
Robustness Analysis for Scheduling Problems using the Inverse Method

L. Fribourg, R. Soulat
LSV

ENS Cachan & CNRS
Cachan, France

Email: {fribourg,soulat}@lsv.ens-cachan.fr

D. Lesens, P. Moro
Data Management & Software
Astrium Space Transportation

Les Mureaux, France
Email: {david.lesens,pierre.moro}@astrium.eads.net

Abstract—Given a Parametric Timed Automaton (PTA) A
and a reference valuation for timings, the Inverse Method (IM)
synthesizes a constraint around the reference valuation where
A behaves in the same time-abstract manner. This provides us
with a quantitative measure of robustness of the behavior of
A around the reference valuation. We show in this paper how
IM can be applied in a specific way to treat the robustness of
scheduling systems. We also explain how to use the method in
order to synthesize large zones of the timing parameter space
where the system is guaranteed to be schedulable. We illustrate
the method on several examples of the literature as well as a
case study originating from an industrial design project.

I. INTRODUCTION

The Inverse Method (IM) is a method for synthesizing
values of parameter timings in the framework or Parametric
Timed Automata (PTAs). Different from CEGAR-based
methods, IM makes use of a “good” parameter valuation π0
instead of a set of “bad” states [2]. It takes as input a
PTA A(P), where P denotes a vector of parameters, and
a reference valuation π0. The IM method synthesizes a
constraint K on the parameters (i.e., a symbolic set of
parameter valuations) such that (1) π0 ∈ K and (2) for all
parameter valuation π satisfying K, the trace set (i.e., the
time-abstract behavior) of A[π] is the same as for A[π0]1.

This provides the system with a criterion of robustness
(see, e.g., [9]) around π0.

PTA

Reference
valuation π0

IM Constraint K

Figure 1. Functional view of IM

We explain in this paper how IM can be useful for
analysing specifically the robustness of real-time systems,
and how an iterative form of IM , called the Behavioral
Cartography (BC) method, is useful for synthesizing schedu-
lable zones of real-time systems.

1where A[π] denotes the timed automaton resulting from A(P) by
instantiating P with π

More formally, a real-time system S is viewed here
as a set of jobs {J1, J2, . . . , Jn}. A job Ji generates a
possibly infinite stream of tasks Ji,1, Ji,2, When a
job is activated, it executes for at most time Ci, and has
to terminate within the relative deadline Di. The activation
of tasks can be modeled by PTAs, where activation events
are associated with transition labels. The timings (Ci, Di)
can be considered as parameters associated with each job.
A parameterized job system S(P) is a set {J1, J2, . . . , Jn}
associated with a vector P of parameters. Each design
parameter in P can have a fixed value or be a free pa-
rameter. An instantiated job system S[π] is a job system
{J1, J2, . . . , Jn} associated with a vector of design parame-
ter P where each design parameter in P is assigned a fixed
value according to the valuation π. For a given choice π
of parameters, we say that a job Ji is schedulable if all
the generated tasks Ji,k finish their execution before the
deadline. The system S[π] is schedulable if all its jobs are
schedulable.

In this context, the problem of robustness is defined as:

Problem 1. Given a parameterized job system S(P)
and a valuation π0 of the parameters, find a constraint K
containing π0 such that S is robust on K, i.e.: for all π ∈ K,
S[π] is schedulable if and only if S[π0] is schedulable.
Remark: One is interested by synthesizing a constraint K
as weak as possible.

We are also interested in the following problem:

Problem 2. Consider a parameterized job system S(P),
and a rectangle V0 inside the parameter space. Find the
schedulability zone Z , defined as the largest subset of
valuations π of V0 for which S[π] is schedulable.

We show in this paper that Problem 1 can be solved
using the IM method for PTAs, and Problem 2 using BC.

The plan of this paper is as follows. We describe the
related work in Section II. In section III, we explain on
an example the principle of our method. In Section IV,
we apply the IM -based method to various schedulability
problems of the literature (jobs with variable execution

times, deadlines); we also apply the BC method in order
to synthesize schedulability zones for an example of the
literature; experimental results are then summarized. An
industrial case study is treated in Section V. Final remarks
are given in Section VI.

II. RELATED WORK

The use of models such as PTAs and Parametric Time
Petri Nets (TPNs) for solving scheduling problems has
received attention in the past few years. For example,
Roméo [8] performs model checking for parametric TPNs
with stopwatches, and synthesizes parameter valuations sat-
isfying TCTL formulæ. An extension of UPPAAL allows
parametric model checking [3], although the model itself
remains non-parametric. The approach most related to our
method is [6], [7], where the authors infer parametric con-
straints guaranteeing the feasibility of a schedule, using
PTAs with stopwatches. The main difference here relies in
our choice of the Inverse Method, rather than a CEGAR-
based method. First results obtained on the same case studies
are uncomparable (although similar in form), which seems
to indicate that the two methods are complementary. The
problem of finding the schedulability region was attacked
in analytic terms in [4]; the size of our examples is rather
modest compared to those treated using such analytic meth-
ods. However, in many schedulability problems, no analytic
solution exists (see, e.g., [12]), and exhaustive simulation is
exponential in the number of jobs. In such cases, symbolic
methods as ours and those of [6], [7] are useful to treat
critical real-life examples of small or medium size, as
examplified here in Section V.

III. EXPLANATION OF THE METHOD

We will now explain our method on a preemptive jobshop
example given in [1]. The jobshop scheduling problem is
a generic resource allocation problem in which common
resources (“machines”) are required at various time points
(and for given duration) by different tasks. We are given
a fixed set M of machines. A step is a pair (m, d) where
m ∈ M and d ∈ N, indicating the required utilization of
resource m for time duration d. A job is a finite sequence
J = (m1, d1), (m2, d2), · · · , (mk, dk) of steps stating that
in order to accomplish job J , one needs to use a machine
m1 for d1 time, then use machine m2 for d2 time etc.

The jobshop system is a set S = {J1, . . . , Jn} of jobs.

A. Modeling Schedulability with TAs

Consider the jobshop system S = {J1, J2} for
2 jobs and 3 machines m1,m2,m3 with: J1 =
(m1, d1), (m2, d2), (m3, d3) and J2 = (m2, d

′
2) with d1 =

3, d2 = 2, d3 = 4, d′2 = 5.
The classical problem, called the “makespan” problem,

consists in finding the minimum time (makespan) needed
for completing all the tasks (with the constraint that, at any

time, a machine can execute only one task). In [1], it is
shown how to solve the makespan problem for system S
using a timed automaton (TA)A.2 Actually, we do not adress
the makespan problem here, but rather the schedulability
problem. More precisely, we assume given a certain bound
µ, and ask whether or not the system is schedulable, i.e.,
if there is a way (schedule) to complete all the jobs within
µ time units. In order to treat schedulability, we integrate
into A a synchronized TA observer which fires a transition
“DEADLINE” when the clock measuring time of the current
location goes beyond µ. The system is schedulable if there
is a trace (i.e. a time-abstract branch of the reachability tree)
which corresponds to successive completions of all the jobs
and which does not contain the DEADLINE transition.

More generally, we are going to make the following basic
assumption in the rest of this paper, concerning the job
system S:

Assumption: The system S(P) is modeled by a PTA
A(P) such that, for any valuation π, one can infer the
schedulability of S[π] by looking at the set of traces of
A[π] (i.e., by focusing on the time-abstract information of
the reachability tree of A[π]).

Under this assumption, it should be clear that the IM
method provides a measure of robustness of the system
around π0. Indeed, since the set of traces of A[π] is the same
as for A[π0] for any π ∈ K, the system S[π] is schedulable
for any π ∈ K iff S[π0] is schedulable.

B. Robustness Analysis via IM

Let us illustrate this by analyzing the robustness around
the valuation π0 : {d2 = 2, d′2 = 5}, for the bound µ = 10.
We first consider a parametric version of A where d2 and
d′2 become parameters. We then use IM with A as a model
input and π0 as a valuation input. This yields the constraint
K: 7 > d′2 ∧ 3 > d2 ∧ d′2 + d2 ≥ 7. See Figure 2 for a
geometrical representation of K.

Figure 2. Geometrical representation of K around π0 : (2, 5).

By the IM principle, the set of traces of A is always
the same, for any point (d2, d

′
2) of K. This set of traces is

depicted under the form of a tree in Figure 9 in Appendix.
We can see that there are some branches of the tree that

2As we consider scheduling with preemption, TAs are enriched with
stopwatches and arbitrary updates [1].

do not contain any DEADLINE label (these branches end
at node s73 in Figure 9 in Appendix). These branches
correspond to the schedules which are completed within
µ = 10 time units. The system is thus schedulable, for any
point (d2, d

′
2) of K. For example, we can increase d2 from 2

to 3, or increase d′2 from 5 to 7 while keeping the completion
time less than or equal to 10.

C. Schedulability Zone Synthesis

Let us consider a given rectangle V0, say [0, 11]× [0, 11],
and let us apply the BC method. We apply IM iteratively by
letting π0 equal to all the possible integer values of V0. We
thus synthesize different constraints K, which characterize
different “behavior tiles”. For any point of a tile, the behavior
is uniform: either the system is schedulable (i.e., the set
of feasible schedules is non empty) everywhere in the tile
or nowhere in the tile. After 10 iterations, the rectangle
V0 (actually, the whole real plan) is covered by the tiles
generated successively. This is depicted on Figure 3. The
green (resp. red) zone corresponds to the schedulable (resp.
non-schedulable) zone.

Figure 3. Schedulability zones (in green, the system is schedulable)

IV. CASE STUDIES OF THE LITERATURE

A. Jobs with Variable Execution Times [12]

The problem addressed here is the schedulability of a
system of n independent job chains, denoted J1, J2, · · · , Jn,
so that they all complete within a given bound ∆ when the
jobs are scheduled on a processor according to a priority-
driven algorithm. Roughly speaking, we let Ji,j denote the
jth job of the chain Ji. Each job Ji,j has a fixed priority
Φi,j and is preemptable. The execution time of Ji,j is in
the range [e−i,j , e

+
i,j] with e−i,j , e

+
i,j in N. The release time

ri,j of job Ji,j is set to an integer value. Ji,1 is ready for
execution at its release time ri,1; for each j > 1, Ji,j cannot
execute until its immediate predecessor Ji,j−1 completes.
For details, see [12].

The problem is parameterized typically by letting the
Φi,js, e−i,js, e+i,js and ∆ instantiated, and by parameterizing
some of the ris.

B. Jobs with Deadlines [6], [7]

We are given a set of jobs {J1, . . . , Jn}. Each job Ji is
periodic of period Ti (a fixed duration of time between two
activation events), and an offset Oi for its first activation
time. Once a job Ji has been activated, it executes for at
most time Ci and has to terminate within the deadline Di.
The system is schedulable if each job Ji is completed before
its relative deadline Di. 3

We consider the case of two periodic jobs {J1, J2} with
D1 = 7, T1 = 10, O1 = 0, C1 = 3, D2 = 6, T2 = 10, O2 =
3, C2 = 5. We parameterize C1, C2 and O2. Applying IM ,
we find the following constraint K:

6 ≥ C2 ∧ 3 ≥ C1 ∧ 6.C1 > 17 ∧ 2.C1 + C2 > 6 +O2∧
O2 ≥ C1 ∧ 10 ≥ O2 + C2

In [6], the authors uses a CEGAR-based method to syn-
thesize a constraint on the parameters that will guarantee
that the system is schedulable. The constraint found by their
method is:
C1 + C2 < 6 +O2 ∧ C1 + C2 < 10 ∧ C1 + C2 > 6∧
C2 < 10−O2 ∧ C1 < 7 ∧ C2 < 6

We notice that this constraint is uncomparable with the
constraint K found by IM .

C. Schedulability Zone Synthesis

Let us apply the BC method in order to determine zones
of schedulability on an example with Fixed Priority (“Rate
Monotonic”) of [4, Section III]. There are three periodic
jobs J1, J2 and J3 with periods of T1 = 3, T2 = 8 and
T3 = 20 and deadlines of D1 = 3, D2 = 8 and D3 = 20.
We want to find a set of computation times Ci of each job
τi (1 ≤ i ≤ 3) such that the system is schedulable, i.e., such
that each job Ji is completed before Ti time units (Ci ≤ Ti
for all 1 ≤ i ≤ 3).

Let V0 be the set of triples (C1, C2, C3) ranging over
[0, 3]× [0, 8]× [0, 20]. Algorithm BC outputs a set of tiles,
and it suffices to check one point per tile to determine the
schedulability of the whole tile. The result for this example
is given in Figures 4, 5, 6 using a discretization step of 0.2 on
V0. The green zone corresponds exactly to the schedulability
region found using analytic methods in [4] (Figure 1 (a)).

D. Summarized Experimental Results

The method IM has been implemented by tool IMITATOR.
The new version IMITATOR 2.5 integrates the new features
of stopwatches (in addition to standard clocks) and updates
(in addition to standard clock resets), as well as powerful
algorithmic improvements for state space reduction. All case
studies and experiments have been performed on Ubuntu

3Actually, because of the periodicity of the system, we only have to be
sure that it is schedulable within lcmi∈I(Ti).

Figure 4. Schedulability zones (in green the system is schedulable)

Figure 5. Schedulability zones (in green the system is schedulable)

Figure 6. Schedulability zones (in green the system is schedulable)

11.10 equipped with an Intel Core 2 2.93 GiHz processor
with 2 GiB RAM). In Figure 7, we give from left to right
the name of the case study, the number |X| of clocks of the
PTA model, the number |P | of parameters, the number |S| of

states computed, the number |T | of transitions computed, the
number n of iterations of the inverse method, the number
|K| of inequalities within the resulting constraint K, the
computation time t in seconds.

Case |X| |P | |S| |T | n |K| t
Examples from section III

from [1] 3 4 53 70 10 5 0.5
LA 2×5 3 11 371 528 21 10 64
LA 3×5 3 16 4903 9043 30 5 161

Examples from section IV-A
from [12] 15 18 215 264 15 17 85.3

Examples from section IV-B
from [6] 6 8 676 886 15 15 289
from [7] 4 9 60 103 10 7 2.1

Examples from section IV-C
from [4] 7 10 66

Figure 7. Experimental results

The example LA 2×5 (resp. LA 3×5) is a jobshop prob-
lem taken from the LA02 example of http://bach.istc.kobe-u.
ac.jp/csp2sat/jss/, where we only consider the 2 (resp. 3) first
jobs on 5 machines.

More data (including the output constraints) are given
in [11] (cf http://www.lsv.ens-cachan.fr/Software/imitator/
case-studies.php).

V. INDUSTRIAL CASE STUDY

A. General description

We describe here a prospective architecture for the flight
control system of the next generation of spacecrafts designed
at ASTRIUM Space Transportation. (This is part of a global
project preparing the next generation of launcher avionics
architecture [10].)

In this design, the architecture is distributed on three
processors (CNav , CSeq, CCtrl) devoted to the treatment
of information coming from the sensors, the computational
analysis of the data, and the management of data to be sent
to the actuators.

The software running on each processor unit is organized
into several “partitions”. Each partition contains “tasks”
(also often called “threads”).

This is described on Figure 8: the green boxes correspond
to processors, orange boxes to partitions, and blue boxes to
tasks. Each task τ is periodic, and characterized by a triple
(O,C, T) of timings, where O corresponds to the offset, C
to the execution time, and T to the period.

Within a given partition, tasks are preemptible and sched-
uled according to a fixed priority scheduler, called “Rate
Monotonic”: the priority between two activated tasks is
given to the task with the smaller period.

Tasks belonging to different partitions on a same proces-
sor are independent and can preempt each other. In case

of preemption of one task of some partition by a task of
another partition, we say that there is a partition switch.
Partition switches are performed at predefined moments of
time (i.e. are time triggered). One expected output of the
scheduling problem is the values of these moments (i.e., the
start time of activation and end time of activation of each
partition).

There are thus a priori several sources of nondeterminism:
First, inside a same processor, there are switches of partition,
second, there are the interleavings of tasks processed by the
different processors.

In addition, the system is organized into jobs (or “end-
to-end flows”): each job Ji is described as a sequence of
tasks Ji,1, Ji,2, (Ji,j cannot execute until its immediate
predecessor Ji,j−1 completes.) A deadline Di is associated
with each job Ji: the last task of the job has to be completed
before the deadline.

The end-to-end flow is depicted on Figure 8 using the
sequence of red arrows.

Note that, by comparison, the architecture of the flight
control system running presently on the ASTRIUM Space
Transportation spacecrafts is generally monoprocessor and
mono-partition (see, e.g., [5]).

Figure 8. Architecture Scheme

B. Valuation of the parameters

A classical valuation π0 of the triple (O,C, T)4 can for
instance be:

(0, 8, 20) for task Intloop (Integration Loop)
(8, 20, 200) for task GyroMgt (Gyroscope Management)
(16, 8, 40) for task Navigation
(2, 10, 50) for task NTM (Navigation Telemetry)
(2, 60, 200) for task MVMSlow (Mission & Vehicle

Management)
(0, 4, 20) for task MVMFast (Mission & Vehicle Man-

agement)
(117, 40, 20000) for task Guidance
(1, 60, 200) for task GTM (Guidance Telemetry)
(0, 5, 20) for task CtrLoop (Control Loop)

4O denotes the offset, C the execution time, and T the period.

(15, 12, 50) for task EngMgt (Engine Management)
(1, 15, 100) for task Control
(50, 25, 200) for task CTM (Control Telemetry)
The job (end-to-end flow) J considered corresponds to the

list (IntLoop, GyroMgt, Navigation, Guidance, CTM ,
Control, EngMgt, CtrLoop).

The associated deadline is D = 300.

C. Quantitative robustness analysis

We analyse the system from a quantitative robustness
point of view following two steps.

In a first step, we use IMITATOR on the system instanti-
ated with valuation π0 using standard reachability analysis
and generate all the feasible schedules that satisfy the
deadline D. Among them, we focus on a schedule that
minimizes the number of partition switches. This schedule
is depicted on Figure 10 in Appendix, under the form
of a chronogram. One division of the time corresponds
to 1 time unit, and the job is completed after 285 time
units. The upper level of orange rectangles indicates the
running of the MVMFast-MVMSlow partition while the
lower level indicates the running of the GTM-Guidance
partition on processor CSeq. As already mentioned, the
switches are performed at predefined moments. For example,
the admissible schedule depicted on Figure 10 in Appendix
can be seen as a manner for programming the partition
switches on the second processor CSeq (corresponding to
frontiers between contiguous orange rectangles) at times:
51, 60, 64, 96, 104, 136, 144, 171, 251, 260, 264.

In a second step, we apply our IM -based method to
analyse the robustness of the execution times and offset
times while keeping the above time-triggered sequence of
partition switchings. This is done by imposing the values
of time of partition switches, as specified above, and
parameterizing all the execution times Cs and offsets Os
corresponding to tasks MVMFast, MVMSlow, GTM
and Guidance. The IM method then outputs the following
constraint K:

4 ≥ CMVMFast > 1
∧ 8 · CMVMFast + CMVMSlow > 71
∧ CGTM > 57
∧ 100 ≥ CGuidance + CGTM > 89
∧ 120 > OGuidance ≥ 55 + CGTM

∧ OGuidance > CMVMFast + CMVMSlow

∧ CMVMFast > OMVMSlow > OGTM > 0
∧ OMVMFast = 0

For any tuple of values satisfying the constraint K, the
time-triggered schedule of Figure 10 in Appendix is still
valid.

In more classical approaches, tools only compute a so-
lution of the scheduling problem. The engineers using this
automatically computed result may then completely loss the

feeling of their system; in particular, they cannot quantify the
robustness of the design with respect to, for instance, small
variations of worst case execution times or delay deadlines.
In contrast, the constraint K indicates clearly to the designer
some degrees of freedom, allowing a better mastering of the
margin policy.

VI. FINAL REMARKS

As shown on different case studies of the literature, our
IM -based procedure provides us with a uniform method
for evaluating quantitatively the robustness of scheduling
solutions.

Furthermore, as examplified on an industrial case study,
our approach seems able to manage a large scope of indus-
trial problems in the domain of critical embedded software.
Compared to classical approaches, it automates a boring
error-prone manual activity and it formalizes the margins
of evolutions of the system (margins which are generally
only estimated without formally insurance of validity).

However, in spite of first promising successes, our ap-
proach meets a combinatory explosion problem when faced
with even more sophisticated space systems designs that
integretate more partitioning and distributed computing. We
are currently working on adaptations of the method in order
to tackle such highly distributed-computing architectures.

ACKNOWLEDGMENT

This work has been partially supported by Institut Farman
(project ROSCOV).

REFERENCES

[1] Y. Abdeddaı̈m and O. Maler. Preemptive job-shop scheduling
using stopwatch automata. In TACAS, pages 113–126, 2002.

[2] É. André, T. Chatain, E. Encrenaz, and L. Fribourg. An
inverse method for parametric timed automata. International
Journal of Foundations of Computer Science, 20(5):819–836,
2009.

[3] G. Behrmann, K.G. Larsen, and J.I.Rasmussen. Beyond live-
ness: Efficient parameter synthesis for time bounded liveness.
In FORMATS, pages 81–94, 2005.

[4] E. Bini and G.C. Buttazzo. Schedulability analysis of periodic
fixed priority systems. IEEE Trans. Computers, 53(11):1462–
1473, 2004.

[5] O. Boudillet, D. Dalemagne, and T. Peron. Is integrated
modular avionic a solution for ATV like spacecraft control. In
Proc. 4th IAASS Conf., Huntsville, Alabama, USA, Sepember
2010.

[6] A. Cimatti, L. Palopoli, and Y. Ramadian. Symbolic com-
putation of schedulability regions using parametric timed
automata. In RTSS, pages 80–89, Washington, DC, USA,
2008. IEEE Computer Society.

[7] T.T.H. Le, L. Palopoli, R. Passerone, Y. Ramadian, and
A. Cimatti. Parametric analysis of distributed firm real-time
systems: A case study. In ETFA, pages 1–8, 2010.

[8] D. Lime, O. H. Roux, C. Seidner, and L.-M. Traonouez.
Romeo: A parametric model-checker for Petri nets with
stopwatches. In TACAS, volume 5505 of LNCS, pages 54–57.
Springer, 2009.

[9] Nicolas Markey. Robustness in real-time systems. In SIES,
pages 28–34. IEEE, 2011.

[10] D. Monchaux, P. Gast, and J. Sangare. Avionic-X: A
demonstrator for the Next Generation Launcher Avionics. In
Embedded Real-Time Software and Systems (ERTS 2012),
Toulouse, France, February 2012.

[11] Romain Soulat. Scheduling with IMITATOR: Some
case studies. Research Report LSV-12-05, Laboratoire
Spécification et Vérification, France, March 2012. Available
on www.lsv.ens-cachan.fr/Publis/RAPPORTS LSV/PDF/
rr-lsv-2012-05.pdf.

[12] J. Sun, M.K. Gardner, and J.W.S. Liu. Bounding completion
times of jobs with arbitrary release times, variable execution
times, and resource sharing. IEEE Trans. Softw. Eng., 23:603–
615, 1997.

APPENDIX

Figure 9. Trace set for the jobshop example

Figure 10. Chronogram of a schedule for J

