be estimated true (except
when two facts have exactly the same score), and the new
estimate of the confidence is corrected to be at least slightly
positive for the best fact and at least slightly negative for
the other facts. Note that we assume that the views contain
the correct answer for each query; this is not always the case
in practice. We discuss this issue further in Section 5.

Remark: link with EM. Even though 2-Estimates and
3-Estimates are based on valid estimates, we do not know
whether the fixpoint computation is guaranteed to converge
to the best (in mathematical terms) estimates of the dataset
and the errors. In a more classical manner, we have been col-
laborating intensively with a team of statisticians, to study
an Expectation-Maximization (EM) algorithm [6] to the cor-
roboration problem. From our current understanding, the
situation is as follows. EM or refinements like ECM suffer
from an exponential blowup. The reasons are the discrete-
ness of the decision (true/false) and the non-linearity of the
model. A linear model is not well adapted to the situations
of interest. We have carried out the formal computation of
the expectation of truth values of facts and trustworthiness
of sources, with respect to the observations of the model.
Our conclusion were that for the system of equations we ob-
tained, classical gradient-like or simulated annealing meth-
ods are not really adapted, especially because of the dis-
creteness of the parameters. The best hope would be to
use probabilistic estimations based on biased Monte Carlo
techniques. A main issue that we found is that of choosing
the right bias avoiding the standard risk of overfitting. This
work is on-going. In any case, these techniques would prob-
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ably be more costly that the algorithms we presented and
that already produce good results.

4. EXPERIMENTS
We conducted experiments to test the precision of the

algorithms for corroboration presented in the previous sec-
tion on two kinds of datasets: different instances of a highly
configurable synthetic dataset, and a variety of real-world
datasets. This variety of datasets demonstrates the improve-
ments we obtain over all baselines when using our fixpoint
algorithms, and in which context these improvements occur.

The algorithms presented in Section 3 and the synthetic
data generator discussed in Section 4 have been implemented
in Java. All datasets used in this paper, as well as the im-
plementation of the various methods, are freely available at
http://datacorrob.gforge.inria.fr/.

Measures.
We use a number of different quality measures to compare

the prediction of the different algorithms. A first measure
is the global precision of prediction, i.e., the ratio of facts
wrongly predicted among all facts. Though interesting to
get quickly a general idea of the quality of our methods,
this measure does not give a full view of the nature of the
differences between methods.

The estimated truth values of facts by most of our meth-
ods is given through a score Θ(W (fj)), which can be seen as
the confidence we have in the prediction that the fact is true.
To show the differences between methods in this respect, we
can plot (in the case of a synthetic dataset where we have
this information) this confidence against the correctness of
the fact, that is, 1− ε(fj)× avgVi

ε(Vi).
Finally, an interesting way to plot the quality of the pre-

diction is through a precision-recall graph, as done when
evaluating search engine results in information retrieval [16].
Specifically, we plot the recall-at-k (ratio of true facts among
all true facts in the k facts with the highest estimated truth
value) against the precision-at-k (ratio of true facts among
the k facts with the highest estimated truth value).

Synthetic Dataset.
Our initial experiments were carried out on a synthetic

dataset, in order to test our algorithms on a broad scale of
situations, with a precise hold on the parameters. We use
the following procedure to generate the synthetic dataset,
extending the probabilistic data model mentioned in Sec-
tion 2.

We define two sets F = {f1 . . . fn} and V = {V1 . . . Vm}
and we fix the following parameters: α, the ratio of true
facts among all facts; ε : F ∪ V → [0, 1], the error factor for
facts and sources; ϕ+,F∪V → [0, 1] and ϕ− : F∪V → [0, 1],
the ignorance factors for positive and negative statements,
respectively.

We then randomly select for each fact W (f) = T or
W (f) = F with probability α and (1−α) respectively. The
view Vi (ignoring some facts and making errors) is obtained
as follows:

error For each fact fj , we randomly set b(Vi, fj) = W (fj)
with probability (1 − ε(Vi)ε(fj)) and we make a mis-
take, i.e., set b(Vi, fj) = ¬W (fj), with probability
ε(Vi)ε(fj).

ignorance Then we possibly ignore this information, i.e.,

Table 1: Global precision on the synthetic dataset

Precision (%) Precision (%)
(typical) (no ignorance)

Voting 84.5 80.2
Counting 84.6 83.3
2-Estimates 88.1 85.1
Cosine 88.2 85.5
3-Estimates 91.5 99.9

we set Vi(fj) to undetermined:

• with probability ϕ+(Vi)ϕ
+(fj) if b(Vi, fj) = T .

• with probability ϕ−(Vi)ϕ
−(fj) if b(Vi, fj) = F .

Otherwise Vi(fj) is set to b(Vi, fj)

We found that TruthFinder is quite ineffective for this
kind of dataset since we directly generate positive and neg-
ative statements, without a notion of queries. It can only
make use of positive statements and then maps all facts to
true. We will restrain the comparison to real datasets where
queries are available.

We ran some experiments on some large synthetic dataset
(up to 10,000 facts, 10,000 sources, 5,000,000 statements).
As expected, our algorithms are roughly linear in the num-
ber of statements. In such conditions, the execution time on
a desktop PC is of the order of seconds. The main limitation
comes from memory usage, because the current version of
our program stores the full set of views in memory. It could
easily be adapted to work on disk. Besides, the computa-
tions are highly parallelizable. Observe also that, in general,
each estimation of parameters for views or facts uses only a
small subset of the full set of statements.

We next report on smaller-scale experiments obtained for
a synthetic dataset of 1,000 facts and 1,000 sources to an-
alyze the behavior of the algorithms in more details. We
use a distribution (see Figure 1) of the probability of errors
for facts and sources in three groups for facts (easy, medium
and hard) and three for sources (expert, medium, random).
Note that the probability of errors for facts is obtained by
multiplying the error factor of a fact by the average error
factor of sources, and reciprocally for the probability of er-
rors for sources. The average probability of ignorance for a
source is of 70%; it ranges between 60 and 80%.
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Figure 1: Distribution of errors on synthetic dataset
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The results are shown in Table 1 and Figures 2 to 3. They
are fairly typical of the results obtained by varying the pa-
rameters. The first data column of Table 1 shows the global
precision of the various methods for this dataset. Observe
first that the two baselines already perform quite well, with
a precision of 85%. Despite this, we can see a significant
improvement using 2-Estimates and Cosine, and a larger
improvement still with 3-Estimates (observe that the num-
ber of errors is divided by two), with a global precision of
91%. The second data column of Table 1 shows what hap-
pens when the ignorance factor is set to 0, meaning that each
source expresses an opinion on each fact (all other parame-
ters kept unchanged). Many more relevant items of informa-
tion are present, but this also means much more noise. The
performance of the methods does not change much, except
for 3-Estimates, which is nearly perfect in this case. In the
following, we only consider the case of a non-zero ignorance
factor.

Figure 2 shows the confidence on the prediction that the
fact is true for the facts according to their correctness on
this dataset. For this figure, we randomly sample a subset of
the facts to improve readability of the point cloud. The first
graph concerns false facts, while the second one is about true
facts. On the former, every point in the upper region of the
graph corresponds to a prediction error; on the latter, every
point in the lower region does. Thus, the better a method is,
the lower the points are in the top graph, and the higher they
are in the bottom one. Baseline methods are not plotted on
these graphs for readability, but their estimations basically
lie on the y = x line: their predictions basically match the
correctness, which means that they perform well only if the
probability of error for a given fact is lower than 0.5.

We can observe three bags of points from left to right,
corresponding respectively to easy, medium or hard false
facts in the first graph, and hard, medium or easy true facts
in the second one. We clearly see different behaviors for
our three non-baseline methods. 2-Estimates is limited to
predict 1 or 0, because of its partly ad hoc normalization. All
the points are consequently on the topmost and bottommost
lines of the graph. All the errors occur on the hard facts.
Cosine and 3-Estimates perform both reasonably well, but
3-Estimates clearly separates better false facts from true
facts. The estimations indeed follow the correctness, since
the easy true facts (right on the second graph) get a high
probability to be true and the easy false facts (left on the first
graph) a low probability to be true, i.e., a high probability
to be false. All the errors are once again made on the hard
facts, but the estimations of the probabilities to be true
are close to 0.5, showing that the methods assign a higher
uncertainty to these facts.

Finally, Figure 3 shows precision-recall curves for this
dataset. These curves may be interpreted in two different
ways. The first one is to compare individual points on the
curves given a fixed recall/precision ratio, that is, a trade-
off between these two conflicting measures (lines y = αx).
On these lines, the higher the point, the better the method.
The other one is to compare the area above the curve: The
smaller the area, the better the method. Given these two as-
pects, this figure confirms the good performance of Cosine
and especially 3-Estimates with respect to the baselines.
The relatively bad quality of 2-Estimates can be explained
by the fact that the estimated truth values given by this
method are restricted to 0 and 1, which prevent correctly

ordering the best facts.
The previously described experiment is a fairly typical

example of the behavior of the various methods on synthetic
data, for a large range of values of the parameters. In the
wide range of experiments we performed, we observed in
particular the following features:

• Voting and Counting give quite good results al-
ready, with often some advantage for Counting.

• 2-Estimates generally yields good results (though as
said above, it is not good at ordering facts), but is quite
unstable and may perform worse than the baselines.

• Cosine is most of the time significantly better than
the baselines.

• 3-Estimates consistently yields better results than
Cosine.

We next report the results of our algorithms on real-world
datasets. It should be noted that such datasets are hard to
find, since we need datasets annotated with the real truth
value in order to carry out the evaluation. This does not
imply that situations where corrobation is useful are difficult
to find.

Hubdub.
Hubdub (http://www.hubdub.com) is a Web-based pre-

diction market where players use virtual money to trade
predictions on future events. Users of this site propose
multiple-choice questions on real-world future events in pol-
itics, sports, etc. Users can then predict the outcomes of
these events and bet on them using virtual money in a
gamble-like fashion. When the event has happened, ques-
tions are settled by an administrator.

The dataset has been constructed from a Hubdub snap-
shot of recently settled questions (as of May 2009) tagged
by the keyword sport. It consists of 357 questions, hav-
ing between 1 and 20 expressed answers. In total, 830 dis-
tinct answers (i.e., facts in our terminology) occur. There is
only one correct answer per question, so we are in the pres-
ence of functional dependencies. The snapshot involves 473
users with between 1 and 140 answers, for a total number
of 3,051 statements before application of functional depen-
dencies, and 7,367 after applying the technique of Section 3.
The number of errors is reasonable (2,998 of the 7,367 are
erroneous) whereas ignorance is high (1 − 7,367

473×830
≈ 98%)

since most users answer only a few questions.

Table 2: Number of errors on the Hubdub real
dataset

Number of errors Number of errors
(no post-filtering) (with post-filtering)

Voting 278 292
Counting 340 327
TruthFinder 458 274
2-Estimates 269 269
Cosine 357 357
3-Estimates 272 270

Table 2 shows the total number of errors obtained by the
various methods on this dataset, without and with the post-
filtering step described in Section 3. The number of er-
rors should of course be compared to the number of facts,

in
ria

-0
04

29
54

6,
 v

er
si

on
 1

 - 
3 

N
ov

 2
00

9



0

20

40

60

80

100

0 20 40 60 80 100

E
st

im
a
te

d
tr

u
th

v
a
lu

e
(%

)

Correctness of fact (%)

2-Estimates

Cosine

3-Estimates

0

20

40

60

80

100

0 20 40 60 80 100

E
st

im
a
te

d
tr

u
th

v
a
lu

e
(%

)

Correctness of fact (%)

2-Estimates

Cosine

3-Estimates

Figure 2: Confidence that the fact is true (left: false facts, right: true facts) with respect to correctness, for
the synthetic dataset

i.e. 830. Observe first that post-filtering has little impact.
This is because there are few distinct answers by question,
so there is not real imbalance between false positives and
false negatives. In spite of the high level of imprecision in
this data set (high level of errors), our algorithms with the
notable exception of Cosine show some relatively good re-
silience to noise in the data set. Actually, the large quan-
tity of omitted data and the average lack of accuracy of
the statements is a worst-possible situation for the corrob-
oration task. In this context, the relative improvements
given by 2-Estimates and 3-Estimates over simple base-
lines are already a significative achievement. On this par-
ticular dataset, TruthFinder performs well, almost as well
as 2-Estimates and 3-Estimates. However, this was the
only case where this method exhibited good performance.

General Knowledge Quiz.
This real-world dataset consists of the results of an on-

line general knowledge quiz1. This (fairly complicated, and
sometimes tricky) quiz is formed of 17 questions with topics
ranging from literature to geography and history. For each
question, there are between 4 and 14 possible answers, for
a total number of 95 facts. There is only one correct an-
swer per question, so we are in the presence of functional
dependencies. This quiz was taken 601 times, which cor-
responds to 601 views. Some of these views are different
trials of the same person. After applying the technique for
dealing with functional dependencies, we obtain a full set of
601 views with 37,170 statements. 18% of them are positive
statements, and there are (only) 1 − 37,170

601×95
≈ 35% ignored

facts (participants to the quiz could choose not to answer
some questions).

Table 3 shows the total number of errors obtained by the
various methods on this dataset, without and with the post-

1http://www.madore.org/~david/quizz/quizz1.html

Table 3: Number of errors on the second real dataset

Number of errors Number of errors
(no post-filtering) (with post-filtering)

Voting 11 6
Counting 12 6
TruthFinder 78 77
2-Estimates 6 6
Cosine 7 6
3-Estimates 9 0

filtering step described in Section 3. Results from Truth-
Finder are irrelevant since this method gives the maximum
positive score to each facts (except one) and sources in this
case. The post-filtering step does not help since there is no
way to distinguish between facts having the same confidence
value. This bad performance may come from the fact that
TruthFinder, which was not specifically designed for deal-
ing with conflicting statements, is defined in terms of some
ad hoc formulas whose values can diverge in this kind of
setting.

Concerning the other methods, without post-filtering, all
errors are false negatives, i.e., true facts predicted false be-
cause the confidence is not high enough. The post-filtering
step guarantees that this does not happen. Note that 6 er-
rors after the post-filtering step means only 3 questions with
an erroneous answer, since both the false positive and the
false negative facts are counted as errors for each of these
questions.

Our three proposed methods systematically perform bet-
ter or as good as the baselines. Besides, despite the large
amount of available information, the baseline methods (as
well as Cosine and 2-Estimates) are not able to deter-
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Figure 3: Precision-recall curve for the synthetic dataset

mine all true facts correctly, whereas 3-Estimates (with
post-filtering, which obviously makes the problem easier) is
perfect on this dataset, which is a notable achievement.

Other Real-World Datasets.
We finally briefly report on experiments conducted on two

other real-world datasets, a sixth-grade biology test, and re-
sults from Web search engines. On the biology test, the
results of the algorithms are very close, with or without
functional dependencies. We think that our more complex
methods do not perform better than the baselines because
the distribution of the accuracy of students is hard to esti-
mate, errors are correlated between students, and there are
also correlations between facts. The Web search data aims to
illustrate semantic Web applications. The data are a rough
extraction of the summaries on the first-answer page of 13
web search engines for 50 keywords query. The algorithms
again perform similarly to the baselines. An explanation is
that search engines have very similar performance (for this
task) and there is again a lot of correlation on the errors.

5. CONCLUSION
Previous works have considered corroborative evidence to

improve trust in query results [3, 15, 9, 20, 21] in a variety
of scenarios. Several question answering systems, such as [3,
15, 9] consider the frequency of an extracted answer as a
measure of answer quality. However, these techniques rely
mostly on redundancy of information and do not consider
the trust associated with each extraction source to score
extracted answers. Recent work has studied the impact
of source trust in Web question answering [20, 21]; both
projects provide ad hoc mechanisms to assess the trust as-
sociated with Web pages, and use this trust information to
aggregate answer scores.

Several theoretical works have focused on estimating the

probability of an event in the presence of conflicting informa-
tion. Osherson and Vardi [18] study the problem of inconsis-
tent outcomes when aggregating logic statements from mul-
tiple sources. Their goal is to produce a logically coherent
result. Work in subjective logic and trust management [14]
consider the issue of trust propagation from one source to
another, in a model where the sources are not independent.

There is also a connection with previous work on obtaining
consistent answers from inconsistent databases [2, 10, 19].
In [2] and [10], the database is seen as a whole, and consistent
answers are obtained by either constructing a minimal repair
that is sound, or by determining the maximal sound subset.
In [19], on the other hand, each source has its own (possibly
different) view of the global database (obtained by gather-
ing information from other sources depending on some local
authority computation). The main difference with our work
is that we postulate some global notion of trustworthiness
that can be used to assign more weight to the statements of
some sources.

As previously mentioned, a goal of this paper was to set
the bases for a systematic study of trust-based corrobora-
tion of disagreeing views. As we showed, using voting (or
counting) for data corroboration works in general rather
well. Still, our methods, especially 3-Estimates, improve
the precision of the results. This is clear in the synthetic
datasets that we used for evaluation, but this is also clear
in some real-world datasets: it is possible to predict the
correct answer to a general knowledge quiz just by looking
at what people answer, and it is possible to predict correct
answers to Hubdub questions better than by just majority
voting. Nevertheless, the previous discussion clearly points
to different directions for further improvements.

First, when considering trust in a social network folkson-
omy, we may want to give a priori more credits to our friends
beliefs than to others (but still evaluate how trustworthy
they are). Similarly, one may want to specify beliefs in cer-
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tain site such as the Nasa database for space information.
It is easy to introduce bias in the trust of some views. Simi-
larly, one may want to bias the trust we have in some facts.
At the limits, we can take advantage of a database of ver-
ified facts. It is relatively straightforward to use it to bias
trust assessment. Indeed, one could even consider using only
these facts as a learning set to fully assess the quality of the
sources. Such a standard machine learning technique would
often be inappropriate in a Web setting where even if the
database of known facts is available, it is very small com-
pared to the size of the Web and does not cover all its facets.

Then, we showed that our technique is very well adapted
to find an answer when we know there is exactly one. This
should be improved in two directions. First, we should adapt
it to the case of multiple answers, e.g., phone numbers. In
such cases, we could use some a priori distribution of the
number of answers. Also we have to make it robust when we
know the question has an answer but this answer is missing
from the dataset. In some contexts, forcing the dataset to
contain a correct answer to a particular question introduces
undesirable effects we would like to avoid.

Our technique is based on assessing the quality of sources.
However, in the same way that humans are typically experts
in specific domains only, sources are specialized. It would
be interesting to assess the quality of a source (error and
ignorance) in specific domains. This will allow better select-
ing sources given a specific query. Note that symmetrically
(and less importantly), the same fact may have different
truth values in different domains. For instance, “there are
red jaguars” is true in the car domain but not in biology.

Changes in the real world also bring a challenge to corrob-
oration since many sources may believe outdated informa-
tion correct. Since temporal data (e.g., timestamps of facts)
are rarely available, one could try analyzing the variations of
truth values over time and select a fact with positive deriva-
tive rather than some contradicting fact that is apparently
“more true” but has negative derivative. This may also lead
to evaluating a trust in the source that would depend on
the time of the fact (if the fact is an event in time): one
source (an encyclopedia) may be excellent historically and
another one, best adapted to timely information (a newspa-
per). Such an evolution of the real world is the topic of very
recent work [8].
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