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Abstract. We present a control method which makes the trajectories of a switched system
converge to a stable limit cycle lying in a desired region of equilibrium. The method is illustrated
on the boost DC-DC converter example. We also point out in this example the sensitivity of
limit cycles to parameter variations by showing how the limit cycle evolves in presence of small
perturbations of some system parameters. This suggests that limit cycles are good candidates
for reliable estimations of the physical parameters of switched systems using an appropriate
inverse approach.

1. Introduction
Sampled switched systems are more and more used in electrical and mechanical industry,
e.g. power electronics and automotive industry: this is due to their flexibility and simplicity
for controlling accurately industrial mechanismes. These systems are governed by piecewise
dynamics that are periodically sampled with a given period τ (see, e.g., [3]). At each sampling
time, the “mode” of the system, i.e. the parameters of the dynamics, are switched according to
a control rule. A classical example of sampled switched system is the boost DC-DC converter.
The control of a switching cell puts the system, according to its position (open or closed), into
one mode or another one. When the system stays in the same mode, it evolves towards a unique
equilibrium point. In contrast, by adopting switching control rules, one can steer the system to
a desired region R that is centered at a different equilibrium point, around which the system
oscillates with some variability.

In [5], we have thus designed a state-dependent control method which decomposes R into a
set of sub-boxes associated with specific control modes: at each sampling time, depending on
the loacation of the system state, one activates a specific mode until the next sampling time.
We show here that such a control not only ensures the invariance of the system state inside R,
but makes the state trajectories converge to limit cycles inside R.

We also point out the sensitivity of limit cycles to parameter variations by showing the
evolution of limit cycles in presence of small perturbations of system parameters. As indicated,
e.g., in [9], this suggests that limit cycles are are good candidates for reliable estimation of
physical parameters of the system

1.1. Related work
The presence of limit cycles in switched systems such as those used in power electronics has been
often observed (see, e.g., [10]). The existence and stability of limit cycles is often shown using



Lyapunov techniques (see, e.g., [2, 11]). An other common technique for proving existence of
limit cycles is based on Poincaré map technique [7, 9]. Finally, sensibility functions w.r.t. initial
conditions are used in order to compute a limit cycle [4], as well as describing functions [12].

We use here an original method showing that the existence of limit cycles follows from a
property of piecewise invariance of a state space region, when the dynamics of the modes are
contractive.

2. Decomposable Area of Interest
2.1. Model of sampled switched systems
Sampled switched systems, as defined, e.g., in [6], is a subclass of affine hybrid systems [8]. A
sampled switched system Σ is defined by a triple 〈τ, U,F〉 where:

- τ ∈ R≥0 is a “time sampling parameter”,
- U = {1, . . . , q} is a finite set of modes,
- F is a set of the form {(Au, Bu)}u∈U with (Au, Bu) ∈ Rn×n × Rn×1.

We say that a piecewise C1 function x : R≥0 → Rn is a trajectory of Σ if it is continuous and
satisfies, for all k ∈ N:

∃u ∈ U ∀t ∈ [kτ, (k + 1)τ) ẋ(t) = fux(t),

with (Au, Bu) ∈ F . The trajectory is fully determined by the values u1, u2, . . . of u at sampling
times τ, 2τ, . . . . These values define a control function u(t), which is constant on each interval
[kτ, (k+1)τ), for all k ∈ N. Between two sampling times, the system is governed by a differential
equation of the form: ẋ(t) = Aux(t) +Bu with u ∈ U . We will use x(t, x, u) to denote the point
reached by Σ at time t under mode u from the initial condition x. This defines a transition
relation →u

τ given by: x→u
τ x
′ iff x(τ, x, u) = x′ for x and x′ in Rn.

NB: The expression x(τ, x, u) can be put under the algebraic form: (Cu · x + Du), with

Cu = eAuτ and Du = e(Auτ−In)A−1
u ·Bu, where In denotes the identity matrix.

We define: Postu(X) = {x′ | x →u
τ x′ for some x ∈ X}. We say that a zone X is R-

invariant via mode u if Postu(X) ⊆ R. We will group modes together into sequences called
“patterns”. Given a pattern π of the form (u1 . . . um), we have:
Postπ(X) = {x′ | x→u1

τ · · · →um
τ x′ for some x ∈ X}.

We say that X is R-invariant via π if Postπ(X) ⊆ R.

We say that R is “piecewise k-invariant” if it can be decomposed into a finite set of subsets
that are R-invariant. Formally:

Definition 1 A set R ⊆ Rn is piecewise k-invariant if there exists a finite set I of indices, a
set {Vi}i∈I of subsets of Rn and a set {πi}i∈I of patterns of length at most k such that:

• R =
⋃
i∈I Vi

• Vi is R-invariant via πi (i.e., Postπi(Vi) ⊆ R), for all i ∈ I.

In practice, R and Vi (i ∈ I) are boxes, i.e., cartesian products of closed intervals of Rn. The set
{(Vi, πi)}i∈I is said to be a k-invariant decomposition of R.

Given a decomposition ∆ of the from {Vi, πi)}i∈I , we define Post∆ as follows:

Post∆(X) =
⋃
i∈I

Postπi(X ∩ Vi), for all X ⊂ R.

In [5], we have proposed a method in order to show that, given a set R, it is piecewise k-
invariant by constructing a k-invariant decomposition of R. This method is recalled in Appendix.



In the rest of this paper, we will suppose that we are given a piecewise k-invariant set R and
a k-invariant decomposition ∆ = {(Vi, πi)}i∈I . The decomposition ∆ induces a state-dependent
control that makes any trajectory starting fom R go back to R within at most k steps: Given
a starting state x0 in R, we know that x0 ∈ Vi for some i ∈ I (since R =

⋃
i∈I Vi); one thus

applies πi to x0, which gives a new state x1 that belongs to R (since Vi is R-invariant via πi);
the process is repeated on x1, and so on iteratively. Formally, for any x0 ∈ R, the above process
leads to the construction of a sequence of points {xi}i≥0 of R, and a sequence of indices {ki}i≥0

defined, for all i ≥ 0, by:
- xi+1 = Postπki (xi)

- ki = argmin{j ∈ I | xi ∈ Vj}.

In the following, we will suppose that every mode of U is “contractive”. We say that a
mode u ∈ U is contractive if there exists ρu such that 0 < ρu < 1 and, for all x, y ∈ Rn:
‖Postu(x)− Postu(y)‖ ≤ ρu‖x− y‖.

2.2. Boost DC-DC Converter
Let us illustrate the model of sampled switched system and the result of the decomposition
procedure (see Appendix).

Example 1 This example is taken from [1] (see also, e.g., [6, 13]). This is a boost DC-DC
converter with one switching cell (see Fig. 1). There are two operation modes depending on
the position of the switching cell. An example of pattern of length 4 is illustrated on Fig. 2: it
corresponds to the application of mode 2 on (0, τ ] and mode 1 on (τ, 4τ ]. The controlled system
is steered to a zone where the output voltage stabilizes around a desired value. The state of the
system is x(t) = [il(t), vc(t)]

T where il is the current intensity in inductor, and vc(t) the voltage
of capacitor C. The dynamics associated with mode u is of the form ẋ(t) = Aux(t)+bu (u = 1, 2)
with
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We will use the numerical values of [1], expressed in the per unit system: xc = 70, xl = 3,
rc = 0.005, rl = 0.05, r0 = 1, vs = 1. The sampling period is τ = 0.5. We can check that modes
1 and 2 are contractive (i.e., ‖eAuτ‖ = ρu < 1 for u = 1, 2). For the equilibrium region, we
take R = [1.55, 2.15]× [1.0, 1.4], which corresponds to a medium value 1.85 for il with ±0.3 for
variability, and medium value 1.20 for vc with ±0.2 for variability.

Figure 1. Scheme of the boost DC-DC
converter Figure 2. Switching pattern (2.1.1.1)



The application of the algorithm Decomposition (see Appendix) to R = [1.55, 2.15]× [1.0, 1.4],
with k = 5 and d = 1, yields a decomposition of R =

⋃4
j=1 Vj depicted in Figure 3. The associated

patterns are: π1 = (11222), π2 = (2), π3 = (212), π4 = (1), with: V1 = [1.55, 1.85]× [1.00, 1.20],
V2 = [1.85, 2.15]× [1.00, 1.20], V3 = [1.85, 2.15]× [1.20, 1.40], V4 = [1.55, 1.85]× [1.20, 1.40].

Figure 3. Left: Decomposition of R into 4 subsets. Right: visualization of R-invariance
(Postπi(Vi) ⊂ R)

In Figure 4, we depict runs that start from the four corners of R, and follows the control
strategy induced by this decomposition . In all cases, one observes a phenomenon of convergence
of the trajectories to a unique limit cycle. This phenomenon follows from the existence of the
decomposition of R, as explained in next Section.

Figure 4. Runs starting from the four corners of R, following the control strategy induced by
the decomposition



3. Limit Cycles
3.1. Existence and stability
If all the modes are contractive (i.e., ‖eAuτ‖ = ρu < 1 for all u ∈ U), the existence of a k-
invariant decomposition ∆ : {(Vi, πi)}i∈I of R entails the existence of stable limit cycles to
which any trajectory T issued from R converges provided that all the points of T remain at a
minimum distance e > 0 (of arbitrary positive value) from any border of a sub-box Vi (i ∈ I).
Formally, we have:

Theorem 1 Consider a trajectory T : {x0, x1, x2, · · · } of points of R induced by ∆, which all
stay at a minimum distance e > 0 from the borders of Vi. Then there exists a set of points
C = {y0, y1, · · · , ym−1} of R, and an integer N such that, for all j ∈ {0, · · · ,m− 1}:
• Post∆(yj) = yj+1 (where ym stands for y0),

• Post∆(xN+j+i.m) = xN+j+i.m+1,

• limi→∞ xN+j+i.m = yj.

The proof of the above statement (see Appendix 5) shows also that C is a stable limit cycle
for the trajectories of R, in the sense that a small perturbation occurring in the trajectory
T does not prevent the subsequent trajectory to converge to C. For the boost converter, the
corresponding limit cycle is depicted in Figure 5.

Figure 5. Limit cycle for r0 = 1 (corresponding to pattern π1 : (11222)): one has
y0 →1 y1 →1 y2 →2 y3 →2 y4 →2 y0

3.2. Sensitivity
Given the region R and fixed values for the physical parameters of the system, the decomposition
procedure gives a decomposition ∆ : {(Vi, πi)}i∈I . Actually, even in presence of small variations
of parameters of the system, the same decomposition of ∆ can ensure the piecewsie invariance
of R. For example, the decomposition ∆ found for the boost DC-DC converter for r0 = 1 and
R = [1.55, 2.15] × [1.0, 1.4] (see Figure 3), still ensures the piecewise invariance of R when r0

varies from 0.975 to 1.005. This guaranteed that the control found r0 = 1 makes the system
converge to a stable limit cycle of R, for small variations of r0. However, as shown in Figure 6,
the form and position of the limit cycle is very sensitive to the actual value of r0:

For r0 = 0.965, the limit cycle corresponds to repeated pattern (π3π
3
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3
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3
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3
1)

(with π1 = (11222), π3 = (212)); for r0 = 0.975, the associated pattern is (π3π
5
1), while, for

r0 = 1 and r0 = 1.005, the pattern is (π1).
This suggests that limit cycles are good candidates for reliable estimations of the physical

parameters of switched systems, using an appropriate inverse approach.



Figure 6. Limit cycles for r0 = 0.965 (pattern (π3π
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1)) on the upper left, for

r0 = 0.975 (pattern (π3π
5
1)) on the upper right, for r0 = 1 (pattern π1) on the lower left, and

for r0 = 1.005 (pattern π1) on the lower right

4. Final Remarks
We have shown that, for controlled switched systems, the existence of an invariance
decomposition for a given zone of interest, entails the convergence of the system to a stable
limit cycle within the zone.

We have also shown the high sensitivity of the form and position of limit cycles when
some physical parameter of the system slighty varies, such as load resistance in DC-DC boost
converters. This suggests that limit cycles are good candidates for reliable estimations of the
physical parameters of switched systems,
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Appendix: Decomposition Procedure [5]
Suppose we are given a box R ⊆ Rn. We now give a procedure in order to show that R is
piecewise k-invariant. If we find a pattern π of length at most k such that R is invariant, then
we are done. Otherwise, we decompose R dichotomously into 2n sub-boxes V1, · · · , V2n of equal
size. If for each box Vi, we find a pattern πi of length at most k such that Vi is R-invariant via
πi, we are done. If, for some Vj , no such pattern exists, we recursively apply the process to Vj .
The process ends with success when a k-invariant decomposition of R is found, or with failure
when a maximal degree d of decomposition has been reached. The algorithmic form of this
method is given in Algorithms 1 and 2. For the sake of simplicity, we have considered the case
of space dimension n = 2 (the extension to the general case is straightforward). The procedure
Decomposition(W ,R,D,K) is called with R as input value for W , d for input value for D,
and k as input value for K. The procedure Decomposition(W ,R,D,K) calls the subprocedure
Find Pattern(W ,R,K) in order to find a pattern for which W is R-invariant. This is simply
done by testing all the patterns by increasing length order, until one is found that maps W into
R. The correctness of the decomposition procedure is stated formally as follows ([5]): If the
procedure Decomposition(R,R,d,k) terminates with success (i.e: ∆ 6= False), then it returns a
k-invariant decomposition ∆ of R.

Algorithm 1: Decomposition(W ,R,D,K)

Input: A box W , a box R, a degree D of decomposition, a length K of pattern
Output: ∆ which is either a K-invariant decomposition of W or False
π := Find Pattern(W,R,K)1

if π 6= False then2

return ∆ := (W,π)3

else4

if D = 0 then5

return ∆ := False6

else7

Dichotomously decompose W into (W1,W2,W3,W4) /* (case n = 2) */8

∆1 := Decomposition(W1,R,D − 1,K)9

∆2 := Decomposition(W2,R,D − 1,K)10

∆3 := Decomposition(W3,R,D − 1,K)11

∆4 := Decomposition(W4,R,D − 1,K)12

if ∆1 = False ∨∆2 = False ∨∆3 = False ∨∆4 = False then13

return ∆ := False14

else15

return ∆ := ∆1 ∪∆2 ∪∆3 ∪∆416

Appendix: Sketch of Proof of Theorem 1
Let us assume that we have a decomposition ∆ = {(Vi;πi)}i∈I of R. Let us consider a trajectory
T = {x0, x1, · · · }, where all xi stay at minimum distance e > 0 from the borders of ∆. For every
point xi of T , we consider the ball Bi centered at xi of radius e. Clearly, every Bi is included
in V̊j for some j ∈ I. Furthermore we have Post∆(Bi) ⊂ Bi + 1, since all the modes of U

are contractive. We claim that there exists ε > 0 such that: either λ(Bi+1 ∩
⋃
j≤iBj) or

Bi+1 ⊂
⋃
j≤iBj . The first subcase cannot occur indefinitely, since eventually all R is covered



in a finite number of steps. Hence, the second subcase occurs eventually (Bi+1 ⊂
⋃
j≤iBj), this

entails the existence of a cycle passing by a point of Bi+1.

Algorithm 2: Find Pattern(W ,R,K)

Input: A box W , a box R, a length K of pattern
Output: π wich is either a pattern mapping W into R or False
for i = 1 . . .K do1

Π := set of patterns of length i2

while Π is non empty do3

Select π in Π4

Π := Π \ {π}5

if Postπ(W ) ⊆ R then6

return π7

return π := False8


