
Stability Controllers for Sampled Switched
Systems

Laurent Fribourg and Romain Soulat

LSV, ENS de Cachan & CNRS, France

Abstract. We consider in this paper switched systems, a class of hybrid
systems recently used with success in various domains such as automotive
industry and power electonics. We propose a state-dependent control
strategy which makes the trajectories of the analyzed system converge
to finite cyclic sequences of points. Our method relies on a technique
of decomposition of the state space into local regions where the control
is uniform. We have implemented the procedure using zonotopes, and
applied it successfully to several examples of the literature.

1 Introduction

Switched systems are now widely used in industrial applications in domains such
as power electronics or automative industry. A switched system can be viewed
as a family of continuous-time subsystems with a rule that orchestrates the
switching between them. A suitable switching rule allows to steer the system
to interesting operating regions which are not accessible using a single subsys-
tem. However, it becomes impossible to stabilize the system around a unique
equilibrium point, as in classical systems. The stabilization problem is relaxed
as a problem of “practical stabilization”, as follows: given a region R of the
state space, find a switching rule that makes the system converge to a region,
located inside R, as small as possible. In practice, the controlled trajectories of
switched systems often converge to limit cycles (see, e.g., [His01]). We present
here a forward-oriented method that performs a decomposition of the region R,
and induces a state-dependent control which, under certain conditions, makes
the system converge to a cyclic trajectory.

Related work

To the best of of our knowledge, applying a process of state space decompo-
sition in order to stabilize system dynamics is original, at least in the context
of switched systems. The method presents some similarities with the method
of box invariance of [ATS09] which exhibits rectangular invariant subregions of
affine hybrid systems containing an equilibrium point, and with the method of
bisection used in [JKDW01] for the purpose of “set inversion”.

The classical methods that are used for proving the existence and stability of
limit cycles are based on various techniques such as Lyapunov functions (see, e.g.,

[BRC05,RRL00]), Poincaré map (see, e.g., [Gon03,His01]), sensibility functions
[FRL06], or describing functions [San93]. We give here a couple of conditions,
called (A1)-(A2), from which the existence of stable limit cycles follows in an
elementary way.

Outline of this paper

We first present the decomposition method in Section 2. We then show that
the decomposition induces a state-dependent control in Section 3. We explain
that, under certain conditions, the controlled trajectories converge to limit cycles
(Section 4). Experimental results are described in Section 5. We conclude in
Section 6.

2 State Space Decomposition

A switched system Σ is defined by a finite family of differential equations of the
form {ẋ = fu(x)}u∈U where U is a finite set of modes (see, e.g., [GPT10,Tab09]).
In the following, we consider that the dynamics of the subsystems are affine (i.e.,
fu(x) is of the form Aux+bu with Au ∈ Rn×n and bu a vector of Rn). The control
problem for a switched system Σ is to find a piecewise constant law u : R≥0 → U
in order to achieve some pertained goals. The switching instants are the times
at which u changes its value. A sampled switched system is a switched system
for which the switching instants occur at integer multiples of τ (called sampling
parameter). We will use x(t, x, u) to denote the point reached by Σ at time t
under mode u from the initial condition x. This gives a transition relation →τ

u

defined for x and x′ in Rn by: x →τ
u x
′ iff x(τ, x, u) = x′. Given a set X ⊆ Rn,

we define:

Postu(X) = {x′ | x→τ
u x
′ for some x ∈ X}.

It can be seen that Postu(X) is the result of an affine transformation of the form
CuX + du with Cu ∈ Rn×n and du a vector of Rn.

We say that a subset X of Rn is controlled invariant if:

∀x ∈ X ∃u ∈ U ∃x′ ∈ X : x→τ
u x
′.

A pattern π is defined as a finite sequence of modes. A k-pattern is a pattern of
length at most k. Given a pattern π of the form (u1 · · ·un) and a subset X of
Rn, we define:

Postπ(X) = {x′ | x→τ
u1
x1 ∧ x1 →τ

u2
x2 ∧ · · · ∧ xm−1 →τ

um
x′

for some x ∈ X and x1, . . . , xm−1 ∈ Rn}.
Given a pattern π of the form (u1 · · ·um), and a set X ⊆ Rn, the unfolding of
X via π, denoted by Unf π(X), is the set

⋃m
i=0Xi with:

– X0 = X,
– Xi+1 = Postui+1(Xi), for all 0 ≤ i ≤ m− 1.

Definition 1. Given a set R ⊆ Rn, a k-invariant decomposition of R is a set
∆ of the form {Vi, πi}i∈I , where I is a finite set of indices, Vis are subsets of R,
πis are k-patterns, such that:

–
⋃
i∈I Vi = R, and

– for all i ∈ I: Postπi(Vi) ⊆ R.

Given a set R ⊆ Rn and a k-invariant decomposition ∆ = {(Vi, πi)}i∈I of R, the
∆-unfolding of a subset X of R is defined by

⋃
i∈I Unfπi(Vi ∩X). The operator

Post∆ is defined, for all subset X of R by:

Post∆(X) =
⋃
i∈I

Postπi
(X ∩ Vi).

We have:

Proposition 1. Suppose that a set R has a k-invariant decomposition ∆. Then
we have: Post∆(R) ⊆ R.

We now give a simple algorithm, called Decomposition algorithm, which, given
a set R, outputs, when it succeeds, a k-invariant decomposition ∆ of the form
{Vi, πi}i∈I for R. The input set R is given under the form of a box of Rn, that
is a cartesian product of n closed intervals. The subsets Vis of R are boxes that
are obtained by bisection. Two adjacent boxes thus share a common border.

The Decomposition procedure first calls sub-procedure Find Pattern in order
to get a k-pattern π such that Postπ(R) ⊆ R. If it succeeds, then it is done.
Otherwise, it divides R into 2n sub-boxes V1, . . . , V2n of equal size. If for each
Vi, Find Pattern gets a k-pattern πi such that Postπi

(Vi) ⊆ R, it is done. If,
for some Vj , no such pattern exists, the procedure is recursively applied to Vj .
It ends with success when a k-invariant decomposition of R is found, or failure
when the maximal degree d of decomposition is reached. The algorithmic form
of the procedure is given in Algorithms 1 and 2. (For the sake of simplicity, we
consider the case of dimension n = 2, but the extension to n > 2 is straightfor-
ward.) The main procedure Decomposition(W ,R,D,K) is called with R as input
value for W , d for input value for D, and k as input value for K; it returns either
〈{(Vi, πi)}i, T rue〉 with

⋃
i Vi = W and

⋃
i Postπi

(Vi) ⊆ R, or 〈 , False〉. Proce-
dure Find Pattern(W ,R,K) looks for a K-pattern π for which Postπ(W) ⊆ R:
it selects all the K-patterns by non-decreasing length order until either it finds
such a pattern π (output: 〈π, True〉), or none exists (output: 〈 , False〉). The
correctness of the procedure is stated as follows.

Theorem 1. If Decomposition(R,R,d,k) returns 〈∆,True〉, then ∆ is a k-invariant
decomposition of R.

Example 1. (Boost DC-DC Converter). This example is taken from [BPM05]
(see also, e.g., [BRC05,GPT10,SEK03]). This is a boost DC-DC converter with
one switching cell (see Figure 1). There are two operation modes depending on
the position of the switching cell. An example of pattern of length 4 is illustrated

Algorithm 1: Decomposition(W ,R,D,K)

Input: A box W , a box R, a degree D of decomposition, a length K of pattern
Output: 〈{(Vi, πi)}i, T rue〉 with

⋃
i Vi = W and

⋃
i Postπi(Vi) ⊆ R, or

〈 , False〉
(π, b) := Find Pattern(W,R,K)
if b = True then

return 〈{(W,π)}, T rue〉
else

if D = 0 then
return 〈 , False〉

else
Divide equally W into (W1,W2,W3,W4) /* (case n = 2) */

(∆1, b1) := Decomposition(W1,R,D − 1,K)
(∆2, b2) := Decomposition(W2,R,D − 1,K)
(∆3, b3) := Decomposition(W3,R,D − 1,K)
(∆4, b4) := Decomposition(W4,R,D − 1,K)
return (∆1 ∪∆2 ∪∆3 ∪∆4, b1 ∧ b2 ∧ b3 ∧ b4)

Algorithm 2: Find Pattern(W ,R,K)

Input: A box W , a box R, a length K of pattern
Output: 〈π, True〉 with Postπ(W) ⊆ R, or 〈 , False〉 when no pattern maps W

into R
for i = 1 . . .K do

Π := set of patterns of length i
while Π is non empty do

Select π in Π
Π := Π \ {π}
if Postπ(W) ⊆ R then

return 〈π, True〉

return 〈 , False〉

in Figure 2: it corresponds to the application of mode 2 on [0, τ) and mode 1
on [τ, 4τ). The state of the system is x(t) = [il(t) vc(t)]

T where il is the current
intensity in inductor, and vc(t) the voltage of capacitor. The aim of the control is
to maintain the system inside a given zone R while the output voltage stabilizes
around a desired value. The dynamics associated with mode u is of the form
ẋ(t) = Aux(t) + bu (u = 1, 2) with

A1 =

(
− rl
xl

0

0 − 1
xc

1
r0+rc

)
b1 =

(vs
xl

0

)

A2 =

(
− 1
xl

(rl + r0.rc
r0+rc

) − 1
xl

r0
r0+rc

1
xc

r0
r0+rc

− 1
xc

1
r0+rc

)
b2 =

(vs
xl

0

)

We will use the numerical values of [BPM05], expressed in the per unit system:
xc = 70, xl = 3, rc = 0.005, rl = 0.05, r0 = 1, vs = 1. The sampling period
is τ = 0.5. For R = [1.55, 2.15] × [1.0, 1.4], the Decomposition algorithm yields

Fig. 1. Scheme of the boost DC-DC
converter

Fig. 2. Cell switching for pattern
(2.1.1.1)

a decomposition ∆ = {(Vi, πi)}i=1,...,4, which is depicted in the left part of
Figure 3: the sub-region V1 = [1.55, 1.85] × [1.0, 1.2] is associated pattern π1 =
(1·1·2·2·2), V2 = [1.85, 2.15]×[1.0, 1.2] with π2 = (2), V3 = [1.85, 2.15]×[1.2, 1.4]
with π3 = (2 · 1 · 2), and V4 = [1.55, 1.85] × [1.2, 1.4] with π4 = (1). For all
1 ≤ i ≤ 4, we have: Post∆(Vi) = Postπi

(Vi) ⊆ R. This is visualized in the right
part of Figure 3.

Fig. 3. Decomposition ∆ of R = [1.55, 2.15]× [1.0, 1.4] for the boost DC-DC converter
example (left), and visualization of Post∆(Vi) ⊆ R, i = 1, . . . , 4 (right)

3 ∆-trajectories

A k-invariant decomposition ∆ of R induces a state-dependent control that
makes any trajectory starting fom R go back to R within at most k steps:

given a starting state x0 in R, we know that x0 ∈ Vi for some i ∈ I (since
R =

⋃
i∈I Vi); one thus applies πi to x0, which gives a new state x1 that belongs

to R (since Postπ(Vi) ⊆ R); the process is repeated on x1, and so on iteratively.
Given a point x ∈ R, we will denote by succ∆(x) the point of R obtained by
applying πi to x when x is in Vi.

1

Definition 2. Suppose that ∆ is a k-invariant decomposition of a given set R. A
discrete trajectory induced by ∆, or more simply, a ∆-trajectory, is a sequence
of points {xi}i≥0 of R, with xi+1 = succ∆(xi) for all i ≥ 0. 2 A ∆-cycle is a
∆-trajectory of R of the form {x0, x1, . . . , xm−1} with x0 = succ∆(xm−1).

Example 2. Consider the boost example 1. Figure 4 depicts a ∆-trajectory start-
ing from the left upper corner of R = [1.55, 2.15] × [1.0, 1.4], together with its
∆-unfolding.

Fig. 4. ∆-trajectory for the boost example (left), and its ∆-unfolding (right)

In Figure 4, we can see that the ∆-trajectory and its ∆-unfolding seem to
converge to cycles. We now formally state that, under certain assumptions, this
is actually the case.

4 Limit cycles

We suppose that we are given a region R ⊆ Rn and a k-invariant decomposi-
tion ∆ = {(Vi, πi)}i∈I of R (produced, e.g., by the Decomposition algorithm of
Section 2).

1 A nondeterministic choice has to be done when a point x belongs to more than one
subset Vi. When x belongs to a single subset Vi, then succ∆(x) = Post∆(x).

2 We will sometimes denote such a trajectory under the form: x0 →πi1
x1 →πi2

· · ·
with i1, i2, · · · ∈ I.

Proposition 2. Consider a k-invariant decomposition ∆ = {(Vi, πi)}i∈I of R.
Let Rj∆ be defined by R0

∆ = R, and Rj∆ = Post∆(Rj−1∆) for j > 0. The sequence

{Rj∆}j≥0 is a decreasing nested sequence and the set R∗∆ =
⋂
j≥0R

j
∆ is well-

defined. Furthermore, R∗∆ is an attractor set of R, i.e.:

– Post∆(R∗∆) = R∗∆ (invariance property)

– ∀x ∈ R, d(succj∆(x), R∗∆)→ 0 as j tends to ∞ (attraction property).3

Furthermore we have:

Proposition 3. For all i ≥ 0, the set Ri∆ is a finite union of polyhedra.

We now make the following assumption:

(A1): There exists N > 0 such that RN∆ is a finite union of polyhedra
P1, . . . , Pq (with q ∈ N) such that:

∀j ∈ {1, . . . , q} ∃!i ∈ I : Pj ∩ Vi 6= ∅.

Assumption (A1) states that every polyhedral component of RN∆ shares common
points with a single subset V of R. In particular no polyhedron can cross a
common intersection (“border”) of two distinct subsets V and V ′ of R. This
implies that operator Post∆ applied to any polyhedron of RN∆ is deterministic:
∀j ∈ {1, . . . , q} ∃!i ∈ I Post∆(Pj) = Postπi

(Pj). Furthermore, we have:

∀j ∈ {1, . . . , q} ∃!j′ ∈ {1, . . . , q} : Post∆(Pj) ⊆ Pj′ .

Therefore, RN∆ can be seen as a directed graph of vertices P1, . . . , Pq, with an
edge from Pj to Pj′ iff Post∆(Pj) ⊆ Pj′ . The vertices of this graph have a single
outgoing edge. The sets Ri∆ for i ≥ N are generated by further application of
Post∆. The polyhedral components of Ri∆ which have no incoming edge will
disppear at iteration i+ 1. After a finite number of iterations, the graph of the
polyhedral components of Ri∆ corresponds to the strongly connected components
of RN∆ . Furthermore, these strongly connected components correspond to disjoint
cycles, since the vertices of the graphs have only one outgoing edge. This is
formally stated as follows.

Theorem 2. Under assumptions (A1), we have:

1. R∗∆ is a finite union of disjoint cycles of polyhedra.
2. The ∆-unfolding of each cycle of R∗∆ is a controlled invariant set.

Let C1, . . . , Cr denote the cycles of polyhedra of R∗∆. Each cycle Ci (1 ≤ i ≤ r) is
made of a finite set of polyhedra. Each polyhedron P of a cycle C is associated
with a pattern π such that Postπ(P) = P . Let us now consider the additional
assumption

3 d(y, Z) denotes the smallest distance between a point y and any point of Z, and
succj∆(x) the point obtained from x after j applications of succ∆.

(A2): For each pattern π associated with a polyhedron P of a cycle C, π is
locally contractive in R, i.e.:

∀x, y ∈ R ‖Postπ(x)− Postπ(y)‖ < ‖x− y‖

for some norm ‖ · ‖ of Rn.

Then we have:

Theorem 3. Under assumptions (A1) and (A2), we have:

1. R∗∆ is a finite union of disjoint cycles of points of R.
2. The ∆-unfolding of each cycle of R∗∆ is a controlled invariant set.
3. Each ∆-trajectory {x0, x1, . . . } converges to a cycle of the form {y0, y1, . . . , ym−1}

in the following sense:

∃M ∈ N ∀` = 0, . . . ,m− 1 lim
i→∞

xM+i·m+` = y`.

for all ` = 0, . . . ,m− 1.

The proof of a variant of Theorem 3 is given in [FS13].

We now illustrate the convergence of Rk∆ to a cyclic set of points as k tends
to infinity, on the boost example.

Example 3. (Boost DC-DC Converter). One can check that the modes of the
boost converter are locally contractive inR = [1.55, 1.85]×[1.0, 1.2], hence (A2) is
satisfied. Likewise, (A1) is satisfied: for N = 100, all the polyhedral components
of RN∆ belong to a single box (viz., V1) of the decomposition ∆. This is shown
in Figure 5, which depicts the iterated images Rk∆ for k = 0, 20, 40, 60, 80, 100.
The limit set R∗∆ is here composed of a unique limit cycle that is made of a
single point y0 ∈ V1. We have: y0 →π1

y1 = y0, with π1 = (1 · 1 · 2 · 2 · 2). The
∆-unfolding of this limit cycle is thus made of 5 points (corresponding to the
composing modes of π1) and is depicted in Figure 6.

5 Implementation

The implementation of the method is made of two basic procedures: a procedure
Decomposition (described in Section 2), which outputs ∆, and a procedure,
called Iteration which constructs Ri∆ for i ≥ 0. The Decomposition procedure
makes use of zonotopes [K9̈8], and has been written in Octave [oct], except for
the multilevel examples which have been implemented using PLECS [ple]. The
procedure Iteration does not use the data structure zonotopes because it involves
the intersection operator which does not preserve the structure of zonotopes. It
has been written in Ocaml [oca], using the PPL library [ppl] of polyhedra. The
Iteration procedure receives ∆ from module Decomposition and outputs the
successive iterations of Post∆. The sequence of post sets can also be visualized
as an animation (see Figure 5).

Fig. 5. Visualization of Rk∆ for k = 0, 20, 40, 60, 80, 100 for the boost example

Fig. 6. ∆-unfolding of the limit cycle {y0} for the boost example

The examples have run on a machine equipped with an Intel Core2 CPU
X6800 at 2.93GHz and with 2GB of Ram memory. Some figures of the experi-
ments are listed in the following table.

Example Running time # patterns |U | k d n (A1) (A2) cycle
Boost [BPM05] 150 seconds 12113 2 5 1 2 yes yes yes

Two-tank [His01] 4 seconds 1423 4 3 1 2 yes yes yes
Heating [Gir12] 1 second 134 2 2 4 2 yes yes yes

Helicopter [DLHT11] ≈ 2 hours ≈ 1.5 million 9 6 4 2 yes no yes
5-level [FFL+12] 3 minutes - 16 8 1 3 yes no yes
7-level [FFL+12] 35 minutes - 64 32 1 5 yes no yes
9-level [FFL+12] ≈ 5 hours - 256 128 1 7 yes no yes

The first column indicates the name of the example together with its refer-
ence. The second column indicates the running time to obtain a decomposition,
and the third one the numbers of patterns generated to obtain this decomposi-

tion4. The subsequent columns labeled by |U |, k, d and n indicate the number of
modes, the input parameter of maximal pattern length, the input parameter of
decomposition depth and the space dimension respectively. Finally, the column
‘(A1)’ (resp. ‘(A2)’) indicates if (A1) (resp. (A2)) is satisfied, and the column
‘cycle’ if the controlled trajectories converge to a limit cycle.

6 Final Remarks

We have presented an original technique to synthesize stability controllers for
switched systems. We have implemented the procedure, and applied it success-
fully to several examples of the literature. The method can also be used for
synthesizing safety controllers in order to guarantee safety properties of the
controlled system (see [FS13]). A sufficient condition for the existence of a k-
invariant decomposition of a given box R is also given in [FS13].

References

[ATS09] A. Abate, A. Tiwari, and S. Sastry. Box invariance in biologically-inspired
dynamical systems. Automatica, 45(7):1601–1610, 2009.

[BPM05] A.G. Beccuti, G. Papafotiou, and M. Morari. Optimal control of the boost
dc-dc converter. In Proc. 44th IEEE Conference on Decision and Con-
trol European Control Conference (CDC-ECC ’05), pages 4457 – 4462, dec.
2005.

[BRC05] J. Buisson, P.-Y. Richard, and H. Cormerais. On the stabilisation of switch-
ing electrical power converters. In HSCC, volume 3414 of LNCS, pages
184–197. Springer, 2005.

[DLHT11] J. Ding, E. Li, H. Huang, and C.J. Tomlin. Reachability-based synthesis
of feedback policies for motion planning under bounded disturbances. In
IEEE International Conference on Robotics and Automation (ICRA’11),
pages 2160–2165, 2011.

[FFL+12] Gilles Feld, Laurent Fribourg, Denis Labrousse, Bertrand Revol, and Ro-
main Soulat. Correct by design control of 5-level and 7-level converters.
Research Report LSV-12-25, LSV, ENS Cachan, France, Dec 2012.

[FRL06] D. Flieller, P. Riedinger, and J.-P. Louis. Computation and stability of limit
cycles in hybrid systems. Nonlinear Analysis, 64(2):352–367, 2006.

[FS13] L. Fribourg and R. Soulat. Finite controlled invariants for sampled
switched systems. Research Report LSV-13-09, Laboratoire Spécification
et Vérification, ENS Cachan, France, April 2013. 27 pages.

[Gir12] Antoine Girard. Low-complexity switching controllers for safety using sym-
bolic models. In Maurice Heemels, Bart De Schutter, and Mircea Lazar,
editors, 4th IFAC conference on Analysis and Design of Hybrid Systems,
June, 2012, Eindhoven, Pays-Bas, 2012.

[Gon03] J. M. Gonçalves. Region of stability for limit cycles of piecewise linear
systems. In IEEE Conference on Decision and Control, 2003.

4 This figure is not available for the multilevel converters because they have been
implemented using PLECS, rather than Octave.

[GPT10] A. Girard, G. Pola, and P. Tabuada. Approximately bisimilar symbolic
models for incrementally stable switched systems. IEEE Trans. on Auto-
matic Control, 55:116–126, 2010.

[His01] I.A. Hiskens. Stability of limit cycles in hybrid systems. In 34th Annual
Hawaii International Conference on System Sciences (HICSS-34). IEEE
Computer Society, January 3-6, 2001.

[JKDW01] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analy-
sis: with examples in parameter and state estimation, Robust Control and
Robotics. Springer, 2001.

[K9̈8] W. Kühn. Zonotope dynamics in numerical quality control. Mathematical
Visualization, pages 125–134, 1998.

[oca] OCaml Web page. http://caml.inria.fr/ocaml/index.en.html.
[oct] Octave Web page. http://www.gnu.org/software/octave/.
[ple] PLECS Web page. http://www.plexim.com.
[ppl] PPL Web page. http://bugseng.com/products/ppl/.
[RRL00] M. Rubensson, M. Rubensson, and B. Lennartson. Stability of limit cycles

in hybrid systems using discrete-time lyapunov techniques. In Proceedings
of the 39th IEEE Conference on Decision and Control, 2000.

[San93] S.R. Sanders. On limit cycles and the describing function method in period-
ically switched circuits. IEEE Trans. Circuits and Systems, 40(9):564–572,
1993.

[SEK03] M. Senesky, G. Eirea, and T.-K. Koo. Hybrid modelling and control of
power electronics. In HSCC, volume 2623 of Lecture Notes in Computer
Science, pages 450–465, 2003.

[Tab09] Paulo Tabuada. Verification and Control of Hybrid Systems: A Symbolic
Approach. Springer Publishing Company, Incorporated, 1st edition, 2009.

