
A Direct Symbolic Approach to

Model Checking Pushdown Systems

(extended abstract)

Alain Finkel

LSV

ENS de Cachan

94235 Cachan, France

�nkel@lsv.ens-cachan.fr

Bernard Willems Pierre Wolper

Universit�e de Li�ege

Institut Monte�ore, B28

4000 Li�ege, Belgium

fwillems,pwg@monte�ore.ulg.ac.be

Abstract

This paper gives a simple and direct algorithm for computing the always regular

set of reachable states of a pushdown system. It then exploits this algorithm for

obtaining model checking algorithms for linear-time temporal logic as well as for the

logic CTL

�

. For the latter, a new technical tool is introduced: pushdown automata

with transitions conditioned on regular predicates on the stack content. Finally, this

technical tool is also used to establish that CTL

�

model checking remains decidable

when the formulas are allowed to include regular predicates on the stack content.

1 Introduction

In many cases, there are a variety of di�erent algorithms for solving a given

veri�cation problem. However, even if they have the same theoretical com-

plexity, these algorithms are rarely equal with respect to building veri�cation

tools. First, there is the obvious fact that worst-case complexity is only a

crude upper approximation of the actual behavior of an algorithm, especially

when one limits the analysis to broad complexity classes (PTIME, PSPACE,

: : :). Second, factors such as the ease of implementation, the ease of inte-

gration with other techniques, and the possibility of separating concerns are

crucial. For example, even though they have no theoretical complexity ad-

vantage, automata-theoretic algorithms for model checking [VW86,BVW94]

have a number of assets with respect to incorporation in tools. Indeed, they

separate the \logical part" of the algorithm (building the automaton) from

the \combinatorial part" (exploring the extended state space). As a result

automata-theoretic model checking is easily combined with a variety of state-

space exploration optimizations [CVWY92,GW91] and is a natural addition

to a tool such as SPIN [Hol91,GPVW95] that is built around a state-space

exploration engine.

In this paper, we consider from this point of view the problem of verifying

pushdown systems. These are systems that are �nite-state except for the use

of one pushdown stack and hence can be modeled by pushdown automata. For

one familiar with classical automata theory, this is a natural class of systems

to consider in order to obtain decidability results and there are indeed already

a number of results on this and related topics [HS91,HJM94,BS95,Wal96],

which is not surprising in light of the fact that any pushdown system has a

decidable monadic theory [MS85]. However, our goal here is not just to obtain

algorithms, but to obtain algorithms that are based on the simplest possible

techniques and that extend as naturally as possible what is done in the pure

�nite-state case.

Our �rst step is thus to �nd a technique for computing a symbolic represen-

tation of the possibly in�nite state-space of a pushdown system. For this, we

exploit the not very widely known fact that the state space of such a system is

a regular set [Cau92], precisely, for each control location the possible contents

of the stack form a regular set, which we represent by a �nite-automaton.

Furthermore, the construction to obtain this representation is quite simple

and can be done in a number of steps that is polynomial, in fact O(n

3

), in the

size of the pushdown system.

Having obtained this familiar starting point we then turn to the model-

checking problem for pushdown systems. For linear-time temporal logic, the

automata-theoretic approach of [VW86] solves the problem fairly easily. In-

deed, all that is required is a slight modi�cation of the algorithm building the

representation of the state space in order to be able to solve the problem of

repeated reachability. We then turn to branching time and to the general logic

CTL

�

. This turns out to require some new techniques. Speci�cally, we are led

to consider pushdown automata with transitions that are conditioned by regu-

lar conditions on their stack content, which can be viewed as a particular type

of stack automata [HU69]. We show that the set of reachable states of such

automata can still be computed with an adaptation of our initial technique

and exploit this to solve the CTL

�

model-checking problem for pushdown sys-

tems. Doing this we obtain immediately an interesting new result as a payo�:

the model checking problem remains solvable when the temporal logic formula

is built not only from atomic predicates interpreted on the control states but

also from regular predicates on the stack content.

It must be stressed that, beyond this new result, we view the important

contribution of our paper to reside in providing a simple, intuitive, and imple-

mentation oriented framework for solving model-checking problems on push-

down systems. Indeed, the decidability of model checking for CTL

�

, though

without stack content predicates, is a consequence of the results in [Wal96],

which solves the problem for the full �-calculus, or of the decidability of the

emptiness problem for pushdown in�nite tree automata [HR94,PP92]. How-

ever, although they close the problem from a theoretical point of view, these

results are of little help for implementing a usable model checker, especially

if one is interested in the more practically relevant limited cases, such as re-

stricted classes of linear-time formulas.

An approach related to ours has also been followed in [BM96]. However

our results di�er from, and extend, those presented there. First, in [BM96]

backwards rather than forwards reachability is considered. This is mostly a

detail, but can be a relevant one when trying, for instance, to combine the

results presented here with methods for analyzing other types of in�nite state

systems, for instance those of [BG96], which are based on forwards reachability.

Next, we provide the concrete complexity of our algorithm (O(n

3

)) whereas the

algorithm of [BM96] is only characterized as \polynomial". Furthermore, our

technique for handling repeated reachability (needed for LTL model checking)

is both simpler and more e�cient than the one of [BM96]. Finally, we extend

our results to CTL

�

(only CTL is handled in [BM96]) and to formulas that

include regular stack content predicates.

2 Pushdown systems

We consider systems that can be modeled by a pushdown automaton. Usually,

this pushdown automaton will be computed from the system representation,

which might be a set of �nite-state processes, one of which uses a pushdown

stack as a data structure. Of course there are also a number of other repre-

sentations from which the pushdown automaton might be obtained, but we

do not consider this issue here.

We are working under the hypothesis that the pushdown automaton is a

global representation of the system and thus we are not interested in its ac-

cepted language, the traditional focus of automata theory. We will thus, con-

sider input-less pushdown automata without an acceptance condition. These

are de�ned as follows.

De�nition 2.1 A pushdown automaton A is a quadruple (Q;�;�; q

0

) where

Q is a �nite set of control states, � is a stack alphabet, � � f(Q��)� (Q�

f�g)g [f(Q � f�g) � (Q � �)g is a transition relation (� denotes the empty

word), and q

0

is the initial control state.

We call the elements of Q control states to distinguish them from the

global states of the system (elements of Q � �

�

), often called con�gurations

in automata theory. The form of the transitions is restricted in such a way

that they modify the size of the stack by exactly one symbol, but this is not

restrictive. We will represent a transition ((q; "); (q

0

; a)) by (q; a

+

; q

0

) or q

a

+

! q

0

,

and a transition ((q; a); (q

0

; ")) by (q; a

�

; q

0

) or q

a

�

! q

0

.

The initial state of the system is (q

0

; "). A con�guration (q

0

; �

0

) is directly

reachable from a con�guration (q; �) if � = �
, �

0

= �

0

and ((q;
); (q

0

;

0

)) 2

�. For this, we use the notation (q; �)) (q

0

; �

0

) or (q; �)

op

) (q

0

; �

0

) where

op 2 fa

+

; a

�

g when there is a need to make the stack operation explicit.

Furthermore, we denote by)

�

the re
exive and transitive closure of). When

there is a need to make explicit the sequence of stack operations leading from a

state (q; �) to a state (q

0

; �

0

), we write (q; �)

�

)

�

(q

0

; �

0

) where � 2 fa

+

; a

�

g

�

.

The reachable states (con�gurations) of the pushdown automaton are those

that are reachable from its initial state.

A run of a pushdown automaton is a maximal (�nite or in�nite) sequence

of con�gurations starting in the initial con�guration and such that each con-

�guration is directly reachable from the preceeding one.

3 Computing the Reachable States of a Pushdown Au-

tomaton

We are thus given a pushdown automaton A = (Q;�;�; q

0

) and have to

compute a representation of the subset of Q � �

�

that is its set of reach-

able states. This representation will be a �nite-state automaton, called the

reachability automaton A

r

of the pushdown automaton A, de�ned as follows:

A

r

= (Q

r

;�

r

;�

r

; q

0

r

; F

r

) where

�

the set of states Q

r

is Q,

�

�

r

= �, i.e. the input alphabet of the reachability automaton is the stack

alphabet of the pushdown automaton,

�

�

r

� Q

r

�(�

r

[f"g)�Q

r

is the smallest relation that satis�es the following

conditions where �

�

r

represents the usual transitive closure of �

r

:

� if (q; a

+

; q

0

) 2 �, then (q; a; q

0

) 2 �

r

and,

� if (q; a

�

; q

0

) 2 � and (q

00

; a; q) 2 �

�

r

, then (q

00

; "; q

0

) 2 �

r

,

�

q

0

r

= q

0

, F

r

= Q

r

.

The relation between A and A

r

is given by the following Theorem.

Theorem 3.1 A state (q; �) is reachable in A i� the state q is reachable in

A

r

through the word �.

In other words, the states of A

r

are exactly the control states of A, and

the stack contents with which a control state q is reachable are exactly the

words accepted by A

r

when q is taken as the unique �nal state.

The relation �

r

can be constructed in the following way. Initially, the rela-

tion is empty. Then for every transition (q; a

+

; q

0

) 2 �, we add the transition

(q; a; q

0

) to �

r

. Thereafter, we proceed as follows until saturation. For every

transition (q; a

�

; q

0

) 2 � and every transition (q

00

; a; q) in the current version of

�

�

r

, we add the transition (q

00

; "; q

0

) to �

r

. This procedure terminates because

of the �niteness of Q

r

.

This procedure can also be implemented in time O(n

3

) where n is the size

of the pushdown automaton. In fact, instead of constructing the relation �

r

,

we will construct the relation �

r;1

which will play the same role as �

r

. The

relation �

r;1

� Q

r

� (�

r

[f"g)�Q

r

is the smallest relation that satis�es the

following conditions :

�

if (q; a

+

; q

0

) 2 �, then (q; a; q

0

) 2 �

r;1

,

�

for every q 2 Q

r

, (q; "; q) 2 �

r;1

,

�

if (q; a

+

; q

0

) 2 �, (q

0

; "; q

00

) 2 �

r;1

, and (q

00

; a

�

; q

000

) 2 �, then (q; "; q

000

) 2

�

r;1

,

�

if (q; "; q

0

) 2 �

r;1

and (q

0

; "; q

00

) 2 �

r;1

, then (q; "; q

00

) 2 �

r;1

.

The transitions of �

r

and �

r;1

that are not labeled by " are the same.

Every "-transitions of �

r

belong to �

r;1

. The "-transitions of �

r;1

correspond

to �nite sequences of "-transitions of �

r

. So the theorem 3.1 still holds with

�

r;1

instead of �

r

.

The algorithm given at Figure 1 computes all the "-transitions of �

r;1

. Its

time complexity is O(jA

3

j).

1 procedure saturate(A = (Q;�;�; q

0

) : pushdown automaton)

2 begin

3 stack := ;; hash := ;;

4 for every q 2 Q, put (q; q) on stack;

5 for every q; q

0

2 Q,

6 (q; q

0

):c-direct := ;;

7 (q; q

0

):c-trans := ;;

8 for every transitions a

+;u!q

and a

�;q

0

!v

of A,

9 put (u; v) on (q; q

0

):c-direct;

10 for every q; q

0

2 Q,

11 if q 6= q

0

then

12 for every t 2 Q,

13 put [(q

0

; t)! (q; t)] and [(t; q)! (t; q

0

)] on (q; q

0

):c-trans;

14 while stack 6= ;

15 � := pop(stack);

16 put � in hash; (if it not already belongs to hash)

17 transfer �:c-direct into stack;

18 for every [
 ! �] 2 �:c-trans

19 if
 2 hash then put � on stack

20 else put � on
:c-direct;

21 return hash;

22 end

Fig. 1. computation of the "-transitions of �

r;1

The idea of the algorithm is to do the computation of the transitive closure

of "-transitions only once by storing information on how "-transitions can be

combined. The "-transitions that have been computed are stored in the hash

table (constant access time) hash. A pushdown stack stack is used to store

"-transitions that have been computed but that have not yet been exploited

in conjunction with other transitions. This stack is initialized with the trivial

transitions (q; q).

To help determine the "-transitions that can be added as a consequence of

an "-transition (q; q

0

), 2 stacks are used for each pair (q; q

0

). The �rst, (q; q

0

)-

c-direct is initialized to the set of "-transitions that are consequences of an

a

+

-transition, an a

�

-transition, and the "-transition from q to q

0

. Note that

the cumulative size of the c-direct stacks is at most O(jA

2

j). The second stack,

(q; q

0

)-c-trans encodes the fact that, given the "-transition (q; q

0

), for every

known "-transition (q

0

; t), one can add the "-transition (q; t), and similarly

for every known "-transition (t; q), one can add the "-transition (t; q

0

). This

is respectively encoded by the transition implications [(q

0

; t) ! (q; t)] and

[(t; q) ! (t; q

0

)]. The cumulative size of the elements of the c-trans stacks is

at most O(jA

3

j).

The algorithm then proceeds by processing every transition on stack and

determining their consequences with the help of the c-direct and c-trans stacks.

To see that it operates within the announced complexity, notice that it con-

tains initially O(jAj) elements and that it handles each element present in a

c-direct stack once and every element present in a c-trans stack at most twice.

To summarize, we have shown the following.

Theorem 3.2 Given a pushdown automaton A, the corresponding reachabil-

ity automaton can be computed in time O(jA

3

j).

The construction we have just given computes the states that are reachable

with an initially empty stack. It can easily be modi�ed to compute the states

that are reachable when the initial content of the stack is within a given regular

language L represented by a �nite automaton A

L

. Indeed, the automaton A

r

is then obtained by incorporating the automaton A

L

into the construction

given above. Precisely, one adds all states and transitions of A

L

, takes the

initial state to be that of A

L

, adds "-transitions between the accepting states

of A

L

and the initial state inherited from the pushdown automaton, and then

completes �

r

to ensure that it satis�es the given condition with respect to the

a

�

-transitions of the pushdown automaton.

4 Linear-time temporal properties

We now turn to the problem of verifying a linear-time temporal logic [MP92]

property on a pushdown system. Technically, we consider a temporal logic

formula f built from a set of atomic propositions Prop and a pushdown au-

tomaton A = (Q;�;�; q

0

) extended with a labeling function � : Q ! 2

Prop

assigning truth values to the atomic propositions in each control state. The

problem is to check that, with respect to the labeling function �, all in�nite

runs of A satisfy the formula f . To solve this problem, we adopt the approach

of [VW86] and build a B�uchi automaton A

:f

over the alphabet � = 2

Prop

accepting all the models of :f , the negation of f . The next step is to take

the product of the pushdown automaton A and of the B�uchi automaton A

:f

and check whether this product is empty or not. This product is actually a

pushdown automaton of the form we have considered so far (note that once

the product is computed the labeling function is no longer necessary) extended

with a B�uchi acceptance condition, we will call it a B�uchi pushdown automa-

ton.

So, we are left with the problem of testing emptiness of a B�uchi pushdown

automaton, i.e. a structure A = (Q;�;�; q

0

; F) where F is a set of accepting

control states. Such an automaton is nonempty if it has an in�nite run going

in�nitely often through some element of F . At �rst thought, it might seem

that constructing the reachability automaton as in Section 3 could solve the

problem. This is not so, because we now have to solve a repeated reachability

problem rather than just a reachability problem and our previous construction

does not preserve the necessary information. For instance, the sequence of

transitions q

1

a

+

! q

2

a

�

! q

3

in the pushdown automaton is only represented by

the transition q

1

"

! q

3

in the reachability automaton, hence omitting the state

q

2

, which is problematic if q

2

is accepting but neither q

1

or q

3

is.

To solve this problem, we introduce a two steps construction to obtain a

B�uchi reachability automaton. The �rst step is similar to the one described

in section 3, but introduces two types of "-transitions : those that do not go

through an accepting state (") and those that do go through an accepting

state ("

a

). The second step then eliminates the "

a

-transitions by introducing

a new set of dummy accepting states. Concretely, given a B�uchi pushdown

automaton A = (Q;�;�; q

0

; F), the result of the �rst step is an automaton

A

br

1

= (Q

br

1

;�

br

1

;�

br

1

; q

0

br

1

; F

br

1

)

de�ned as the automaton A

r

of Section 3, except that its set of accepting

states F

br

1

is the set F of accepting control states of A and that the transition

relation �

br

1

is the smallest relation included in Q

br

1

� (�

br

1

[f"; "

a

g)�Q

br

1

that satis�es the following conditions:

�

if (q; a

+

; q

0

) 2 �, then (q; a; q

0

) 2 �

br

1

and,

�

if (q; a

�

; q

0

) 2 �, (q

00

; a; q) 2 �

�

br

1

, and either q is accepting, one of the states

on an a-labeled path from q

00

to q is accepting, or an "

a

-transition appears

on such a path, then (q

00

; "

a

; q

0

) 2 �

br

1

,

�

if (q; a

�

; q

0

) 2 �, (q

00

; a; q) 2 �

�

br

1

, and (q

00

; "

a

; q

0

) 62 �

br

1

, then (q

00

; "; q

0

) 2

�

br

1

.

The second step then transforms A

br

1

by adding new states and tran-

sitions. Speci�cally, we construct the B�uchi reachability automaton A

br

=

(Q

br

;�

br

;�

br

; q

0

br

; F

br

) as follows:

�

Q

br

= Q

br

1

[Q

�

br

1

with Q

�

br

1

being a new copy of Q

br

1

, i.e. we duplicate the

set of states of A

br

1

,

�

every transition q

"

a

! q

0

is replaced by q

"

! q

0�

and q

0�

"

! q

0

,

�

the set of accepting states F

br

is F

br

1

[Q

�

br

1

.

With a careful implementation, the construction of this B�uchi reachability

automaton can be done in timeO(n

3

) with respect to the size of the pushdown

automaton.

The relation between A and A

br

is given by the following theorem.

Theorem 4.1 A B�uchi pushdown automaton A has an accepting run i� the

associated B�uchi reachability automaton A

br

also has an accepting run.

In order to solve the model checking problem for the logic CTL

�

we will

need to be able to compute the set of initial stack contents for which a linear-

time temporal logic formula is satis�ed by a pushdown automaton, i.e. the

initial stack contents such that all in�nite runs of the pushdown automaton

do satisfy the temporal logic formula. Formally, if we denote by A

(q

0

;m)

j= f

the fact that all in�nite runs of a pushdown automaton A starting in the

con�guration (q

0

;m) satisfy f , we are looking for the set

Init(A; f) = fm 2 �

�

j A

(q

0

;m)

j= fg

where � is the stack alphabet of A. Our solution to this problem goes along

the lines of the model checking procedure we have just given. First, we solve

the complement of the problem, i.e. we compute the set Init(A; f) of initial

stack contents from which some computation does not satisfy f (satis�es :f)

and then complement the set that is obtained. To compute Init(A; f) we again

take the product of A and A

:f

(the automaton accepting all sequences not

satisfying f) to obtain a B�uchi pushdown automaton A

b

= fQ

b

;�

b

;�

b

; q

0

b

; F

b

g

from which we compute the B�uchi reachability automaton A

br

. Next, we use

the following set of observations.

(i) If a word m is in Init(A; f), then all words in �

�

m are in Init(A; f).

Indeed, having elements on the stack below m can only increase the set

of possible computations.

(ii) An accepting computation of A

b

cycles through a strongly connected

component of this automaton that contains some accepting state. Fur-

thermore, when there is an accepting computation, there is one that

cycles in a purely periodic way through a strongly connected component.

On such a periodic path, the stack might grow and shrink, but one can

always identify a point in the periodic path such that the stack is never

smaller than at that point. Let us call the corresponding control point

a cycle starting point. The initial stack contents for which A

b

has some

accepting run are all those from which it is possible to reach such a cycle

starting point.

(iii) Cycle starting points can be identi�ed in A

br

. To see this, remember

that the states of A

br

are either states of A

b

or dummy accepting states.

The cycle starting points are then the A

b

states of the nontrivial strongly

connected components of A

br

that contain at least one accepting state.

So, we use A

br

to determine the cycle starting points. Let Q

c

be this set.

We then build a �nite automaton on �nite words accepting the minimal stack

contents that allow cycle starting states to be reached. This automaton is

A

Init

= (Q

Init

;�;�

Init

; q

0

Init

; F

Init

) where

�

Q

Init

= Q

b

[fq

0

Init

g (the states are those of Q

b

plus a new initial state),

�

�

Init

is de�ned as follows :

� (q

0

; a; q) 2 �

Init

i� q

a

�

! q

0

is a transition of �

b

(the inverted a

�

-transitions

of A

b

),

� (q

0

; "; q) 2 �

Init

i� q

"

! q

0

is a transition of �

A

br

or q

"

a

! q

0

is a transition

of the automaton A

br

1

obtained in the �rst stage of the construction of

A

br

(we add the inverted "-transitions of A

br

),

� (q

0

Init

; "; q) 2 �

Init

for all states q 2 Q

c

(all cycle starting points are imme-

diately reachable from the new initial state),

� (q

0

Init

;
; q

0

Init

) 2 �

Init

for all
 2 � (we allow pre�xing with an arbitrary

word),

�

F

Init

= fq

0

b

g (the only accepting state is the initial state of A

b

).

Theorem 4.2 The language accepted by A

Init

is Init(A; f).

So, to obtain Init(A; f) we just need to complement the automaton A

Init

.

5 B�uchi regularly constrained pushdown automata

In order to extend our results and in particular to obtain a model checking

procedure for CTL

�

, we need to extend B�uchi pushdown automata with the

possibility of conditioning transitions by regular predicates on the stack con-

tent. We use the following de�nition.

De�nition 5.1 A B�uchi regularly constrained pushdown automaton A is a

quadruple A = (Q;�;�; q

0

; F) where

�

Q is a �nite set of control states, � is a stack alphabet,

�

the transition relation � is a �nite subset of

fR � (Q� �)� (Q� f"g)g [fR� (Q� f"g)� (Q� �)g

where R denotes the set of all regular subsets of �

�

and " the empty word,

�

q

0

is the initial control state, F is a set of accepting control states.

We represent a transition (C; (q; "); (q

0

; a)) by (q; C ! a

+

; q

0

) or q

C!a

+

! q

0

,

and a transition (C; (q; a); (q

0

; ")) by (q; C ! a

�

; q

0

) or q

C!a

�

! q

0

.

A con�guration (q

0

; �

0

) is directly reachable from a con�guration (q; �) if

� = �
, �

0

= �

0

and there exists some C 2 R such that � 2 C and

(C; (q; �); (q

0

; �

0

)) 2 �. From this, we de�ne reachable con�gurations and

runs. A run of a B�uchi regularly constrained pushdown automaton is a max-

imal (�nite or in�nite) sequence of con�gurations starting in the initial con-

�guration and such that each con�guration is directly reachable from the pre-

ceeding one. An accepting run is an in�nite run that visits accepting control

states in�nitely often (irrespectively of the stack content). An automaton is

said to be nonempty if it admits some accepting run; otherwise, it is said to

be empty.

Note that a B�uchi pushdown automaton is a particular B�uchi regularly

constrained pushdown automaton (take C = �

�

as the regular guard). Reg-

ularly constrained pushdown automata are also a special case of stack au-

tomata as de�ned for instance in [HU69]. Stack automata accept more than

the context-free languages.

However, here we are not interested in the accepted language, but in deter-

mining nonemptiness. We show that this remains decidable for B�uchi regularly

constrained pushdown automaton. This is shown by a construction that elimi-

nates the regular constraints while preserving nonemptiness. The construction

proceeds in two steps. The �rst step eliminates the a

�

-transitions similarly

to what is done in Section 4. The second step then eliminates the regular

constraints on the stack content.

First step : removing all a

�

-transitions

We proceed just like in the construction of the B�uchi reachability au-

tomaton associated to a pushdown automaton but now the added "- and

"

a

-transitions will be labeled by a regular language representing the enabling

condition for the corresponding sequence of transitions. Precisely, a path of

the form

q

1

C

1

!�

1

�! q

2

: : :

C

r

!�

r

�! q

r+1

C

r+1

!a

+

�! q

r+2

C

r+2

!�

r+2

�! q

r+3

: : :

C

s

!�

s

�! q

s+1

C

s+1

!a

�

�! q

s+2

where 0 � r < s, C

i

denotes a regular language and �

i

an "- or an "

a

-transition,

will cause the following transition to be added to the transition relation :

q

1

C!�

�! q

s+2

with C =

\

1�i�r+1

C

i

\ a

�

(

\

r+2�i�s+1

C

i

)

where a

�

(L) = fm 2 �

�

j m a 2 Lg (note that a

�

(L

1

[L

2

) = a

�

(L

1

) [

a

�

(L

2

) and a

�

(L

1

\ L

2

) = a

�

(L

1

) \ a

�

(L

2

)), and � is "

a

if at least one

accepting control state has been visited explicitely or implicitly (through an

"

a

-transition), otherwise � is ". Note that this will always generate a �nite

number of regular conditions since all constructed conditions are of the form

_

i

^

j

(m

ij

)

�

(C

ij

) where m

ij

2 �

�

and C

ij

2 C and since, for any regular

language C, the set jfm

�

(C) j m 2 �

�

& C 2 Cgj is always �nite.

Second step : reduction of B�uchi constrained pushdown automaton

without any a

�

-operations

After eliminating all a

�

-transitions, eliminating the regular conditions is

fairly straightforward. Indeed, now the only transitions modifying the stack

content are transitions adding an element a to the stack. A �nite automaton

for a stack condition can thus follow these transitions and indicate by its

state whether the condition is satis�ed or not. These �nite state automata

can then be incorporated into the control state of the pushdown automaton,

hence yielding an automaton without constraints.

We summarize these construction and results in the following theorem.

Theorem 5.2 Given a B�uchi regularly constrained pushdown automaton A

c

,

we can construct a B�uchi pushdown automaton A such that A

c

and A are

simultaneously empty.

As we did for B�uchi pushdown automata, we now give a procedure for

computing the set Init(A) of initial stack contents that enable an accepting

run for a B�uchi regularly constrained pushdown automaton. As in Section 4,

we �rst eliminate the a

�

transitions using the construction given in the \�rst

step" above with the goal of using the resulting automaton to determine when

accepting cyclic computations are possible. However, we now have to take the

constraints into account. To do this, we embody the constraints into �nite

automata as in the \second step" of the construction above. This then enables

us to determine for each state of the constrained B�uchi reachability automaton

which language allows an accepting cycle to be repeatedly followed. Indeed,

cycles that are possible in the product of the B�uchi reachability automaton and

of the automata representing the constraints are possible in the corresponding

state of the B�uchi reachability automaton for a stack content described by the

constraint automata components of the product and their current state.

The �nal step of the computation of Init(A) is then to determine from

which initial stack contents the various states can be reached with the stack

content that makes a cycle possible. This is done similarly to the construction

of Section 4, but incorporating the constraints, which is possible since they

are given by �nite automata.

6 Branching temporal properties : CTL

�

As shown in [EL85], branching-time model checking [Eme90] can be reduced

to linear-time model checking. The idea is to start with the innermost path

formulas, verify them with a linear-time model checking procedure and then

label the structure with the result. This being done, one can move to the next

level of path formulas and repeat the procedure. In the context of pushdown

systems, this does not quite work. Indeed, since we are dealing with in�nite

state spaces, we cannot label individual states. One could be tempted to

just label the control states, but the problem with this is that the truth of a

linear-time temporal formula can depend on the initial stack content.

So, the idea of our algorithm is to use the procedure we have given to

compute the set of stack contents from which a linear formula is satis�ed.

Again, we do this for the innermost path formulas �rst. This gives us a

labeling of the structure, in terms of regular sets, which can be represented

as a B�uchi constrained pushdown automaton. Using the procedure outlined

in Section 5, we repeat this computation for the next level and so on until we

reach the outermost level. At this point we solve the emptiness problem for

the B�uchi constrained pushdown automaton obtained and conclude.

As an immediate consequence of the procedure we have just described we

can conclude that model checking of CTL* remains decidable on pushdown

systems for formulas that include regular predicates on the stack content.

Theorem 6.1 The CTL

�

model-checking problem for pushdown automata and

formulas built from atomic propositions interpreted on the control states and

regular predicates on the stack content is decidable.

References

[BG96] B. Boigelot and P. Godefroid. Symbolic veri�cation of communication

protocols with in�nite state spaces using QDDs. In Proc. 8th Conference on

Computer Aided Veri�cation, volume 1102, pages 1{12, New Brunswick, August

1996. Lecture Notes in Computer Science, Springer-Verlag.

[BM96] A. Bouajjani and O. Maler. Reachability analysis of pushdown automata.

In INFINITY workshop, 1996.

[BS95] O. Burkart and B. Ste�en. Composition, decomposition and model checking

of pushdown processes. Nordic Journal of Computing, 2(2):89{125, 1995.

[BVW94] O. Bernholtz, M.Y. Vardi, and P. Wolper. An automata-theoretic

approach to branching-time model checking. In Computer Aided Veri�cation,

Proc. 6th Int. Workshop, Stanford, California, June 1994. Lecture Notes in

Computer Science, Springer-Verlag. Full version available from authors.

[Cau92] D. Caucal. On the regular structure of pre�x rewriting. Theoretical

Computer Science, 106:61{86, 1992.

[CVWY92] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory

e�cient algorithms for the veri�cation of temporal properties. Formal Methods

in System Design, 1:275{288, 1992.

[EL85] E.A. Emerson and C.-L. Lei. Modalities for model checking: Branching time

logic strikes back. In Proceedings of the Twelfth ACM Symposium on Principles

of Programming Languages, pages 84{96, New Orleans, January 1985.

[Eme90] E.A. Emerson. Temporal and modal logic. Handbook of theoretical

computer science, pages 997{1072, 1990.

[GPVW95] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-
y

automatic veri�cation of linear temporal logic. In Proc. 15th Work. Protocol

Speci�cation, Testing, and Veri�cation, Warsaw, June 1995. North-Holland.

[GW91] P. Godefroid and P. Wolper. A partial approach to model checking. In

Proc. 6th Symp. on Logic in Computer Science, pages 406{415, Amsterdam,

July 1991.

[HJM94] Yoram Hirshfeld, Mark Jerrum, and Faron Moller. A polynomial-time

algorithm for deciding equivalence of normed context-free processes. In 35th

Annual Symposium on Foundations of Computer Science, pages 623{631, Santa

Fe, New Mexico, 20{22 November 1994. IEEE.

[Hol91] G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall

International Editions, 1991.

[HR94] Harel and Raz. Deciding emptiness for stack automata on in�nite trees.

Information and Computation (formerly Information and Control), 113, 1994.

[HS91] Hans H�uttel and Colin Stirling. Actions speak louder than words: Proving

bisimilarity for context-free processes. In Proceedings, Sixth Annual IEEE

Symposium on Logic in Computer Science, pages 376{386, Amsterdam, The

Netherlands, 15{18 July 1991. IEEE Computer Society Press.

[HU69] J.E. Hopcroft and J.D. Ullman. Formal Languages and their Relation to

Automata. Addison-Wesley, 1969.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems: Speci�cation. Springer-Verlag, Berlin, January 1992.

[MS85] Muller and Schupp. The theory of ends, pushdown automata, and second-

order logic. Theoretical Computer Science, 37, 1985.

[PP92] Peng and Purushothaman. Empty stack pushdown omega-tree automata. In

Colloquium on Trees in Algebra and Programming. LNCS 581, Springer-Verlag,

1992.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic

program veri�cation. In Proceedings of the First Symposium on Logic in

Computer Science, pages 322{331, Cambridge, June 1986.

[Wal96] Igor Walukiewicz. Pushdown processes: Games and model checking:.

In Proc. 8th Workshop on Computer Aided Veri�cation, volume 1102 of

Lecture Notes in Computer Science, pages 62{74, New Brunswick, NJ, USA,

July/August 1996. Springer-Verlag.

