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1 Introduction

A security API is an Application Program Interface that allows untrusted code
to access sensitive resources in a secure way. Examples of security APIs include
the interface between the tamper-resistant chip on a smartcard (trusted) and
the card reader (untrusted), the interface between a cryptographic Hardware
Security Module, or HSM (trusted) and the client machine (untrusted), and the
Google maps API (an interface between a server, trusted by Google, and the
rest of the Internet).

The crucial aspect of a security API is that it is designed to enforce a policy,
i.e. no matter what sequence of commands in the interface are called, and no
matter what the parameters, certain security properties should continue to hold.
This means that if the less trusted code turns out to be malicious (or just faulty),
the carefully designed API should prevent compromise of critical data.

Designing such an interface is extremely tricky even for experts. A number
of security flaws have been found in APIs in use in deployed systems in the last
decade. In this tutorial paper, we introduce the subject of security API analy-
sis using formal techniques. This approach has recently proved highly successful
both in finding new flaws and verifying security properties of improved designs.
We will introduce the main techniques, many of which have been adapted from
language-based security and security protocol verification, by means of two case
studies: cryptographic key management, and Personal Identification Number
(PIN) processing in the cash machine network. We will give plenty of exam-
ples of API attacks, and highlight the areas where more research is needed.

2 Background

The first security vulnerability that may properly be called an ‘API attack’,
and thus highlighted the security API as a critical design point, was discovered
by Longley and Rigby in the early 1990s [41]. Their article showed how the
logic programming language Prolog could be used to analyse a key management
interface of a cryptographic device. Although the device was not identified at
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the time, it later became known that it was an HSM manufactured by Eracom
and used in the cash machine network. In 2000, Anderson published an attack
on key loading procedures on another similar module manufactured by Visa [5],
and the term ‘security API’ was coined by Bond and Anderson [12, 13] in two
subsequent papers giving more attacks. Clayton and Bond showed how one of
their more computationally intensive attacks could be implemented against a
real IBM device using programmable FPGA hardware [21]. Independently from
the Cambridge group, an MSc thesis by Clulow gave more examples of attacks,
mostly specific to the PIN translation and verification commands offered by the
API of Prism HSMs [22]. Clulow also published attacks on the industry standard
for cryptographic key management APIs, RSA PKCS#11 [23].

Up until this point all the attacks had been discovered by manual analysis or
by ad-hoc semi-formal techniques specific to the particular API under considera-
tion. A first effort to apply more general formal tools, specifically the automatic
first-order theorem prover Otter, was not especially successful, and the results
remain unpublished (though they are available in a technical report [52]). The
researchers were unable to discover any new attacks, and because the modelling
lacked formal groundwork, when no attacks were found they were unable to con-
clude anything about the security of the device. One member of the team later
remarked that “It ended up being more about how to use the tools than about
analysing the device.” [35].

Meanwhile, the formal analysis of protocols for e.g. cryptographic key ex-
change and authentication had become a mature field. A particularly success-
ful approach had centred around the so-called Dolev-Yao (DY) abstract model,
where bitstrings are modelled as terms in an abstract algebra, and cryptographic
functions are functions on these terms [27]. Together with suitable abstractions,
lazy evaluation rules and other heuristics, this model has proved highly amenable
to automated analysis, by model checking or theorem proving techniques [8, 11,
28, 42]. Modern automated tools can check secrecy and authentication properties
of (abstract models of) widely-used protocols such as Kerberos and TLS in a
few seconds.

The idea of applying protocol analysis techniques to the analysis of security
APIs seemed very attractive. However, initial experiments showed that existing
tools were not suitable for the problem [14, 38] for a number of reasons: In par-
ticular many of the attacks pertinent to security APIs are outside the scope of
the normal DY model. For example, they might involve an attacker learning a
secret value, such as a cash machine PIN, by observing error messages returned
by the API (a so-called error oracle attack). Furthermore, the functionality of
security APIs typically depends on global mutable state which may loop, a fea-
ture which invalidates many abstractions and optimisations made by protocol
analysis tools, particularly when freshly generated nonces and keys are consid-
ered. There are also problems of scale - a protocol might describe an exchange
of 5 messages between two participants, while an API will typically offer dozens
of commands.



In the sections that follow, we will show how formal analysis techniques have
been adapted to security API problems. The aim of this paper is to serve as an
introduction to the field. As such, the technical material is introduced by means
of two case studies. The first is based around the RSA standard for cryptographic
interfaces PKCS#11, while the second concerns commands for PIN processing
using HSMs in the cash machine network. We follow these two case studies with
a discussion of open problems.

3 Key Management with RSA PKCS#11

Cryptographic key management, i.e. the secure creation, storage, backup, use
and destruction of keys has long been identified as a major challenge in applied
cryptography. Indeed, Schneier calls it “the hardest part of cryptography and
often the Achilles’ heel of an otherwise secure system.” [48]. In real-world appli-
cations, key management often involves the use of HSMs or cryptographic tokens,
since these are considered easier to secure than commodity hardware, and indeed
are mandated by standards in certain sectors [37]. There is also a growing trend
towards enterprise-wide schemes based around key management servers offering
cryptographic services over open networks [18]. All these solutions aim to enforce
security by dividing the system into trusted parts (HSM, server) and untrusted
parts (host computer, the rest of the network). The trusted part makes crypto-
graphic functions available via an API. Hence we arrive at our first security API
problem: how to design an interface for a key management device so that we
can create, delete, import and export keys from the device, as well as permitting
their use for encryption, decryption, signature and verification, all so that if the
device comes into contact with a malicious application we can be sure the keys
stay secure. This is far from trivial, as well will see from our case study of the
most widely used standard for such interfaces, RSA PKCS#11.

3.1 The PKCS#11 standard

RSA Public Key Cryptography Standards (PKCS) aim to standardise various as-
pects of cryptography to promote interoperability and security. PKCS#1, for ex-
ample, defines the RSA asymmetric encryption and signing algorithm. PKCS#11
describes the ‘Cryptoki’ API for cryptographic hardware. Version 1.0 was pub-
lished in 1995. The latest official version is v2.20 (2004) which runs to just
under 400 pages [47]. Adoption of the standard is almost ubiquitous in commer-
cial cryptographic tokens and smartcards, even if other interfaces are frequently
offered in addition.

In a PKCS#11-based API, applications initiate a session with the crypto-
graphic token, by supplying a PIN. Note that if malicious code is running on the
host machine, then the user PIN may easily be intercepted, e.g. by a keylogger
or by a tampered device driver, allowing an attacker to create his own sessions
with the device, a point conceded in the security discussion in the standard [47,



p. 31]. PKCS#11 is intended to protect its sensitive cryptographic keys even
when connected to a compromised host.

Once a session is initiated, the application may access the objects stored
on the token, such as keys and certificates. However, access to the objects is
controlled. Objects are referenced in the API via handles, which can be thought
of as pointers to or names for the objects. In general, the value of the handle,
e.g. for a secret key, does not reveal any information about the actual value of
the key. Objects have attributes, which may be bitstrings e.g. the value of a key,
or Boolean flags signalling properties of the object, e.g. whether the key may be
used for encryption, or for encrypting other keys. New objects can be created by
calling a key generation command, or by ‘unwrapping’ an encrypted key packet.
In both cases a new handle is returned.

When a function in the token’s API is called with a reference to a particular
object, the token first checks that the attributes of the object allow it to be used
for that function. For example, if the encrypt function is called with the handle
for a particular key, that key must have its encrypt attribute set. To protect a key
from being revealed, the attribute sensitive must be set to true. This means that
requests to view the object’s key value via the API will result in an error message.
Once the attribute sensitive has been set to true, it cannot be reset to false. This
gives us the principal security property stated in the standard: attacks, even if
they involve compromising the host machine, cannot “compromise keys marked
‘sensitive’, since a key that is sensitive will always remain sensitive”, [47, p. 31].
Such a key may be exported outside the device if it is encrypted by another key,
but only if its extractable attribute is set to true. An object with an extractable
attribute set to false may not be read by the API, and additionally, once set
to false, the extractable attribute cannot be set to true. Protection of the keys
essentially relies on the sensitive and extractable attributes.

3.2 The Wrap-Decrypt Attack

Clulow first published attacks on PKCS#11 based APIs in 2003 [23], where he
gave many examples of ways in which keys with the sensitive attribute set to
true could be read in clear outside the device. The most straightforward of these
is the ‘key separation’ attack, where the attributes of a key are set in such a way
as to give a key conflicting roles. Clulow gives the example of a key with the
attributes set for decryption of ciphertexts, and for ‘wrapping’, i.e. encryption
of other keys for secure transport.

To determine the value of a sensitive key, the attacker simply wraps it and
then decrypts it, as shown in Fig. 1. The attack is described with a notation
for PKCS#11 based APIs briefly defined in the following and more formally in
the next section: h(n1, k1) is a predicate stating that there is a handle encoded
by n1 for a key k1 stored on the device. The symmetric encryption of k1 under
key k2 is represented by {|k1|}k2 . Note also that according to the wrapping formats
defined in PKCS#11, the device cannot tell whether an arbitrary bitstring is
a cryptographic key or some other piece of plaintext. Thus when it executes



Initial knowledge: The intruder knows h(n1, k1) and
h(n2, k2). The name n2 has the attributes wrap and
decrypt set whereas n1 has the attribute sensitive and
extractable set.

Trace:

Wrap: h(n2, k2), h(n1, k1) → {|k1|}k2
SDecrypt: h(n2, k2), {|k1|}k2 → k1

Fig. 1. Wrap/Decrypt attack

the decrypt command, it has no way of telling that the packet it is decrypting
contains a key.

It might appear easy to prevent such an attack, but as we shall see, it is in
fact rather difficulty within the confines of PKCS#11. Before treating this in
detail, we will introduce our language for formal modelling of the API.

3.3 Formal Model

Our model follows the approach used by Delaune, Kremer and Steel (DKS) [25].
The device is assumed to be connected to a host under the complete control
of an intruder, representing a malicious piece of software. The intruder can call
the commands of the API in any order he likes using any values that he knows.
We abstract away details of the cryptographic algorithms in use, following the
classical approach of Dolev and Yao [27]. Bitstrings are modelled as terms in
an abstract algebra. The rules of the API and the abilities of an attacker are
written as deduction rules in the algebra.

Basic Notions We assume a given signature Σ, i.e. a finite set of function
symbols, with an arity function ar : Σ → N, a (possibly infinite) set of names N
and a (possibly infinite) set of variables X . Names represent keys, data values,
nonces, etc. and function symbols model cryptographic primitives, e.g. {|x|}y rep-
resenting symmetric encryption of plaintext x under key y, and {x}y representing
public key encryption of x under y. Function symbols of arity 0 are called con-
stants. This includes the Boolean constants true (>) and false (⊥). The set of
plain terms PT is defined by the following grammar:

t, ti := x x ∈ X
| n n ∈ N
| f(t1, . . . , tn) f ∈ Σ and ar(f) = n

We also consider a finite set F of predicate symbols, disjoint from Σ, from which
we derive a set of facts. The set of facts is defined as

FT = {p(t, b) | p ∈ F , t ∈ PT , b ∈ {>,⊥}}



In this way, we can explicitly express the Boolean value b of an attribute p on a
term t by writing p(t, b). For example, to state that the key referred to by n has
the wrap attribute set we write wrap(n,>).

The description of a system is given as a finite set of rules of the form

T ;L
new ñ−−−→ T ′;L′

where T, T ′ ⊆ PT are sets of plain terms L,L′ ⊆ F are sets of facts and ñ ⊆ N
is a set of names. The intuitive meaning of such a rule is the following. The rule
can be fired if all terms in T are in the intruder knowledge and if all the facts
in L hold in the current state. The effect of the rule is that terms in T ′ are
added to the intruder knowledge and the valuation of the attributes is updated
to satisfy L′. The new ñ means that all the names in ñ need to be replaced by
fresh names in T ′ and L′. This allows us to model nonce or key generation: if
the rule is executed several times, the effects are different as different names will
be used each time.

Example 1. The following rule models wrapping:

h(x1, y1), h(x2, y2); wrap(x1,>), extract(x2,>)→ {|y2|}y1

Intuitively, h(x1, y1) is a handle x1 for key y1 while term {|y2|}y1 represents a key y2
wrapped with y1. Since the attribute wrap for key y1 is set, noted as wrap(x1,>),
and key y2 is extractable, written extract(x2,>), then we can wrap y2 with y1,
creating {|y2|}y1 .

The semantics of the model is defined in a standard way in terms of a transi-
tion system. Each state in the model consists of a set of terms in the intruder’s
knowledge, and a set of global state predicates. The intruder’s knowledge in-
creases monotonically with each transition (he can only learn more things), but
the global state is non-monotonic (attributes may be set on and then off). For
a formal semantics, we refer to the literature [25]. We now present in Fig. 2 a
subset of PKCS#11 commands sufficient for some basic symmetric key man-
agement commands (the asymmetric key has also been treated in the literature
[26]). This will suffice to demonstrate the modelling technique and some attacks.

3.4 Using the Formal Model

We first add some rules to the model for the intruder that allow him to encrypt
and decrypt using his own keys (see Fig. 3). The intruder is assumed not to be
able to crack the encryption algorithm by brute-force search or similar means,
thus he can only read an encrypted message if he has the correct key. We analyse
security as reachability, in the model, of attack states, i.e. states where the
intruder knows the value of a key stored on the device with the sensitive attribute
set to true, or the extractable attribute set to false. We give the intruder some
initial knowledge, typically just some key ki that is not loaded on the device,



KeyGenerate :
new n1,k1−−−−−→ h(n1, k1); L(n1), extract(n1,>)

Wrap :
h(x1, y1), h(x2, y2); wrap(x1,>), extract(x2,>) → {|y2|}y1

Unwrap :

h(x2, y2), {y1}y2 ; unwrap(x2,>)
new n1−−−−→ h(n1, y1); L(n1)

Encrypt : h(x1, y1), y2; encrypt(x1,>) → {|y2|}y1
Decrypt : h(x1, y1), {|y2|}y1 ; decrypt(x1,>) → y2

Set Wrap : h(x1, y1); wrap(x1,⊥) → wrap(x1,>)
Set Encrypt : h(x1, y1); encrypt(x1,⊥) → encrypt(x1,>)

...
...

UnSet Wrap : h(x1, y1); wrap(x1,>) → wrap(x1,⊥)
UnSet Encrypt : h(x1, y1); encrypt(x1,>) → encrypt(x1,⊥)

...
...

L = wrap(n1,⊥), unwrap(n1,⊥), encrypt(n1,⊥), decrypt(n1,⊥), sensitive(n1,⊥)

Fig. 2. PKCS#11 Symmetric Key Fragment.

x, y → {|x|}y
{|x|}y, y → x

Fig. 3. Intruder rules for symmetric key cryptography.

and then use a tool such as a model checker to search the model for a chain of
commands and intruder steps that leads to an attack state.

Unfortunately we immediately encounter both theoretical and practical prob-
lems. First, we know that the reachability problem in general for languages like
this is undecidable: even with fixed message size there is a reduction to the Post
correspondence problem [29, table 12, page 298]. Even so we might hope to find
some attacks in practice. But in fact the model checker is quickly swamped by the
combinatorial possibilities, many of which at first sight seem unlikely to lead to
an attack. For example, the intruder can take an already encrypted term {|k1|}k2 ,
and use it as input to the encrypt command along with some handle h(n, k3) to
obtain {|{|k1|}k2 |}k3 . Unfortunately one cannot in general just delete these terms
from the intruder knowledge: they may be a necessary step for some fiendish
attack. Fortunately we can address both the the theoretical and practical prob-
lems at once, by means of a well-modedness result [26]. There it is shown that
each function symbol such as h(., .), {|.|}. can be given a unique interpretation in
terms of modes. For example, h(., .) has mode Nonce× Key→ Handle. We assign
to each constant symbol a mode. A term is well-moded if all the function symbols



in it are applied to symbols such that the modes are respected. Furthermore, any
reachability query that can be expressed with well-moded terms is satisfiable if
and only if it it is reachable by a sequence of steps where the intruder learns only
well-moded terms. This allows us to prune the search space dramatically, since
any branch that results in the creation of an ill-moded term can be ignored. If
the function symbols can be moded acyclically, we can also show decidability
provided we bound fresh handles and keys. Consult the paper for details and
proofs [26].

3.5 A Suite of Attacks

Equipped with a suitable formal model and a model checker, we can attempt to
find secure configurations of the standard. Clulow’s first suggestion for prevent-
ing the attack in Fig. 1 is to prevent attribute changing operations from allowing
a stored key to have both wrap and decrypt set. Note that in order to do this, it
is not sufficient merely to check that decrypt is unset before setting wrap, and to
check wrap is unset before setting decrypt. One must also add wrap and decrypt
to a list of ‘sticky’ attributes which once set, may not be unset, or the attack is
not prevented, [51]. Effectively this means the unset rules will be omitted from
the model for these attributes. Having applied these measures, we discover the
attack given in Fig. 4. The intruder imports his own key k3 by first encrypting
it under k2, and then unwrapping it. He can then export the sensitive key k1
under k3 to discover its value.

Initial state: The intruder knows the handles h(n1, k1), h(n2, k2) and
the key k3; n1 has the attributes sensitive and extract set whereas n2 has
the attributes unwrap and encrypt set.

Trace:

Encrypt: h(n2, k2), k3 → {|k3|}k2
Unwrap: h(n2, k2), {|k3|}k2

new n3−−−→h(n3, k3)
Set wrap: h(n3, k3) → wrap(n3,>)
Wrap: h(n3, k3), h(n1, k1) → {|k1|}k3
Intruder: {|k1|}k3 , k3 → k1

Fig. 4. Attack using encrypt and unwrap.

To prevent the attack shown in Fig. 4, we add encrypt and unwrap to the list of
conflicting attribute pairs. Another new attack is discovered (see Fig. 5) of a type
discussed by Clulow, [23, Section 2.3]. Here the key k2 is first wrapped under k2
itself, and then unwrapped, gaining a new handle h(n4, k2). The intruder then
wraps k1 under k2, and sets the decrypt attribute on handle h(n4, k2), allowing
him to obtain k1.



Initial state: The intruder knows the handles h(n1, k1), h(n2, k2); n1 has
the attributes sensitive, extract and whereas n2 has the attribute extract
set.

Trace:

Set wrap: h(n2, k2) → wrap(n2,>)
Wrap: h(n2, k2), h(n2, k2) → {|k2|}k2
Set unwrap: h(n2, k2) → unwrap(n2,>)

Unwrap: h(n2, k2), {|k2|}k2
new n4−−−→ h(n4, k2)

Wrap: h(n2, k2), h(n1, k1) → {|k1|}k2
Set decrypt: h(n4, k2) → decrypt(n4,>)
Decrypt: h(n4, k2), {|k1|}k2 → k1

Fig. 5. Re-import attack 1.

One can attempt to prevent the attack in Fig. 5 by adding wrap and unwrap
to our list of conflicting attribute pairs. Now in addition to the initial knowledge
from the first three experiments, we give the intruder an unknown key k3 en-
crypted under k2. Again he is able to affect an attack similar to the one above,
this time by unwrapping {|k3|}k2 twice (see Fig. 6).

Initial state: The intruder knows the handles h(n1, k1), h(n2, k2); n1 has
the attributes sensitive, extract and whereas n2 has the attribute extract
set. The intruder also knows {|k3|}k2 .

Trace:

Set unwrap: h(n2, k2) → unwrap(n2,>)

Unwrap: h(n2, k2), {|k3|}k2
new n3−−−→ h(n3, k3)

Unwrap: h(n2, k2), {|k3|}k2
new n4−−−→ h(n4, k3)

Set wrap: h(n3, k3) → wrap(n3,>)
Wrap: h(n3, k3), h(n1, k1) → {|k1|}k3
Set decrypt: h(n4, k3) → decrypt(n4,>)
Decrypt: h(n4, k3), {|k1|}k3 → k1

Fig. 6. Re-import attack 2.

This sample of the attacks found show how difficult PKCS#11 is to con-
figure in a safe way, and indeed there are several more attacks documented in
the literature [17, 23, 26, 33] and perhaps more to discover. Another line of re-
search has consisted of trying to propose secure subsets of the API together with
a suitable security proof. An obstacle here is the fresh generation of keys and
handles: if there are no attacks in the model after generating n fresh keys, how
do we know there are no attacks after generating n + 1? To address this prob-



Fig. 7. Tookan system diagram

lem, Fröschle and Steel proposed abstractions for handles and keys that allow
security proofs for unbounded fresh data [33]. In particular, they showed the
security of a symmetric key management subset based around the proprietary
extensions to PKCS#11 made by Eracom, where keyed hashes are used to bind
attributes to keys under wrapping, ensuring that they are re-imported with the
same attributes.

3.6 Finding Attacks on Real Devices

Attacks on the standard are interesting in themselves, but in reality every de-
vice implements a different subset of PKCS#11 with different restrictions on the
use of each command. How can one know whether a particular device is vulner-
able? To address this, Bortolozzo, Centenaro, Focardi and Steel developed the
Tookan3 tool [17]. Tookan functions as shown in Fig. 7. First, Tookan extracts the
capabilities of the token following a reverse engineering process (1). The results
of this task are written in a meta-language for PKCS#11 models. Tookan uses
this information to generate a model the language described above (2), which is
encoded for input to the SATMC model checker [9]. If SATMC finds an attack,
the attack trace (3) is sent to Tookan for testing directly on the token (4).

Changes to the model There are several differences between Tookan’s model
and the model of section 3.3. One is that Tookan takes into account key templates.
In section 3.3, the key generation commands create a key with all attributes un-
set (see Fig. 2). Attributes are then enabled one by one using the SetAttribute
command. In our experiments with real devices, we discovered that some tokens
do not allow attributes of a key to be changed. Instead, they use a key tem-
plate specifying settings for the attributes which are given to freshly generated
keys. Templates are used for the import of encrypted keys (unwrapping), key
creation using CreateObject and key generation. The template to be used in a
specific command instance is specified as a parameter, and must come from a
set of valid templates, which we label G, C and U for the valid templates for key
generation, creation and unwrapping respectively. Tookan can construct the set
of templates in two ways: the first, by exhaustively testing the commands using
templates for all possible combinations of attribute settings, which may be very
time consuming, but is necessary if we aim to verify the security of a token.

3 Tool for cryptoki analysis.



The second method is to construct the set of templates that should be allowed
based on the reverse-engineered attribute policy (see next paragraph). This is
an approximate process, but can be useful for quickly finding attacks. Indeed,
in our experiments, we found that these models reflected well the operation of
the token, i.e. the attacks found by the model checker all executed on the tokens
without any ‘template invalid’ errors.

Attribute Policies Most tokens tested attempt to impose some restrictions
on the combinations of attributes that can be set on a key and how these may
be changed. There are four kinds of restriction that Tookan can infer from its
reverse engineering process:

Sticky on These are attributes that once set, may not be unset. The PKCS
#11 standard lists some of these [47, Table 15]: sensitive for secret keys, for
example. The UnsetAttribute rule is only included for attributes which are not
sticky on. To test if a device treats an attribute as sticky on, Tookan attempts
to create a key with the attribute on, and then calls SetAttribute to change the
attribute to off.

Sticky off These are attributes that once unset may not be set. In the
standard, extractable is listed as such an attribute. The SetAttribute rule is only
included for attributes which are not sticky off. To test if a device treats an
attribute as sticky on, Tookan attempts to create a key with the attribute off,
and then calls SetAttribute to change the attribute to on.

Conflicts Many tokens (appear to) disallow certain pairs of attributes to
be set, either in the template or when changing attributes on a live key. For
example, some tokens do not allow sensitive and extractable to be set on the same
key. The SetAttribute rule is adjusted to prevent conflicting attributes from being
set on an object or on the template. When calculating the template sets C,G,U
(see above), we forbid templates which have both the conflicting attributes set.
To test if a device treats an attribute pair as a conflict, Tookan attempts to
generate a key with the the pair of attributes set, then if no error is reported,
it calls GetAttribute to check that the token really has created a key with the
desired attributes set.

Tied Some tokens automatically set the value of some attributes based on the
value of others. For example, many tokens set the value of always sensitive based
on the value of the attribute sensitive. The SetAttribute and UnsetAttribute rules
are adjusted to account for tied attributes. The template sets C,G,U are also
adjusted accordingly. To test if a device treats an attribute pair as tied, Tookan
attempts to generate a key with some attribute a on and all other attributes off.
It then uses GetAttribute to examine the key as it was actually created, and tests
to see if any other attributes were turned on.

Limitations of Reverse Engineering Tookan’s reverse engineering process
is not complete: it may result in a model that is too restricted to find some
attacks possible on the token, and it may suggest false attacks which cannot be



Device Supported Functionality Attacks found
Company Model sym asym cobj chan w ws a1 a2 a3 a4 a5 mc

USB

Aladdin eToken PRO X X X X X X X X a1
Athena ASEKey X X X
Bull Trustway RCI X X X X X X X X a1
Eutron Crypto Id. ITSEC X X
Feitian StorePass2000 X X X X X X X X X a3
Feitian ePass2000 X X X X X X X X X a3
Feitian ePass3003Auto X X X X X X X X X a3
Gemalto SEG X X
MXI Security Stealth MXP Bio X X X
RSA SecurID 800 X X X X X X X a3
SafeNet iKey 2032 X X X X
Sata DKey X X X X X X X X X X X a3

Card
ACS ACOS5 X X X X
Athena ASE Smartcard X X X
Gemalto Cyberflex V2 X X X X X X a2
Gemalto Classic TPC IS V1 X X
Gemalto Classic TPC IS V2 X X X X X X X X X X a3
Siemens CardOS V4.3 B X X X X X a4

Soft
Eracom HSM simulator X X X X X X X X a1
IBM opencryptoki 2.3.1 X X X X X X X X X a1

Table 1. Summary of results on devices.

executed on the token. This is because in theory, no matter what the results of
our finite test sequence, the token may be running any software at all, perhaps
even behaving randomly. However, if a token implements its attribute policy in
the manner in which we can describe it, i.e. as a combination of sticky on, sticky
off, conflict and tied attributes, then our process is complete in the sense that
the model built will reflect exactly what the token can do (modulo the usual
Dolev-Yao abstractions for cryptography).

In our testing, the model performed very well: the Tookan consistently found
true attacks on flawed tokens, and we were unable to find ‘by hand’ any attacks
on tokens which the model checker deemed secure. This suggests that real devices
do indeed implement their attribute policies in a manner similar to our model.

3.7 Results

Table 1 summarises the results obtained by Tookan on a number of devices as
well as two software simulators.

Implemented functionality Columns ‘sym’ and ‘asym’ respectively indicate
whether or not symmetric and asymmetric key cryptography are supported.
Column ‘cobj’ refers to the possibility of inserting external, unencrypted, keys



Acronym Description

Supported
functionality

sym symmetric-key cryptography
asym asymmetric-key cryptography
cobj inserting new keys via C CreateObject

chan changing key attributes
w wrapping keys
ws wrapping sensitive keys

Attacks

a1 wrap/decrypt attack based on symmetric keys
a2 wrap/decrypt attack based on asymmetric keys
a3 sensitive keys are directly readable
a4 unextractable keys are directly readable (forbidden

by the standard)
a5 sensitive/unextractable keys can be changed into

nonsensitive/extractable
mc first attack found by Tookan

Table 2. Key for table 1.

on the device via C CreateObject PKCS#11 function. This is allowed by almost
all of the analysed tokens, although it wasn’t included in the original model of the
standard used by Delaune, Kremer and Steel [26]. The next column, ‘chan’, refers
to the possibility of changing key attributes through C SetAttributeValue. The
following two columns, ‘w’ and ‘ws’, respectively indicate whether the token
permits wrapping of nonsensitive and sensitive keys.

Attacks Attack a1 is a wrap/decrypt attack as discussed in section 3.2. The
attacker exploits a key k2 with attributes wrap and decrypt and uses it to attack
a sensitive key k1. Using our notation from section 3.3:

Wrap: h(n2, k2), h(n1, k1) →{|k1|}k2
Decrypt: h(n2, k2), {|k1|}k2 →k1

As we have discussed above, the possibility of inserting new keys in the token
(column ‘cobj’) might simplify further the attack. It is sufficient to add a known
wrapping key:

CreateObject: k2
new n2−−−−→h(n2, k2)

Wrap: h(n2, k2), h(n1, k1) →{|k1|}k2
The attacker can then decrypt {|k1|}k2 since he knows key k2. SATMC discovered
this variant of the attack on several vulnerable tokens. Despite its apparent sim-
plicity, this attack had not appeared before in the PKCS#11 security literature
[23, 25].

Attack a2 is a variant of the previous ones in which the wrapping key is a
public key pub(z) and the decryption key is the corresponding private key priv(z):

Wrap: h(n2, pub(z)), h(n1, k1) →{k1}pub(z)
ADecrypt: h(n2, priv(z)), {k1}pub(z) →k1



In this case too, the possibility of importing key pairs simplifies even more the
attacker’s task by allowing him to import a public wrapping key while knowing
the corresponding private key. Once the wrap of the sensitive key has been
performed, the attacker can decrypt the obtained ciphertext using the private
key.

Attack a3 is a clear flaw in the PKCS#11 implementation. It is explicitly
required that the value of sensitive keys should never be communicated outside
the token. In practice, when the token is asked for the value of a sensitive key,
it should return some “value is sensitive” error code. Instead, we found that
some of the analysed devices just return the plain key value, ignoring this basic
policy. Attack a4 is similar to a3: PKCS#11 requires that keys declared to be
unextractable should not be readable, even if they are nonsensitive. If they are
in fact readable, this is another violation of PKCS#11 security policy.

Finally, attack a5 refers to the possibility of changing sensitive and unex-
tractable keys respectively into nonsensitive and extractable ones. Only the Sata
and Gemalto SafeSite Classic V2 tokens allow this operation. However, notice
that this attack is not adding any new flaw for such devices, given that attacks
a3 and a4 are already possible and sensitive or unextractable keys are already
accessible.

Model-checking results Column ‘mc’ reports which of the attacks was auto-
matically rediscovered via model-checking. SATMC terminates once it has found
an attack, hence we report the attack that was found first. Run-times for finding
the attacks vary from a couple of seconds to just over 3 minutes.

3.8 Finding Secure Configurations

As we observed in the last section, none of the tokens we tested are able to im-
port and export sensitive keys in a secure fashion. In particular, all the analysed
tokens are either insecure or have been drastically restricted in their function-
ality, e.g. by completely disabling wrap and unwrap. In this section, we present
CryptokiX, a software implementation of a Cryptoki token which can be fiXed
by selectively enabling different patches. The starting point is openCryptoki [45],
an open-source PKCS#11 implementation for Linux including a software token
for testing. As shown in Table 1, the analysis of openCryptoki software token
has revealed that it is subject to all the non-trivial attacks. This is in a sense
expected, as it implements the standard ‘as is’, i.e., with no security patches.
CryptokiX extends openCryptoki with:

Conflicting attributes We have seen, for example, that it is insecure to allow
the same key to be used for wrapping and decrypting. In CryptokiX it is possible
to specify a set of conflicting attributes.

Sticky attributes We know that some attributes should always be sticky, such
as sensitive. This is also useful when combined with the ‘conflicting attributes’
patch above: if wrap and decrypt are conflicting, we certainly want to avoid that
the wrap attribute can be unset so as to allow the decrypt attribute to be set.



Wrapping formats It has been shown that specifying a non-conflicting at-
tribute policy is not sufficient for security [23, 25]. A wrapping format should
also be used to correctly bind key attributes to the key. This prevents attacks
where the key is unwrapped twice with conflicting attributes.

Secure templates We limit the set of admissible attribute combinations for
keys in order to avoid that they ever assume conflicting roles at creation time.
This is configurable at the level of the specific PKCS#11 operation. For example,
we can define different secure templates for different operations such as key
generation and unwrapping.

A way to combine the first three patches with a wrapping format that binds
attributes to keys in order to create a secure token has already been demon-
strated [33] and discussed in section 3.5. One can also use the fourth patch
to produce a secure configuration that does not require any new cryptographic
mechanisms to be added to the standard, making it quite simple and cheap
to incorporate into existing devices. We consider here a set of templates with
attributes sensitive and extractable always set. Other attributes wrap, unwrap,
encrypt and decrypt are set as follows:

Key generation We allow three possible templates:

1. wrap and unwrap, for exporting/importing other keys;
2. encrypt and decrypt, for cryptographic operations;
3. neither of the four attributes set, i.e. the default template if none of the

above is specified.

Key creation/import We allow two possible templates for any key created
with CreateObject or imported with Unwrap:

1. unwrap,encrypt set and wrap,decrypt unset;
2. none of the four attributes set.

The templates for key generation are rather intuitive and correspond to a clear
separation of key roles, which seems a sound basis for a secure configuration.
The rationale behind the single template for key creation/import, however, is
less obvious and might appear rather restrictive. The idea is to allow wrapping
and unwrapping of keys while ‘halving’ the functionality of created/unwrapped
keys: these latter keys can only be used to unwrap other keys or to encrypt
data, wrapping and decrypting under such keys are forbidden. This, in a sense,
offers an asymmetric usage of imported keys: to achieve full-duplex encrypted
communication two devices will each have to wrap and send a freshly generated
key to the other device. Once the keys are unwrapped and imported in the
other devices they can be used to encrypt outgoing data in the two directions.
Notice that imported keys can never be used to wrap sensitive keys. Note also
that we require that all attributes are sticky on and off, and that we assume for
bootstrapping that any two devices that may at some point wish to communicate
have a shared long term symmetric key installed on them at personalisation
time. This need only be used once in each direction. Our solution works well for



pairwise communication, where the overhead is just one extra key, but would be
more cumbersome for group key sharing applications.

The developed solution has been implemented and analysed by extracting a
model using Tookan. A model for SATMC was constructed using the abstractions
described above (see section 3.5). Given the resulting model, SATMC terminates
with no attacks in a couple of seconds, allowing us to conclude the patch is
safe in our abstract model for unbounded numbers of fresh keys and handles.
Note that although no sensitive keys can be extracted by an intruder, there is
of course no integrity check on the wrapped keys that are imported. Indeed,
without having an encryption mode with an integrity check this would seem to
be impossible. This means that one cannot be sure that a key imported on to
the device really corresponds to a key held securely on the intended recipient’s
device. This limitation would have to be taken into account when evaluating
the suitability of this configuration for an application. CryptokiX is available
online4.

3.9 Summary

We have seen how RSA PKCS#11 describes an API for key management where
the usage policy for each key is described by a set of attributes. We have seen how
this interface, if not configured carefully, can be vulnerable to a variety of attacks,
and we have seen that these vulnerabilities affect not just theoretical models
but real devices. We have also seen how to use formal modelling techniques to
systematically find attacks and then verify the security of models. However there
are still many open questions about designs of a secure API and cryptographic
soundness of models, for example, which we will discuss in section 5.

4 PIN Processing

We now consider our second case study, which addresses the problem of pro-
tecting a user’s PIN when withdrawing some money at an Automated Teller
Machine (ATM). International bank networks are structured in such a way that
an access to an ATM implies that the user’s PIN is sent from the ATM to the
issuing bank for the verification. While travelling, the PIN is decrypted and re-
encrypted by special tamper-resistant HSMs which are placed on each network
switch, as illustrated in Fig. 8. Indeed, international standards mandate the use
of these devices to keep PINs secure [37]. The first PIN encryption is performed
by the ATM keypad which is an HSM itself, using a symmetric key k1 shared
with the neighbour acquiring bank. While travelling from node to node, the en-
crypted PIN is decrypted and re-encrypted by the HSM located in the switch
with another key shared with the destination node. This is done using a so called
translation API. The final verification and acceptance/refusal of the PIN is done
by the issuing bank. This check is performed via a verification API.

4 http://secgroup.ext.dsi.unive.it/cryptokix.



Fig. 8. Bank network.

At first sight this setup seems highly secure. However, several API-level at-
tacks have been discovered on these HSMs in recent years [10, 15, 22]. These
attacks work by assuming that the attacker is an insider who has gained access
to the HSM at some bank switch, a threat considered in-scope by the standard
[37]. The attacker performs some unexpected sequence of API calls from which
he is able to deduce the value of a PIN. API-level attacks on PINs have re-
cently attracted attention from the media [1, 3]. This has increased the interest
in developing formal methods for analysing PIN recovery attacks. We will briefly
survey the literature here.

Examining the PIN verification API, Bond and Zielinski [15] and Clulow [22]
discovered the so called decimalization attack that we will discuss in section 4.1
at more or less the same time. The original version of the attack requires an
average of 16.5 API calls to obtain a 4-digit PIN [15]. Later variations proposed
by Steel [49] and Focardi and Luccio [31] reduced that value to 16.145 and
14.47 respectively. The decimalisation table attack is similar to the Mastermind
game, and in section 4.2, we will illustrate how to reuse known techniques to
solve Mastermind in order to find efficient attacks on bank PINs. Bond and
Clulow have also demonstrated an attack that works even if the decimalisation
table is fixed [16], although it requires many more calls to the API (some 10s of
thousands).

Attacks on the PIN translation API have been presented by Clulow [22] and
subsequently by Berkman and Ostrovsky [10]. These attacks often exploit details
of the formats used to pad a PIN into a 64 bit block for encryption. Berkman
and Ostrovsky’s attacks also exploit commands for changing a customer PIN,



PIN V(EPB , len, offset , vdata, dectab) {

x1 := encpdk (vdata);
x2 := left(len, x1 );
x3 := decimalize(dectab, x2 );
x4 := sum mod10(x3 , offset);
x5 := deck (EPB);
x6 := fcheck(x5 );
if (x6 =⊥) then return(′′format wrong ′′);
if (x4 = x6 ) then return(′′PIN correct ′′);

else return(′′PIN wrong ′′)}

Table 3. The verification API.

though they generally require a known plaintext-ciphertext pair (i.e. a clear PIN
and an encryption of the same PIN) to be introduced into the system.

The first formal analysis work on PIN recovery attacks is due to Steel [49],
who showed hos a combination of logic programming and probabilistic model
checking could be used to find new attacks and analyse possible patches to the
APIs. Recently Centenaro and the authors of this survey presented a language-
based setting for analysing PIN processing API via a type-system [20]. We have
formally modelled existing attacks, proposed some fixes and proved them correct
via type-checking. These fixes typically require to reduce and modify the HSM
functionality by, e.g., deciding on a single format of the transmitted PIN or
adding MACs for the integrity of user data. This will be the subject of section 4.3.
As upgrading the bank network HSMs worldwide is complex and very expensive
in [30] the authors have proposed a method for the secure upgrade of HSMs in
wide networked systems. This method incrementally upgrades the network so to
obtain upgraded, secure subnets, while preserving the compatibility towards the
legacy system. Finally, in [32] we have also have proposed a low-impact, easily
implementable fix that involves very little change to the existing ATM network
infrastructure. Attacks are still possible, but they are 50000 times slower.

4.1 API-level attacks on PIN verification

In this section we show in detail a real API-level attack on cash machine PINs.
We focus our attention on the PIN verification API (PIN V for short) and we
specify its code in table 3. It takes as input the encrypted PIN block EPB , i.e.
the encrypted PIN arriving from the ATM, the PIN length len and offset offset ,
the validation data vdata and the decimalization table dectab. The API returns
the result of the verification or an error code. PIN V behaves as follows:

– The user PIN of length len is computed by first encrypting validation data
vdata with the PIN derivation key pdk (x1 ) and obtaining a 16 hexadeci-
mal digit string. Then, the first len hexadecimal digits are chosen (x2 ), and



decimalized through dectab (x3 ), obtaining the “natural” PIN assigned by
the issuing bank to the user. decimalize is a function that associates to each
possible hexadecimal digit (of its second input) a decimal one as specified by
its first parameter (dectab). Finally, if the user wants to choose her own PIN,
an offset is calculated by digit-wise subtracting (modulo 10) the natural PIN
from the user-selected one (x4 ).

– To recover the trial PIN EPB is first decrypted with key k (x5 ), then the PIN
is extracted by the formatted decrypted message (x6 ). This last operation
depends on the specific PIN format adopted by the bank. In some cases, for
example, the PIN is padded with random digits so to make its encryption
immune from codebook attacks. In this case, extracting the PIN involves
removing this random padding.

– If the format in incorrect (⊥ represents failure) then an error message is
returned. Otherwise, the equality between the user PIN and the trial PIN is
verified.

Example 2. For simplicity we consider the ‘default’ decimalisation table:

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

We will write it as dectab = 0123456789012345. Let also EPB = {|5997, r|}k ,
len=4, offset =4732 and x1 = encpdk (vdata) = BC6595FDE32BA101 then:

x2 = left(4, BC6595FDE32BA101) = BC65
x3 = decimalize(dectab, BC65) = 1265
x4 = sum mod10(1265, 4732) = 5997
x5 = deck ({|5997, r|}k ) = (5997, r)
x6 = fcheck(5997, r) = 5997
x6 6=⊥
x4 = x6 return(′′PIN correct ′′)

Since x6 is different from ⊥ and x4 = x6 , the API returns ′′PIN correct ′′.

The decimalization attack We now illustrate a real attack on PIN V first
reported in [15, 22], called the decimalization table attack. It consists of deducing
the PIN digits by modifying the way numbers are decimalized and by observing
whether this affects the result of PIN V. The position of the guessed PIN digits
is reconstructed by manipulating the offset, which is a public parameter. By
combining all this information the attacker is able to reconstruct the whole PIN.

More specifically, the attack works by iterating the following two steps, until
the whole PIN is recovered:

1. To discover whether or not a decimal digit d is present in the intermediate
value contained in x3 the intruder picks digit d, changes the dectab function
so that values previously mapped to d now map to d + 1 mod 10, and then
checks whether the system still returns ′′PIN correct ′′. If this is the case digit
d does not appear in x3.



2. It the API call returns ′′PIN wrong ′′ the attacker discovers that d is one of
the digits of x3. To locate the position of the digit the intruder also decreases
the offset digits by 1, position by position, until the API returns again that
the PIN is correct.

We illustrate the attack through a simple example.

Example 3. Consider again Example 2. The attacker, unaware of the value of
the PIN, first tries to discover whether or not 0 appears in x3, so it changes the
dectab as

dectab′ = 1123456789112345

i.e., he replaces the two 0’s by 1’s. Invoking the API with dectab′ he obtains

decimalize(dectab′, BC65) = decimalize(dectab, BC65) = 1265

that is x3 remains unchanged and so the attacker deduces 0 does not appear in
the PIN. The attacker proceeds by replacing the 1’s of dectab by 2’s:

dectab′′ = 0223456789022345

which gives

x3 = decimalize(dectab′′, BC65) = 2265 6= 1265
x4 = sum mod10(2265, 4732) = 6997 6= 5997
x5 = deck ({|5997, r|}k ) = (5997, r)
x6 = fcheck(5997, r) = 5997
x6 6=⊥
x4 6= x6 return(′′PIN wrong ′′)

The intruder now knows that digit 1 occurs in x3. To discover its position and
multiplicity, he now varies the offset so as to “compensate” for the modification
of the dectab. In particular, he tries to decrement each offset digit by 1. For
example, testing the position of one occurrence of one digit amounts to trying
the following offset variations:

3732, 4632, 4722, 4731

Notice that, in this specific case, offset value 3732 makes the API return again
′′PIN correct ′′.

The attacker now knows that the first digit of x3 is 1. Given that the offset
is public, he also calculates the first digit of the user PIN as 1 + 4 mod 10 = 5.
He then proceeds using the same technique to discover the other PIN digits.

4.2 PIN attacks as a Mastermind game

As observed in [14, 31], the above attack resembles the Mastermind game, in-
vented in 1970 by the Israeli postmaster and telecommunication expert Mordecai
Meirowitz [46, page 442]. The game is shown in Fig. 9 which is taken from [2]. It is



Fig. 9. Guessing a code of a Mastermind game is similar to guessing a PIN.

played as a board game between two players, a codebreaker and a codemaker [50].
The codemaker chooses a linear sequence of coloured pegs and conceals them
behind a screen. Duplicates of coloured pegs are allowed. The codebreaker has
to guess, in different trials, both the colour and the position of the pegs. During
each trial he learns something and based on this he decides the next guess: in
particular, a response consisting of a red marker represents a correct guess of the
colour and the position of a peg (but the marker does not indicate which one
is correct), a response consisting of a white marker represents only the correct
guess of a colour but at the wrong position.

The analogy between the game and the attack is as follows: each API call
represents a trial of the codebreaker and the API return value is the correspond-
ing answer of the codemaker. Modifying the dectab corresponds to disclosing the
presence of certain digits in the PIN, like the white marker in the Mastermind
Game. On the other hand, manipulating the dectab and the offset together is
similar to asking the codemaker to confirm a guess of both the value and the
position of one PIN digit, like the red marker of the game.

An extended Mastermind game To make the above analogy more precise, it
is in fact necessary to extend the Mastermind game so as to allow the codebreaker
to pose a guess of sets of coloured pegs, instead of just single pegs. Intuitively, the
sets represent alternative guesses, i.e., it is sufficient that one of the pegs in the
set is correct to get a red or a white marker. E.g., given the secret (1, 5, 3, 1) and
the (extended) guess ({1}, {3, 4, 5}, {1, 2}, {0}), then the result is two red markers
for the first two positions of the guess and one white marker for the third position
of the guess. The correspondence between the values of the secret and the values
in the guess are shown as underlined values in ({1}, {3, 4, 5}, {1, 2}, {0}).



In [31] it is proved that the decimalization attack is equivalent to playing an
extended Mastermind game, only focusing on answers containing 4 red markers.
Intuitively, given a modified dectab and offset , we construct the sets for the
extended guess by picking all digits whose modification in the offset are correctly
compensated by the variation in the dectab. The first set corresponds to the
first offset digit, the second set to the second digit and so on. For example,
consider an original offset (1, 5, 4, 2) modified as (0, 3, 1, 0), giving a variation of
(−1,−2,−3,−2). Suppose now that the modified dectab turns the mapping of
digit 4 into 5, with a variation of +1, then digit 4 will be in the first set of the
extended guess, since the offset has the correct (opposite) variation -1 in the fist
position.

As an example, consider the following default dectab and a modified one,
named dectab′:

dectab 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
dectab′ 0 2 4 3 5 8 6 9 1 9 0 2 4 3 5 8

variation +1 +2 +1 +3 +2 +3 +1 +2 +1 +3

Since the variation on the first offset digit is −1 we collect, in the first set of the
guess, all digits with variation +1 in the dectab, i.e., {1, 4}. For the second and
fourth offset digits, both with variation −2, we obtain set {2, 7}. Finally, for the
third offset digit, with variation −3, we have set {5, 8}. The resulting extended
guess is ({1, 4}, {2, 7}, {5, 8}, {2, 7}).

Let us now see how the answer to this guess in the Mastermind game relates
to the result of an API call with the above modified offset and dectab. Recall
that we start from a dectab and offset that give ′′PIN correct ′′. Thus, we will still
have ′′PIN correct ′′ only if the variations in the dectab are correctly compensated
for by the ones in the offset. For example, if digit 1 originally occurred in the
first place after decimalization (x3 ), with dectab′ it will now be a 2. Summing
1 with the first digit of the original offset we had 1 + 1 = 2. With the modified
offset we now have 2 + 0 = 2. In fact the variation +1 in the dectab is correctly
compensated for by the offset. Notice that 1 occurs in the first set of the guess.

Observe also that 1 does not occur in the other sets of the guess. Thus,
if 1 originally occurred in the second place after decimalization it would still
be turned into 2 by dectab′ but the change in the offset this time would not
compensate for this variation. In fact, with the original dectab and offset we
would get 1 + 5 = 6 (where 5 is the second value of the offset) while with
the modified ones we would get 2 + 3 = 5 (where 3 is the second value of the
new offset). Thus, the modification of +1 in the dectab this time would not
correspond to the variation −2 in the second offset digit.

By iterating this reasoning on all digits, we obtain that the API call gives
′′PIN correct ′′ if and only if the extended guess in the Mastermind game gives
4 red markers, meaning that the four secret digits, correct after decimalization
and before summing the offset, are in the four sets of the extended guess. This
correspondence has been formally proved [31].



do_guess(S):
if |S| != 1:

# not a single solution yet

min = |S| # starting value , we want to decrease it

# depending on the round and the number of surviving solutions ,
# generates the guesses ( heuristics here ...)
guesses = generate_guesses(S)

for g in guesses: # for each guess g

# intersect S and surviving solutions for g
M_SOLS= S & surviving(g)

# count matching and non -matching and take the max
n_sol = max(| m_sols|,|S|-|m_sols |)

# if we got a minimum , we store it
if mas < min:

min = n_sol
MIN_SOLS = M_SOLS

if min < |S|:
# we are decreasing the surviving solution set size:
# let us perform the guess

# case1: guess was right , explore solutions in MIN_SOLS
do_guess(MIN_SOLS)

# case2: guess was wrong , explore solutions in S - MIN_SOLS
do_guess(S - MIN_SOLS)

else:
FAIL # we are looping

Table 4. An algorithm for finding PIN cracking strategies.

Improving attack strategies by playing Mastermind Now that we have
shown a strict analogy between PIN cracking and an extension of the Master-
mind game, we can find efficient attacks for recovering PINs by simply devising
minimal strategies for winning the Mastermind game. The solution proposed
by Knuth [39] is to build a balanced search tree by minimizing the maximum
number of solutions surviving after a guess. A guess, in our case, gives a Boolean
answer which partitions the set of possible solutions into two disjoint sets: match-
ing or non-matching ones. The guess that is more balanced, i.e., that minimizes
the maximum of the two sets, is picked and the procedure is recursively applied
until it reaches a unique solution. This method does not guarantee an optimal
solution as an unbalanced guess might produce a more balanced subtree later
on, and vice versa, but it has been shown to work well in practice [31, 39].

In table 4, we report an algorithm inspired by the above idea, adapted to our
setting. The recursive function do guess is initially invoked with the whole S set
of possible secrets. It then finds a guess that minimizes the maximum number of
surviving solutions on the two possible answers and it descends recursively into
the two sets in which the actual set is partitioned. A critical issue is how the set



Fig. 10. Noninterference.

of candidate guesses are picked (function generate guesses(S)). In our setting,
considering all extended guesses consisting of all possible combinations of digit
subsets for each position is computationally intractable. In [31] it is observed
that the ‘shape’ of the guesses used in the strategies found is quite regular. This
makes it possible to devise a few heuristics that incrementally extend the set of
guesses when needed. As a result, the existing bounds on the average number of
API calls required to recover a PIN has been reduced to 14.47 and a new bound
of 19.3 has been given for 5-digits PINs. Both cases are close to the optimum,
i.e., the depth of a perfectly balanced search tree.

4.3 Devising robust PIN management APIs

In the previous sections, we described one of the known attacks on PIN man-
agement APIs and its similarity to the Mastermind game. We now focus on
remedies and we first try to understand what is the source of the attacks, i.e.,
what security property is missing. This will allow us to propose formal models
and tools supporting a more ‘robust’ development of PIN processing APIs.

Preventing information flow Since the PIN recovery attacks involve the
leakage of a secret value, a first attempt to understand the problem might be
in terms of classical noninterference [34]. In this setting, data items are labelled
with security levels taken from a lattice. Noninterference requires that data from
a higher level, e.g. the secret level, should never affect the value of data with
a lower level, e.g. the public level. The idea is depicted in Fig. 10. The system
is (highly) simplified as a box containing two smaller boxes, with a switch for
the input and a display for the output. The top box (high level input/output)
contains the secret information while the bottom box (low level input/output)
is public and possibly under the control of the attacker. Noninterference holds
if a variation on the high input does not produce any change in the low level
output.



Fig. 11. Robust declassification.

The noninterference property is very strong and ensures that no secret in-
formation will ever be leaked, but this is too much for our setting. In fact, PIN
verification needs to leak 1 bit of information about the correctness of the PIN.
To see how the property is broken, it is enough to consider an API call with the
correct encrypted PIN block (giving ′′PIN correct ′′), and another API call with
a wrong encrypted PIN block (giving ′′PIN wrong ′′). This for example happens
if the user types the wrong PIN at the ATM. By changing the secret data, i.e.,
the encrypted PIN, we have two different outcomes of the API, thus two different
low level outputs. Clearly a leak of information about the correctness of the PIN
is inevitable, but we would somehow like to limit this to prevent attacks.

Admitting controlled information leakage One approach to relaxing non-
interference while still controlling information release is called robustness, and
was proposed by Myers, Sabelfeld and Zdancewic (MSZ) [43]. This property
admits some form of declassification (or downgrading) of confidential data, but
requires that an attacker cannot influence the secret information which is declas-
sified. In our case study of section 4.1, PIN V returns the correctness of the typed
PIN which is a one-bit leakage of information about a secret datum. Robustness
requires that an attacker cannot abuse such a declassification in order to gain
more information than intended.

The idea is illustrated in Fig. 11: at the top of the figure, we see that a change
in the high, i.e., secret input is observable at the low, i.e., public level, meaning
that noninterference does not hold and some information is leaked. However, at
the bottom of the figure we notice that a change in the low level input does
not affect the leaked information. This amounts to stating that what is leaked
is never affected by untrusted, low level users. If we consider the decimalization



PIN V M(EPB , len, offset , vdata, dectab,MAC ){

if (macak(EPB , len, offset , vdata, dectab) == MAC ) then
PIN V(EPB , len, offset , vdata, dectab);

else return(“integrity violation′′);
}

Fig. 12. A fixed PIN verification API.

attack we notice that the attacker, by manipulating public data such as the
dectab and the offset, can affect what is declassified, i.e., the outcome of the
API call. By forbidding this, the attack should be prevented.

A robust PIN verification API In [20] we have formalized the above property
in the setting of PIN management APIs, and we have given a patched version
of PIN V that prevents attacks by checking the integrity of the public data. The
idea is to have a Message Authentication Code (MAC) of such data, i.e., an
unforgeable cryptographic signature that once checked by the HSM, guarantees
the integrity of data. If the attacker tries to tamper with the decimalization table
or offset, the MAC check fails and the HSM aborts the call with an error message.
Fig. 12 reports the code of the fixed PIN verification API, called PIN V M, which
recomputes and checks the MAC before calling the original PIN V.5 In the paper
we have also devised a type-system to statically prove the robustness of the new
API.

Even if the proposed fix has been proved to be secure, the infrastructure
changes needed to add full MAC calculation to ATMs and switches are seen as
prohibitive by the banks [6]. We have proposed a way to implement a weaker
version of our scheme whilst minimising changes to the existing infrastructure
[32]. In the paper, we observe that cards used in the cash machine network
already have an integrity checking value: the card verification code (CVC), or
card verification value (CVV), is a 5 (decimal) digit number included in the
magnetic stripe of most cards in use and contains a MAC of the customer’s
PAN, the expiry date of the card and some other data. The current purpose of
the CVV is to make card cloning more difficult, since the CVV is not printed in
the card and does not appear on printed POS receipts.6

Our idea is to use the CVV calculation method twice, in the manner of a
hashed MAC or HMAC function. We calculate the CVV of a new set of data,
containing the decimalisation table and offset. Then, we insert the result of the
original CVV calculation to produce a final 5-digit MAC. The scheme is easily

5 For technical reasons, the specification in [20] has that the Personal Account Number
is in the list of parameters. Here we consider it as part of the validation data vdata.

6 The CVV/CVC should not be confused with the CVC2 or CVV2, which is printed
on the back of the card and is designed to counteract “customer not present” fraud
when paying over the Internet or by phone.



implementable but we loose some security, since our MACs now have an entropy
of only 5 decimal digits (216 < 105 < 217).

4.4 Summary

We have seen how bank networks use special HSMs to secure ATM transactions.
These sophisticated devices perform cryptographic operations such as PIN en-
cryption/decryption and PIN verification via a security API. We have discussed
attacks on this API and we have shown in detail the so called decimalization
table attack. We have seen how these attacks progressively leak partial infor-
mation about PIN digits similarly to what happens in the Mastermind game.
We have shown that algorithms for the solution of Mastermind can be adapted
to search for efficient attacking strategies on bank PINs. Finally, we have illus-
trated how the security of PIN management APIs can be modelled in terms of
an information flow property called robustness and we have described a fixed
API that can be proved to be robust. Intuitively, a robust API can leak partial
information on a secret, e.g., whether the PIN typed at the ATM is correct or
not, but this leakage should never be under the control of the attacker, as occurs
in the decimalization attack.

5 Conclusions

There are many open research problems in security APIs, both theoretical and
practical. In the domain of key management, we have seen that the current
standard for APIs, PKCS#11, is very difficult to configure securely. This is
evidenced by a number of attacks on models of the standard as well as attacks
on real PKCS#11 security tokens: in our sample of 18 devices, we found 6 tokens
that trivially gave up their sensitive keys in complete disregard of the standard,
3 that were vulnerable to a variety of key separation attacks, and a further
smartcard that allowed unextractable keys to be read in breach of the standard.
The remainder provide no functionality for secure transport of sensitive keys.
We have seen that it is possible to propose secure configurations, [17, 33], but
security proofs here are only in the symbolic model of cryptography: there is
more work to be done to reconcile these proofs to the cryptographic details of
real implementations, though work in this direction is underway [40].

Given the current situation it is perhaps not surprising that there have been
articles proposing completely new designs for key management APIs [19, 24].
Indeed at least two new industrial standards which address key management are
currently at the draft stage: IEEE 1619.3 [36] (for secure storage) and OASIS
Key Management Interoperability Protocol (KMIP) [44]. It remains to be seen
how these latter designs will address security concerns.

We have described attacks on bank HSMs for the ATM network. We have
discussed possible fixes for the decimalization attack but the extent to which
these fixes can be implemented in real devices is still unclear. There is a great
deal of existing infrastructure in the ATM network that would be costly to



replace. Since the attacks involve obtaining PINs in order to withdraw money
using closed magnetic stripe cards, one possibility would be to upgrade the whole
network to the new chip-based cards [4]. This seems unlikely to happen in the
short term, and even if a decision were taken to do so it might take years to cover
the whole world-wide network. In the meanwhile the network will fall-back to the
magnetic stripe protocol whenever the chip is not supported by the ATM, and
well-organised attackers will continue to ‘cash out’ their stolen PINs in countries
where magnetic stripe ATMs are still the norm.

We have seen that the problem of PIN processing API attacks, in a sense, an
excessive parametrization of some of the functionalities. Since these parameters
are public, and attacker can manipulate them in order to affect the information
that is declassified by the PIN check. Some of these parameters could be ‘locked-
down’: the dectab, for example, could be fixed on the HSMs of a particular
bank, assuming that one bank only uses one dectab for all users. As a more
general solution, we have proposed adding a MAC of (a subset of) the function
parameters, but this of course requires to change HSMs to support this new
operation. A cheap low-impact fix could be obtained using CVVs but this is not
completely satisfactory from a security point of view, as it only mitigates the
attacks. In our opinion, the direction that bank industry will take is still unclear.

The field of security API analysis is highly active with an annual interna-
tional workshop (ASA - Analysis of Security APIs) and a chapter of Anderson’s
essential textbook [7] devoted to the theme. Recent articles at ASA and else-
where have proposed security API techniques for solving problems in anything
from social networks to browser Javascript engines to utility meters. Thanks to
the ASA forum, the formal methods and security community has come closer to
industrial users of security APIs, leading to research results that are applicable
in the short term, and hopefully, in the longer term, influencing the way secure
devices are developed, programmed and used. It is, in fact, a very exciting time
to be researching security APIs.
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