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Abstract

We prove that boundedness and reachability tree �niteness are undecidable for

systems of two identical automata communicating via two perfect unbounded one-

way FIFO channels and constructed solely from cycles about their initial states.

Using a form of mutual exclusion for such systems, we prove further that undecid-

ability holds even when the identical automata are totally indistinguishable in the

sense that their initial states are identical and both channels are initially empty.

1 Introduction

A system of communicating �nite state machines (CFSMs) consists of a �nite

number of processes (i.e. automata) communicating with each other by send-

ing and receiving messages via perfect unbounded one-way FIFO channels.
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Such systems can model communication protocols or distributed algorithms

written for example in Estelle [8] or in SDL [6].

Brand and Za�ropulo [4, 5] have shown in 1981 that the general CFSM

model has the power of Turing machines. Other proofs for the similar FIFO

Petri net model are known [11]. It is known as well that a single CFSM with

a FIFO channel has the power of Turing machines [13]. Along related lines,

it is known that from the formal language recognition viewpoint, a CFSM

using k+1 FIFO channels is strictly more powerful than a CFSM using only

k FIFO channels.

Recent work has shown that decidability is sometimes attainable in the

case of systems of CFSMs over unreliable (i.e. lossy, insertion, duplication)

channels [9, 1, 2, 7]. In a di�erent vein, for purposes of modeling distributed

algorithms in which processes are identical, and in light of the surprising

di�culty of problems like leader election in anonymous networks (see for

example [12]), it is interesting to consider systems of identical CFSMs. For

example, Benslimane in [3] claims decidability results for restricted classes of

systems of identical CFSMs

1

.

In this paper we show that the systems considered by Benslimane, namely

systems of two identical CFSMs constructed solely from elementary cycles

about their initial states, can simulate Turing machines. It follows that the

�nite reachability tree problem and the �nite reachability graph problem

(also called the boundedness problem) are undecidable for such systems.

Our �rst Turing machine simulation \distinguishes" the two participating

identical automata by the choice of one speci�c channel in which to store the

initial Turing machine con�guration. Although this simulation is straight-

forward and it extends that of Brand and Za�ropulo [4] in an intuitive way,

we �nd that its formal correctness proof still requires care. Then we modify

the simulation and show that the distinction between the two participating

1

The precise decidability claims made by Benslimane in [3] are not clear. The abstract,

the introduction, and the conclusion of [3] claim decidability results which we prove false

in the present paper. On the other hand, restrictions are casually added to CFSMs in the

body of [3]. For instance, the theorem in [3] which states decidability of the boundedness

problem for identical CFSMs with initial cycles restricts each cycle to emit strictly more

than it receives. If this theorem of [3] is indeed correct, we suspect that the same result

holds without restricting the CFSMs to be identical. We note moreover that the undecid-

ability results reported in the present paper extend to the case of identical automata in

which each cycle emits more than it receives, but then we must drop the requirement that

each automaton cycle be constructed about the automaton's local initial state.
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automata can be avoided entirely, even within the restricted model in which

only cycles about the initial local automata states are allowed. We do this by

implementing a kind of once-only mutual exclusion, allowing one and only

one of the identical automata to initialize its output channel (and preventing

any future execution of the initializing cycles). This initialization problem is

akin to leader election in deterministic anonymous networks. Interestingly,

although leader election is provably impossible in such networks (see [12]), we

succeed in \initializing a leader" by ensuring that unwanted computations are

blocked (such deadlocks are generally disallowed in distributed algorithms).

Section 2 in this paper de�nes notation. Section 3 presents our basic

simulation and undecidability result. Section 4 discusses one-time mutual

exclusion and leader initialization, extending undecidability to the case of

indistinguishable CFSMs. Section 5 concludes.

2 Preliminaries and notation

A �nite alphabet is denoted �, �

�

is the set of all �nite words over �, � is

the empty word, and jwj denotes the length of a word w 2 �

�

.

2.1 Systems of CFSMs

De�nition. A communicating �nite state machine (CFSM) is a �nite au-

tomaton A = (Q; q

0

;�; �) where, de�ning �� as f+;�g � �,

� Q is a �nite set of states,

� q

0

2 Q is the initial state,

� � is a �nite alphabet, and

� � � Q� (��)�Q is a set of possible transitions.

The CFSM A is initial if, for every accessible state q 2 Q, there exist tran-

sitions (q; y

1

; q

1

); (q

1

; y

2

; q

2

); : : : ; (q

k

; y

k

; q

0

) 2 �.

(Note that the alphabet of A in the usual �nite automaton sense is ��

rather than �, i.e. A sees (+; a) 2 �� and (�; a) 2 �� as single symbols,

which we henceforth write as +a and �a respectively. Intuitively, +a denotes

the reception of a, and �a the emission of a.)
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De�nition. A system S of two CFSMs is a pair of CFSMs S = (A

1

; A

2

)

with A

1

= (Q

1

; q

0;1

;�; �

1

) and A

2

= (Q

2

; q

0;2

;�; �

2

). We say that A

1

is the

mate of A

2

and that A

2

is the mate of A

1

. The global state (state for short)

of S is a quadruple (q

1

; q

2

;w

12

; w

21

) 2 Q

1

�Q

2

� �

�

� �

�

.

The operational semantics of a system of CFSMs is de�ned by the �ring

of a transition which changes the system's global state in one step.

De�nition. Let S = (A

1

; A

2

) be a system of two CFSMs. A state s

0

=

(q

0

1

; q

0

2

;w

0

12

; w

0

21

) is reachable from another state s = (q

1

; q

2

;w

12

; w

21

) by the

�ring of a transition t, written s ! s

0

or redundantly s

t

! s

0

, if one of the

following two cases holds:

1. There exist i; j 2 f1; 2g, i 6= j, such that t = (q

i

;�a; q

0

i

) with

(a) q

0

j

= q

j

,

(b) w

0

ij

= w

ij

a and w

0

ji

= w

ji

.

2. There exist i; j 2 f1; 2g, i 6= j, such that t = (q

i

;+a; q

0

i

) with

(a) q

0

j

= q

j

,

(b) w

0

ij

= w

ij

and w

ji

= aw

0

ji

.

(Condition (1) above describes the sending of a along A

i

's output channel,

known in global state s to contain w

ij

. Condition (1a) says that the local

state of A

j

is una�ected by the transition. Condition (1b) updates A

i

's

output channel and says that A

j

's output channel, known in global state s

to contain w

ji

, is una�ected by the transition. Condition (2) on the other

hand describes the reception of a by M

i

, from A

j

's output channel, which is

also A

i

's input channel: upon the reception of a by A

i

, A

i

's output channel

and the local state of A

j

are una�ected, while an a is removed from w

ji

.)

De�nition. Consider S = ((Q

1

; q

0;1

;�; �

1

); (Q

2

; q

0;2

;�; �

2

)) a system of two

CFSMs, and s

0

2 Q

1

� Q

2

� �

�

� �

�

a state of S. The reachability set

RS(S; s

0

) of S in s

0

is the set of states reachable in a �nite number of steps

from s

0

:

RS(S; s

0

) = fs 2 Q

1

�Q

2

� �

�

� �

�

j s

0

�

�! sg:

The reachability tree RT(S; s

0

) of S in s

0

is the tree with root labelled s

0

,

such that a node labelled s has a child labelled s

0

i� s! s

0

.
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By a branch of RT((A

1

; A

2

); s

0

) we will often refer to the sequence � of

A

1

or A

2

transitions required to produce the sequence of reachable states

s

0

! s

1

! s

2

! � � � found along the tree branch. More generally, let � and 


be two sequences of transitions (not necessarily executable in this or in any

order) of a system (A

1

; A

2

). The length of � is denoted j�j. We say that 
 is

a subword of �, written 
 v �, if inserting transitions at appropriate places

within 
 can produce �. If 
 v �, we write � � 
 for the sequence obtained

from � by deleting the leftmost occurrence of the subword 
. We write �j

i

,

i 2 f1; 2g, for the subword of � formed by deleting from � all but the A

i

transitions. We further write � � 
 if, for each i 2 f1; 2g, �j

i

= 
j

i

.

The reachability tree �niteness problem is the following:

GIVEN: a system S = ((Q

1

; q

0;1

;�; �

1

); (Q

2

; q

0;2

;�; �

2

)) of two CFSMs and a

state s

0

2 Q

1

�Q

2

� �

�

��

�

.

DETERMINE: whether RT(S; s

0

) is �nite.

The boundedness problem is the following:

GIVEN: a system S = ((Q

1

; q

0;1

;�; �

1

); (Q

2

; q

0;2

;�; �

2

)) of two CFSMs and a

state s

0

2 Q

1

�Q

2

� �

�

��

�

.

DETERMINE: whether RS(S; s

0

) is �nite.

2.2 Turing machine assumptions

Our model of a Turing machine M = (Q;�;�; q

0

; B; �) is the standard

deterministic one-way-in�nite single tape model (see [10]), except that we

omit �nal states. Hence Q is the state set, q

0

2 Q the initial state, �

the input alphabet, � the tape alphabet, B 2 � the blank symbol, and

� : Q � � ! Q � � � fleft; rightg the (partial) transition function. We

assume with no loss of generality that

� M accepts an input w i� M halts on w,

� if M does not halt on w, then M eventually moves its tape head arbi-

trarily far to the right.

De�nition. A con�guration of the Turing machine M is a word uqv# with

uv 2 �

�

, q 2 Q, and # a �xed symbol not in �. (Word uqv# represents

M in state q, with initial tape content uv and the rest blank, and with M 's
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tape head positioned under the �rst symbol to the right of u; symbol # is

a redundant marker used for notational convenience later.) We write c `

M

c

0

when one transition of M leads from con�guration c to con�guration c

0

.

3 Identical initial CFSMs

In this section we reduce the halting problem for Turing machines to the

boundedness and to the tree reachability �niteness problems for systems of

two identical initial CFSMs.

In Section 3.1 we construct, from any Turing machine M and from any

word w, a system S(M) of two identical initial CFSMs with initial global

state s

0

(M;w). This system simulates the computation of M on w in the

sense of Theorem 3.9: M accepts w i� RT(S(M); s

0

(M;w)) is �nite i�

RS(S(M); s

0

(M;w)) is �nite. We prove in Section 3.2 that the simulation

works and we draw the undecidability consequences in Section 3.3.

Throughout Section 3, we �x M = (Q

M

;�

M

;�

M

; q

0

; B; �

M

) an arbitrary

Turing machine and we �x an arbitrary input w 2 �

�

M

.

3.1 The construction

Our basic construction of a system of two identical initial CFSMs (A

1

; A

2

) is

straightforward and borrows from Brand and Za�ropulo [4]. We specify only

one initial CFSM A, with the understanding that A

1

and A

2

are identical

copies of A.

The core idea of the simulation is that A reads the current con�guration

ofM from its input channel, skipping and reemitting symbols until it reaches

the vicinity of M 's tape head. Then A processes this vicinity by emitting the

new vicinity resulting from the appropriate transition of M . Then A returns

to skipping and emitting until the next time it encounters M 's tape head.

In the Brand and Za�ropulo construction, one CFSM actively performs

the simulation, while its mate blindly skips and reemits. In our construction,

both (identical) CFSMs actively perform the simulation. Hence, in a legal

transition sequence of our system, A

1

and A

2

\advance" the simulation in

alternation. Although our construction is simple, ensuring its correctness

requires a careful proof that no undesired interference occurs in this process.
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Our CFSM A will be de�ned as A = (Q; 1;�

M

[ f#g [ Q

M

; �). We will

not de�ne the set Q explicitly, but we will specify � and let the reader deduce

Q. Since A is initial, A is made up of \cycles" about state 1. There are four

types of cycles and each type will be speci�ed by the sequence of transitions

encountered when starting in state 1 and traversing the cycle.

3.1.1 Type 1: The copying cycles

There is one copying cycle for each x 2 �

M

[ f#g:

1. Receive: x

2. Emit: x

1

�x

+x

3.1.2 Type 2: The blank insertion cycles

There is one B insertion cycle for each q 2 Q

M

:

1. Receive: q

2. Receive: #

3. Emit: q

4. Emit: B

5. Emit: #

1
+q +#

�#

�B

�q

Hence the representation of the con�guration of M is extended to the

right by a blank, whenever the tape head of M points past the rightmost

currently represented position.

3.1.3 Type 3: The right head motion cycles

There is such a cycle for each (q; a; q

0

; a

0

) 2 Q

M

� �

M

�Q

M

� �

M

such that

�

M

(q; a) = (q

0

; a

0

; right):

1. Receive: q

2. Receive: a

3. Emit: a

0

4. Emit: q

0

1
+q

+a

�q

0

�a

0
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3.1.4 Type 4: The left head motion cycles

There is such a cycle for each (x; q; a; q

0

; a

0

) 2 �

M

� Q

M

� �

M

� Q

M

� �

M

such that �

M

(q; a) = (q

0

; a

0

; left):

1. Receive: x

2. Receive: q

3. Receive: a

4. Emit: q

0

5. Emit: x

6. Emit: a

0

1
+a

+q

+x

�a

0

�x

�q

0

3.2 The construction works

We have constructed, from a Turing machine M = (Q

M

;�

M

;�

M

; q

0

; B; �

M

)

and a word w, a system S(M) of two CFSMs. We de�ne the state s

0

(M;w)

as (1; 1; q

0

w#; �). We henceforth denote S(M) by S and s

0

(M;w) by s

0

.

Proposition 3.1 For any sequence C

0

`

M

C

1

`

M

C

2

`

M

� � � `

M

C

n

, there

exists a branch in RT(S; s

0

) such that

s

0

�

�! s

1

�

�! s

2

�

�! : : :

�

�! s

n

where s

2i

= (1; 1;C

2i

; �) and s

2j+1

= (1; 1;�;C

2j+1

), 0 � 2i � n, 1 � 2j+1 �

n.

Proof. By induction on n, carrying out the simulation in the obvious way.

The base case n = 0 is clear by de�nition of s

0

. In the inductive step, we

conclude that s

n

�

! s

n+1

, knowing that s

0

�

! s

n

and knowing which Turing

machine transition led M from C

n

to C

n+1

, by another induction on the

length of C

n

. 2

Proposition 3.1 states that to any derivation sequence of con�gurations

of M corresponds a precise sequence of states of S. Due to the unpredictable

interleavings of A

1

and A

2

, the converse is harder to express properly, let

alone to prove. We begin with a series of lemmas.

Lemma 3.2 Let i 2 f1; 2g. If � = �

1

�

2

�

3

is a branch of RT(S; s

0

) such

that �

2

= �

2

j

i

, then j�

2

j � 3j�

1

j+ 6jwj+ 17.
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Proof. Let v be the content of A

i

's input channel immediately after the

execution of �

1

. Since by construction every cycle in A

i

consumes one or

more symbols from v, and since no cycle has length greater than 6, we have

j�

2

j � 6jvj+ 5:

Now by overestimating the number of executions of a blank extension cycle

in either A

1

or A

2

, we obtain

jvj � j�

1

j=2 + jq

0

w#j = j�

1

j=2 + jwj+ 2:

Putting together the two inequalities yields j�

2

j � 3j�

1

j+ 6jwj+ 17. 2

Lemma 3.3 Let x = (q; y; q

0

) be an A

i

transition, i 2 f1; 2g. If � = �

1

x�

2

is a branch of RT(S; s

0

) such that j�j � 4096(j�

1

j+ 2jwj + 7), then �x v �

2

,

where �x is a sequence of A

i

transitions, j�xj � 0, leading A

i

from its state q

0

back to its initial state 1.

Proof. Write

�

2

= 


0

x

1




1

x

2




2

: : : x

n




n

;

where x

1

; x

2

; : : : ; x

n

, n � 0, are the only A

i

transitions occurring in �

2

. A

straightforward induction

2

using Lemma 3.2 proves that, for 0 � k � n,

j�

1

x


0

x

1




1

: : : x

k




k

j � 4

k+1

(j�

1

j+ 2jwj+ 7)� 2jwj � 7:

Hence, using our hypothesis,

4096(j�

1

j+ 2jwj+ 7) � j�j � 4

n+1

(j�

1

j+ 2jwj+ 7)� 2jwj � 7

< 4

n+1

(j�

1

j+ 2jwj+ 7);

2

For the base case,

j�

1

x


0

j = j�

1

xj+ j


0

j � j�

1

xj+ 3j�

1

xj+ 6jwj+ 17

= 4(j�

1

j+ 2jwj+ 7)� 2jwj � 7;

where the inequality follows from Lemma 3.2, which we use again in the inductive step:

j�

1

x


0

: : : x

k+1




k+1

j � j�

1

x


0

: : : x

k




k

x

k+1

j+ 3j�

1

x


0

: : : x

k




k

x

k+1

j+ 6jwj+ 17

= 4f4

k+1

(j�

1

j+ 2jwj+ 7)� 2jwj � 7 + jx

k+1

jg+ 6jwj+ 17

= 4

k+2

(j�

1

j+ 2jwj+ 7) � 2jwj � 7:

9



so that n > 4. This implies that su�ciently many A

i

transitions are available

within �

2

to complete an A

i

cycle, thus completing the proof. 2

Let fi; jg = f1; 2g. We de�ne a head processing state of A

i

to be any

local state of A

i

found along a cycle of type 2, 3 or 4 strictly between the

reception of a symbol q 2 Q

M

and the emission of the next symbol q

0

2 Q

M

.

We say that A

i

is active in a global state (q

1

; q

2

; 


1

; 


2

) i� one of the following

two conditions holds:

(i) q

i

is a head processing state of A

i

, q

j

is not a head processing state of

A

j

, and 


1




2

contains no symbol q 2 Q

M

, or

(ii) neither q

i

nor q

j

are head processing states, A

i

's input channel 


j

con-

tains a symbol q 2 Q

M

, and A

j

's input channel 


i

does not contain a

symbol q 2 Q

M

.

Lemma 3.4 In any state s of RT(S; s

0

), A

1

is active i� A

2

is not.

Proof. By induction on the length of the sequence of transitions leading

from s

0

to s. 2

We say that a sequence of transitions � of the system (A

1

; A

2

) contains

an interrupted cycle if, for some i 2 f1; 2g and for some A

i

transition x =

(q; y; q

0

) in � with q

0

6= 1, A

i

's mate performs a transition in � after x but

before A

i

can return to state 1 from q

0

.

Lemma 3.5 For every branch � of RT(S; s

0

), there exists a branch �

1

�

2

� �

such that j�

1

j > j�j=4096 � 2jwj � 7 and �

1

contains no interrupted cycle.

Proof. Write � = 


1

x


2

, with x the leftmost occurrence of a transition

belonging to an interrupted cycle, say of A

i

, i 2 f1; 2g. If

j


1

j > j�j=4096 � 2jwj � 7;

then we set �

1

= 


1

, �

2

= x


2

, and we are done. Otherwise,

j�j � 4096(j


1

j+ 2jwj + 7);

so that Lemma 3.3 applies to � = 


1

x


2

. It follows that �x v 


2

, for some

minimal �x eventually completing the A

i

cycle interrupted at x. We claim

that we can permute x


2

into an executable sequence c


0

2

� x


2

where c is

10



an uninterrupted cycle. We will thus have found an executable sequence �

0

=




1

c


0

2

� � having a pre�x 


1

c with no interrupted cycle. We can then iterate

the argument, replacing � by �

0

. This process will eventually terminate

because the uninterrupted pre�x increases in length at each iteration, while

j�j remains unchanged. We now prove our claim, distinguishing two cases.

Case 1: 


1

x�x(


2

� �x) is a branch in RT(S; s

0

). Then our claim is proved.

Case 2: 


1

x�x(


2

� �x) is not a branch in RT(S; s

0

). This case arises because

A

i

gets blocked within x�x (since executing an A

i

transition earlier than

expected cannot hinder the progress of A

i

's mate). Hence x is the �rst

A

i

transition in a cycle of type 2, 3, or 4, and A

i

gets blocked within

x�x upon emptying its input channel (because the blocking of A

i

on a

nonempty input channel would contradict �x v 


2

). Now A

i

's mate is in

its initial state after x, by the choice of x. Let y be the �rst transition of

A

i

's mate in 


2

, and write �y for the rest of A

i

's mate's cycle beginning

with y. Note that �y v 


2

because 


2

is su�ciently long and A

i

's input

channel is empty after x. We further distinguish two subcases.

Subcase 2.1: A

i

gets blocked within x�x immediately after executing

+q, q 2 Q

M

, in a cycle of type 2, 3, or 4. Then, by Lemma 3.4,

A

i

's mate cannot become active until A

i

is unblocked. Hence y is

the �rst transition of a cycle of type 1. But then 


1

y�yx(


2

� (y�y))

is executable because x is a reception and �y an emission.

Subcase 2.2: A

i

gets blocked immediately after x in a cycle of type 4.

Then A

i

will not emit until it receives some q 2 Q

M

followed by

some a 2 �

M

. Since A

i

's mate is in its initial state, y must be the

beginning of a cycle of type 2 or 4. In such a cycle,A

i

's mate emits

only when all its receptions are complete. Hence 


1

xy�y(


2

� (y�y))

is executable, and so is 


1

y�yx(


2

� (y�y)) because x is a reception.

All other subcases in fact fall into Case 1. This therefore proves our

claim and concludes the proof of the lemma. 2

Lemma 3.6 Let fi; jg = f1; 2g and suppose that A

i

is active in global state

s = (1; 1; 


1

; 


2

). If k > 4j


i

j + 6j


j

j+ 3 and s! s

1

! s

2

! � � � ! s

k

, then

A

j

enters a head processing state in some s

j

, 1 � j � k.

11



Proof. The following strategy (or any interleaving thereof) will postpone

A

j

entering a head processing state for the longest time:

1. A

j

consumes 


i

using copying cycles,

2. A

i

consumes 


j




i

using copying cycles and one cycle of type 2, 3 or 4,

3. A

j

executes at most j


j

j copying cycles and stops short of consuming

q 2 Q

M

,

4. A

i

empties its input channel using at most j


j

j copying cycles,

5. A

j

enters its head processing state. 2

Corollary 3.7 An in�nite sequence � in RT(S; s

0

) with no interrupted cycle

contains an in�nite number of cycles of type 3 or 4.

Proof. An induction using Lemma 3.6 proves that � contains an in�nite

number of cycles of type 2, 3, or 4. Let 
 v � be the subsequence composed

of all such cycles. Then by Lemma 3.4 and by the nature of type 2 cycles,

no two type 2 cycles can appear consecutively in 
. Hence 
 must contain

in�nitely many cycles of type 3 or 4. 2

Consider a state s = (1; 1; 


1

; 


2

) in RS(S; s

0

). We wish to extract from

s a con�guration of M . Adapting the corresponding notion from [4], we

thus de�ne contour(s) = �

1




j

�

2

#, where fi; jg = f1; 2g and 


i

is the unique

channel content expressible as �

2

#�

1

.

Proposition 3.8 Let s

0

! s

1

! � � � ! s

n

be a sequence with no interrupted

cycle, in which there are k occurrences of a cycle of type 3 or 4. Then there

exist i

1

< i

2

< : : : < i

k

such that C

j

= contour(s

i

j

) for 1 � j � k, and

C

0

`

M

C

1

`

M

C

2

`

M

� � � `

M

C

k

:

Proof. By induction on k. In the inductive step, we use the fact that

contour is not a�ected by copying cycles, and that the execution of one cycle

of type 2 maintains contour as a faithful representation of the con�guration

of M attained inductively. Hence the next cycle of type 3 or 4 encountered

prescribes the next legal transition of M . 2

12



3.3 Undecidability consequences

Theorem 3.9 The boundedness problem and the �nite reachability tree prob-

lem for a system of two identical initial CFSMs are undecidable.

Proof. In the terminology of Sections 3.1 and 3.2, we prove that the

following are equivalent:

1. M accepts w,

2. RT(S(M); s

0

(M;w)) is �nite,

3. RS(S(M); s

0

(M;w)) is �nite.

(1) ) (2): Let M accept w. Suppose to the contrary that RT(S; s

0

) is

in�nite. Then some branch in RT(S; s

0

) is in�nite. Therefore, by Lemma 3.5

and Corollary 3.7, RT(S; s

0

) contains an in�nite branch with no interrupted

cycle and with an in�nite number of transitions of type 3 or 4. But then

Proposition 3.8 implies the existence of an in�nite computation of M from

con�guration q

0

w#. This is a contradiction since M accepts w.

(2) ) (3): Immediate.

(3) ) (1): Let RS(S; s

0

) be �nite. Suppose to the contrary that M rejects

w. Then C

0

`

M

C

1

`

M

C

2

`

M

� � � extends inde�nitely. By our Turing ma-

chine assumptions, all the C

i

's are distinct. Hence, by Proposition 3.1, there

exists a branch in RT(S; s

0

) having in�nitely many distinct states. This is a

contradiction.

The halting problem for Turing machines therefore reduces to the reach-

ability tree �niteness problem, and it reduces to the boundedness problem

(both via a many-one reduction). Hence the latter two problems are unde-

cidable. 2

4 Indistinguishable initial CFSMs

In the notation of Section 3, here we show how to implement one-time mutual

exclusion and thus construct an initial global state in which initial local states

are identical and initial channels are empty.

The idea is to add initializing cycles to the CFSMs constructed in Section

3. The di�culty is to prevent these new cycles from creating havoc in the

13



rest of the simulation, keeping in mind that the two CFSMs constructed must

remain identical. There are two initializing cycles, each of which is added

to each of the two CFSMs. In our diagram we partly overlap the two cycles

in order to make the correctness proof more manageable, but the two cycles

can be thought of as meeting only at local state 1. Symbols a and b are new

symbols never encountered before.

First initializing cycle:

1. Emit: a

2. Receive: a

3. Emit: a

4. Receive: b

Second initializing cycle:

1. Emit: a

2. Receive: a

3. Receive: a

4. Emit: b

5. Emit: q

0

w#

1 2

6

5

4

3
�a +a

+b �a

�b

+a

�q

0

w#

We still write S = (A

1

; A

2

) for the resulting system, and we de�ne s

�

=

(1; 1;�; �). Intuitively, both CFSMs cannot engage from s

�

into the �rst

initialization cycle because the system would block on +b. On the other

hand, when a CFSM A

i

engages into the second cycle, its mate must have

engaged far enough into the �rst cycle to produce two consecutive a. At

this point, A

i

emits a b to release its mate, and A

i

sets up its mate's input

channel for its mate to begin the simulation proper. From then on, except

in harmless transient situations, the two communicating channels are never

simultaneously empty, so that any attempt to reexecute an initializing cycle

quickly blocks the system. The next lemma makes this formal.

Lemma 4.1 For any su�ciently long branch � in RT(S; s

�

), there exists a

branch �

1

�

2

� � in RT(S; s

�

) such that

1. s

�

�

1

�! (1; 1; q

0

w#; �) or s

�

�

1

�! (1; 1;�; q

0

w#), and

2. x 6v �

2

for any transition x belonging to an initialization cycle.

Proof. Consider the top part of RT(S; s

�

), depicted on Figure 1. Any

nonblocking branch � out of s

�

either has a pre�x �

1

that satis�es the �rst

14



1; 1;�; �

2; 1; a; �

2; 2; a; a

2; 3;�; a

3; 3;�; �

4; 3; a; �

2; 4;�; aa

5; 4;�; �4; 4; a; a

[1; 2;�; a]

[3; 2; a; �]

[3; 4;�; a]

[4; 5;�; �]

3; 4;�; a

6; 4; b; �

2; 1; q

0

w#a; �

6; 1;�; �1; 4; bq

0

w#; �

6; 2;�; a2; 4; bq

0

w#a; �

�

�

�

1; 1; q

0

w#; � 1; 1;�; q

0

w#

2; 2; q

0

w#a; a

1; 2; q

0

w#; a

A

2

blocked A

1

blocked

2; 1;w

0

a; z

A

2

blocked

A

1

and A

2

blocked

�

Figure 1: Initialization portion of RT(S; s

�

). Local states are those in the

initialization cycles. [s] indicates that the state s is the dual of a state

explored elsewhere in the tree, z is a symbol di�erent from a, and \blocked"

means \blocked forever".
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condition, or it has a pre�x which di�ers from such a �

1

in that one CFSM

has begun consuming q

0

w# which its mate has not �nished emitting. In

the latter situation the pre�x can be rearranged into a �

1

satisfying the �rst

condition.

Now consider an attempt to reinitialize within the su�x �

2

= ���

1

. Let

�

2

= 


1

x


2

where x is the �rst occurrence of the �rst transition (emission of

a) in one of the two initialization cycles. Then, by Lemma 3.4, A

i

for some

i 2 f1; 2g is active immediately after 


1

; in particular, A

i

's input channel is

nonempty or A

i

is in a head processing state.

If x is an A

i

transition, then A

i

's input channel is nonempty and A

i

is

blocked forever on +a, so � cannot be su�ciently long. On the other hand,

if x is an A

j

transition, j 6= i, then A

j

's input channel must have been

empty before x (otherwise A

j

itself blocks forever on +a). Hence the �rst A

i

emission in 


2

must be a. This forces A

i

in 


2

to engage into an initialization

cycle on its nonempty input channel. Hence A

i

blocks forever on +a, once

again contradicting the length of �. 2

Theorem 4.2 The boundedness problem and the �nite reachability tree prob-

lem for a system of two CFSMs are undecidable, even when the CFSMs are

taken to be initial, identical, with identical starting states and with empty

initial channel contents.

Proof. The proof of Theorem 3.9 applies as well when the initializing

cycles described in this section are added and when the initial global state

is s

�

rather than s

0

. Indeed it is easy to see that an analog of Proposition

3.1 holds here. For the converse, Lemma 4.1 guarantees that any in�nite

branch in RT(S; s

�

) can be thought of as containing the global state s

0

(or

its dual (1; 1;�; q

0

w#)), and that the initializing cycles cannot interfere with

an in�nite branch out of s

0

or its dual, so that an analog of Proposition 3.8

holds as well. 2

5 Conclusion

We have generalized the �rst result of Brand and Za�ropulo [4] by showing

that, even under new natural constraints arising from the modelisation and

the veri�cation of distributed algorithms, the CFSM model remains intrinsi-

cally undecidable. More precisely, even if the communicating automata are
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identical, indistinguishable and initial, the �nite reachability tree problem

and the boundedness problem remain undecidable.

Our results strengthen Brand and Za�ropulo's �rst result and con�rm

that in general, systems of CFSMs are extremely di�cult to verify. It seems

that the veri�cation of such systems will require new formal test methods

which, despite their partial coverage of all possible input situations, would

nonetheless often allow full veri�cation. An example of such a test would be

to verify the Petri net naturally associated with a system of identical CFSMs

and to extract from this necessary or su�cient conditions for its correctness.

Acknowledgements. We thank Herv�e Caussinus for comments on a

preliminary version of this paper.
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