Real-Time Systems Journal manuscript No.
(will be inserted by the editor)

Analysis and Implementation of the Multiprocessor
BandWidth Inheritance Protocol

Dario Faggioli*) - Giuseppe Lipari*) -
Tommaso Cucinottd?)

Received: date / Accepted: date

Abstract The Multiprocessor Bandwidth Inheritance (M-BWI) protbisoan exten-
sion of the Bandwidth Inheritance (BWI) protocol to symnieimultiprocessor sys-
tems. Similarly to Priority Inheritance, M-BWI lets a tadiat has locked a resource
execute in the resource reservations of the blocked tdaksréducing their blocking
time. The protocol is particularly suitable for open systemhere different kinds of
tasks dynamically arrive and leave, because it guaranéegsdral isolation among
independent subsets of tasks without requiring any inftionan their temporal pa-
rameters. Additionally, if the temporal parameters of titetiacting tasks are known,
it is possible to compute an upper bound to the interfereunffered by a task due to
other interacting tasks. Thus, it is possible to guarantegbset of interacting hard
real-time tasks. Finally, the M-BWI protocol is neutral teetunderlying schedul-
ing policy, because it can be implemented both in globakteled and partitioned
scheduling.

After introducing the M-BWI protocol, in this paper we forfyaprove its iso-
lation properties, and propose a schedulability analysikérd real-time tasks. Then,
we describe our implementation of the protocol for thid" M U S7T real-time testbed,
and measure its overhead. Finally, we compare M-BWI ag&idi&tP, another proto-
col for resource sharing in multiprocessor systems, intcaty a schedulability anal-
ysis for M-BWI that proves to be less pessimistic than emgstnalysis techniques
for FMLP.

Keywords Resource sharingReal-Time: Multiprocessors Resource Reservation
Priority Inheritance

The research leading to these results has received furdimgiie European Community’s Seventh Frame-
work Programme FP7 under grant agreement n.248465 “S(o)&3vice-oriented Operating Systems.”

(*) Real-Time Systems Laboratory, Scuola Superiore Sama
Via G. Moruzzi 1, 56124, Pisa (ltaly)

e-mail: {d.faggioli, g.lipari }@sssup.it

(§) Alcatel-Lucent Bell Labs

Blanchardstown Business & Technology Park, Dublin (Ird)an
e-mail:tommaso.cucinotta@alcatel-lucent.com

2 Dario Faggiolf*) et al.

1 Introduction

Multi-core platforms are being increasingly used in alksref computing. They con-

stitute a mandatory step for the achievement of greateopaence in the wide area
of high-end servers and high-performance computing, asesited by the movement
from the “frequency race” to the “core race”. Furthermoheyt constitute a promis-

ing technology for embedded and real-time systems, whenrgging the same com-

puting power with multiple cores at reduced frequency mayl I advantages in

terms of power consumption, something particularly imaottfor battery-operated

devices.

Therefore, an increasing effort is being dedicated in tlad-tieme literature on
multiprocessor scheduling, analysis and design methgdesoParticularly, one of
the key challenges in this context is constitutedrégource synchronisation proto-
cols, allowing multiple threads, possibly deployed on multipdees, to access shared
resources still keeping serialisability [23] of the acesssOn symmetric shared-
memory multi-core platforms, a commonly used type of shaesturce is an in-
memory shared data structure used for communication araheymnisation purposes.
To avoid inconsistencies due to concurrency and paratielé&scess to shared data
must be protected by an appropriate access scheme.

Many different approaches have been proposed so far, imgjlack-based tech-
nigues, guaranteeing mutual exclusion among code sectmmessing the same data,
but alsowait-free [12] and lock-free [2] techniques, which instead allow for true
concurrent execution of the operations on the data strestwia appropriate ac-
cess schemes guaranteeing consistency of the operatiecentRy, theransactional
memory (TM) programming paradigm is gaining momentum, thanksgalbiility to
make it easier to code certain types of interactions of fEisdftware.

However, the most widely used techniques in the programpriactice so far are
based ommutually exclusive semaphores (a.k.a., mutexes): before accessing a shared
memory area, a task must lock a semaphore and unlock it aftepleting the access.
The mutex can be successfully locked by only one task at & fifin@other task
tries to lock an already locked mutex, ithfocked, i.e. it cannot continue its normal
execution. The blocked task will be unblocked only when theex is unlocked by
its owner.

In single processor systems, the blocked task is removex fioready queue,
and the scheduler chooses a new task to be executed. Incordtsystems, it may be
useful to let the blocked task execute a waiting loop, uhélmutex is unlocked. Such
technique is often called spin-lock busy-wait. The advantage of busy waiting is that
the overhead of suspending and resuming the task is avadddhis is particularly
useful when the time between the lock and the unlock operat®very short.

A resource access protocol is the set of rules that the operating system uses to
manage blocked tasks. These rules mandate whether a tasp&wled or performs a
busy-wait; how the queue of tasks blocked on a mutex is odjereether the priority
of the task that owns the lock on a mutex is changed and hownWsigning a re-
source access protocol for real-time applications, thexdéveo important objectives:

1) at run-time, we must devise scheduling schemes and i@saacess protocols to

Analysis and Implementation of the Multiprocessor BandWiaheritance Protocol 3

reduce theblocking time of important tasks; 2) off-line, we must be able to bound
such blocking time and account for it in a schedulabilitylgsia methodology.

In this paper, we considepen real-time systems where tasks can dynamically
enter or leave the system at any time. Therefore, a run-titméssion control scheme
is needed to make sure that the new tasks do not jeopardisehiedulability of the
already existing tasks. In addition, for robustness, sgcand safety issues, it is
necessary to isolate and protect the temporal behaviounefask from the others.
In this way, it is possible to have tasks with different lesvef temporal criticality
coexisting in the same system.

Resource Reservations [41] were proved as effective tqabsito achieve the
goals of temporal isolation and real-time execution in ogp¢stems. Resource reser-
vation techniques have initially been designed for the etien of independent tasks
on single processor systems. Recently, they were exteond=pe with hierarchical
scheduling systems [19, 44, 29], and with tasks that intexéb each other using
locks [10, 20, 37]. Lamastra et al. proposed the Bandwidtietitance (BWI) pro-
tocol [27, 30] that combines the Constant Bandwidth Seri/pwjth Priority Inheri-
tance [43] to achieve bandwidth isolation in open systems.

The Multiprocessor BWI (M-BWI) protocol described in thiager is an exten-
sion of the original BandWidth Inheritance Protocol to syetrit multiprocessor/-
multicore systems. In order to reduce task waiting times #BWI, busy waiting
techniques are combined with blocking and task migratidre grotocol does not re-
quire any information on the temporal parameters of thestdsénce, it is particularly
suitable to open systems.

Nevertheless, the protocol supports hard real-time gteearior critical tasks: if
it is possible to estimate such parameters as the worstes&saition times and du-
rations of the critical sections for the subset of tasksradtng with the task under
analysis, then an upper bound to the task waiting times caoimputed. Therefore,
in this case it is possible to compute the reservation butthg¢is necessary to guar-
antee that the critical task will not miss its deadlines.

Finally, the M-BWI protocol is neutral to the underlying sehuling scheme, since
it can be implemented with both global and partitioned satied algorithms.

1.1 Paper Contributions

The contribution of this paper is three-fold. First, M-BV¢l described and its for-
mal properties are derived and proved correct. Then, sdaleitity analysis for hard
real-time tasks under M-BWI is presented. Finally, the iempéntation of M-BWI
in LITMUSTT, a well-known open-source testbed for the evaluation dftiee
scheduling algorithiisis also presented. An experimental evaluation of M-BW# per
formed on such an implementation is presented and discussed

A preliminary version of this work appeared in [18]. In thigtended paper the
discussion is more complete and formal; the comparisontiwéli-MLP protocol [6]
has been added; evaluation is made through a real impletizentd the proposed
technique.

1 More information is available ahttp://www.cs.unc.edu/ ~anderson/litmus-rt/

4 Dario Faggiolf*) et al.

2 Related Work

Several solutions exist for sharing resources in multipssor systems. Most of these
have been designed as extensions of uni-processor tees#@ 39, 11, 31, 21, 26,
16]; fewer have been specifically conceived for multiprecesystems [15, 6].

The Multiprocessor Priority Ceiling Protocol (MPCP) [40]dhits later improve-
ment [39] constitute an adaptation of PCP to work on fixedrgyigpartitioned mul-
tiprocessor scheduling algorithms. A recent variant [26M&CP differs from the
previous ones in the fact that it introduces spin-locks welothe blocking times of
higher priority tasks, but the protocol still addressesyqudrtitioned, fixed priority
scheduling.

Chen and Tripathi [11] presented an extension of PCP to EBferlon, both Gai
et al. [21] and Lopez et al. [31] extended the SRP for part@thEDF. These papers
deal with critical sections shared between tasks runningifierent processors by
means of FIFO-based spin-locks, and forbid their nesting.

Concerning global scheduling algorithms, Devi et al. [1&)gosed the analysis
for non-preemptive execution of global critical sectionsl &IFO-based wait queues
under EDF. Block et al. proposed FMLP [6] and validated itddferent scheduling
strategies (global and partitioned EDF and Pfair). FMLP leygpboth FIFO-based
non-preemptive busy waiting and priority inheritanceelitocking, depending on the
critical section being declared as short or long by the iesting of critical sections
is permitted in FMLP, but the degree of locking paralleliswéduced by grouping
the accesses to shared resources.

Brandenburg and Anderson [9] discuss the definition of blegkime and prior-
ity inversion in multi-processor systems, and presentaglity results for resource
sharing protocols. Recently, Easwaran and Anderssonmiegsthe generalisation of
PIP for globally scheduled multiprocessor systems [16gyTdiso introduced a new
solution, which is a tunable adaptation of PCP with the aitimaiting the number of
times a low priority task can block a higher priority one. Retty Macariu proposed
Limited Blocking PCP [32] for global deadline-based scHeri) but this protocol
does not support nesting of critical sections.

As it comes to sharing resources in reservation-basedbigcal systents work
has been done by Behnam et al. [3] and by Fisher et al. [20]otin tases, a server
that has not enough remaining budget to complete a criteetia blocks before
entering it, until the replenishment time. Davis and Buth¥ jproposed a generalisa-
tion of the SRP for hierarchical systems, where serversatetunning tasks inside
critical sections are allowed to overcome the budget limit.

Furthermore, there is work ongoing by Nemati et al. [35, 3], both inte-
grating the FMLP in hierarchical scheduling frameworksusing a new adaptation
of SRP, called MHSRP, for resource sharing in hierarchjcaheduled multiproces-
sors.

Guan et al. recently [22] addressed resource sharing irhgoaped real-time task
models, proposing a new protocol called ACP which tacklegrticular issue that

2 These, under certain assumptions and for the purposessqidper, can be considered as a particular
form of reservation-based systems

Analysis and Implementation of the Multiprocessor BandWiaheritance Protocol 5

often the actually accessed resources are determined omlg-éime, depending on
which branches the code actually executes.

For all these algorithms, the correctness of the schedalggyithm depends on
the correct setting of the parameters, among which there/argt-case computation
times and durations of critical section. If the length of #ical section is underes-
timated, any task can miss the deadline. In other wordsetlseno isolation (or a
very limited kind of isolation) and an error can propagate eause a fault in another
part of the system. For example, in [3] and [20], if the lengfth critical section on a
global resource is underestimated, the system could béoaded and any task could
miss its deadline.

To the best of our knowledge, the only two attempts to overstinis problem
are the BandWidth Inheritance protocol by Lamastra et &, BD], and the non-
preemptive access to shared resources by Bertogna et a#][SThese approaches
are well suited for open systems, but are limited to uni-pssors. Also limited to
uniprocessors was the attempt at tackling priority inla@de in deadline-based sys-
tems by Jansen et al. [25], in which a protocol similar to ityeceiling was designed
for EDF-based scheduling, and the schedulability analggibnique based on the
demand-bound function for EDF was extended for such a pohatoc

3 System Model

In this paper we focus on shared memory symmetric multigemesystems, con-
sisting ofm identical unit-capacity processors that share a commonanespace.

Ataskr; is defined as a sequence of jolis; — each job is a sequential piece of
work to be executed on one processor at a time. Every job hasraal timea; ;
and a computation time; ;. A task issporadic if a; j+1 > a;; + 13, andT; is the
minimum inter-arrival time. IV a; j+1 = a;; + T3, then the task iperiodic with
periodT;. The worst-case execution time (WCET)mfis an upper bound on the job
computation time’; > max;{c; ;}. Real-time tasks have a relative deadlibg
and each job has an absolute deadline= a; ; + D;, which is the absolute time by
which the job has to complete.

Hard real-time tasks must respect all their deadlines. &aft-time tasks can
tolerate occasional and limited violations of their timiognstraints. Non real-time
tasks have no particular timing behaviour to comply with.

3.1 Critical Sections

Concurrently running tasks often need to interact throdgiredd data structures, lo-
cated in common memory areas. One way to avoid inconsiggngito protect the
shared variables with mutex semaphores (also catiekk). In this paper we de-
note shared data structures protected by mutex semapsos@afsreare resources or
simply resources. In order to access a resource, a task has toléicktthe resource
semaphore; only one task at time can lock the same semagfrora.now on, the
k-th mutex semaphore will simply be calleesource, and it will be denoted byy.

6 Dario Faggiolf*) et al.

Whenr; successfully locks a resourég,, it is said to become thieck owner of
Ry, and we denote this situation witR;, — 7;. If another taskr; tries to lock Ry,
while it is owned byr;, we say that; is blocked on Ry : this is denoted with; — Ry.

In fact, ; cannot continue its execution unti] releases the resource. Typically, the
operating system suspendsuntil it can be granted access it),. Alternatively, ;
can continue executing lausy wait, i.e. it still occupies the processor waiting in a
loop until the resource is released. Wherreleasesky,, we say that itunlocks the
resource; one of the blocked tasks (if any) is unblocked audimes the new owner
of Ry.

Notice that in this paper the terblocking refers only to a task suspension due
to a lock operation on an already locked resource. Otherstppesuspensions (for
example the end of a task job) are simply calkedpensions or self-suspensions.
Also, notice that our definition afask blocking on a resource has no relationship
with the concepts of priority and priority inversion: it gity indicates that a task
cannot continue execution until the resource is releadeetefore, as it will become
more apparent in Section 6, the definition and results pteddsy Brandenburg and
Anderson [9] do not apply to our case.

The section of code between a lock operation and the comelapgp unlock op-
eration on the same resource is calteidical section. A critical section of task; on
resourceR;, can benested inside another critical section on a different resouRze
if the lock on R, is performed between the lock and the unlock®n Two critical
sections onRky and R;, areproperly nested when executed in the following order:
lock on Ry, lock on Ry, unlock onR;, and unlock onR;. We assume that critical
sections are always properly nested. The worst-case éarcime (without blocking
or preemption) of the longest critical sectiongfon Ry, is denoted by; (Ry), and it
is called thdength of the critical section. The length(Ry,) includes the duration of
all nested critical sections.

In the case of nested critical sections, chained blockirmgpisible. Ablocking
chain from a taskr; to a taskr; is a sequence of alternating tasks and resources:

Hi,j = {Ti — Ri71 — Til — Ri72 — ... = Ri,z/—l — Tj}

such that; is the lock owner on resourde; ,,—; andr; is blocked onk; ;; each other
task in the chain accesses resources with nested crittadisg, being the lock owner
of the preceding resource and blocking on the following uese. For example, the
following blocking chainH, 3 = {71 — R1 — 7 — Ry — 73} consists of 3
tasks:ts that accesseBs, T that accesseBs within a critical section nested inside
a critical section om?;, andr; accessing?;. This means that at run-time can be
blocked by, and indirectly byrs. In this caser; is said to benteracting with
andrs.

A blocking chain is a “photograph” of a specific run-time sition. However,
the concept of blocking chain can also be used to denote afptsituation that
may happen at run-time. For example, chain; can be built off-line by analysing
the critical sections used by each task, and then at runitimey happen or not.
Therefore, in order to perform a schedulability analysigs possible to analyse the
task code and build a set of potential blocking chains to tstded the relationship
between the tasks. In the previous examplenay or may not be blocked b in

Analysis and Implementation of the Multiprocessor BandWiaheritance Protocol 7

a specific run. However;; cannot be blocked by, unless another blocking chain
Hjs 1 exists. Generally speaking can be blocked by; only if a blocking chaind; ;
exists.

Deadlock can be detected both off-line and on-line by coimgudiocking chains.
If a blocking chain contains the same task or the same resdwice, then a locking
cycle is possible, and a deadlock can happen at run-timeinfjli/ presentation,
and without loss of generality, in this paper we assume teatllbck is not possible.
Thus a task never appears more than once in each blocking, emal all chains are
finite sequences. However, our implementation in Sectioarvdetect deadlock at
run-time.

We define the subset of tasks interacting witlas follows:

¥; = {7;|3H, ;}. 1)

Two tasksr; andr;, are said to ba@on-interacting if and only if 7; ¢ ¥; andr; ¢ ;.
The set of tasks that directly or indirectly interact withesourceR;, is defined as:

Fk:{Tj|3Hj7h:{Tj—)...Rj—)Th}} (2)

The ultimate goal of the M-BWI protocol is to provide bandthidsolation between
groups of non-interacting tasks: if ¢ ¥;, thenr; cannot blockr; and it cannot
interfere with its execution (see Section 4).

3.2 Multiprocessor Scheduling

In multiprocessor systems, scheduling algorithms can &ssifled into global, par-
titioned and clustered. Global scheduling algorithms ht@vg one queue for ready
tasks, and the first: tasks in the queue are executed onvthavailable processors. As
a consequence, a task can execute on any ohtpeocessors, and camigrate from
one processor to another even while executing a job. Glabalduling is possible on
symmetric multiprocessor systems where all processors dauivalent characteris-
tics (e.g., the same instruction set architecture).

Partitioning entails a static allocation of tasks to preoes. The scheduler man-
agesm different queues, one for each processor, and a task cangattenbetween
processors. Partitioned scheduling is possible on a widetyaf hardware platform,
including heterogeneous multiprocessors.

In clustered scheduling, the set of processors is dividediisjoint subsets{us-
ters) and each task is statically assigned to one cluster. Giatedduling is possible
within each cluster: there is one queue for each clusteraatadk can migrate be-
tween processors of its assigned cluster. Again, eacheclosist consist of equiva-
lent processors.

In this paper we assume thiask migration is possible, i.e. that a task can occa-
sionally migrate from one processor to another one. Thezefee restrict our atten-
tion to symmetric multiprocessors platforms.

Regarding the scheduling algorithm, we do not make any Bpexssumption.
The underlying scheduling mechanism can be global, pamétl or clustered schedul-
ing. However, for the latter two algorithms, we assume thi@si can occasionally

8 Dario Faggiolf*) et al.

violate the initial partitioning, and temporarily migrdtem its assigned processor to
another one not assigned to him for the sake of shorteningltoking time due to
shared resources. The mechanism will be explained in gréetails in Section 5.

3.3 Resource Reservation

The main goal of our protocolis to guarantee timing isolabetween non-interacting
tasks. An effective way to provide timing isolation in reghe systems is to use the
resource reservation paradigm [41, 1]. The idea is twerap tasks inside schedulable
entities calledservers that monitor and limit the resource usage of the tasks.

A serverS; has a maximum budgé}; and a period?;, andserves one task. The
server is a schedulable entity: it means that the schedelgtsta server as it were a
task. Therefore, depending on the specific scheduling igthgora server is assigned
a priority (static of dynamic), and itis inserted in a readgge. Each server then gen-
erates “jobs” which have computation times (bounded by tagimum budget) and
absolute deadlines. To distinguish between the absol@dlide assigned to server
jobs, and absolute deadlines assigned to real-time tagksalithe former “schedul-
ing deadlines”.

Thescheduling deadlineis calculated by the reservation algorithm and it is used
only for scheduling purposes (for example in the CBS algari{1], the schedul-
ing deadline is used to order the queue of servers accorditigetEarliest Deadline
First policy). When the server is dispatched to executesérger task is executed
instead according to the resource reservation algorithnsén Notice that, when us-
ing resource reservations, priority (both static or dyrgnsi assigned to servers, and
not to tasks. A set of servers is said todohedulable by a scheduling algorithm if
each server job completes before its scheduling deadlingeheral, schedulability
of servers is not related with schedulability of the wrapfsegks. However, if the set
of servers is schedulable, and there is an appropriatéaeshtip between task pa-
rameters and server parameters, server schedulabilitympy task schedulability.
Typically, when serving sporadic real-time tasks the semvaximum budget should
not be less than the task WCET, and the server period shotildenlarger than the
task minimum inter-arrival time.

Many resource reservation algorithms have been proposie iliterature, both
for fixed priority and for dynamic priority scheduling. Theljffer on the rules for
updating their budget, suspending the task when the budgktgleted, reclaiming
unused budget, etc. However, all of them provide some basjoepties: a reserved
taskr; is guaranteed to execute at leastprtime units over every time interval of
P, time units; therefore, tasks are both confined (i.e., thagiability of meeting their
deadlines only depends on their own behaviour) and pratémen each other (i.e.,
they always receive their reserved share of the CPU, withouytinterference from
other tasks). The latter property is calliahing isolation.

3 Resource reservation and servers can also be used as thédpasierarchical scheduling, in which
case each server is assigned more than one task. In this papever, we will not take hierarchical
scheduling into account.

Analysis and Implementation of the Multiprocessor BandWiaheritance Protocol 9

Two examples of resource reservation algorithms are thest@oh Bandwidth
Server (CBS [1]), for dynamic priority scheduling, and thpo&dic Server (SS [45]),
for fixed priority scheduling. To describe a resource reston algorithm, it is pos-
sible to use a state machine formalism. The state machimgagiaof a server for
a general reservation algorithm is depicted in Fig. 1. Ugualserver has aurrent
budget (or simplybudget) that is consumed while the served task is being executed,
and a priority. Initially the serverisinthdle state. When a job of the served task is
activated, the server moves to tAetive state and it is inserted in the ready queue
of the scheduler; in addition, its budget and priority arelated according to the
server algorithm rules. When an active server is dispatdhé@comedRunning ,
and its served task is executed; while the task executdsnjdiget is decreased. From
there on, the server may:

— becom@éActive again, if preempted by another server;

— becomeRecharging , if its budget is depleted;

— becomeldle |, if its task self-suspends (for example because oémhof job
event).

On the way out fromRecharging andldle , the reservation algorithm checks
whether the budget and the priority/deadline of the sereeds to be updated. A
more complete description of the state machine for algmstlike the CBS [1] can
be found in [33].

Recharging bdg_exhausted

recharged

Idle wake_up mﬁ dispatch @m
) J

preemption

N

suspend

Fig. 1 State machine diagram of a resource reservation server.

4 The BandWidth Inheritance Protocol

If tasks share resources using the resource reservatiadigar, they might start

interfering with each other. In fact, a special type of ptiomversion is possible in

such a case, due to the fact that a server may exhaust itsthwhidge serving a task

inside a critical section: the blocked tasks then need tbof@athe server to recharge
its budget. If the server is allowed to continue executinthvé negative budget,
scheduling anomalies appear that may prevent schedtyadnilalysis, as explained
for example in [30, 17].

10 Dario Faggiolf*) et al.

For uni-processor systems, the Bandwidth InheritanceoPob{BWI, see [30])
solves this issue by allowinggrver inheritance. The server of a lock-owner task can
leverage not only its own budget to complete the criticalisecbut also thénherited
budgets of servers possibly blocked on the lock it is owning.

This mechanism is similar to the Priority Inheritance mexbia. It helps the
lock-owner to anticipate the resource release. Morecaskstthat are not involved in
the resource contention are not influenced, thus presetwirigg isolation between
non-interacting tasks.

A more detailed description of the BWI protocol and its prajgs can be found
in [30]. In this paper we extend the BWI protocol to the myitecessor case.

In [42], BWI has been extended with the Clearing Fund alpamit The idea is
to pay back the budget that a tasdteals to other tasks by means of the bandwidth
inheritance mechanism. While a similar technique can adsagplied to M-BWI, for
simplicity in this paper we restrict our attention to thegimal BWI protocol, and we
leave an extension of the Clearing Fund algorithm as futumew

5 Multiprocessor Bandwidth Inheritance

When trying to adapt the BWI protocol to multiprocessor eyss, the problem is to
decide what to do when a task tries to lock a resource whokedloner is executing
on a different processor. It makes no sense to execute theolweer task on more
than one CPU at the same time. However, just blocking the aask suspending
the server may create problems to the resource reservdgjorithm: as shown in
[30], the suspended server must be treated as if its task letedpits job; and the
task unblocking must be considered as a new job. Whereastthiegy preserves
the semantic of the resource reservation, it may be implesgibprovide any time
guarantee to the task.

To solve this problem, M-BWI lets the blocked task performugyowait inside
its server. However, if the lock owner is not executing, leseaits server has been
preempted (or exhausted its budget during the critical@@cthe inheritance mech-
anisms of BWI takes place and the lock owner is executed ingheer of the blocked
task, thus reducing its waiting time. Therefore, it is neegeg to understand what is
the status of the lock owner before taking a decision on hawedolve the contention.
Itis also important to decide how to order the queue of taskied on a locked re-
source.

5.1 State Machine

A server using the M-BWI protocol has some additional stafé® new state ma-
chine is depicted in Figure 2 using the UML State Chart notatin this diagram we
show the old states grouped into a composite state cRésstvation. As long as the
task does not try to lock a resource, the server follows itfiral behaviour and stays
inside theReservation state.

Now, let us describe the protocol rules. Let denote the set of blocked tasks
waiting for 7; to release some resource: = {7 | 7x — ... — 7, }. Let p;, denote

Analysis and Implementation of the Multiprocessor BandWiaheritance Protocol 11

4 Reservation N 4 BWI

Running

bdg_exhausted [LO running]

lock preemption
Executing sigl Spinning

-l
dispatch unlock L—JML—J

wake_up
preemption
suspend

& /

[LO not running]

Idle

wake_up

recharged bdg_exhausted

E Recharging }

Fig. 2 State machine diagram of a resource reservation server MFgWI is in place.

uspension [not bwi]

&

the set of all tasks blocked on resouigg plus the current lock-owner. Also, let;
denote the set of servers currently inheritedrpy(.S; included):A; = {Sy | 7 €

AU {85}

— Locking rule. When the taskr; executing inside its serves; tries to lock a

resourceRy, the server moves into tiBWVI| composite state, and more specifically

inside theBWI.Running state, which is itself a state composed of two sub-

states,Running and Spinning . The setp; now includesr;. We have two
cases to consider:

a) Iftheresourceis free, the server simply moves intd¥4.Running.Executing
sub-state and executes the critical section.

b) If the resource is occupied, then the chain of blockedstéskollowed until
one that is not blocked is found (this is always possible wtheme is no
deadlock), let it ber;. Then,7; inherits servers;, i.e. S; is added tod;. If
7; is already executing in another server on another procassor Server;
moves into theBWI.Running.Spinning sub-state. Otherwise, it moves
into BWI.Running.Executing and starts executing;. This operation
may involve a migration of task; from one server to another one running on
a different processor.

Notice that in all casesS; remains in theBWI.Running state, i.e. it is not sus-

pended.

Preemption rule. When servelS; is preempted, while in thBWI.Running

state, it moves to thBWI.Active state. We have two cases:

a) If the server was in th8WI.Running.Spinning sub-state, it simply
moves toBWI.Active

b) Suppose it was in thBWI.Running.Executing state, executing task.
Then the listA; of all servers inherited by; is iterated to see if one of the

serversSy € A; is running. This means th&f, must be in thé&WI.Running.Spinning

sub-state. Then$, moves to theBWI.Running.Executing sub-state
and will now execute; (transitionsig in the figure).

If there is more than one server ity that isBWI.Running.Spinning
only one of them is selected and moved&@/I.Running.Executing

12

Dario Faggiolf*) et al.

for example the one with the largest remaining budget, ormotie with the
earliest deadline.

This operation may involve a migration of taskfrom serversS; into server
Sk.

— Recharging rule If the budget of a server in thBWI.Running state is ex-

hausted, the server moves to B¢/I.Recharging state. This rule is identical
to thePreemption rule described above, so both cases a) and b) apply.

— Dispatch rule. If serverS; in theBWI.Active state is dispatched, it moves to

theBWI.Running state. This rule is similar to tHecking rule described above,

and there are two cases to consider:

a) The lock-owner task is already executing in another semvanother proces-
sor: thenS; moves to thdWI.Running.Spinning sub-state.

b) The lock-ownertask is not currently executing; tifemoves to th&WI.Running.Executing

sub-state and starts executing the lock-owner task.
Inner locking. If a task that is already the lock owner of a resouR;dries to
lock another resourc&;, (this happens in case of nested critical section), then it
behaves like in théocking rule above. In particular, if the resource is occupied,
the lock owner ofR;, is found and inheritss;. If the lock-owner is already run-
ning in another servely; moves from theBWI.Running.Executing to the
BWI.Running.Spinning sub-states (transitionn-lock in the figure).
Unlocking rule. Suppose that a task is executing an outer critical section on re-
sourceRR, and unlocksiit. Its current executing server must be irB#A4.Running.Executing
sub-state (due to inheritance, it may or may noShe
If there are blocked tasks)., the first one (in FIFO order) is woken up, let it be
7;. The unblocked task; will inherit all servers that were inherited by, and all
inherited servers are discarded frotn (excludingS;):

A AU A\ S; 3)
/lj<—Sj

S; goes out of théWI composite state (transitiamlock) and returns into the
Reservation composite state, more precisely intoReservation.Running
sub-state. Notice that this operation may involve a migraftaskr; may need to
return executing into its own server on a different processo

Inner unlocking rule. If a task; is executing a nested critical section on re-
sourceR;, and unlocks it, its currently executing server continuestéy in the
BWI.Running.Executing sub-state. If there are blocked taskgjnwaiting
for Ry, then the first one (according to the FIFO ordering) is wokenlet it be

7;, and the sets are updated as follows:

Pk PR\ T
A*%A‘\Sh
Y, € ’ ’
Th S PR {Aie/liush

This operation may involve a migration.

Analysis and Implementation of the Multiprocessor BandWiaheritance Protocol 13

— Suspension rule While holding a resource, it may happen that a tagslself
suspends or blocks on a resource that is not under the caftthe M-BWI
protocol. This should not be allowed in a hard real-time maion, otherwise
it becomes impossible to analyse and test the scheduabltiwvever, in a open
system, where not everything is under control, it may happan a task self-
suspends while holding a M-BWI resource.

In that case, all the servers iy move toBWI.Idle and are removed from
the scheduler ready queues umtilwvakes up again. When waking up, all servers
in A; move to theBWI.Active state and the rules of the resource reservation
algorithm are applied to update the budget and the priofigach server.

5.2 Examples

We now describe two complete examples of the M-BWI protokothe following
figures, each time line represents a server, and the defmldtof serveiS, is 74,
of serverSg is 75, etc. However, since with M-BWI tasks can execute in servers
different from their default one, the label in the executientangle denotes which
task is executing in the corresponding server. White regésnare tasks executing
non critical code, light grey rectangles are critical smsi and dark grey rectangles
correspond to servers that are busy waiting. Which crigeation is being executed
by which task can again be inferred by thecution label, thus4; denotes task,
executing a critical section on resourBg. Finally, upside dashed arrows represent
“inheritance events”, i.e., tasks inheriting servers assegquences of some blocking.
The schedule for the first example is depicted in Figure 3otisgsts of3 tasks,
TA,TB,TC, €Xecuted o2 processors, that access only resougge

s L(R1) U(R1)

A A A | A

s L(R) | UR1) U(R) l

B B_| C1 [B [5]

g L(R1) : l
c c Fl , C

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Fig. 3 First example3 tasks or2 CPUs andl resource.

Attime 6, 75 tries to lockR;, which is already owned by, thusr¢ inheritsSp
and starts executing its critical section & inside it. Whenr, tries to lockR; at
time 9, both7- and7p inherit S 4, and bothS4 andSg can executec. Therefore,
one of the two serverss(y in this example) enters tHgpinning state. Also, the FIFO

14 Dario Faggiolf*) et al.

wake-up policy is highlighted in this example: when, at titde 7 releasesR, 75
grabs the lock because it issued the locking request before

The second example, depicted in Figure 4, is more comptidagehe presence
of 5 tasks or2 processors, two resources, and nested critical sectivmsetjuest for
R, isissued byr¢ at time7 when it already owng®s.

g b (R1) l
A Tapd A
T
1
1
oz (51 1
1
g L(R2)L(R1]) l
“ cl &y
I
L(R2 U(R1) U(R1) U(Rz) U(R2) 1
Sp

p{ alTalTce|[D |b]
A

(R2 U(Rz2)
5 2 G

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Fig. 4 Second examplé tasks or2 CPUs with2 resources — taskc accessest; inside Ra.

Notice that, despite the fact that bath andrg only useRs, they are blocked by
74, Which uses onlyR;. This is because the behaviouref establishes the blocking
chainsHp 4 ={7p = Ry = 7¢ = R1 = 7a} andHg 4 = {7g = Ry — 7¢ —

Ry — 74}. Forthe same reasd, andSg are subject to interference either by busy
waiting or executing 4 until it releasesk; . This is a blocking-chain situation similar
to what happens with priority inheritance in single procesystems.

5.3 Proof of Correctness

In this section, we will prove the correctness of the protacet us start by defining
what we mean by “correct protocol”:

— First of all, we require that a task is never executed on twe@ssors at the same
time.

— Second, we require that the server is never blocked: thittask ; blocks, its
serverS; will continue to execute either a busy wait or some other.tSskver
S; can suspend due to recharging, but it will never move t¥4.Idle state,
unless its currently executing task self-suspends.

— Finally, we require that, if a schedulability test deems gbeof reservations to
be schedulable when access to resources is ignored, therves will miss its
deadline at run-time when executed with the correspondihgduling algorithm.

Analysis and Implementation of the Multiprocessor BandWiaheritance Protocol 15

Notice that at this point we do not make any assumption onc¢heduling algo-
rithm (fixed or dynamic priority, partitioned or global): vamly assume a resource
reservation algorithm, and an appropriate schedulalbdgfor the admission control
of reservations. The only requirement s that the set ofrvasiens be schedulable on
the selected combination of scheduling algorithm and hardywlatformwhen access
to resourcesis not considered.

Lemma 1 If M-BWI is used as a resource access protocol, a task never executes on
more than one server at the sametime.

Proof Suppose that; is alock owner that has inherited some servert-oo execute
in more than one server, at least two server$;should be in th&unning.Executing
sub-state. However, theocking rule specifically forbids this situation: in particular,
in case b), the protocol looks at the lock owner taskad if it already executing
(i.e. if its server is in th@WI.Running.Executing), then the server of the new
blocked task goes intBWI.Running.Spinning state.

Similar observations hold for thispatch andInner locking rules.

Hence the lemma is proved.

Lemma 2 Consider a set of reservations that uses the M-BWI protocol to access
shared resources. Further, suppose that task 7; and all tasks in ¥; never suspend
inside a critical section, and never access a resource not handled by M-BWI. Then,
when in the BW state, server \S; always has exactly one non-blocked task to serve
and never entersthe BW . | dl e state.

Proof The second part of the Lemma holds trivially: in fact, in art S; to enter
the BWI.Idle state, it must happen that or any of the tasks from which it is
blocked, self suspends while inside a critical sectionjresjghe hypothesis.

It remains to be proved th&}; has always exactly one non-blocked task to serve.
In M-BWI a server can be inherited by a task due to blockingsTtappens in the
Locking andInner locking rules. Also, in theJnlocking andlnner unlocking rules, a
task can inherit many servers at once. Therefore, a taskmute in more than one
server.

We will now prove that, when in thBWI state, servef; has at most one non-
blocked task to serve. By Induction. Let us denote witthe first instant in which
T, accesses a resource, entering sBAtél. The lemma trivially holds immediately
beforety. Assume the lemma holds for all instants before timeith ¢ > ¢,.

Suppose a task blocks at tinieln the Locking rule a taskr; may block on a
resource already occupied by another tagskAs a consequence; inherits S;. S;
had only one non-blocked task;) before this event: hence, it has only one non-
blocked task ;) after the event. A similar observation is valid in th@er Locking
rule.

Suppose that a task releases a resourég, at timet. In theUnlocking rule, 7;
wakes up one task; that inherits all servers in;, exceptS;. All these servers had
only one non-blocked task) to serve before; they still have one non-blocked task
(r;) to serve aftet. A similar observation holds for th@ner unblocking rule.

No other rule modifies any of the sets. Hence the lemma is proved.

16 Dario Faggiolf*) et al.

The previous lemma implies that, under M-BWI, a server isenesuspended
before its task completes its job, unless the task itsel&grof its interfering tasks)
self suspends inside a critical section. This is a very ingdrproperty because it
tells us that, from an external point of view, the behaviduhe reservation algorithm
does not change. In other words, we can still view a serverspsradic task with
WCET equal to the maximum budgé; and minimum inter-arrival time equal to
P;, ignoring the fact that they access resources. Resouresgdocking, blocking
and busy wait have been “hidden” under the M-BWI internal hagdsm. Therefore,
we can continue to use the classical schedulability teggsiamantee that the servers
will never miss their deadlines. This is formally proved b ffollowing conclusive
theorem.

Theorem 1 Consider a set of reservations that is schedulable on a system when ac-
cess to resources is ignored, and that uses M-BWI as a resource access protocol.
Then, every server always respects its scheduling deadline.

Proof Theorem 2 proves that a server is never blocked: a serverarammie idle (ei-
therReservation.ldle orBWI.Idle)onlyifit self suspends or if it is blocked
by a task that self suspends.

Notice in Figure 2 that the states insi@eservation and the states insid&WI
were named alike with the purpose of highlighting the sintjabetween the two
composite states. A server can move frieeservation.Running to BWI.Running
and vice versa through a lock/unlock operation on a resaouereaged by the M-BWI
protocol. Notice also that the server moves from one staa@ather inside each high
level composite state responding to the same evenpseanption event moves a
server fromRunning to Active in both composite states;tadg _exhausted
event moves the server froRunning to Recharging in both composite states;
etc. Also, the operations on the budget and priority of arkedi®n are identical in
the two composite states, except that, while insideB¥Ad composite state, a server
can execute a different task than its originally assignezl on

Therefore, from the point of view of an external observewé hide the pres-
ence of the two high level composite statRgservation andBWI, and the lock
and unlock events, then the behaviour of any sefyerannot be distinguished from
another server with the same budget and period that doesoets@any resource.

In any resource reservation algorithm, the schedulalofity set of reservations
(i.e. the ability of the servers to meet their schedulingitieas) depends only on their
maximum budgets periods. Since by hypothesis the set afuagans is schedulable
on the system when ignoring resource access, it followsttieaset of reservations
continues to be schedulable also when resource accesssisersd.

The most important consequence of Theorem 1 is that theyabflia server to
meet its scheduling deadline is not influenced by the belavbthe served tasks,
but only by the global schedulability test for reservatiofiserefore, regardless of
the fact that a task accesses critical sections or not, arftbfe long, the server will
not miss its scheduling deadlines.

The first fundamental implication is that, to ensure thatsk ta will complete
before its deadline under all conditions, we must assignsiraerS; with enough

Analysis and Implementation of the Multiprocessor BandWiaheritance Protocol 17

budget and an appropriate periodr{fis sporadic and does not access any resource,
it suffices to assigty; a budget no less than the task’s WCET, and a period no larger
than the task’s minimum inter-arrival time. In fact, thevagrwill always stay inside

the Reservation = composite state and will not be influenced by the presence of
other tasks in the system. We say that task thentemporally isolated from the rest

of the system.

If 7, does access some resource, tlSercan be inherited by other tasks due to
blocking and the server budget can be consumed by other. tdelusever, the set of
tasks that can consundg is limited to¥;, i.e. the set ofnteracting tasks for ;. To
ensure the schedulability of, we must assigl§; enough budget to cover for the task
WCET and the duration of the critical sections of the intérertasks. If a task does
not belong taZ;, then it cannot inherif; and cannot influence the schedulability of
Ti-

The conclusion is that M-BWI guarantees a weaker form of wmalpisolation:
it restricts the interference between tasks, and makegisarenly interacting tasks
can interfere with each other.

6 M-BWI Interference Analysis

In the previous section we have demonstrated that M-BW!| dak=ed provide tem-
poral isolation, without requiring any knowledge of thekm$emporal parameters.
Also, M-BWI seamlessly integrates with existing resoureservation schedulers.
Therefore, it is possible to avoid the difficult task of penfing temporal analysis
for soft real-time systems; for example, adaptive schedudirategies [38, 13] can
be used at run-time to appropriately dimension the buddeteaeservations.

6.1 Guarantees for Hard Real-Time Activities

Open systems may also include hard real-time applicatfonsshich we must guar-
antee the respect of every temporal constraint. To perforroffline analysis and
provide guarantees, it is necessary to estimate the pagesmEebmputation times,
critical sections length, etc.) of the hard real-time ta¥kghout isolation, however,
the temporal parameters of every single task in the systest bwiprecisely esti-
mated. In M-BWI, this analysis can be restricted to the subktasks that interact
with the hard real-time task under analysis. In particulas, is required to be able to
compute thénterference of interacting tasks.

The interference timé; is defined as the maximum amount of time a seS:das
running but it is not executing its default task In other words/; for S; is the sum
of two types of time interval:

— the ones when tasks other tharexecute insidé;;
— the ones whenm; is blocked andS; busy waits inBWI.Running.Spinning
state.

Schedulability guarantees to hard real-time activitieth system are given by
the following theorem.

18 Dario Faggiolf*) et al.

Theorem 2 Consider a set of reservations schedulable on a system when access to
resources is not considered. When M-BW is used as a resource access protocol,
hard real-timetask 7;, with WCET C; and minimuminter-arrival timeT;, attached to
aserver S; = (Q; > C; + I;, P, < T;), never missesits deadline.

Proof By contradiction. From Theorem 1, no server in the systensesigs schedul-

ing deadline. In order for; to miss its deadline, the server has to go into the recharg-
ing state before; has completed its instance. It follows that, from the atitbraof

the task instance, the server has consumed all its budgetdoyigng part of task;

and other interfering tasks. However, the amount of interfee is upper bounded by
I;, the computation time of; is upper bounded b§;, and@; > C; + I;. Hence, the
server never reaches the recharging state, and the theoliems.

Computing a bound on the interference for a hard real-tirakstés not easy in
the general case. In fact, if a set of non hard real-time tss&owed to arbitrarily
interrupt and block the hard real-time task, the interfeestime can become very
large. Therefore, as in the case of the BWI protocol for singlocessor systems
[30], we assume that all the interfering tasks are themsdiaed real-time tasks and
will not miss their deadlines.

In this section, we will also assume that the underlying dalirg algorithm is
global EDF, which means that on a multiprocessor platforth wi processors there
is one global queue of servers, and the finstarliest deadline servers execute on the
m processors. Also, we assume the Constant Bandwidth Sdfjvas fesource reser-
vation algorithm. However the analysis is quite general@ardbe easily extended to
other schedulers and resource reservation algorithms.

Under this assumptions, the following two Lemmas hold.

Lemma 3 Consider a task 7;, served by server S; and its set of interacting tasks ¥;.
Atask 7; € ¥; served by server S; with P; > P;, can contribute to the interference
I; when S; isnotin BW . Runni ng.

Proof Tasksr; andr; interact through at least one resoufte This means that there
exist a blocking chain from; to;: 7, — ... = R — 7.

Under the assumption that all tasksinare hard real-time tasks (i.e. they never
miss their deadline), then the following situation may heqpwvhileS; executes;
inside the critical section, it is preempted Bywhich blocks (directly or indirectly)
on R;,. Thereforey; inheritsS; and executes inside it, consuming its budget, for the
duration of the critical section oR.

Notice that, unlike the Priority Inheritance Protocol fargle processor systems,
taskr; can interfere withS; many times on different critical sections even during the
same instance.

In fact, consider the case th#if andS; are executing on two different processors:
there is no rule that prevents the possibility of the two $askinterfere many times
on different critical sections even on the same resource.

To simplify the equation for the interference, we make treuiagption that every
task accesses a resouligg with at most one critical section. The following Lemma
restricts the number of interfering tasks on a specific resau

Analysis and Implementation of the Multiprocessor BandWiaheritance Protocol 19

Lemma 4 Consider a task 7;, served by server S; on a system with m processors,
and let Ry, be aresource on which r; may block: r; € I'. Then, at most m — 1 tasks
in I, with server period lessthan P; contribute to the interference I;.

Proof Since servers execute in tasks’ deadline order, the rursg@ngers will be the

m earliest deadline ones, at any given time. Then, the worsdiple situation for a
taskr; (attached ta;) is being one of the running ones, at the moment in which they
are all trying to acces®;,. Therefore, given the FIFO ordering policy, in the worst
case it will have to wait for the othern — 1 tasks to complete their requests, and
suffering for their interference (in terms of busy waiting)

Let¥r = {7, € ¥; N [|P, > P;} denote the set of servers with larger period
thanS; that can interfere wittt; on Ry.. Let also2¥ = {&,(Ry) | 7h € [k A Py <
P} — {&(Ri)} denote the set of maximal critical sections length of tasteracting
with 7; with server periods smaller thdp. Given the two Lemmas, the interference
a servers; is subject to, due to M-BWI, can be expressed as follows:

m—1
> GR+ Y 2 4)

j‘T]‘E‘I’ik

VRk|TiEFk,Iik

and

I;

> I (5)

k|Ti €%

wherelt" S is the sum of thenin(n, || S||) largest elements of sét(and||S|| is the
number of elements if).

In open systems it is also possible that hard real-time tsistee some resources
with soft real-time ones, e.qg., if critical sections aretpdra shared library. In this
scenario, even if the duration of the critical sections ar@¥n in advance, the prob-
lem that soft real-time tasks can deplete the budget of 8eivers — even inside
these code segments — has to be taken into account. Wherafipeihs, the condi-
tions of Lemma 3 and 4 are no longer verified, and this meanathée potentially
interfering tasks must be considered. An upper bound torttegference a serve;
incurs serving a hard task, due to the presence of soft tesks,

IF= > &(Re) (6)

gl €L, j#i

If a system consists only of hard real-time tasks, then M-Bitgly not the best
solution. In fact, other protocols, specifically aimed dt tkind of systems, might
provide more a precise estimation of blocking times, and #ittain a superior per-
formance. Where M-BWI is, as per the authors’ knowledgd|yemique, is in het-
erogeneous environments where temporal isolation is thégedure.

20 Dario Faggiolf*) et al.

6.2 Examples

For better understanding the schedulability analysis hadnterference calculation,
the second example of section 5.2 is considered again. list al possible blocking
chains:

Hyc={ta— R1— 7.}
Hca = {r¢ = Ry — 7a}
HC,D = {Tc%RQ —)TD}
HC,E = {Tc%RQ —)TE}
Hp g ={m— Ry — 75}
Hpa={m— Ry —717c — R1—7a}
Hgpp={mg = R2— Tp}
Hpa={mg = R2 > 7c = R1 = Ta}

Let us compute the usage the $efor R, andRy: It = {74, 7c,7p,7r} and
Iy = {7¢,7p,7E}. Let us compute the upper bound on the interfereheeFol-
lowing directly from the definitionspl, = {74} and 2% = {{p(R2),ép(R2)}, the
others being empty sets. Therefore, since ther@ &eUs, and thus only contribu-
tion from eachf? has to be considered, and assumipgR2) > {r(R2), we obtain
Ic = £4(R1) + Ep(R2).

The interferencd z only amounts to the contribution from}, and¥%. In fact,
2}, and2% are empty, sincé is the server with the shortest period.

6.3 Remarks

The choice of using FIFO waking order for blocked tasks mightquestionable,
mainly because it does not reflect the priority/deadlineagk$s and servers in the
system, as it usually happens in real-time systems andtlibes.

Using a priority-based wake-up order is certainly possitith the M-BW!I pro-
tocol. The lemma and theorems presented till now continugetwealid, and in par-
ticular the timing isolation property does not depend onvlaée-up order. Such a
priority-based policy can be useful to reduce the interfeedime ofimportant tasks.
However, it comes at the expenses of a larger interferenclege-important tasks,
and makes the analysis more difficult, as higher prioritiksasay interfere more than
once on the same critical section. The FIFO policy has at thasinteresting prop-
erty of being starvation free, which also makes it simplecatculate blocking and
interference times. Also, in most cases critical sectioasrary short, as reported by
Brandenburg et al. [7], therefore we expect a limited amaofiimiterference. Notice
that the same choice has been made in other protocols, as Byafrd M-SRP [21].

Another important remark to be made concerns with thoseesewhich are busy
waiting in BWI.Running.Spinning state. Busy waiting is a waste of resources
that could be used to execute other tasks. Indeed, it is fiatuli to modify the

Analysis and Implementation of the Multiprocessor BandWiaheritance Protocol 21

protocol to reclaim such wasted busy waiting. For exampleleithe server is in the
BWI.Running.Spinning state, it could execute other ready tasks. However, we
must be careful in doing this, because the reclaimed taskttig to access some
resource, and this complicates the protocol. Also, theamihg task may pollute
the cache and increase the computation time of the suspeasledrinally, notice
that currently it is not possible to take into account théaneation in the interference
analysis. Therefore, considering that most critical sexdtiare short [7], a reclamation
policy may make the protocol unnecessarily complex, wittzosignificant gain.

7 Implementation in LITMU SET

The M-BWI protocol has been implemented on the real-timesdaling and syn-
chronisation testbed calleBITMUSTT, developed and maintained by the UNC
real-time research group. Having a real implementatiorhefrotocol allows us
to perform more complex evaluations than just simulatiams] get real data about
scheduling overheads and actual execution times of theinealtasks, as well as to
measure performance figures.

LITMUSET was chosen as the basis for the implementation of M-BWI be-
cause it is a well-established evaluation platform (esglydior scheduling and syn-
chronisation overheads) in the real-time research comunifact, LIT MU ST
includesfeather-trace, an efficient and minimally intrusive mechanism for recardi
timestamps and tracing overheads of kernel code paths.dverdt already supports
a variety of scheduling and synchronisation schemes. Tdreré will be easier (in
future works) to adapt M-BWI to them and compare it with otbelutions. The cur-
rent version o LIT MU ST is available as a patch against Linux 2.6.36, or via UNC
git repository (sed IT MU ST web page).

LITMUSTT employs a “plug-in based” architecture, where differehestuling
algorithms can be “plugged”, activated, and changed dyaoaligiat run-time. Con-
sistently with the remainder of this paper, M-BWI has beeplemented for global
EDF, i.e., inside the plug-in calle@-EDF (since it also supports clustered schedul-
ing if configured accordingly). Our M-BWI patch against trevdlopment trunk (the
git repository) version oL.IT MU ST is available at:
http://retis.sssup.it/people/tommaso/papers/RTSJ11/ index.html

This section reports the principal aspects and the fundtah@esign choices that
drove the implementation.

7.1 Implementing the Constant BandWidth Server

As the first step, th€-EDF plug-in has been enriched with the typical deadline post-
ponement of the CBS algorithm, which was not included in thadard distribution

of LITMUSTT. After this modification it is possible for a task to ask fodget en-
forcement but, upon reaching the limit, to have it repleagshnd get a deadline post-
ponement, rather than being suspended till the next peFiud.is done by a new pa-
rameter in the real-time APLIT MU SFT offers to tasks, calledudget _action

that can be set tBOSTPONIBDEADLINE

22 Dario Faggiolf*) et al.

Of course, CBS also prescribes that, when a new instanogesrithe current
scheduling parameters need to be checked against the ifiyssibkeeping using
them, or calculating a new deadline and issue a budget rishleent. This was re-
alised by instrumenting the task wake-up hook of the plygéncedf _task _wake_up.

The amount of modified code is small (8 files changed, 167 lingsrted, 33
deleted), thanks to the neat architectureLdf’ MU ST and to the high level of
separation of concerns between tasks, jobs and budgetenfent it achieves.

7.2 Implementing Proxy Execution

The fundamental block on top of which M-BW!I has been impletadris a mecha-
nism known agroxy execution. This basically means that a taskcan be theroxy
of some other tasks;, i.e., whenever the scheduler selegtsit is 7; that is actually
dispatched to run. It is a general mechanism, but it is alsticpdarly well suited for
implementing a protocol like M-BWI.

Thanks to the simple plug-in architecture of T MU SET, the implementation
of this mechanism was rather simple, although some additioverhead may have
been introduced. In fact, it has been necessary to decoupe tive scheduling al-
gorithm thinks it is the “scheduled” task (thpeoxy), from the task that is actually
sent to the CPU (thproxied). Also, touching the logic behind the implementation of
the scheduling algorithm (global or clustered EDF, in trase) can be completely
avoided, and the code responsible for priority queues nmamagt, task migration,
etc., keeps functioning the same as before the introduofipnoxy execution.

If tasks are allowed to block or suspend (e.g., for the pueprfsaccessing an
I/O device) while being proxied, this has to be dealt withleiy (it corresponds
to transition fromBWI.Running to BWI.ldle in the state diagram of Figure 2).
In fact, when a task self-suspends, it is necessary to remibite proxies from the
ready queue. However, walking through the list of all theqes of a task i$)(n) —
with n number of tasks blocked on the resources the task owns wkeaspends —
overhead that can be easily avoided, at least for this cadact, the proxies of the
suspending task are left in the ready queue, and it is onlyehe of them is picked
up by the scheduler that, if the proxied task is still not raiolie, they are removed
from the queue and a new candidate task is selected. On teehathd, when a task
that is being proxied by some other tasks wakes up, not oalt#sk, but also all its
proxies have to wake up. In this case, there is no way for airtgehis than going
through the list of all the waking task’s proxies, duringdttual wakeup, and putting
all of them back to the ready queue.

In LITMUS 7', self-suspension and blocking are handled by the sameidunct
cedf _task _block .Therefore,toimplementthe correctbehavicedf _task _block
andcedf _task _wake_up have been modified. For each task, a list of tasks that are
proxying it at any given time is added to the process contamlb(task _struct).
The list is updated when a new proxying relationship is distaéd or removed, and
it is traversed at each self-suspension or wake-up of a @dotdsk. Each task is
provided with a pointer to its current proxproxying _for) which is filled and
updated when the proxying status of the task changes. Sudhisfialso referenced

Analysis and Implementation of the Multiprocessor BandWiaheritance Protocol 23

within the scheduler code, in order to determine whethesébected task is a proxy
or not.

Implementing proxy execution was more complex than justragidudget post-
ponement (478 line additions, 74 line deletions).

As a final remark, consider that

when resource reservations are being used, the budgete ofviblved servers
need to be properly managed while the proxy execution méstman triggered. The
details of the budget updating are described in the nexiosect

7.3 Implementing Multiprocessor BandWidth Inheritance

Using a mechanism like proxy execution, implementing M-B8\d matter of having
FIFO wait queues for locks and taking care of the busy waitihgll the proxies
whose proxying task is already running on some CPU.

The former is achieved by adding a new type of loolwi(_.semaphore) in the
LITMUSZET kernel, backed up with a standard Linwaitqueue , which supports
FIFO enqueue and dequeue operations. Each semaphoretpitdédaternal data
structures (mainly thevaitqueue and a pointer to the owner of the lock itself) by
concurrent access from more than one CPU at the same time bg-praemptive
spin-lock (a native Linuspinlock _t). Moreover, when the locking or releasing
code for a lock needs to updatemxying _for field, itis required for it to acquire
the spin-lock that serialises all the scheduling decisimmtlie system (or for the
cluster) of theLIT MU SET scheduler.

For the busy wait part, a special kernel thread (a native>_kthread) called
pe_stub-k is spawned for each CPU during plug-in initialisation, aind initially
in a blocked state. When a taskrunning on CPUW: needs to busy wait, this special
thread is selected as the new proxyfgrwhile the real value gbroxying _for of
7; is cached. Therefor@e _stub-k executes in place af;, depleting its budget;
asitruns.

The special thread checks if the real proxied task;ois still running some-
where;LITMUS®T provides a dedicated field for that in the process contraiiylo
calledscheduled _on. Such field is accessed and modified by the scheduler, thus
holding the scheduling decision spin-lock is needed fotidgavith it. However, the
busy waiting done bpe _stub-k must be preemptive and with external interrupts
enabled for CPU-k. Thereforpe _stub-k performs the following loop:

1. it checks if the real proxying task ef is still running somewhere by looking at
scheduled _on without holding any spin-lock;
2. as soon as it reveals something changed, gcgeduled _on for the proxying
task becomeBlQCPU it takes the spin-lock and checks the condition again:
— if it is still NQCPUit means the proxying task has been preempted or sus-
pended and, through a request for rescheduling, it triegtbrainning it;
— ifitis nolongerNQCPU someone has already started executing the proxying
task (recall the busy wait performed insjole-stub-k is preemptable), thus
it goes back to point.

24 Dario Faggiolf*) et al.

8 Simulation Results

The closed-form expression for the interference time candsal to evaluate how
large is the impact of M-BWI on the schedulability of hardlrtme tasks in the sys-
tem. To this end, we performed an analysis of the formula oth&tically generated
task sets, and we compared the results against the Flexiblgpkdcessor Locking

Protocol — FMLP [6], another well-known algorithm for mpitocessor systems.

The task sets were generated according to the followingristhgo. A variable
number of CPUsn € {2,4, 6,8} have been considered. For each valuengfthe
maximum number of task®& was set toN € {m,2-m,4 - m,5 - m}, and tasks
were added to the set until this limit was reached or thealtotilisation exceeded
m/2. Each task has a processor utilisation chosen uniformlyim{0, U,,,...], and a
computation time chosen uniformly withjf.5ms, 500ms) (the task period is calcu-
lated accordingly). Execution times are inclusive of a# tiitical sections the tasks
access.

As per the resources, both short and long critical sectiane been considered.
All critical sections have length betweéfDus, 500us]. We consideshort critical
sections all those sections with length[@®us, &2), While long ones are within
[Emaz, 500us], whereg,, ... is a parameter of the simulation. We consider that a re-
source is accessed only through one type of critical secédher short or long;
therefore, we denotehort resources the resources that are accessed only by sort
critical sections; antbng resources the ones that are accessed only by long critical
sections. Each task has a probability of accessirijor 3 short resources df.375,
0.50 and0.125, respectively. Every long resource (if any) is accessed,t3/or 4
tasks with a probability 0f.125, 0.625 and0.25, respectively. Finally, for each task
and each resource it uséspr 2 nested resources are generated with probalfility
and0.0625. Nested resources are always short. Each resdggceested insiddry,
by means ofr;, will be accessed by other tasks that already Kgevith probability
0.6, and with probabilityd.4 from the ones which do not.

We generated00 task sets for each combination of all these parameters.,Then

the interference time was computed according to Equatipfo(3V-BWI, whereas

for FMLP the blocking time was computed according to the Haguna in [6]. In the
case of M-BWI, a server has been prepared for each task wibdiequal to the
task computation time plus its interference, and periocaktputhe task period. In
the case of FMLP, the blocking time was simply added to thle cashputation time.
Finally, the schedulability of the set of servers (and of $ké of tasks for FMLP)
thus obtained has been checked using the test by Bertoghd4dt /e measure the
schedulability ratio, i.e. the percentage of set of servers that are deemed dabkdu
against all task sets that are schedulable without corisglersource access.

The remainder of this section shows some of the results skthignulations. For
all the figures, insets show simulations for different valo&U,,, ..., varying between
0.2 and0.8 in steps of0.2; during each simulatiog,, .. varied betweeid.60us and
200us, in steps oflOus.

Analysis and Implementation of the Multiprocessor BandWiaheritance Protocol 25

% M-BWI: Schedulability Ratio with Short and Long Resources
o 100 T ——— T o]
(%] H H

T

3 B0 [~

=} H H

B 40 [~ 2 CPUs E
5 4 CPUs ‘ : : : : : :

wn 20 F 6 CPUS srrmrrss i]
) 8 CPUS e ; ; ; ; | 1

c\o 0 1 1 Il Il Il Il Il Il

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Max. Duration of Short Resources

(a) M-BWI
% FMLP: Schedulability Ratio with Short and Long Resources
9 100 T T ‘ T : T ; T ,
% : : : : : j : :
= B [
@ ; ; i i i i i i i
E 60‘ R
3 40 - 2 CPUs B —
5 4 CPUs : : :
(] 20 6 CPUS ssesses i b —
G 8 CPUs et st L reaaaae
o\c O 1 1 . 1 1

0 002 004 006 008 0.1 0.12 014 0.16 0.18 0.2
Max. Duration of Short Resources

(b) FMLP

Fig. 5 Schedulability ratio for M-BWI and FMLP. Total utilisatiois Usor = 0.4 - m; number of tasks is
N = 2 -m, and number of resourcesids N.

8.1 Experiments with Short and Long Critical Sections

In this first set of experiments both short and long critieadt®ons have been con-
sidered. Figure 5 shows the case in which the number of tagk$iies the number
of processors, the number of resources is twice the numbtsks, and the total
utilisation is0.4 times the number of CPUs.

Clearly, in this case the M-BWI schedulability analysis ismneffective than the
FMLP analysis. As the number of processors increases, treatability of FMLP
reaches very low level. The reason is due to the fact thatadhedslability test for
FMLP has to account also ftocking time of all tasks. In fact, FMLP uses blocking
and priority inheritance for long resources, and this mayseaanindirect blocking
on all intermediate tasks that are not directly involvedhia interaction (see [6] for
more details), whereas M-BWI has no notion of priority irsien and there is no
indirect blocking. Also, consider that the schedulabitityalysis used in this paper
is rather pessimistic: for FMLP, the blocking time of a taskdirectly added to its
computation time, increasing the overall utilisation. Hwer, by doing so the same
blocking time contribution can be accounted for severabimWe believe that a
tighter schedulability analysis of global EDF with blocgimvould produce better
results for FMLP.

26 Dario Faggiolf*) et al.

% M-BWI: Schedulability Ratio with Short and Long Resources
9 100 T T

~ ‘ ‘

[} i i I

© B0

2 ‘ :]

8 B0 =

> i B

B 40 [~ 2 CPUs E
5 4 CPUs ‘ i i i i i i

wn 20 F 6 CPUS srrmrrss i]
) 8 CPUS e ; ; ; ; | 1

c\o 0 1 1 Il Il Il Il Il Il

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Max. Duration of Short Resources

(a) M-BWI
% FMLP: Schedulability Ratio with Short and Long Resources
S 100 T T T T T T T
8 : : : ! ; : ; ‘
@ ; ; i i ; i i i]
E 60 L T e A A
B 40 - 2 CPUs
5 4 CPUs P
O 20| 6CPUs:weeee - :
© 8 CPUS e ;
S 0 L L L I I I [b |

0 002 004 006 008 0.1 0.12 014 0.16 0.18 0.2
Max. Duration of Short Resources

(b) FMLP

Fig. 6 Schedulability ratio for M-BWI and FMLP. Total utilisatiois Usor = 0.4 - m; number of tasks is
N = 4 -m, and number of resources4s N.

The same pattern repeats also with other combinations opdinemeters. We
report only another combination of parameters: in Figure&tow the results of the
analysis when the number of tasks is four times the numbePbfsC the number of
resources is equal to the number of tasks, whereas the titidtion is0.6 times the
number of CPUs.

8.2 Experiments with Only Short Resources

Since it is both desirable and common for critical sectianbé short, a second set
of experiments has been performed where only short researeaised. In this case,
FMLP only performs spin-locks plus inheritance, hence tloehed tasks is not sus-
pended.

Figure 7 compares M-BWI and FMLP under two different coris. In case
a), the total utilisation i€/;,; = 0.4 - m, with 16 tasks andl6 resources omn =
4 CPUs; in case b), the total utilisation i&,; = 0.6 - m with 32 tasks and32
resources omn = 8 processors. In this case M-BWI performs slightly worse that
FMLP. This is probably due to the inheritance mechanismsMEF that is more
effective is shortening the overall blocking time that M-BWechanisms. In any

Analysis and Implementation of the Multiprocessor BandWiaheritance Protocol 27

% M-BWI vs. FMLP: Schedulability Ratio with Short Resources on 4 CPUs
¢ 100 ' ' e e)
7] : : : : : ; ; ; "

e B [
2 : ; I I I] :] :

8 B0 [
3 ‘ ‘]]]] : :]

B QO []
5 3 3 : : : : : : :

] 20 FHM-BWI s oo]
© FMLP : : : : : : :

c\o 0 Il Il Il Il Il Il Il Il

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Max. Duration of Short Resources

@m =4,Utot =04 -m

% M-BWI vs. FMLP: Schedulability Ratio with Short Resources on 8 CPUs
(_3 100 T T ! T o T i i =
@ | | ; : : ; : | i

= B
2 | : I I i i i | |

E B0 [
=4 : : j | | | | | |

3 O T S S
5 : : | | | | | | |

] 20 FM-BWI m— b]
IS FMLP i i i : : : :

c\c 0 1 1 1 1 1 1 1 1 1

0 002 004 006 008 0.1 0.12 014 0.16 0.18 0.2
Max. Duration of Short Resources

(b)m =8,Utot = 0.6 -m

Fig. 7 Schedulability ratio for M-BWI and FMLP with short resouscenly. a)16 tasks and 6 resources;
b) 32 tasks and2 resources.

case, both algorithm show very good performance, with addaeility close to
100%.

Itis importantto highlight one final consideration about angth of short critical
sections. Brandenburg et al. [7] reported that the lengitriti€al sections in appli-
cation code and in kernel code is shorter tharséc for more than 90% of the cases.
However, by setting..... = busec, our simulations showed a schedulability ratio of
100% in almost all cases. Therefore, for the sake of clarityta exaggerate the im-
pact of the critical sections on the schedulability analysie choose to set the length
of short critical sections to be at ledtusec. However, it is clear from Figure 7 that,
even with such a conservative setting, the impact of thecatisection length on the
schedulability ratio is almost always negligible. Therefdhe use of algorithms such
as M-BWI and FMLP is highly recommended for short criticattéens.

9 Experimental Results

In this section, we report performance figures obtained hyping synthetically gen-
erated task sets on our implementation of M-BWI on the LITMyfferating system.
The aim is to gather insights about how much overhead thegobtntails when

28 Dario Faggiolf*) et al.

Average. Duration of the Scheduling Function (6 CPUs)

: i, JD'riginal ——{r
L= No Res. m
M-BWI 3o

AVG. Duration [us]

4 : : :
2.5 | : [:

5 : :

5

1

5

6 12 18 24 30
Number of Tasks

Fig. 8 Average duration of the scheduling function, along with tieasured standard deviation (vertical
segments).

executing on real hardware. We have generated the taskasaiseters as described
in Section 8. The hardware platform consists of a AMD Optegrmtessor with 48
cores, running at 1.9 GHz frequency. The cores are orgamsed “islands” of 6
cores each, and all cores inside an island share the sameh®.da the experiments
we selected only one island, and disabled the other thréfeisiway, the performance
figures do not depend on unpredictable behaviours due tecaxtflicts.

Therefore 10 randomly chosen task sets among the ones generated for 6 CPUs
with different number of taskév have been executed for 10 minutes each, while
tracing the overheads with Feather-trace [8]. The numbghofft resources was fixed
Nshort =2+ N andNipng = & = 3.

In this work, the scheduling overhead (i.e. the durationhef main scheduling
function), the amount of time tasks wait (either being prptad, proxying or busy
waiting) for a resource and the duration of lock and unlocdrafions are considered.

Scheduling Overhead. To evaluate the impact of M-BW!I on the scheduler, we mea-
sured how long it takes for taking a scheduling decision aftiilowing cases: (i)
original LITMUSET running the generated tasks sets but with tasitsissuing
any resource request during their jobs (“Original” in thers); (i) M-BWI en-
abled LIT MU STT but, again, with tasks not issuing resource requests (“No’Re
in graphs); (i) M-BWI enabled. IT MU ST with tasks actually locking and un-
locking resources as prescribed in the task set (“M-BWI”Ha graphs). Figure 8
shows the average duration of the scheduler function alatigthe standard devia-
tion for the three cases, varying the number of tasks. Theabichpact of M-BWI on
the scheduler is limited, since the duration of the scheduiinction is comparable
for all the three cases, and independent from the numbesks {@vhen they exceed
the number of available cores). In fact, in the proposed émgntation, tasks that
block do not actually leave the ready-queue, but stay thedeaat like proxies, and
therefore the number of tasks the scheduler has to dealsyitfactically the same in
all the three cases. It is, however, worth to note that theptexity added for enabling
the proxying logic does not impair scheduling performarate®oticeable levels.

Lock and Unlock Overheads. We also measured the overhead associated with the
slow paths of locking and unlocking operations in the M-BV@de. For the lock

Analysis and Implementation of the Multiprocessor BandWiaheritance Protocol 29

path, we measured how long it takes, once it has been detednttiat a resource
is busy, to find the proxy and ask the scheduler to executa itheé unlock path,
we measured how long it takes, once it has been determinethtv@ are queued
task waiting for the resource to be released, to reset theyprdationship for the
unlocking task and build up a new one for the next owner.

Average of Lock and Unlock (Slowpath) Durations with M-BWI (6 CPUs)

1.8 T T
16 Lock -
1.4 Unlock

1.2

0.8 =

0.6
04

Avg. Duration [us]

6 12 18 24 30
Number of Tasks

Fig. 9 Average lock and unlock slow paths durationsAT MU SET with M-BWI (vertical segments
highlight the measured standard deviation figures).

Figure 9 shows the average lock and unlock overheads witldatd deviations.
In general, locking requires less overhead than unlocKihg can be easily under-
stood observing that, in this implementation, a lock operabnly has to setup the
blocking task as a proxy and then asks the scheduler to putitider operation. Un-
locking requires to reset a proxy back to a normal task andnignthe new owner of
the resource, but also updating the proxying relationship the new owner in all
the tasks that are waiting for the resource and that wereyprgxhe releasing task.

It is useful to estimate these two forms of overheads to as@dhe accuracy of
the hard real-time schedulability, including the overteiadhe computation times of
the task. In particular, we added the lock/unlock overhdadsach critical section.
After having converted the overheads from CPU cyclesito new graphs similar to
the ones of section 8 can be produced, to check whether treesé@ations where the
overheads introduced by the protocol impair schedulgbiigure 10 shows this for
the case wher& = 2 - m and Ny« = 2 - N, with both short and long resources.

Using the maximum value from lock and unlock overhead mesamsants pro-
duces the results shown in Figure 10, which looks identizdigure 5.a, meaning
that the overhead introduced by the proposed implementafioV-BWI does not
introduce any further schedulability penalty.

Waiting Times. Figure 11 shows the average and standard deviation of theness
waiting time, i.e., the time interval that elapses from wiaetask asks to lock a re-
source and when it actually is granted such permission. BWI; during this time,
the task can lie in the ready-queue, preempted by othergnitren and act as a
proxy for the lock owner or it can busy wait, if the lock owneralready executing
elsewhere. The idea behind this experiment is to show thavénage, the delay in
acquiring the resource is limited. Such information can befui to soft real-time
programmers that can have an idea of the average case integ@raetting.

30 Dario Faggiolf*) et al.

% Schedulability Loss for Hard Tasks Including Locking Overheads
n 100 T T — "1 i
[%] H :

S B0

@ ‘ ‘ :]

8 B0 [
B 40 [~ 2 CPUs —
5 4 CPUs ‘ i i i i i i

wn 20 F 6 CPUS srrmrrss i]
) 8 CPUS e ; ; ; ; | 1

c\o 0 1 1 Il Il Il Il Il Il

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Max. Duration of Short Resources

Fig. 10 Schedulability loss withiV = 4 -m and Ny, = 2- N including the maximum of the overhead
of locking and unlocking resources. In this case, both saodtlong resources were used with durations
ranging in[60us, Emaz] and[€maax, 500us], respectively.

Average of the Resource Waiting Time with M-BWI (6 CPUs)
240 T T

T
Wait Time F—+—i

Avg. Waiting Time [us]
=
N
o
T T T T T T 71T

ol
6 12 18 24 30

Number of Tasks

Fig. 11 Average resource waiting time as a function of the numbeaskg. The vertical segments denote
the measured standard deviation figures.

Figure 11 shows that, on average, waiting for a resource drepfor time in-
terval comparable with the length of the critical sectiosisoft ones range fror)
to 200us, long ones up t&00us). Obviously there are cases where the resource is
available immediately or when the waiting time is large. €ider that, in these ex-
periments, long critical sections were also present, eaetobthem able to last up to
500us, which is about the maximum value for the waiting time in tharst possible
case. Interestingly, when the number of tasks becomes higingh, the waiting time
tends to decrease. This mainly happens because of two edisst) it is less likely
for many tasks to insist on the same resources; second, itris likely for resource
waiting tasks to have at least one running proxy helping ¢le& bwner in releasing
the lock, thus shortening its waiting time.

10 Conclusions and Future Work

In this paper we presented the Multiprocessor Bandwidtletitdnce (M-BWI) pro-
tocol, an extension of BWI to symmetric multiprocessor eygt. The protocol guar-
antees temporal isolation between non-interacting tasksoperty that is useful in

Analysis and Implementation of the Multiprocessor BandWiaheritance Protocol 31

open systems, where tasks can join and leave the system titramy ike the Prior-
ity Inheritance Protocol, M-BWI does not require the usespecify any additional
parameter, therefore it is ready to be implemented in ig@-bperating systems
without any special API. We indeed implemented the protocdthe LIT MU S7T
real-time testbed, and we measure the overhead which issahmegligible for many
practical applications. However, it is also possible tdfqen off-line schedulability
analysis: by knowing the task-resource usage and the lexgtte critical sections,
it is possible to compute the interference that a task cae bavits resource reser-
vation by other interacting tasks. We computed an upper tounrsuch interference
for EDF global scheduling, and we showed that such intemfezés somehow limited
even in the presence of long critical sections.

In the future we want to extend the protocol along differen¢ctions. First of
all, it would be interesting to provide interference anayalso for partitioned and
clustered scheduling algorithms, and compare it agaihstr@aigorithms like M-SRP
and M-PCP. Also, we would like to implement the Clearing Famethanism [42] to
return the bandwidtktolen by an interfering task to the original server.

Finally, we would like to implement M-BWI on Linux, on top di¢ SCHEDDEADLINE

patch [28], in order to provide support to a wider class ofli@pfions.

References

1. Abeni L, Buttazzo G (1998) Integrating multimedia apations in hard real-
time systems. In: Proc. IEEE Real-Time Systems SymposiuadrM, Spain,
pp 4-13

2. Anderson JH, Ramamurthy S (1996) A framework for impletimgobjects and
scheduling tasks in lock-free real-time systems. In: Pobthe IEEE Real-Time
Systems Symposium (RTSS), IEEE Computer Society, pp 94-105

3. Behnam M, Shin I, Nolte T, Nolin M (2007) Sirap: a synchmation protocol
for hierarchical resource sharing real-time open systém®roceedings of the
7th ACM and IEEE international conference on Embedded softw

4. Bertogna M, Cirinei M (2007) Response-time analysis flobglly scheduled
symmetric multiprocessor platforms. In: Proc. of the 2&EE Real-Time Sys-
tems Symposium (RTSS), Tucson, Arizona (USA)

5. Bertogna M, Checconi F, Faggioli D (2008) Non-Preempficeess to Shared
Resources in Hierarchical Real-Time Systems. In: Proogsdif the 1st Work-
shop on Compositional Theory and Technology for Real-TimbEdded Sys-
tems, Barcelona, Spain

6. Block A, Leontyev H, Brandenburg BB, Anderson JH (2007) éxitble real-
time locking protocol for multiprocessors. In: Proceeding the 13th IEEE In-
ternational Conference on Embedded and Real-Time Congp@®ystems and
Applications, pp 47-56

7. Brandenburg B, Calandrino JM, Block A, Leontyev H, AnaersiH (2008)
Real-Time Synchronization on Multiprocessors: To BlockNart to Block, to
Suspend or Spin? In: 2008 IEEE Real-Time and Embedded Texdyand Ap-
plications Symposium, IEEE, pp 342—-353, DOI 10.1109/RP888.27

32

Dario Faggiolf*) et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Brandenburg BB, Anderson JH (2007) Feather-trace: Adiggight event trac-
ing toolkit. In: Proc. of the International Workshop on Ogiing Systems Plat-
forms for Embedded Real-Time applications (OSPERT)

. Brandenburg BB, Anderson JH (2010) Optimality resultsiialtiprocessor real-

time locking. In: Proc. of the IEEE Real-Time Systems Synpos(RTSS),
IEEE Computer Society, pp 49-60

Caccamo M, Sha L (2001) Aperiodic servers with resouoostraints. In: Proc.
of the IEEE Real Time System Symposium (RTSS), London, UK

Chen CM, Tripathi SK (1994) Multiprocessor priority logg based protocols.
In: tech. rep., College Park, MD, USA

Cho H, Ravindran B, Jensen ED (2007) Space-optimal;fnestreal-time syn-
chronization. IEEE Trans Computers 56(3):373-384

Cucinotta T, Checconi F, Abeni L, Palopoli L (2010) Seiing schedulers for
legacy real-time applications. In: Proceedings of e European Conference
on Computer Systems (Eurosys 2010), European chapter &iGMeSIGOPS,
Paris, France

Davis RI, Burns A (2006) Resource sharing in hierardHigad priority pre-
emptive systems. In: Proceedings of the IEEE Real-timegfystSymposium
Devi UC, Leontyev H, Anderson JH (2006) Efficient syncatization under
global edf scheduling on multiprocessors. In: Proceedifigize 18th Euromicro
Conference on Real-Time Systems, pp 75-84

Easwaran A, Andersson B (2009) Resource sharing in bfialed-priority pre-
emptive multiprocessor scheduling. In: Proceedings oHReal-Time Systems
Symposium

Faggioli D, Lipari G, Cucinotta T (2008) An efficient ingohentation of the
bandwidth inheritance protocol for handling hard and seditime applications
in the linux kernel. In: Proceedings of th&" International Workshop on Operat-
ing Systems Platforms for Embedded Real-Time Applicati@SPERT 2008),
Prague, Czech Republic

Faggioli D, Lipari G, Cucinotta T (2010) The multiproses bandwidth inheri-
tance protocol. In: Proc. of the 22nd Euromicro Conferent®eal-Time Sys-
tems (ECRTS 2010), pp 90-99

Feng X, Mok AK (2002) A model of hierarchical real-timetuial resources. In:
Proc.23'4 IEEE Real-Time Systems Symposium, pp 26-35

Fisher N, Bertogna M, Baruah S (2007) The design of an Effeduled
resource-sharing open environment. In: Proceedings &f8ttelEEE Real-Time
System Symposium

Gai P, Lipari G, di Natale M (2001) Minimizing memory ig#tion of real-time
task sets in single and multi-processor systems-on-a-thiproceedings of the
IEEE Real-Time Systems Symposium

Guan N, Ekberg P, Stigge M, Yi W (2011) Resource shariogpgols for real-
time task graph systems. In: Proc. of the 23rd Euromicro @amice on Real-
Time Systems (ECRTS 2011), Porto, Portugal

Herlihy MP, Wing JM (1990) Linearizability: a correcsgecondition for con-
current objects. ACM Trans Program Lang Syst 12:463—-492| Bx://doi.
acm.org/10.1145/78969.78972, URMttp://doi.acm.org/10.1145/

Analysis and Implementation of the Multiprocessor BandWiaheritance Protocol 33

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

78969.78972

van den Heuvel MM, Bril RJ, Lukkien JJ (2011) Dependat#sdirce Sharing
for Compositional Real-Time Systems. In: 2011 IEEE 17tlednational Confer-
ence on Embedded and Real-Time Computing Systems and Apptis, IEEE,
pp 153-163, DOI 10.1109/RTCSA.2011.29

Jansen PG, Mullender SJ, Havinga PJ, Scholten H (20af)tweight edf
scheduling with deadline inheritance. Tech. Rep. 2003J28/ersity of Twente,
URL http://doc.utwente.nl/41399/

Lakshmanan K, de Niz D, Rajkumar R (2009) Coordinatekl $aheduling, al-
location and synchronization on multiprocessors. In: Bedlings of IEEE Real-
Time Systems Symposium

Lamastra G, Lipari G, Abeni L (2001) A bandwidth inhenite algorithm for
real-time task synchronization in open systems. In: PrandAEEE Real-Time
Systems Symposium

Lelli J, Lipari G, Faggioli D, Cucinotta T (2011) An efferit and scalable imple-
mentation of global edf in linux. In: Proceedings of the migional Workshop
on Operating Systems Platforms for Embedded Real-Time iégns (OS-
PERT)

Lipari G, Bini E (2004) A methodology for designing hieshical scheduling
systems. Journal of Embedded Computing 1(2)

Lipari G, Lamastra G, Abeni L (2004) Task synchronizatioreservation-based
real-time systems. IEEE Trans Computers 53(12):1591-1601

Lopez JM, Diaz JL, Garcia DF (2004) Utilization bounds EDF scheduling
on real-time multiprocessor systems. In: Real-Time Systérhe International
Journal of Time-Critical Computing, vol 28, pp 39-68

Macariu G (2011) Limited blocking resource sharing flmbgl multiprocessor
scheduling. In: Proc. of the 23rd Euromicro Conference oalHéme Systems
(ECRTS 2011), Porto, Portugal

Mancina A, Faggioli D, Lipari G, Herder JN, Gras B, Tananim AS (2009)
Enhancing a dependable multiserver operating system aiitiporal protection
via resource reservations. Real-Time Systems 43(2):117—2

Nemati F, Behnam M, Nolte T (2009) An investigation of &yronization un-
der multiprocessors hierarchical scheduling. In: Procegdof the Work-In-
Progress (WIP) session of the 21st Euromicro Conferencesah Rme Systems
(ECRTS’09), pp 49-52

Nemati F, Behnam M, Nolte T (2009) Multiprocessor sywoctization and hi-
erarchical scheduling. In: Proceedings of the First Iradamal Workshop on
Real-time Systems on Multicore Platforms: Theory and RraqXRTS-2009)
in conjunction with ICPP’'09

Nemati F, Behnam M, Nolte T (2011) Independently-dgwetbreal-time sys-
tems on multi-cores with shared resources. In: Proc. of 8rd Euromicro Con-
ference on Real-Time Systems (ECRTS 2011), Porto, Portugal

Nemati F, Behnam M, Nolte T (2011) Sharing resources gnmafependently-
developed systems on multi-cores. ACM SIGBED Review 8(1)

Palopoli L, Abeni L, Cucinotta T, Lipari G, Baruah SK (B)OMNeighted feed-
back reclaiming for multimedia applications. In: Proceesi of the6'" IEEE

34

Dario Faggiolf*) et al.

39.

40.

41.

42.

43.

44.

45.

Workshop on Embedded Systems for Real-Time Multimedia (E®&dia 2008),
Atlanta, Georgia, United States, pp 121-126, DOI 10.118%MED.2008.
4697009

Rajkumar R (1990) Real-time synchronization protodotsshared memory
multiprocessors. In: Proceedings of the Internationalf@amce on Distributed
Computing Systems, pp 116-123

Rajkumar R, Sha L, Lehoczky J (1988) Real-time synchatiitn protocols for
multiprocessors. In: Proceedings of the Ninth IEEE ReatelBystems Sympo-
sium, pp 259-269

Rajkumar R, Juvva K, Molano A, Oikawa S (1998) Resourcenéls: A
Resource-Centric Approach to Real-Time and Multimediat&ys. In: Proc.
Conf. on Multimedia Computing and Networking

Santos R, Lipari G, Santos J (2008) Improving the scladulitly of soft real-time
open dynamic systems: The inheritor is actually a debtarnid of Systems and
Software 81(7):1093-1104, DOI 10.1016/j.jss.2007.0%.00

Sha L, Rajkumar R, Lehoczky JP (1990) Priority inhedtaprotocols: An ap-
proach to real-time synchronization. IEEE Transaction€omputers 39(9)
Shih |, Lee | (2003) Periodic resource model for compasél real-time guar-
antees. In: Pro@4'" Real-Time Systems Symposium, pp 2-13

Sprunt B, Sha L, Lehoczky J (1989) Aperiodic task schaddibr hard-real-time
systems. Journal of Real-Time Systems 1(1):27-60

