
Bottom-up automata on data trees
and vertical XPath∗

Diego Figueira and Luc Segoufin

INRIA and ENS Cachan, LSV

Abstract
A data tree is a tree whose every node carries a label from a finite alphabet and a datum from
some infinite domain. We introduce a new model of automata over unranked data trees with
a decidable emptiness problem. It is essentially a bottom-up alternating automaton with one
register, enriched with epsilon-transitions that perform tests on the data values of the subtree.
We show that it captures the expressive power of the vertical fragment of XPath —containing
the child, descendant, parent and ancestor axes— obtaining thus a decision procedure for its
satisfiability problem.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Decidability, XPath, Data trees, Bottom-up tree automata

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

We study formalisms for data trees. A data tree is a tree where each position carries a
label from a finite alphabet and a datum from some infinite domain. This structure has
been considered in the realm of semistructured data, timed automata, program verification,
and generally in systems manipulating data values. Finding decidable logics or automaton
models over data trees is an important quest when studying data-driven systems.

A data tree can model an xml document. One wants to decide, for example, if two
properties of xml documents expressed in some formalism are equivalent. This problem is
usually equivalent to the satisfiability problem. One such formalism to express properties
of xml documents is the logic XPath. Although satisfiability of XPath in the presence of
data values is undecidable, there are some known decidable data-aware fragments [4, 5, 1, 3].
Here, we investigate a rather big fragment that nonetheless is decidable. Vertical-XPath is
the fragment that contains all downward and upward axes, but no horizontal axis is allowed.

We introduce a novel automaton model that captures vertical-XPath. We show that the
automaton has a decidable emptiness problem and therefore that the satisfiability problem
of vertical-XPath is decidable. The Bottom-Up Data Automata (or BUDA) are bottom-up
alternating tree automata with one register to store and compare data values. Further, these
automata can compare the data value currently stored in the register with the data value of
a descendant node, reached by a downward path satisfying a given regular property. Hence,
in some sense, it has a two-way behavior. However, they cannot test horizontal properties
on the siblings of the tree, like “the root has exactly three children”.

Our main technical result shows the decidability of the emptiness problem of this auto-
maton model. We show this through a reduction to the the coverability problem of a
well-structured transition system (wsts [8]). Each BUDA automaton is associated with a

∗ This research was funded by the ERC research project FoX under grant agreement FP7-ICT-233599.

© Diego Figueira and Luc Segoufin;
licensed under Creative Commons License ND

Conference title on which this volume is based on.
Editors: Editor; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Bottom-up automata on data trees and vertical XPath

transition system, in such a way that a derivation in this transition system corresponds to a
run of the automaton, and vice-versa. The domain of the transition system consists in the
abstract configurations of the automaton, which contains all the information necessary to
preserve from a (partial) bottom-up run of the automaton in a subtree in order to continue
the simulation of the run from there. On the one hand we show that BUDA can be sim-
ulated using an appropriate transition relation on sets of abstract configurations. On the
other hand, we exhibit a well-quasi-order (wqo) on those abstract configurations and show
that the transition relation is “monotone” relative to this wqo. This makes the coverability
problem (and hence the emptiness problem) decidable [8].

In terms of expressive power, we show that BUDA can express any node expression of the
vertical fragment of XPath. Core-XPath (term coined in [10]) is the fragment of XPath 1.0
that captures its navigational behavior, but cannot express any property involving data. It
is easily shown to be decidable. The extension of this language with the possibility to make
equality and inequality tests between data values is named Core-Data-XPath in [3], and it
has an undecidable satisfiability problem [9]. By “vertical XPath” we denote the fragment
of Core-Data-XPath that can only use the downward axes child and descendant and the
upward axes parent and ancestor (no navigation among siblings is allowed). It follows
that vertical XPath is decidable, settling an open question [2, Question 5.10].
Related work. A model of top-down tree automata with one register and alternating
control (ATRA) is introduced in [12], where the decidability of its emptiness problem is
proved. ATRA are used to show the decidability of temporal logics extended with a “freeze”
operator. This model of automata was extended in [5] with the name ATRA(guess, spread) in
order to prove the decidability of the forward fragment of XPath, allowing only axes navig-
ating downward or rightward (next-sibling and following-sibling). The two models of
automata are incomparable: ATRA can express all regular tree languages while BUDA can
express unary inclusion dependency properties (like “the data values labeled by a is a subset
of those labeled by b”). In order to capture vertical XPath, the switch from top-down to
bottom-up seems necessary to express formulas with upward navigation, and this also makes
the decidability of the emptiness problem significantly more difficult. In [5], the decidability
of the forward fragment of XPath is also obtained using a wsts. This wsts relies on a wqo
over configurations. As our automaton model is bottom-up we have to work with sets of
configurations and had to invoke the theory of ω2-quasi-orderings [11, 13] in order to derive
our wqo. The paper [2] contains a comprehensive survey of the known decidability results
for various fragments of XPath, most of which cannot access data values. In the presence of
data values, the notable new results since the publication of [2] are the downward [4] and
the forward [5] fragments, as well as the fragment containing only the successor axis [3] (the
latter closely related to first-order logic with two variables). As already mentioned, this
paper solves one of the remaining open problems of [2].
Organization. In Section 3 we introduce the BUDA model and we show that it captures
vertical XPath. The associated well-structured transition system and the outline of the proof
to show the decidability of its reachability is in Section 4. Due to space limitations many
proofs are omitted or only sketched. We refer the reader to [6, Chapter 7] for detailed proofs.

2 Preliminaries

Basic notation. Let ℘(S) denote the set of subsets of S, and ℘<∞(S) be the set of finite
subsets of S. Let N = {0, 1, 2, . . . }, N+ = {1, 2, 3, . . . }, and let [n] := {1, . . . , n} for any
n ∈ N+. We fix once and for all D to be any infinite domain of data values; for simplicity

Diego Figueira and Luc Segoufin 3

in our examples we will consider D = N. In general we use letters A, B for finite alphabets,
the letter D for an infinite alphabet and the letters E and F for any kind of alphabet. By
E∗ we denote the set of finite sequences over E, by E+ the set of finite sequences with at
least one element over E, and by Eω the set of infinite sequences over E. We write ε for the
empty sequence and ‘·’ as the concatenation operator between sequences. We write |S| to
denote the length of S (if S is a finite sequence), or its cardinality (if S is a set).
Regular languages. We make use of the many characterizations of regular languages over
a finite alphabet A. In particular, we use that a word language L ⊆ A∗ is regular iff there is
a finite semigroup (S, ·) with a distinguished subset T ⊆ S, and a semigroup homomorphism
h : A∗ → S such that for all w with |w| > 0, w ∈ L iff h(w) ∈ T .
Unranked finite trees. By Trees(E) we denote the set of finite ordered and unranked
trees over an alphabet E. We view each position in a tree as an element of (N+)∗. Formally,
we define POS ⊆ ℘<∞((N+)∗) as the set of sets of finite tree positions, such that: X ∈ POS
iff (a) X ⊆ (N+)∗, |X| < ∞; (b) X is prefix-closed; and (c) if n·(i + 1) ∈ X for i ∈ N+,
then n·i ∈ X. A tree is then a mapping from a set of positions to letters of the alphabet
Trees(E) := {t : P → E | P ∈ POS}. By t|x(y) we denote the subtree of t at position x:
t|x(y) = t(x·y). The root’s position is the empty string and we denote it by ‘ε’. The position
of any other node in the tree is the concatenation of the position of its parent and the node’s
index in the ordered list of siblings. Along this work we use x, y, z, w, v as variables for
positions, and i, j, k, l,m, n as variables for numbers. For example, x·i is a position which is
not the root, that has x as parent position, and that has i− 1 siblings to the left.

Given a tree t ∈ Trees(E), pos(t) denotes the domain of t, which consists of the set of
positions of the tree, and alph(t) = E denotes the alphabet of the tree. From now on, we
informally refer by ‘node’ to a position x together with the value t(x).

Given two trees t1 ∈ Trees(E), t2 ∈ Trees(F) such that pos(t1) = pos(t2) = P , we define
t1 ⊗ t2 : P → (E×F) as (t1 ⊗ t2)(x) = (t1(x), t2(x)).

The set of data trees over a finite alphabet A and an infinitea, 2

a, 2 b, 2

b, 9 b, 5 b, 3

a, 2 b, 1 b, 2

Figure 1 A data tree.

domain D is defined as Trees(A×D). Note that every tree t ∈
Trees(A×D) can be decomposed into two trees a ∈ Trees(A) and
d ∈ Trees(D) such that t = a ⊗ d. Figure 1 shows an example
of a data tree. The notation for the set of data values used in
a data tree is data(a ⊗ d) := {d(x) | x ∈ pos(d)}. With an
abuse of notation we write data(X) to denote all the elements of
D contained in X, for whatever object X may be.

XPath on data trees. Next we define vertical XPath, the fragment of XPath where no
horizontal navigation is allowed. We actually consider an extension of XPath allowing the
Kleene star on any path expression and we denote it by regXPath. Although we define
this logic over data trees, our decidability result also holds for the class of xml documents
through a standard reduction.

Vertical regXPath is a two-sorted language, with path expressions (that we write α, β, γ)
and node expressions (ϕ,ψ, η). Path expressions are binary relations resulting from com-
posing the child and parent relations (which are denoted respectively by ↓ and ↑), and node
expressions. Node expressions are boolean formulas that test a property of a node, like for
example, that is has a certain label, or that it has a child labeled a with the same data value
as an ancestor labeled b, which is expressed by 〈↓[a] = ↑∗[b]〉. We write regXPath(V,=) to
denote this logic. A formula of regXPath(V,=) is either a node expression or a path expres-
sion of the logic. Its syntax and semantics are defined in Figure 2. As another example,
we can select the nodes that have a descendant labeled b with two children also labeled by

STACS’11

4 Bottom-up automata on data trees and vertical XPath

α, β ::= o | α[ϕ] | [ϕ]α | αβ | α ∪ β | α∗ o ∈ {ε, ↓, ↑} ,
ϕ, ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 | 〈α = β〉 | 〈α 6= β〉 a ∈ A .

[[↓]]t = {(x, x·i) | x·i ∈ pos(t)} [[↑]]t = {(x·i, x) | x·i ∈ pos(t)}
[[[ϕ]]]t = {(x, x) ∈| x ∈ pos(t), x ∈ [[ϕ]]t} [[α∗]]t = the reflexive transitive closure of [[α]]t

[[ε]]t = {(x, x) | x ∈ pos(t)} [[αβ]]t = {(x, z) | there exists y such that
[[α ∪ β]]t = [[α]]t ∪ [[β]]t (x, y) ∈ [[α]]t

, (y, z) ∈ [[β]]t}
[[a]]t = {x ∈ pos(t) | a(x) = a} [[〈α〉]]t = {x ∈ pos(t) | ∃y.(x, y) ∈ [[α]]t}

[[¬ϕ]]t = pos(t) \ [[ϕ]]t [[ϕ ∧ ψ]]t = [[ϕ]]t ∩ [[ψ]]t

[[〈α=β〉]]t = {x ∈ pos(t) | ∃y,z (x, y) ∈ [[α]]t
, [[〈α6=β〉]]t = {x ∈ pos(t) | ∃y,z (x, y) ∈ [[α]]t

,

(x, z) ∈ [[β]]t
,d(y) = d(z)} (x, z) ∈ [[β]]t

,d(y) 6= d(z)}

Figure 2 The syntax of XPath(V, =); and its semantics for a data tree t = a ⊗ d.

b with different data value by a formula ϕ = 〈↓∗ [b ∧ 〈↓ [b] 6=↓ [b]〉]〉. Given a tree t as in
Figure 1, we have [[ϕ]]t = {ε, 1, 12}.

The satisfiability problem for regXPath(V,=) is the problem of, given a formula ϕ, wether
there exists a data tree t such that [[ϕ]]t 6= ∅. Our main result on XPath is the following.

I Theorem 1. The satisfiability problem for regXPath(V,=) is decidable.

Well-structured transition systems. The proof of Theorem 1 relies on a translation
to an automaton model defined in the next section whose emptiness problem is decidable.
This is showed through methods from the theory of well-structured transition systems, or
wsts for short [8]. The emptiness test of our model of automata is obtained by interpreting
its execution using a transition system compatible with some well-quasi-ordering (wqo). We
reproduce here only the result of the theory of wsts that we will need.

A quasi-order ≤ (i.e., a reflexive and transitive relation) over a set S is said to be a
well-quasi-order (wqo) iff for every infinite sequence s1 s2 · · · ∈ Sω there are two indices
i < j such that si ≤ sj . Given a wqo (S,≤) and T ⊆ S, we define the downward closure of
T as ↓T := {s ∈ S | ∃ t ∈ T, s ≤ t} and T is downward closed if ↓T = T .

Given a transition system (S,→), and T ⊆ S we define Succ(T) := {s ∈ S | ∃ t ∈
T with t → s}, and Succ∗ as its reflexive-transitive closure. We say that (S,→) is finitely
branching iff Succ({s}) is finite for all s ∈ S. If Succ({s}) is also effectively computable for
all s, we say that (S,→) is effective.

We adapt some results and definitions of [8, §5] of what is there called reflexive com-
patibility (i.e., compatibility in zero or one steps) to extend them to N -compatibility (i.e.,
compatibility in at most N steps). Given a binary relation R ⊆ S × S and K ⊆ S, let us
write R≤n for Id ∪ R ∪ R2 ∪ · · · ∪ Rn, where Id is the identity relation and Ri is the i-fold
composition of R. Given N ∈ N+, a transition system (S,→) is N-downward compatible
with respect to a wqo (S,≤) iff for every s1, s2, s

′
1 ∈ S such that s′1 ≤ s1 and s1 → s2, there

exists s′2 ∈ S such that s′2 ≤ s2 and s′1 (→)≤N s′2. In some sense any behavior from the
bigger element s1 can be simulated by the smaller element s′1. In truth, s′1 may need several
transitions, but not more than N . Hereafter we use the term ‘wsts’ to refer to any wqo
and transition system N -downward compatible. A simple adaptation of [8, §5] yields the
following proposition, what will be used to show decidability for BUDA.

I Proposition 1. If (S,≤) is a wqo and (S,→) a transition system such that (1) it is N -
downwards compatible for some fixed N , (2) it is effective, and (3) ≤ is decidable, V ⊆ S

is a recursive downward-closed set and, T ⊆ S is a finite set; then the problem of whether
there exist t ∈ T and v ∈ V such that t→∗ v is decidable.

Diego Figueira and Luc Segoufin 5

In the above statement one must think of S as the configurations of an automaton, T as
its initial configurations, → as the relation defined by the run, and ≤ as a suitable relation
between configurations such that the set of accepting configurations V is downward-closed.

3 The automaton model

In this section we introduce the BUDA model. It is essentially a bottom-up tree automaton
with one register to store a data value and an alternating control. We show that these
automata are at least as expressive as vertical regXPath. In Section 4 we will show that
their emptiness problem is decidable. Theorem 1 then follows immediately.

An automaton A ∈ BUDA that runs over data trees of Trees(A×D) is defined as a tuple
A = (A,B, Q, q0, δε, δup,S, h) where A is the finite alphabet of the tree, B is an internal finite
alphabet of the automaton (whose purpose will be clear later), Q is a finite set of states, q0
is the initial state, S is a finite semigroup, h is a semigroup homomorphism from (A× B)+

to S, δε is the ε-transition function of A , and δup is the up-transition function of A .
δup is a partial function from states to formulas. For q ∈ Q, δup(q) is either undefined or

a formula consisting in a disjunction of conjunctions of states. δε is also a partial function
from states to disjunctions of conjunctions of ‘atoms’ of one of the following forms:

p | guess(p) | univ(p) | store(p) | eq | eq |
| 〈µ〉= | 〈µ〉6= | 〈µ〉= | 〈µ〉6= | root | root | leaf | leaf | a | ā | b | b̄

where µ ∈ S, p ∈ Q, a ∈ A, b ∈ B.
Before we present the precise semantics of our automaton model, here is the intuition.

The automaton’s control is nondeterministic and alternating, as reflected by the disjunctions
and conjunctions in the formulæ specifying the transition functions. Hence, at any node
several threads of the automaton run in parallel. Each thread consists of a state and a
data value stored in the register. At every node of the tree, the automaton guesses a finite
internal label of B and all threads can share access to this finite information. At any node
of the tree, the automaton can perform some actions depending on the result of local tests.

We first describe the battery of tests the automata can perform. All these tests are
explicitly closed under negation, denoted with the · notation, and of course they are also
closed under intersection and union using the alternating and nondeterministic control of
the automata. The automata can test the label and internal label of the current node and
also whether the current node is the root, a leaf or an internal node. The automata can test
(in)equality of the current data value with the one stored in the register (eq and eq). Finally
the automata can test the existence of some downward path, starting from the current node
and leading to a node whose data value is (or is not) equal to the one currently stored in the
register, such that the path satisfies some regular property on the labels. These properties
are specified using the finite semigroup S and the morphism h : (A × B)+ → S over the
words made of the label of the tree and the internal label. For example, 〈µ〉= tests for the
existence of a path that evaluates to µ via h, which starts at the current node and leads to
a node whose data value matches the one currently stored in the register. Similarly, 〈µ〉 6=
tests that it leads to a data value different from the one currently in the register. Observe
that we could have used finite automata, or regular expressions instead of finite semigroup
homomorphisms. We take this approach because it simplifies the notation.

Based on the result of these tests, the automata can perform the following actions. They
can change state, store the current data value in the register (store(p)), or store an arbitrary
data value nondeterministically chosen (guess(p)). Finally, a transition can demand to start

STACS’11

6 Bottom-up automata on data trees and vertical XPath

a new thread in state p for every data value of the subtree with the operation univ(p). The
automata can also decide to move up in the tree according to the up-transition.

Before we move on to the formal definition, we stress that the automaton model is
not closed under complementation because its set of actions are not closed under comple-
mentation: guess is a form of existential quantification while univ is a form of universal
quantification, but they are not dual. Actually, we will show in the journal version of this
paper that adding any of their dual would yield undecidability of the model.

We now turn to the formal definition. A data tree a⊗d ∈ Trees(A× D) is accepted by
A iff there exists an internal labeling b ∈ Trees(B) with pos(b) = pos(a⊗d) such that there
is an accepting run on a⊗b⊗d. We focus now on the definition of a run.

A configuration of a BUDA A is a set C of threads, viewed as a finite subset of Q×D.
A configuration C is said to be initial iff it is of the form {(q0, e)} for some e ∈ D. A
configuration C is accepting iff it is empty.
ε-transitions. Let t = a⊗b⊗d and x ∈ pos(t). Given two configurations C and C′ of
A , we say that there is an ε-transition of A at x between C and C′, denoted (x, C) �ε

(x, C′) (assuming A and t are understood from the context) if the following holds: there
is a thread with state q and with a data value d (i.e., (q, d) ∈ C) where δε(q) =

∨
i∈I γi.

Each γi is a conjunction of atoms, and there must be one i ∈ I with γi =
∧
j∈J αj and

C′ = (C \ {(q, d)}) ∪ Ĉ such that the following holds for all j ∈ J :
If αj is one of the tests a, b, root, leaf, eq or its negations, it must be true with the
obvious semantics as described above.
If αj is 〈µ〉= then there is a downward path in t starting at x and ending at some
descendant position y with d(y) = d, such that the sequence of labels in A × B read
while going from x to y along this path (including the endpoints) evaluates to µ via h.
The case of 〈µ〉 6= is treated similarly replacing d(y) = d by d(y) 6= d. The tests 〈µ〉=
and 〈µ〉6= correspond to the negation of these tests.
If αj is p for some p ∈ Q, then (p, d) ∈ Ĉ,
if αj is store(p) then (p,d(x)) ∈ Ĉ,
if αj is guess(p) then (p, d′) ∈ Ĉ for some d′ ∈ D,
if αj is univ(p), then for all d′ ∈ data(t|x), (p, d′) ∈ Ĉ,
nothing else is in Ĉ.

The ε-closure of a pair (x, C) is defined as the reflexive transitive closure of�ε, i.e. the
set of configurations reachable from (x, C) by a finite sequence of ε-transitions.
up-transitions. We say that a configuration C is moving iff for all (q, d) ∈ C, δup(q) is
defined. Given two configurations C and C′ of A , we say that there is an up-transition of A
between C and C′, denoted C �up C′ (assuming A is understood from the context) if the
following conditions hold:
C is moving,
for all (q, d) ∈ C, if δup(q) =

∨
i∈I
∧
j∈J pi,j then there is i ∈ I such that for all j ∈ J ,

(pi,j , d) ∈ C′,
nothing else is in C′.

I Remark. In the definition of the run the automaton behaves synchronously: all threads
move up at the same time. This is only for convenience of presentation. Since all the threads
are independent, one can also define a run in which each thread moves independently. This
alternative definition would be equivalent to the current one.

Diego Figueira and Luc Segoufin 7

Runs. We are now ready to define a run ρ of A on t = a⊗b⊗d. It is a function
associating a configuration to any node x of t such that

1. for any leaf x of t, ρ(x) = {(q0,d(x))},
2. for any inner position x of t whose children are x·1, . . . , x·n, then there are configura-

tions C′1, · · · , C′n and C′′1 , · · · , C′′n such that for all i ∈ [n], (x·i, C′′i) is in the ε-closure of
(x·i, ρ(x·i)), C′′i �up C′i, and ρ(x) =

⋃
i∈[n] C′i.

The run ρ is accepting if moreover at the root (i.e., for the position ε), the ε-closure of ρ(ε)
contains an accepting configuration.
BUDA and vertical regXPath. Given a formula η of regXPath(V,=), we say that a BUDA
A is equivalent to η if a data tree t is accepted by A iff [[η]]t 6= ∅.

I Proposition 2. For every η ∈ regXPath(V,=) there exists an equivalent A ∈ BUDA
computable from η.

Proof idea. It is easy to simulate any positive test 〈α = β〉 or 〈α 6= β〉 of vertical regXPath
by a BUDA using guess, 〈µ〉= and 〈µ〉6=. For example, consider the property 〈↓∗[a] 6= ↑↓[b]〉,
which states that there is a descendant labeled a with a different data value than a sibling
labeled b. A BUDA automaton can test this property as follows.

1. It guesses a data value d and stores it in the register.
2. It tests that d can be reached by ↓∗[a] with a test 〈µ〉= for a suitable µ.
3. It moves up to its parent.
4. It tests that a different value than d can be reached in one of its children labeled with b,

using the test 〈µ〉6= for a suitable µ.

The simulation of negative tests (¬〈α = β〉 or ¬〈α 6= β〉) is more tedious as BUDA
is not closed under complementation. Nevertheless, the automaton has enough universal
quantifications (in the operations univ, 〈µ〉= and 〈µ〉6=) in order to do the job. Consider for
example the formula ¬〈↑∗[b]↓[a] = ↓∗[c]〉, that states that no data value is shared between a
descendant labeled c and an a-child of a b-ancestor. The automaton behaves as follows.

1. It creates one thread in state q for every data value in the subtree, using univ(q).
2. q tests whether the data value of the register is reachable by ↓∗[c], using a test 〈µ〉=. If

it is, it changes to state p.
3. p moves up towards the root, and each time it finds a b, it tests that the currently stored

data value cannot be reached by ↓[a]. This is done with a test of the kind 〈µ〉=. J

Therefore, in order to conclude the proof of Theorem 1, it remains to show that the
emptiness problem of BUDA is decidable. This is the goal of Section 4.
Automata normal form. We now present a normal form of BUDA, removing all the
redundancy in its definition. This normal form simplifies the technical details in the proof
of decidability presented in the next section.

(NF1) The semigroup S and morphism h have the following property. For all w ∈ (A×B)+

and c ∈ A× B, h(w) = h(c) iff w = c.
(NF2) In the definition of δup of A , there is exactly one disjunct that contains exactly one

conjunct. That is, for all q ∈ Q, δup(q) is undefined or δup(q) = p for some p ∈ Q.
(NF3) For all q ∈ Q, δε(q) is defined either as an atom, as p ∧ p′ or as p ∨ p′ for some

p, p′ ∈ Q.
(NF4) For all q ∈ Q, δε(q) does not contain tests for labels (a, ā, b, b̄), eq, eq, store, leaf or

leaf.

STACS’11

8 Bottom-up automata on data trees and vertical XPath
Diego Figueira and Luc Segoufin 11

1. θ1
grow−−→ θ2. Given two abstract configurations θ1 and θ2 as above, we say θ1

grow−−→ θ2 if
r1 = m1 = false, and for all (q, d) ∈ ∆1, δup(q) is defined and θ2 is such that m2 = true,
∆1 �up ∆2, and Γ2 = {(µ�, e) : (µ, e) ∈ Γ1, µ

� = h(c)·µ}∪ {(h(c), d)}, for some c ∈ A × B
and d ∈ D. Notice that c and d are then the label and data value of θ2. As a consequence
of the normal form (NF1) of the semigroup, this operation preserves property (�).

2. θ1, θ2
merge−−−→ θ0. Given 3 abstract configurations θ1 = (∆1,Γ1, r1,m1), θ2 = (∆2,Γ2, r2,m2),

θ0 = (∆0,Γ0, r0,m0) we define θ1, θ2
merge−−−→ θ0 if they all have the same label and data

value, m1 = m2 = true, r1 = r2 = r0, ∆0 = ∆1 ∪ ∆2, and Γ0 = Γ1 ∪ Γ2. Notice that this
operation preserves property (�).

� Remark. inc(S, χ)−−−−−→ can be seen as a kind of merge−−−→ which preserves the truth of tests.

� Definition 5. We define that Θ1 ⇒ Θ0 if one the following conditions holds:

1. There is θ1 ∈ Θ1 and θ�
1 ∼ θ1 such that θ�

1 →� θ0 or θ�
1

inc(S, χ)−−−−−→ θ0 or θ�
1

grow−−→ θ0, for some
θ0, χ, and Θ0 = Θ1 ∪ {θ0}.

2. There are θ1, θ2 ∈ Θ1 and θ�
1 ∼ θ1, θ�

2 ∼ θ2 such that θ�
1, θ

�
2

merge−−−→ θ0 for some θ0, and
Θ0 = Θ1 ∪ {θ0}.
In the definition of the transition system, the m flag is simply used to constrain the

transition system to have all its merge−−−→ operations right before grow−−→. Thus, if we take a
derivation and examine the kind of → transitions that originated each ⇒ transition, we
obtain a word described by the following regular expression

�
(→� | inc(S, χ)−−−−−→)∗(merge−−−→)∗ grow−−→

�∗(→� | inc(S, χ)−−−−−→)∗(merge−−−→)∗. (†)

4.4 Compatibility
We now show that all the previous definitions were chosen appropriately and that the trans-
ition system defined in Section 4.3 is compatible with the wqo defined in Section 4.2. The
proof of this result is very technical and consists in a case analysis over each possible kind of
transition. In this proof, the operation inc(S, χ)−−−−−→ becomes crucial to show that the downwards
compatibility can always be done in a bounded amount of N steps. The detailed proof will
appear in the journal version of this paper.

� Theorem 6. (℘<∞(AC),⇒) is N-downward compatible with respect to (℘<∞(AC),≤min),
for N := 2.(|S|.|Q|)2 + 1.

Let ≡ be the equivalence relation over ℘<∞(AC) such that Θ ≡ Θ� iff Θ ≤min Θ� and
Θ� ≤min Θ. Given a BUDA A , the wsts (℘<∞(AC)/≡,⇒,≤min) as built in the previous
section is called the wsts associated to A . From Theorem 6 and Proposition 1 we obtain:

� Corollary 7. Given a BUDA A, it is decidable whether the wsts associated to A can reach
an accepting abstract configuration from its initial abstract configuration.

As shown next, this implies the decidability for the emptiness problem for BUDA.

4.5 From BUDA to its abstract configurations
As expected, the wsts associated to a BUDA A reflects its behavior. That is, reachability of
one corresponds exactly to accessibility of the other. One direction is easy as the transition
system can easily simulate A . The other direction requires more care. As evidenced in (†),
the wsts may perform a inc(S, χ)−−−−−→ transition anytime. However, BUDA can only make the
tree grow in width when moving up in the tree. This issue is solved by showing that all
other transitions commute with inc(S, χ)−−−−−→. Finally we obtain the following.

STACS’11

Diego Figueira and Luc Segoufin 11

1. θ1
grow−−→ θ2. Given two abstract configurations θ1 and θ2 as above, we say θ1

grow−−→ θ2 if
r1 = m1 = false, and for all (q, d) ∈ ∆1, δup(q) is defined and θ2 is such that m2 = true,
∆1 �up ∆2, and Γ2 = {(µ�, e) : (µ, e) ∈ Γ1, µ

� = h(c)·µ}∪ {(h(c), d)}, for some c ∈ A × B
and d ∈ D. Notice that c and d are then the label and data value of θ2. As a consequence
of the normal form (NF1) of the semigroup, this operation preserves property (�).

2. θ1, θ2
merge−−−→ θ0. Given 3 abstract configurations θ1 = (∆1,Γ1, r1,m1), θ2 = (∆2,Γ2, r2,m2),

θ0 = (∆0,Γ0, r0,m0) we define θ1, θ2
merge−−−→ θ0 if they all have the same label and data

value, m1 = m2 = true, r1 = r2 = r0, ∆0 = ∆1 ∪ ∆2, and Γ0 = Γ1 ∪ Γ2. Notice that this
operation preserves property (�).

� Remark. inc(S, χ)−−−−−→ can be seen as a kind of merge−−−→ which preserves the truth of tests.

� Definition 5. We define that Θ1 ⇒ Θ0 if one the following conditions holds:

1. There is θ1 ∈ Θ1 and θ�
1 ∼ θ1 such that θ�

1 →� θ0 or θ�
1

inc(S, χ)−−−−−→ θ0 or θ�
1

grow−−→ θ0, for some
θ0, χ, and Θ0 = Θ1 ∪ {θ0}.

2. There are θ1, θ2 ∈ Θ1 and θ�
1 ∼ θ1, θ�

2 ∼ θ2 such that θ�
1, θ

�
2

merge−−−→ θ0 for some θ0, and
Θ0 = Θ1 ∪ {θ0}.
In the definition of the transition system, the m flag is simply used to constrain the

transition system to have all its merge−−−→ operations right before grow−−→. Thus, if we take a
derivation and examine the kind of → transitions that originated each ⇒ transition, we
obtain a word described by the following regular expression

�
(→� | inc(S, χ)−−−−−→)∗(merge−−−→)∗ grow−−→

�∗(→� | inc(S, χ)−−−−−→)∗(merge−−−→)∗. (†)

4.4 Compatibility
We now show that all the previous definitions were chosen appropriately and that the trans-
ition system defined in Section 4.3 is compatible with the wqo defined in Section 4.2. The
proof of this result is very technical and consists in a case analysis over each possible kind of
transition. In this proof, the operation inc(S, χ)−−−−−→ becomes crucial to show that the downwards
compatibility can always be done in a bounded amount of N steps. The detailed proof will
appear in the journal version of this paper.

� Theorem 6. (℘<∞(AC),⇒) is N-downward compatible with respect to (℘<∞(AC),≤min),
for N := 2.(|S|.|Q|)2 + 1.

Let ≡ be the equivalence relation over ℘<∞(AC) such that Θ ≡ Θ� iff Θ ≤min Θ� and
Θ� ≤min Θ. Given a BUDA A , the wsts (℘<∞(AC)/≡,⇒,≤min) as built in the previous
section is called the wsts associated to A . From Theorem 6 and Proposition 1 we obtain:

� Corollary 7. Given a BUDA A, it is decidable whether the wsts associated to A can reach
an accepting abstract configuration from its initial abstract configuration.

As shown next, this implies the decidability for the emptiness problem for BUDA.

4.5 From BUDA to its abstract configurations
As expected, the wsts associated to a BUDA A reflects its behavior. That is, reachability of
one corresponds exactly to accessibility of the other. One direction is easy as the transition
system can easily simulate A . The other direction requires more care. As evidenced in (†),
the wsts may perform a inc(S, χ)−−−−−→ transition anytime. However, BUDA can only make the
tree grow in width when moving up in the tree. This issue is solved by showing that all
other transitions commute with inc(S, χ)−−−−−→. Finally we obtain the following.

STACS’11

Figure 3 The grow and merge operations.

An automaton A ∈ BUDA is said to be in normal form if it satisfies (NF1), (NF2), (NF3)
and (NF4). Notice that once (NF1) holds, then any test concerning a label (a, ā, b, or b̄)
can be simulated using tests of the form 〈µ〉 for some appropriate µ. Using similar ideas, it
is not hard to check that:

I Proposition 3. For any A ∈ BUDA, there is an equivalent A ′ ∈ BUDA in normal form
that can be effectively obtained.

4 The emptiness problem for BUDA

The goal of this section is to show:

I Theorem 2. The emptiness problem for BUDA is decidable.

In order to achieve this, we associate with each BUDA a wsts that simulates its runs. The
transition system works on sets of abstract configurations. Given an automaton, an abstract
configuration consists of all the information of the run that is necessary to maintain at the
root of a given subtree in order to continue the simulation of the automaton from there.
The aforesaid transition system works with sets of such abstract configurations in order
to capture the bottom-up behavior of the automaton on unranked trees. The transition
relation of the wsts essentially corresponds to the transitions of the automaton except for
the up-transition. An up-transition of the automaton is simulated by a succession of two
types of transitions of the wsts, called grow and merge. The object of doing this is to avoid
having transitions that take an unbounded number of arguments (as the up relation in the
run of the automaton does). The grow transition adds a node on top of the current root, and
the merge transition identifies the roots of two abstract configurations. Intuitively, these
transitions correspond to the operations on trees of Figure 3. This is necessary because we
do not know in advance the arity of the tree and therefore the transition system has to build
one subtree at a time. We then exhibit a wqo on abstract configurations and show that
the transition system is N -downward compatible with respect to this wqo for some N that
depends on the automaton. Decidability will then follow from Proposition 1.

In the sequel we implicitly assume that all our BUDA are in normal form.

4.1 Abstract configurations
Given a BUDA A = (A,B, Q, q0, δε, δup,S, h), we start the definition of its associated wsts
by defining its universe: finite sets of abstract configurations of A .

An abstract configuration of A is a tuple (∆,Γ, r,m) where r and m are either true
or false, ∆ is a finite subset of Q× D and Γ is a finite subset of S × D such that

Γ contains exactly one pair of the form (h(c), d) with c ∈ A× B. (?)

This unique element of A× B is denoted as the label of the abstract configuration and the
unique associated data value is denoted as the data value of the abstract configuration.

Diego Figueira and Luc Segoufin 9

Intuitively r says whether the current node should be treated as the root or not, m
says whether we are in a phase of merging configurations or not (a notion that will become
clear when we introduce our transition system later on), ∆ is the set of ongoing threads
(corresponding to the configuration of the automaton) and a pair (µ, d) ∈ Γ simulates the
existence of a downward path evaluating to µ and whose last element carries the datum d.

In the sequel we will use the following notation: ∆(d) = {q | (q, d) ∈ ∆}, Γ(d) = {µ |
(µ, d) ∈ Γ}, ∆(q) = {d | (q, d) ∈ ∆}, Γ(µ) = {d | (µ, d) ∈ Γ}. We also use the notation
∆⊗Γ : D → ℘(Q) × ℘(S) with (∆⊗Γ)(d) = (∆(d),Γ(d)). Given a data value d and an
abstract configuration θ, (∆⊗Γ)(d) is also denoted as the type of d in θ. We use the letter
θ to denote an abstract configuration and we write AC to denote the set of all abstract
configurations. Similarly, we use Θ to denote a finite set of abstract configurations and
℘<∞(AC) for the set of finite sets of abstract configurations.

An abstract configuration θ = (∆,Γ, r,m) is said to be initial if it corresponds to a leaf
node, i.e., is such that ∆ = {(q0, d)} and Γ = {(h(a), d)} for some d ∈ D and a ∈ A× B. It
is said to be accepting if ∆ is empty and r is true.

Two configurations θ1 and θ2 are said to be equivalent if there is a bijection f : D→ D
such that f(θ1) = θ2 (with some abuse of notation). In this case we note θ1 ∼ θ2.

Finally, we write ΘI to denote the set of all initial abstract configurations modulo ∼
(i.e., a set containing at most one element for each ∼ equivalence class). Note that ΘI is
finite and effective. A set of abstract configurations is said to be accepting iff it contains
an accepting abstract configuration.

4.2 Well-quasi-orders
We now equip ℘<∞(AC) with a well-quasi-order (℘<∞(AC),≤min). The order ≤min builds
upon a wqo (AC,-) over abstract configurations. Let us define these orderings precisely.

The profile of an abstract configuration θ = (∆,Γ, r,m), denoted by profile(θ), is
profile(θ) = (A0, A1, r, m) with Ai = {(S, χ) ∈ ℘(Q)× ℘(S) : |(∆⊗Γ)−1(S, χ)| = i}.

We first define the quasi-order � over abstract configurations, and then we define the
order (AC,-) as (AC,�) modulo ∼. Given two abstract configurations θ1 = (∆1,Γ1, r1,m1)
and θ2 = (∆2,Γ2, r2,m2), we denote by θ1 � θ2 the fact that

profile(θ1) = profile(θ2), and
(∆1⊗Γ1) ⊆ (∆2⊗Γ2).

I Remark. Notice that due to condition (?), θ1 � θ2 implies that θ1 and θ2 have the same
label and same data value.
We now define - as: θ1 - θ2 iff θ′1 � θ2 for some θ′1 ∼ θ1.

We are now ready to define our wqo over ℘<∞(AC). Given Θ1 and Θ2 in ℘<∞(AC) we
define ≤min as: Θ1 ≤min Θ2 iff for all θ2 ∈ Θ2 there is θ1 ∈ Θ1 such that θ1 - θ2. That is,
every element from Θ2 is minorized by an element of Θ1.

The following is a key observation:

I Lemma 3. (℘<∞(AC),≤min) is a wqo.

Finally, the following obvious lemma will be necessary to apply Proposition 1.

I Lemma 4. {Θ ∈ ℘<∞(AC) | Θ is accepting} is downward closed for (℘<∞(AC),≤min).

4.3 Transition system
We now equip ℘<∞(AC) with a transition relation⇒. This transition relation is built upon
a transition relation → over AC.

STACS’11

10 Bottom-up automata on data trees and vertical XPath

Let us first define → over AC. It is specified so that it reflects the transitions of A . For
each possible test of the automaton there is a transition that simulates this test by using the
information contained in Γ, and removes the corresponding in ∆. And for every operation
store, guess, univ there is a transition that modifies ∆. We call the ε-transitions of →, that
we note→ε. On the other hand, any up transition of A is decomposed into transitions merge−−−→
and grow−−→ that modify not only ∆ but also Γ accordingly.

We start with ε-transitions. Given two abstract configurations θ1 = (∆1,Γ1, r1, m1) and
θ2 = (∆2,Γ2, r2,m2), we say that θ1 →ε θ2 if m1 = m2 = false (the merge information is
used for simulating an up-transition as will be explained later), r2 = r1 (whether the current
node is the root or not should not change), θ1 and θ2 have the same label and data value,
Γ2 = Γ1 (the tree is not affected by an ε-transition) and, furthermore, one of the following
conditions holds:

1. θ1
univ−−→ θ2. This transition can happen if there is (q, d) ∈ ∆1 with δε(q) = univ(p) for some

p, q ∈ Q. In this case θ2 is such that ∆2 = (∆1 \ {(q, d)}) ∪ {(p, e) : ∃µ . (µ, e) ∈ Γ1}.
2. θ1

guess−−→ θ2. This transition can happen if there is (q, d) ∈ ∆1 with δε(q) = guess(p) for
some p, q ∈ Q. In this case θ2 is such that ∆2 = (∆1 \{(q, d)})∪{(p, d′)} for some d′ ∈ D.

3. θ1
〈µ〉=−−−→ θ2 (resp. θ1

〈µ〉6=−−−→ θ2). This transition can happen if there is (q, d) ∈ ∆1 with
δε(q) = 〈µ〉= (resp. δε(q) = 〈µ〉6=) for some q ∈ Q, µ ∈ S, and µ ∈ Γ1(d) (resp. there
exists e ∈ D, e 6= d such that µ ∈ Γ1(e)). In this case θ2 is such that ∆2 = (∆1 \{(q, d)}).
The negation of these tests 〈µ〉=−−−→ and 〈µ〉6=−−−→ are defined in a similar way.

4. θ1
root−−→ θ2 (resp. θ1

root−−→ θ2). This transition can happen if there is (q, d) ∈ ∆ with
δε(q) = root and r1 = true (resp. δε(q) = root and r1 = false). In this case θ2 is such
that ∆2 = (∆1 \ {(q, d)}).

5. θ1
∧−→ θ2. This transition can happen if there is (q, d) ∈ ∆1 with δε(q) = p ∧ p′ for some

p, p′, q ∈ Q. In this case θ2 is such that ∆2 = (∆1 \ {(q, d)}) ∪ {(p, d), (p′, d)}.
6. θ1

∨−→ θ2. This transition can happen if there is (q, d) ∈ ∆1 with δε(q) = p ∨ p′ for some
p, p′, q ∈ Q. In this case θ2 is such that ∆2 = (∆1 \ {(q, d)}) ∪ A, for A = {(p, d)} or
A = {(p′, d)}.

Note that by (NF3) and (NF4) for every possible definition of δε(q) there is one transition
that simulates it. To simulate δup, it turns out that we will need one extra ε-transition that
makes our trees fatter. This transition assumes the same constraints as for →ε except that
we no longer have Γ2 = Γ1. The idea is that this transition corresponds to duplicating all
the immediate subtrees of the root. For example, if the root has t1 and t2 as subtrees,
consider the operation of now having t1 t2 t′1 t′2 as subtrees, where t′1 and t′2 are identical to
t1 and t2 except for one data value with profile (S, χ) that in t′1 and t′2 is replaced by a fresh
data value. Here is the definition that follows this idea in terms of our transition system.
We say that θ1

inc(S, χ)−−−−−→ θ2 for some pair (S, χ) ∈ ℘(Q)×℘(S) if |(∆1⊗Γ1)−1(S, χ)| ≥ 1 and,
either χ = ∅ or |(Γ1)−1(χ)| ≥ 2. Then θ2 is such that data(θ2) = data(θ1) ∪ {e} for some
e 6∈ data(θ1), (∆2⊗Γ2)(e) = (S, χ), and for all d 6= e, (∆2⊗Γ2)(d) = (∆1⊗Γ1)(d). Observe
that inc(S, χ)−−−−−→ does not change the truth value of any test. Indeed, any test (〈µ〉=, 〈µ〉=, eq,
etc.) that is true in θ, continues to be true after a inc(S, χ)−−−−−→ transition, and vice-versa.

We define the transitions of the wsts that correspond to up-transitions in the automaton.
We split them into two phases: adding a new root symbol and merging the roots.

1. θ1
grow−−→ θ2. Given two abstract configurations θ1 and θ2 as above, we say θ1

grow−−→ θ2 if
r1 = m1 = false, and for all (q, d) ∈ ∆1, δup(q) is defined and θ2 is such that ∆1 �up ∆2,

Diego Figueira and Luc Segoufin 11

and Γ2 = {(µ′, e) : (µ, e) ∈ Γ1, µ
′ = h(c)·µ} ∪ {(h(c), d)}, for some c ∈ A× B and d ∈ D.

Notice that c and d are then the label and data value of θ2. As a consequence of the
normal form (NF1) of the semigroup, this operation preserves property (?).

2. θ1, θ2
merge−−−→ θ0. Given 3 abstract configurations θ1 = (∆1,Γ1, r1,m1), θ2 = (∆2,Γ2, r2,m2),

θ0 = (∆0,Γ0, r0,m0) we define θ1, θ2
merge−−−→ θ0 if they all have the same label and data

value, m1 = m2 = true, r1 = r2 = r0, ∆0 = ∆1 ∪∆2, and Γ0 = Γ1 ∪ Γ2. Notice that this
operation preserves property (?).

I Remark. inc(S, χ)−−−−−→ can be seen as a kind of merge−−−→ which preserves the truth of tests.

We are now ready to define the transition relation over ℘<∞(AC).

I Definition 5. We define that Θ1 ⇒ Θ0 if one the following conditions holds:

1. There is θ1 ∈ Θ1 and θ′1 ∼ θ1 such that θ′1 →ε θ0 or θ′1
inc(S, χ)−−−−−→ θ0 or θ′1

grow−−→ θ0, for some
θ0, χ, and Θ0 = Θ1 ∪ {θ0}.

2. There are θ1, θ2 ∈ Θ1 and θ′1 ∼ θ1, θ′2 ∼ θ2 such that θ′1, θ′2
merge−−−→ θ0 for some θ0, and

Θ0 = Θ1 ∪ {θ0}.
In the definition of the transition system, the m flag is simply used to constrain the

transition system to have all its merge−−−→ operations right after grow−−→ and before any→ε. Thus,
if we take a derivation and examine the kind of → transitions that originated each ⇒
transition, we obtain a word described by the following regular expression
(
(→ε | inc(S, χ)−−−−−→)∗ grow−−→ (merge−−−→)∗

)∗(→ε | inc(S, χ)−−−−−→)∗ . (†)

4.4 Compatibility
We now show that all the previous definitions were chosen appropriately and that the trans-
ition system defined in Section 4.3 is compatible with the wqo defined in Section 4.2. The
proof of this result is very technical and consists in a case analysis over each possible kind of
transition. In this proof, the operation inc(S, χ)−−−−−→ becomes crucial to show that the downwards
compatibility can always be done in a bounded amount of N steps. The detailed proof will
appear in the journal version of this paper.

I Proposition 4. The transition system (℘<∞(AC),⇒) is N-downward compatible with
respect to (℘<∞(AC),≤min), for N := 2 · (|S| · |Q|)2 + 1.

Let ≡ be the equivalence relation over ℘<∞(AC) such that Θ ≡ Θ′ iff Θ ≤min Θ′ and
Θ′ ≤min Θ. Given a BUDA A , the wsts (℘<∞(AC)/≡,⇒,≤min) as built in the previous
section is called the wsts associated with A . From Proposition 1 and 4 we obtain:

I Corollary 6. Given a BUDA A, it is decidable whether the wsts associated with A can
reach an accepting abstract configuration from its initial abstract configuration.

As shown next, this implies the decidability for the emptiness problem for BUDA.

4.5 From BUDA to its abstract configurations
As expected, the wsts associated with a BUDA A reflects its behavior. That is, reachability
of one corresponds exactly to accessibility of the other. One direction is easy as the transition
system can easily simulate A . The other direction requires more care. As evidenced in (†),
the wsts may perform a inc(S, χ)−−−−−→ transition anytime. However, BUDA can only make the
tree grow in width when moving up in the tree. This issue is solved by showing that all
other transitions commute with inc(S, χ)−−−−−→. Finally we obtain the following.

STACS’11

12 REFERENCES

I Proposition 5. Let A be a BUDA. Let W be the wsts associated with A. Then A has
an accepting run iff W can reach an accepting set of abstract configurations from the initial
set of abstract configurations.

Hence, combining Proposition 5 and Corollary 6 we prove Theorem 2.

5 Concluding remarks

We have exhibited a decidable class of automata over data trees. This automaton model is
powerful enough to code node expressions of regXPath(V,=). Therefore, since these expres-
sions are closed under negation, we have shown decidability of the satisfiability, inclusion
and equivalence problems for node expressions of regXPath(V,=).

Notice that if our result implies also the decidability of the emptiness problem for path
expressions of regXPath(V,=), those being not closed under complementation it is not clear
that their inclusion or equivalence problem remains decidable.

Our decision algorithm relies heavily on the fact that we work with unranked data
trees. As already shown in [7] without this assumption XPath(V,=) would be undecidable.
In particular if we further impose the presence of a DTD, XPath(V,=) becomes undecidable.

Finally we remark that our decision algorithm is not primitive recursive. But as shown
in [7] there cannot be a primitive recursive decision algorithm for XPath(V,=).

References

1 Michael Benedikt, Wenfei Fan, and Floris Geerts. XPath satisfiability in the presence of
DTDs. Journal of the ACM, 55(2):1–79, 2008.

2 Michael Benedikt and Christoph Koch. XPath leashed. ACM Computing Surveys, 41(1),
2008.

3 Mikołaj Bojańczyk, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-variable
logic on data trees and XML reasoning. Journal of the ACM, 56(3):1–48, 2009.

4 Diego Figueira. Satisfiability of downward XPath with data equality tests. In ACM
Symposium on Principles of Database Systems (PODS’09), 2009.

5 Diego Figueira. Forward-XPath and extended register automata on data-trees. In In-
ternational Conference on Database Theory (ICDT’10), 2010.

6 Diego Figueira. Reasoning on words and trees with data. PhD thesis, ÉNS de Cachan,
2010. Available at http://www.lsv.ens-cachan.fr/~figueira/phd/.

7 Diego Figueira and Luc Segoufin. Future-looking logics on data words and trees. In Intl.
Symp. on Mathematical Foundations of Computer Science (MFCS’09), 2009.

8 Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1-2):63–92, 2001.

9 Floris Geerts and Wenfei Fan. Satisfiability of XPath queries with sibling axes. In Intl.
Symp. on Database Programming Languages (DBPL’05), 2005.

10 Georg Gottlob, Christoph Koch, and Reinhard Pichler. Efficient algorithms for pro-
cessing XPath queries. ACM Transactions on Database Systems, 30(2):444–491, 2005.

11 Petr Jančar. A note on well quasi-orderings for powersets. Information Processing
Letters, 72(5-6):155–160, 1999.

12 Marcin Jurdziński and Ranko Lazić. Alternation-free modal mu-calculus for data trees.
In Logic in Computer Science (LICS’07), 2007.

13 Alberto Marcone. Foundations of bqo theory. Transactions of the American Mathemat-
ical Society, 345:641–660, 1994.

http://www.lsv.ens-cachan.fr/~figueira/phd/

	Introduction
	Preliminaries
	The automaton model
	The emptiness problem for BUDA
	Abstract configurations
	Well-quasi-orders
	Transition system
	Compatibility
	From BUDA to its abstract configurations

	Concluding remarks

