
Real-Time Systems Journal manuscript No.
(will be inserted by the editor)

Analysis and Implementation of the Multiprocessor
BandWidth Inheritance Protocol

Dario Faggioli(∗) · Giuseppe Lipari(∗) ·

Tommaso Cucinotta(§)

Received: date / Accepted: date

Abstract The Multiprocessor Bandwidth Inheritance (M-BWI) protocol is an exten-
sion of the Bandwidth Inheritance (BWI) protocol to symmetric multiprocessor sys-
tems. Similarly to Priority Inheritance, M-BWI lets a task that has locked a resource
execute in the resource reservations of the blocked tasks, thus reducing their blocking
time. The protocol is particularly suitable for open systems where different kinds of
tasks dynamically arrive and leave, because it guarantees temporal isolation among
independent subsets of tasks without requiring any information on their temporal pa-
rameters. Additionally, if the temporal parameters of the interacting tasks are known,
it is possible to compute an upper bound to the interference suffered by a task due to
other interacting tasks. Thus, it is possible to guarantee asubset of interacting hard
real-time tasks. Finally, the M-BWI protocol is neutral to the underlying schedul-
ing policy, because it can be implemented both in global, clustered and partitioned
scheduling.

After introducing the M-BWI protocol, in this paper we formally prove its iso-
lation properties, and propose a schedulability analysis for hard real-time tasks. Then,
we describe our implementation of the protocol for theLITMUSRT real-time testbed,
and measure its overhead. Finally, we compare M-BWI againstFMLP, another proto-
col for resource sharing in multiprocessor systems, introducing a schedulability anal-
ysis for M-BWI that proves to be less pessimistic than existing analysis techniques
for FMLP.

Keywords Resource sharing· Real-Time·Multiprocessors· Resource Reservation·
Priority Inheritance

The research leading to these results has received funding from the European Community’s Seventh Frame-
work Programme FP7 under grant agreement n.248465 “S(o)OS –Service-oriented Operating Systems.”

(*) Real-Time Systems Laboratory, Scuola Superiore Sant’Anna
Via G. Moruzzi 1, 56124, Pisa (Italy)
e-mail:{d.faggioli, g.lipari }@sssup.it
(§) Alcatel-Lucent Bell Labs
Blanchardstown Business & Technology Park, Dublin (Ireland)
e-mail: tommaso.cucinotta@alcatel-lucent.com

2 Dario Faggioli(∗) et al.

1 Introduction

Multi-core platforms are being increasingly used in all areas of computing. They con-
stitute a mandatory step for the achievement of greater performance in the wide area
of high-end servers and high-performance computing, as witnessed by the movement
from the “frequency race” to the “core race”. Furthermore, they constitute a promis-
ing technology for embedded and real-time systems, where providing the same com-
puting power with multiple cores at reduced frequency may lead to advantages in
terms of power consumption, something particularly important for battery-operated
devices.

Therefore, an increasing effort is being dedicated in the real-time literature on
multiprocessor scheduling, analysis and design methodologies. Particularly, one of
the key challenges in this context is constituted byresource synchronisation proto-
cols, allowing multiple threads, possibly deployed on multiplecores, to access shared
resources still keeping serialisability [23] of the accesses. On symmetric shared-
memory multi-core platforms, a commonly used type of sharedresource is an in-
memory shared data structure used for communication and synchronisation purposes.
To avoid inconsistencies due to concurrency and parallelism, access to shared data
must be protected by an appropriate access scheme.

Many different approaches have been proposed so far, including lock-based tech-
niques, guaranteeing mutual exclusion among code sectionsaccessing the same data,
but alsowait-free [12] and lock-free [2] techniques, which instead allow for true
concurrent execution of the operations on the data structures, via appropriate ac-
cess schemes guaranteeing consistency of the operations. Recently, thetransactional
memory (TM) programming paradigm is gaining momentum, thanks to its ability to
make it easier to code certain types of interactions of parallel software.

However, the most widely used techniques in the programmingpractice so far are
based onmutually exclusive semaphores (a.k.a., mutexes): before accessing a shared
memory area, a task must lock a semaphore and unlock it after completing the access.
The mutex can be successfully locked by only one task at a time; if another task
tries to lock an already locked mutex, it isblocked, i.e. it cannot continue its normal
execution. The blocked task will be unblocked only when the mutex is unlocked by
its owner.

In single processor systems, the blocked task is removed from its ready queue,
and the scheduler chooses a new task to be executed. In multi-core systems, it may be
useful to let the blocked task execute a waiting loop, until the mutex is unlocked. Such
technique is often called spin-lock orbusy-wait. The advantage of busy waiting is that
the overhead of suspending and resuming the task is avoided,and this is particularly
useful when the time between the lock and the unlock operations is very short.

A resource access protocol is the set of rules that the operating system uses to
manage blocked tasks. These rules mandate whether a task is suspended or performs a
busy-wait; how the queue of tasks blocked on a mutex is ordered; whether the priority
of the task that owns the lock on a mutex is changed and how. When designing a re-
source access protocol for real-time applications, there are two important objectives:
1) at run-time, we must devise scheduling schemes and resource access protocols to

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 3

reduce theblocking time of important tasks; 2) off-line, we must be able to bound
such blocking time and account for it in a schedulability analysis methodology.

In this paper, we consideropen real-time systems where tasks can dynamically
enter or leave the system at any time. Therefore, a run-time admission control scheme
is needed to make sure that the new tasks do not jeopardise theschedulability of the
already existing tasks. In addition, for robustness, security and safety issues, it is
necessary to isolate and protect the temporal behaviour of one task from the others.
In this way, it is possible to have tasks with different levels of temporal criticality
coexisting in the same system.

Resource Reservations [41] were proved as effective techniques to achieve the
goals of temporal isolation and real-time execution in opensystems. Resource reser-
vation techniques have initially been designed for the execution of independent tasks
on single processor systems. Recently, they were extended to cope with hierarchical
scheduling systems [19, 44, 29], and with tasks that interact with each other using
locks [10, 20, 37]. Lamastra et al. proposed the Bandwidth Inheritance (BWI) pro-
tocol [27, 30] that combines the Constant Bandwidth Server [1] with Priority Inheri-
tance [43] to achieve bandwidth isolation in open systems.

The Multiprocessor BWI (M-BWI) protocol described in this paper is an exten-
sion of the original BandWidth Inheritance Protocol to symmetric multiprocessor/-
multicore systems. In order to reduce task waiting times in M-BWI, busy waiting
techniques are combined with blocking and task migration. The protocol does not re-
quire any information on the temporal parameters of the tasks; hence, it is particularly
suitable to open systems.

Nevertheless, the protocol supports hard real-time guarantees for critical tasks: if
it is possible to estimate such parameters as the worst-caseexecution times and du-
rations of the critical sections for the subset of tasks interacting with the task under
analysis, then an upper bound to the task waiting times can becomputed. Therefore,
in this case it is possible to compute the reservation budgetthat is necessary to guar-
antee that the critical task will not miss its deadlines.

Finally, the M-BWI protocol is neutral to the underlying scheduling scheme, since
it can be implemented with both global and partitioned scheduling algorithms.

1.1 Paper Contributions

The contribution of this paper is three-fold. First, M-BWI is described and its for-
mal properties are derived and proved correct. Then, schedulability analysis for hard
real-time tasks under M-BWI is presented. Finally, the implementation of M-BWI
in LITMUSRT , a well-known open-source testbed for the evaluation of real-time
scheduling algorithms1, is also presented. An experimental evaluation of M-BWI per-
formed on such an implementation is presented and discussed.

A preliminary version of this work appeared in [18]. In this extended paper the
discussion is more complete and formal; the comparison withthe FMLP protocol [6]
has been added; evaluation is made through a real implementation of the proposed
technique.

1 More information is available at:http://www.cs.unc.edu/ ˜ anderson/litmus-rt/ .

4 Dario Faggioli(∗) et al.

2 Related Work

Several solutions exist for sharing resources in multiprocessor systems. Most of these
have been designed as extensions of uni-processor techniques [40, 39, 11, 31, 21, 26,
16]; fewer have been specifically conceived for multiprocessor systems [15, 6].

The Multiprocessor Priority Ceiling Protocol (MPCP) [40] and its later improve-
ment [39] constitute an adaptation of PCP to work on fixed priority, partitioned mul-
tiprocessor scheduling algorithms. A recent variant [26] of MPCP differs from the
previous ones in the fact that it introduces spin-locks to lower the blocking times of
higher priority tasks, but the protocol still addresses only partitioned, fixed priority
scheduling.

Chen and Tripathi [11] presented an extension of PCP to EDF. Later on, both Gai
et al. [21] and Lopez et al. [31] extended the SRP for partitioned EDF. These papers
deal with critical sections shared between tasks running ondifferent processors by
means of FIFO-based spin-locks, and forbid their nesting.

Concerning global scheduling algorithms, Devi et al. [15] proposed the analysis
for non-preemptive execution of global critical sections and FIFO-based wait queues
under EDF. Block et al. proposed FMLP [6] and validated it fordifferent scheduling
strategies (global and partitioned EDF and Pfair). FMLP employs both FIFO-based
non-preemptive busy waiting and priority inheritance-like blocking, depending on the
critical section being declared as short or long by the user.Nesting of critical sections
is permitted in FMLP, but the degree of locking parallelism is reduced by grouping
the accesses to shared resources.

Brandenburg and Anderson [9] discuss the definition of blocking time and prior-
ity inversion in multi-processor systems, and present optimality results for resource
sharing protocols. Recently, Easwaran and Andersson presented the generalisation of
PIP for globally scheduled multiprocessor systems [16]. They also introduced a new
solution, which is a tunable adaptation of PCP with the aim oflimiting the number of
times a low priority task can block a higher priority one. Recently Macariu proposed
Limited Blocking PCP [32] for global deadline-based schedulers, but this protocol
does not support nesting of critical sections.

As it comes to sharing resources in reservation-based hierarchical systems2, work
has been done by Behnam et al. [3] and by Fisher et al. [20]. In both cases, a server
that has not enough remaining budget to complete a critical section blocks before
entering it, until the replenishment time. Davis and Burns [14] proposed a generalisa-
tion of the SRP for hierarchical systems, where servers thatare running tasks inside
critical sections are allowed to overcome the budget limit.

Furthermore, there is work ongoing by Nemati et al. [35, 34, 36] on both inte-
grating the FMLP in hierarchical scheduling frameworks, orusing a new adaptation
of SRP, called MHSRP, for resource sharing in hierarchically scheduled multiproces-
sors.

Guan et al. recently [22] addressed resource sharing in graph-based real-time task
models, proposing a new protocol called ACP which tackles the particular issue that

2 These, under certain assumptions and for the purposes of this paper, can be considered as a particular
form of reservation-based systems

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 5

often the actually accessed resources are determined only at run-time, depending on
which branches the code actually executes.

For all these algorithms, the correctness of the schedulingalgorithm depends on
the correct setting of the parameters, among which there areworst-case computation
times and durations of critical section. If the length of a critical section is underes-
timated, any task can miss the deadline. In other words, there is no isolation (or a
very limited kind of isolation) and an error can propagate and cause a fault in another
part of the system. For example, in [3] and [20], if the lengthof a critical section on a
global resource is underestimated, the system could be overloaded and any task could
miss its deadline.

To the best of our knowledge, the only two attempts to overcome this problem
are the BandWidth Inheritance protocol by Lamastra et al. [27, 30], and the non-
preemptive access to shared resources by Bertogna et al. [5,24]. These approaches
are well suited for open systems, but are limited to uni-processors. Also limited to
uniprocessors was the attempt at tackling priority inheritance in deadline-based sys-
tems by Jansen et al. [25], in which a protocol similar to priority-ceiling was designed
for EDF-based scheduling, and the schedulability analysistechnique based on the
demand-bound function for EDF was extended for such a protocol.

3 System Model

In this paper we focus on shared memory symmetric multiprocessor systems, con-
sisting ofm identical unit-capacity processors that share a common memory space.

A taskτi is defined as a sequence of jobsJi,j – each job is a sequential piece of
work to be executed on one processor at a time. Every job has anarrival timeai,j
and a computation timeci,j . A task issporadic if ai,j+1 ≥ ai,j + Ti, andTi is the
minimum inter-arrival time. If∀j ai,j+1 = ai,j + Ti, then the task isperiodic with
periodTi. The worst-case execution time (WCET) ofτi is an upper bound on the job
computation time:Ci ≥ maxj{ci,j}. Real-time tasks have a relative deadlineDi,
and each job has an absolute deadlinedi,j = ai,j +Di, which is the absolute time by
which the job has to complete.

Hard real-time tasks must respect all their deadlines. Softreal-time tasks can
tolerate occasional and limited violations of their timingconstraints. Non real-time
tasks have no particular timing behaviour to comply with.

3.1 Critical Sections

Concurrently running tasks often need to interact through shared data structures, lo-
cated in common memory areas. One way to avoid inconsistencies is to protect the
shared variables with mutex semaphores (also calledlocks). In this paper we de-
note shared data structures protected by mutex semaphores as software resources or
simply resources. In order to access a resource, a task has to firstlock the resource
semaphore; only one task at time can lock the same semaphore.From now on, the
k-th mutex semaphore will simply be calledresource, and it will be denoted byRk.

6 Dario Faggioli(∗) et al.

Whenτj successfully locks a resourceRk, it is said to become thelock owner of
Rk, and we denote this situation withRk → τj . If another taskτi tries to lockRk

while it is owned byτj , we say thatτi is blocked onRk: this is denoted withτi → Rk.
In fact,τi cannot continue its execution untilτj releases the resource. Typically, the
operating system suspendsτi until it can be granted access toRk. Alternatively,τi
can continue executing abusy wait, i.e. it still occupies the processor waiting in a
loop until the resource is released. Whenτj releasesRk, we say that itunlocks the
resource; one of the blocked tasks (if any) is unblocked and becomes the new owner
of Rk.

Notice that in this paper the termblocking refers only to a task suspension due
to a lock operation on an already locked resource. Other types of suspensions (for
example the end of a task job) are simply calledsuspensions or self-suspensions.
Also, notice that our definition oftask blocking on a resource has no relationship
with the concepts of priority and priority inversion: it simply indicates that a task
cannot continue execution until the resource is released. Therefore, as it will become
more apparent in Section 6, the definition and results presented by Brandenburg and
Anderson [9] do not apply to our case.

The section of code between a lock operation and the corresponding unlock op-
eration on the same resource is calledcritical section. A critical section of taskτi on
resourceRh can benested inside another critical section on a different resourceRk

if the lock onRh is performed between the lock and the unlock onRk. Two critical
sections onRk andRh areproperly nested when executed in the following order:
lock onRk, lock onRh, unlock onRh and unlock onRk. We assume that critical
sections are always properly nested. The worst-case execution time (without blocking
or preemption) of the longest critical section ofτi onRk is denoted byξi(Rk), and it
is called thelength of the critical section. The lengthξi(Rk) includes the duration of
all nested critical sections.

In the case of nested critical sections, chained blocking ispossible. Ablocking
chain from a taskτi to a taskτj is a sequence of alternating tasks and resources:

Hi,j = {τi → Ri,1 → τi,1 → Ri,2 → . . .→ Ri,ν−1 → τj}

such thatτj is the lock owner on resourceRi,ν−1 andτi is blocked onRi,1; each other
task in the chain accesses resources with nested critical sections, being the lock owner
of the preceding resource and blocking on the following resource. For example, the
following blocking chainH1,3 = {τ1 → R1 → τ2 → R2 → τ3} consists of 3
tasks:τ3 that accessesR2, τ2 that accessesR2 within a critical section nested inside
a critical section onR1, andτ1 accessingR1. This means that at run-timeτ1 can be
blocked byτ2, and indirectly byτ3. In this caseτ1 is said to beinteracting with τ2
andτ3.

A blocking chain is a “photograph” of a specific run-time situation. However,
the concept of blocking chain can also be used to denote a potential situation that
may happen at run-time. For example, chainH1,3 can be built off-line by analysing
the critical sections used by each task, and then at run-timeit may happen or not.
Therefore, in order to perform a schedulability analysis, it is possible to analyse the
task code and build a set of potential blocking chains to understand the relationship
between the tasks. In the previous example,τ1 may or may not be blocked byτ3 in

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 7

a specific run. However,τ3 cannot be blocked byτ1, unless another blocking chain
H3,1 exists. Generally speakingτi can be blocked byτj only if a blocking chainHi,j

exists.
Deadlock can be detected both off-line and on-line by computing blocking chains.

If a blocking chain contains the same task or the same resource twice, then a locking
cycle is possible, and a deadlock can happen at run-time. To simplify presentation,
and without loss of generality, in this paper we assume that deadlock is not possible.
Thus a task never appears more than once in each blocking chain, and all chains are
finite sequences. However, our implementation in Section 7 can detect deadlock at
run-time.

We define the subset of tasks interacting withτi as follows:

Ψi = {τj |∃Hi,j}. (1)

Two tasksτi andτh are said to benon-interacting if and only if τj /∈ Ψi andτi /∈ Ψj.
The set of tasks that directly or indirectly interact with a resourceRk is defined as:

Γk = {τj |∃Hj,h = {τj → . . . Rj → τh}} (2)

The ultimate goal of the M-BWI protocol is to provide bandwidth isolation between
groups of non-interacting tasks: ifτj /∈ Ψi, thenτj cannot blockτi and it cannot
interfere with its execution (see Section 4).

3.2 Multiprocessor Scheduling

In multiprocessor systems, scheduling algorithms can be classified into global, par-
titioned and clustered. Global scheduling algorithms haveonly one queue for ready
tasks, and the firstm tasks in the queue are executed on them available processors. As
a consequence, a task can execute on any of them processors, and canmigrate from
one processor to another even while executing a job. Global scheduling is possible on
symmetric multiprocessor systems where all processors have equivalent characteris-
tics (e.g., the same instruction set architecture).

Partitioning entails a static allocation of tasks to processors. The scheduler man-
agesm different queues, one for each processor, and a task cannot migrate between
processors. Partitioned scheduling is possible on a wide variety of hardware platform,
including heterogeneous multiprocessors.

In clustered scheduling, the set of processors is divided into disjoint subsets (clus-
ters) and each task is statically assigned to one cluster. Globalscheduling is possible
within each cluster: there is one queue for each cluster, anda task can migrate be-
tween processors of its assigned cluster. Again, each cluster must consist of equiva-
lent processors.

In this paper we assume thattask migration is possible, i.e. that a task can occa-
sionally migrate from one processor to another one. Therefore, we restrict our atten-
tion to symmetric multiprocessors platforms.

Regarding the scheduling algorithm, we do not make any specific assumption.
The underlying scheduling mechanism can be global, partitioned or clustered schedul-
ing. However, for the latter two algorithms, we assume that atask can occasionally

8 Dario Faggioli(∗) et al.

violate the initial partitioning, and temporarily migratefrom its assigned processor to
another one not assigned to him for the sake of shortening theblocking time due to
shared resources. The mechanism will be explained in greater details in Section 5.

3.3 Resource Reservation

The main goal of our protocol is to guarantee timing isolation between non-interacting
tasks. An effective way to provide timing isolation in real-time systems is to use the
resource reservation paradigm [41, 1]. The idea is towrap tasks inside schedulable
entities calledservers that monitor and limit the resource usage of the tasks.

A serverSi has a maximum budgetQi and a periodPi, andserves one task3. The
server is a schedulable entity: it means that the scheduler treats a server as it were a
task. Therefore, depending on the specific scheduling algorithm, a server is assigned
a priority (static of dynamic), and it is inserted in a ready queue. Each server then gen-
erates “jobs” which have computation times (bounded by the maximum budget) and
absolute deadlines. To distinguish between the absolute deadline assigned to server
jobs, and absolute deadlines assigned to real-time tasks, we call the former “schedul-
ing deadlines”.

Thescheduling deadline is calculated by the reservation algorithm and it is used
only for scheduling purposes (for example in the CBS algorithm [1], the schedul-
ing deadline is used to order the queue of servers according to the Earliest Deadline
First policy). When the server is dispatched to execute, theserver task is executed
instead according to the resource reservation algorithm inuse. Notice that, when us-
ing resource reservations, priority (both static or dynamic) is assigned to servers, and
not to tasks. A set of servers is said to beschedulable by a scheduling algorithm if
each server job completes before its scheduling deadline. In general, schedulability
of servers is not related with schedulability of the wrappedtasks. However, if the set
of servers is schedulable, and there is an appropriate relationship between task pa-
rameters and server parameters, server schedulability mayimply task schedulability.
Typically, when serving sporadic real-time tasks the server maximum budget should
not be less than the task WCET, and the server period should not be larger than the
task minimum inter-arrival time.

Many resource reservation algorithms have been proposed inthe literature, both
for fixed priority and for dynamic priority scheduling. Theydiffer on the rules for
updating their budget, suspending the task when the budget is depleted, reclaiming
unused budget, etc. However, all of them provide some basic properties: a reserved
taskτi is guaranteed to execute at least forQi time units over every time interval of
Pi time units; therefore, tasks are both confined (i.e., their capability of meeting their
deadlines only depends on their own behaviour) and protected from each other (i.e.,
they always receive their reserved share of the CPU, withoutany interference from
other tasks). The latter property is calledtiming isolation.

3 Resource reservation and servers can also be used as the basis for hierarchical scheduling, in which
case each server is assigned more than one task. In this paper, however, we will not take hierarchical
scheduling into account.

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 9

Two examples of resource reservation algorithms are the Constant Bandwidth
Server (CBS [1]), for dynamic priority scheduling, and the Sporadic Server (SS [45]),
for fixed priority scheduling. To describe a resource reservation algorithm, it is pos-
sible to use a state machine formalism. The state machine diagram of a server for
a general reservation algorithm is depicted in Fig. 1. Usually, a server has acurrent
budget (or simplybudget) that is consumed while the served task is being executed,
and a priority. Initially the server is in theIdle state. When a job of the served task is
activated, the server moves to theActive state and it is inserted in the ready queue
of the scheduler; in addition, its budget and priority are updated according to the
server algorithm rules. When an active server is dispatched, it becomesRunning ,
and its served task is executed; while the task executes, itsbudget is decreased. From
there on, the server may:

– becomeActive again, if preempted by another server;
– becomeRecharging , if its budget is depleted;
– becomeIdle , if its task self-suspends (for example because of anend of job

event).

On the way out fromRecharging and Idle , the reservation algorithm checks
whether the budget and the priority/deadline of the server needs to be updated. A
more complete description of the state machine for algorithms like the CBS [1] can
be found in [33].

Idle Active
wake_up

Running

preemption

suspend

dispatch

Recharging

recharged

bdg_exhausted

Fig. 1 State machine diagram of a resource reservation server.

4 The BandWidth Inheritance Protocol

If tasks share resources using the resource reservation paradigm, they might start
interfering with each other. In fact, a special type of priority inversion is possible in
such a case, due to the fact that a server may exhaust its budget while serving a task
inside a critical section: the blocked tasks then need to wait for the server to recharge
its budget. If the server is allowed to continue executing with a negative budget,
scheduling anomalies appear that may prevent schedulability analysis, as explained
for example in [30, 17].

10 Dario Faggioli(∗) et al.

For uni-processor systems, the Bandwidth Inheritance Protocol (BWI, see [30])
solves this issue by allowingserver inheritance. The server of a lock-owner task can
leverage not only its own budget to complete the critical section, but also theinherited
budgets of servers possibly blocked on the lock it is owning.

This mechanism is similar to the Priority Inheritance mechanism. It helps the
lock-owner to anticipate the resource release. Moreover, tasks that are not involved in
the resource contention are not influenced, thus preservingtiming isolation between
non-interacting tasks.

A more detailed description of the BWI protocol and its properties can be found
in [30]. In this paper we extend the BWI protocol to the multi-processor case.

In [42], BWI has been extended with the Clearing Fund algorithm. The idea is
to pay back the budget that a tasksteals to other tasks by means of the bandwidth
inheritance mechanism. While a similar technique can also be applied to M-BWI, for
simplicity in this paper we restrict our attention to the original BWI protocol, and we
leave an extension of the Clearing Fund algorithm as future work.

5 Multiprocessor Bandwidth Inheritance

When trying to adapt the BWI protocol to multiprocessor systems, the problem is to
decide what to do when a task tries to lock a resource whose lock owner is executing
on a different processor. It makes no sense to execute the lock owner task on more
than one CPU at the same time. However, just blocking the taskand suspending
the server may create problems to the resource reservation algorithm: as shown in
[30], the suspended server must be treated as if its task completed its job; and the
task unblocking must be considered as a new job. Whereas thisstrategy preserves
the semantic of the resource reservation, it may be impossible to provide any time
guarantee to the task.

To solve this problem, M-BWI lets the blocked task perform a busy wait inside
its server. However, if the lock owner is not executing, because its server has been
preempted (or exhausted its budget during the critical section) the inheritance mech-
anisms of BWI takes place and the lock owner is executed in theserver of the blocked
task, thus reducing its waiting time. Therefore, it is necessary to understand what is
the status of the lock owner before taking a decision on how toresolve the contention.
It is also important to decide how to order the queue of tasks blocked on a locked re-
source.

5.1 State Machine

A server using the M-BWI protocol has some additional states. The new state ma-
chine is depicted in Figure 2 using the UML State Chart notation. In this diagram we
show the old states grouped into a composite state calledReservation. As long as the
task does not try to lock a resource, the server follows its original behaviour and stays
inside theReservation state.

Now, let us describe the protocol rules. Letλj denote the set of blocked tasks
waiting for τj to release some resource:λj = {τk | τk → . . . → τj}. Let ρk denote

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 11

Reservation

Idle Active
wake_up

Running
dispatch

preemption

suspend

Recharging

recharged

bdg_exhausted

BWI

lock

unlock

Active

RechargingIdle

Running

Executing Spinning

preemption

bdg_exhaustedrecharged
suspension [not bwi]

wake_up

sig1

inn-lock

[LO running]

[LO not running]

Fig. 2 State machine diagram of a resource reservation server whenM-BWI is in place.

the set of all tasks blocked on resourceRk plus the current lock-owner. Also, letΛj

denote the set of servers currently inherited byτj (Sj included):Λj = {Sk | τk ∈
λj} ∪ {Sj}.

– Locking rule. When the taskτi executing inside its serverSi tries to lock a
resourceRk, the server moves into theBWIcomposite state, and more specifically
inside theBWI.Running state, which is itself a state composed of two sub-
states,Running and Spinning . The setρk now includesτi. We have two
cases to consider:
a) If the resource is free, the server simply moves into theBWI.Running.Executing

sub-state and executes the critical section.
b) If the resource is occupied, then the chain of blocked tasks is followed until

one that is not blocked is found (this is always possible whenthere is no
deadlock), let it beτj . Then,τj inherits serverSi, i.e.Si is added toΛj. If
τj is already executing in another server on another processor, then ServerSi

moves into theBWI.Running.Spinning sub-state. Otherwise, it moves
into BWI.Running.Executing and starts executingτj . This operation
may involve a migration of taskτj from one server to another one running on
a different processor.

Notice that in all casesSi remains in theBWI.Running state, i.e. it is not sus-
pended.

– Preemption rule. When serverSi is preempted, while in theBWI.Running
state, it moves to theBWI.Active state. We have two cases:
a) If the server was in theBWI.Running.Spinning sub-state, it simply

moves toBWI.Active ;
b) Suppose it was in theBWI.Running.Executing state, executing taskτj .

Then the listΛj of all servers inherited byτj is iterated to see if one of the
serversSk ∈ Λj is running. This means thatSk must be in theBWI.Running.Spinning
sub-state. Then,Sk moves to theBWI.Running.Executing sub-state
and will now executeτj (transitionsig in the figure).
If there is more than one server inΛj that isBWI.Running.Spinning ,
only one of them is selected and moved toBWI.Running.Executing ,

12 Dario Faggioli(∗) et al.

for example the one with the largest remaining budget, or theone with the
earliest deadline.
This operation may involve a migration of taskτj from serverSi into server
Sk.

– Recharging rule. If the budget of a server in theBWI.Running state is ex-
hausted, the server moves to theBWI.Recharging state. This rule is identical
to thePreemption rule described above, so both cases a) and b) apply.

– Dispatch rule. If serverSi in theBWI.Active state is dispatched, it moves to
theBWI.Running state. This rule is similar to thelocking rule described above,
and there are two cases to consider:
a) The lock-owner task is already executing in another server on another proces-

sor: thenSi moves to theBWI.Running.Spinning sub-state.
b) The lock-owner task is not currently executing; thenSi moves to theBWI.Running.Executing

sub-state and starts executing the lock-owner task.
– Inner locking. If a task that is already the lock owner of a resourceRl tries to

lock another resourceRh (this happens in case of nested critical section), then it
behaves like in thelocking rule above. In particular, if the resource is occupied,
the lock owner ofRh is found and inheritsSi. If the lock-owner is already run-
ning in another server,Si moves from theBWI.Running.Executing to the
BWI.Running.Spinning sub-states (transitioninn-lock in the figure).

– Unlocking rule. Suppose that a taskτj is executing an outer critical section on re-
sourceRk and unlocks it. Its current executing server must be in theBWI.Running.Executing
sub-state (due to inheritance, it may or may not beSj).
If there are blocked tasks inρk, the first one (in FIFO order) is woken up, let it be
τi. The unblocked taskτi will inherit all servers that were inherited byτj , and all
inherited servers are discarded fromΛj (excludingSj):

Λi ← Λi ∪ Λj \ Sj (3)

Λj ← Sj

Sj goes out of theBWI composite state (transitionunlock) and returns into the
Reservation composite state, more precisely into itsReservation.Running
sub-state. Notice that this operation may involve a migration (taskτj may need to
return executing into its own server on a different processor).

– Inner unlocking rule . If a taskτj is executing a nested critical section on re-
sourceRk and unlocks it, its currently executing server continues tostay in the
BWI.Running.Executing sub-state. If there are blocked tasks inρk waiting
for Rk, then the first one (according to the FIFO ordering) is woken up, let it be
τi, and the sets are updated as follows:

ρk ← ρk \ τj

∀τh ∈ ρk

{

Λj ← Λj \ Sh

Λi ← Λi ∪ Sh

This operation may involve a migration.

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 13

– Suspension rule. While holding a resource, it may happen that a taskτj self
suspends or blocks on a resource that is not under the controlof the M-BWI
protocol. This should not be allowed in a hard real-time application, otherwise
it becomes impossible to analyse and test the schedulability. However, in a open
system, where not everything is under control, it may happenthat a task self-
suspends while holding a M-BWI resource.
In that case, all the servers inΛj move toBWI.Idle and are removed from
the scheduler ready queues untilτj wakes up again. When waking up, all servers
in Λj move to theBWI.Active state and the rules of the resource reservation
algorithm are applied to update the budget and the priority of each server.

5.2 Examples

We now describe two complete examples of the M-BWI protocol.In the following
figures, each time line represents a server, and the default task of serverSA is τA,
of serverSB is τB, etc. However, since with M-BWI tasks can execute in servers
different from their default one, the label in the executionrectangle denotes which
task is executing in the corresponding server. White rectangles are tasks executing
non critical code, light grey rectangles are critical sections and dark grey rectangles
correspond to servers that are busy waiting. Which criticalsection is being executed
by which task can again be inferred by theexecution label, thusA1 denotes taskτA
executing a critical section on resourceR1. Finally, upside dashed arrows represent
“inheritance events”, i.e., tasks inheriting servers as consequences of some blocking.

The schedule for the first example is depicted in Figure 3. It consists of3 tasks,
τA, τB , τC , executed on2 processors, that access only resourceR1.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

SA

SB

SC

A

L(R1)

A1

U(R1)

A

B

L(R1)

C1 B1

U(R1)

B

C C1

L(R1)

U(R1)

C

Fig. 3 First example,3 tasks on2 CPUs and1 resource.

At time 6, τB tries to lockR1, which is already owned byτC , thusτC inheritsSB

and starts executing its critical section onR1 inside it. WhenτA tries to lockR1 at
time 9, bothτC andτB inheritSA, and bothSA andSB can executeτC . Therefore,
one of the two servers (SA in this example) enters theSpinning state. Also, the FIFO

14 Dario Faggioli(∗) et al.

wake-up policy is highlighted in this example: when, at time14, τC releasesR1, τB
grabs the lock because it issued the locking request beforeτA.

The second example, depicted in Figure 4, is more complicated by the presence
of 5 tasks on2 processors, two resources, and nested critical sections: the request for
R1 is issued byτC at time7 when it already ownsR2.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

SA

SB

SC

SD

SE

A

L(R1)

A1

U(R1)

A

B B

C

L(R2)

C2

L(R1)

U(R1) U(R2)

C

D

L(R2)

A1 C1 C2 D2

U(R2)

D

E

L(R2)

E2

U(R2)

E

Fig. 4 Second example,5 tasks on2 CPUs with2 resources — taskτC accessesR1 insideR2.

Notice that, despite the fact that bothτD andτE only useR2, they are blocked by
τA, which uses onlyR1. This is because the behaviour ofτC establishes the blocking
chainsHD,A = {τD → R2 → τC → R1 → τA} andHE,A = {τE → R2 → τC →
R1 → τA}. For the same reasonSD andSE are subject to interference either by busy
waiting or executingτA until it releasesR1. This is a blocking-chain situation similar
to what happens with priority inheritance in single processor systems.

5.3 Proof of Correctness

In this section, we will prove the correctness of the protocol. Let us start by defining
what we mean by “correct protocol”:

– First of all, we require that a task is never executed on two processors at the same
time.

– Second, we require that the server is never blocked: that is,if task τi blocks, its
serverSi will continue to execute either a busy wait or some other task. Server
Si can suspend due to recharging, but it will never move to theBWI.Idle state,
unless its currently executing task self-suspends.

– Finally, we require that, if a schedulability test deems theset of reservations to
be schedulable when access to resources is ignored, then no server will miss its
deadline at run-time when executed with the corresponding scheduling algorithm.

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 15

Notice that at this point we do not make any assumption on the scheduling algo-
rithm (fixed or dynamic priority, partitioned or global): weonly assume a resource
reservation algorithm, and an appropriate schedulabilitytest for the admission control
of reservations. The only requirement is that the set of reservations be schedulable on
the selected combination of scheduling algorithm and hardware platformwhen access
to resources is not considered.

Lemma 1 If M-BWI is used as a resource access protocol, a task never executes on
more than one server at the same time.

Proof Suppose thatτj is a lock owner that has inherited some server. Forτj to execute
in more than one server, at least two servers inΛj should be in theRunning.Executing
sub-state. However, theLocking rule specifically forbids this situation: in particular,
in case b), the protocol looks at the lock owner taskτj , ad if it already executing
(i.e. if its server is in theBWI.Running.Executing), then the server of the new
blocked task goes intoBWI.Running.Spinning state.

Similar observations hold for theDispatch andInner locking rules.
Hence the lemma is proved.

Lemma 2 Consider a set of reservations that uses the M-BWI protocol to access
shared resources. Further, suppose that task τi and all tasks in Ψi never suspend
inside a critical section, and never access a resource not handled by M-BWI. Then,
when in the BWI state, server Si always has exactly one non-blocked task to serve
and never enters the BWI.Idle state.

Proof The second part of the Lemma holds trivially: in fact, in order for Si to enter
the BWI.Idle state, it must happen thatτi or any of the tasks from which it is
blocked, self suspends while inside a critical section, against the hypothesis.

It remains to be proved thatSi has always exactly one non-blocked task to serve.
In M-BWI a server can be inherited by a task due to blocking. This happens in the
Locking andInner locking rules. Also, in theUnlocking andInner unlocking rules, a
task can inherit many servers at once. Therefore, a task can execute in more than one
server.

We will now prove that, when in theBWI state, serverSi has at most one non-
blocked task to serve. By Induction. Let us denote witht0 the first instant in which
τi accesses a resource, entering stateBWI. The lemma trivially holds immediately
beforet0. Assume the lemma holds for all instants before timet, with t ≥ t0.

Suppose a task blocks at timet. In the Locking rule a taskτi may block on a
resource already occupied by another taskτj . As a consequence,τj inheritsSi. Si

had only one non-blocked task (τi) before this event: hence, it has only one non-
blocked task (τj) after the event. A similar observation is valid in theInner Locking
rule.

Suppose that a taskτj releases a resourceRk at timet. In theUnlocking rule, τj
wakes up one taskτi that inherits all servers inΛj , exceptSj . All these servers had
only one non-blocked task (τj) to serve beforet; they still have one non-blocked task
(τi) to serve aftert. A similar observation holds for theInner unblocking rule.

No other rule modifies any of the setsΛi. Hence the lemma is proved.

16 Dario Faggioli(∗) et al.

The previous lemma implies that, under M-BWI, a server is never suspended
before its task completes its job, unless the task itself (orany of its interfering tasks)
self suspends inside a critical section. This is a very important property because it
tells us that, from an external point of view, the behaviour of the reservation algorithm
does not change. In other words, we can still view a server as asporadic task with
WCET equal to the maximum budgetQi and minimum inter-arrival time equal to
Pi, ignoring the fact that they access resources. Resource access, locking, blocking
and busy wait have been “hidden” under the M-BWI internal mechanism. Therefore,
we can continue to use the classical schedulability tests toguarantee that the servers
will never miss their deadlines. This is formally proved by the following conclusive
theorem.

Theorem 1 Consider a set of reservations that is schedulable on a system when ac-
cess to resources is ignored, and that uses M-BWI as a resource access protocol.
Then, every server always respects its scheduling deadline.

Proof Theorem 2 proves that a server is never blocked: a server can become idle (ei-
therReservation.Idle or BWI.Idle) only if it self suspends or if it is blocked
by a task that self suspends.

Notice in Figure 2 that the states insideReservation and the states insideBWI
were named alike with the purpose of highlighting the similarity between the two
composite states. A server can move fromReservation.Running to BWI.Running
and vice versa through a lock/unlock operation on a resourcemanaged by the M-BWI
protocol. Notice also that the server moves from one state toanother inside each high
level composite state responding to the same events: apreemption event moves a
server fromRunning to Active in both composite states; abdg exhausted
event moves the server fromRunning to Recharging in both composite states;
etc. Also, the operations on the budget and priority of a reservation are identical in
the two composite states, except that, while inside theBWI composite state, a server
can execute a different task than its originally assigned one.

Therefore, from the point of view of an external observer, ifwe hide the pres-
ence of the two high level composite states,Reservation andBWI, and the lock
and unlock events, then the behaviour of any serverSi cannot be distinguished from
another server with the same budget and period that does not access any resource.

In any resource reservation algorithm, the schedulabilityof a set of reservations
(i.e. the ability of the servers to meet their scheduling deadlines) depends only on their
maximum budgets periods. Since by hypothesis the set of reservations is schedulable
on the system when ignoring resource access, it follows thatthe set of reservations
continues to be schedulable also when resource access is considered.

The most important consequence of Theorem 1 is that the ability of a server to
meet its scheduling deadline is not influenced by the behaviour of the served tasks,
but only by the global schedulability test for reservations. Therefore, regardless of
the fact that a task accesses critical sections or not, and for how long, the server will
not miss its scheduling deadlines.

The first fundamental implication is that, to ensure that a task τi will complete
before its deadline under all conditions, we must assign it aserverSi with enough

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 17

budget and an appropriate period. Ifτi is sporadic and does not access any resource,
it suffices to assignSi a budget no less than the task’s WCET, and a period no larger
than the task’s minimum inter-arrival time. In fact, the server will always stay inside
the Reservation composite state and will not be influenced by the presence of
other tasks in the system. We say that taskτi is thentemporally isolated from the rest
of the system.

If τi does access some resource, thenSi can be inherited by other tasks due to
blocking and the server budget can be consumed by other tasks. However, the set of
tasks that can consumeQi is limited toΨi, i.e. the set ofinteracting tasks for τi. To
ensure the schedulability ofτi, we must assignSi enough budget to cover for the task
WCET and the duration of the critical sections of the interacting tasks. If a task does
not belong toΨi, then it cannot inheritSi and cannot influence the schedulability of
τi.

The conclusion is that M-BWI guarantees a weaker form of temporal isolation:
it restricts the interference between tasks, and makes surethat only interacting tasks
can interfere with each other.

6 M-BWI Interference Analysis

In the previous section we have demonstrated that M-BWI doesindeed provide tem-
poral isolation, without requiring any knowledge of the tasks temporal parameters.
Also, M-BWI seamlessly integrates with existing resource reservation schedulers.
Therefore, it is possible to avoid the difficult task of performing temporal analysis
for soft real-time systems; for example, adaptive scheduling strategies [38, 13] can
be used at run-time to appropriately dimension the budgets of the reservations.

6.1 Guarantees for Hard Real-Time Activities

Open systems may also include hard real-time applications,for which we must guar-
antee the respect of every temporal constraint. To perform an off-line analysis and
provide guarantees, it is necessary to estimate the parameters (computation times,
critical sections length, etc.) of the hard real-time tasks. Without isolation, however,
the temporal parameters of every single task in the system must be precisely esti-
mated. In M-BWI, this analysis can be restricted to the subset of tasks that interact
with the hard real-time task under analysis. In particular,this is required to be able to
compute theinterference of interacting tasks.

The interference timeIi is defined as the maximum amount of time a serverSi is
running but it is not executing its default taskτi. In other words,Ii for Si is the sum
of two types of time interval:

– the ones when tasks other thanτi execute insideSi;
– the ones whenτi is blocked andSi busy waits inBWI.Running.Spinning

state.

Schedulability guarantees to hard real-time activities inthe system are given by
the following theorem.

18 Dario Faggioli(∗) et al.

Theorem 2 Consider a set of reservations schedulable on a system when access to
resources is not considered. When M-BWI is used as a resource access protocol,
hard real-time task τi, with WCET Ci and minimum inter-arrival time Ti, attached to
a server Si = (Qi ≥ Ci + Ii, Pi ≤ Ti), never misses its deadline.

Proof By contradiction. From Theorem 1, no server in the system misses its schedul-
ing deadline. In order forτi to miss its deadline, the server has to go into the recharg-
ing state beforeτi has completed its instance. It follows that, from the activation of
the task instance, the server has consumed all its budget by executing part of taskτi
and other interfering tasks. However, the amount of interference is upper bounded by
Ii, the computation time ofτi is upper bounded byCi, andQi ≥ Ci + Ii. Hence, the
server never reaches the recharging state, and the theorem follows.

Computing a bound on the interference for a hard real-time tasks is not easy in
the general case. In fact, if a set of non hard real-time tasksis allowed to arbitrarily
interrupt and block the hard real-time task, the interference time can become very
large. Therefore, as in the case of the BWI protocol for single processor systems
[30], we assume that all the interfering tasks are themselves hard real-time tasks and
will not miss their deadlines.

In this section, we will also assume that the underlying scheduling algorithm is
global EDF, which means that on a multiprocessor platform with m processors there
is one global queue of servers, and the firstm earliest deadline servers execute on the
m processors. Also, we assume the Constant Bandwidth Server [1] as resource reser-
vation algorithm. However the analysis is quite general andcan be easily extended to
other schedulers and resource reservation algorithms.

Under this assumptions, the following two Lemmas hold.

Lemma 3 Consider a task τi, served by server Si and its set of interacting tasks Ψi.
A task τj ∈ Ψi served by server Sj with Pj > Pi, can contribute to the interference
Ii when Sj is not in BWI.Running.

Proof Tasksτj andτi interact through at least one resourceRk. This means that there
exist a blocking chain fromτi to τj : τi → . . .→ Rk → τj .

Under the assumption that all tasks inΨi are hard real-time tasks (i.e. they never
miss their deadline), then the following situation may happen: whileSj executesτj
inside the critical section, it is preempted bySi which blocks (directly or indirectly)
onRk. Therefore,τj inheritsSi and executes inside it, consuming its budget, for the
duration of the critical section onRk.

Notice that, unlike the Priority Inheritance Protocol for single processor systems,
taskτj can interfere withSi many times on different critical sections even during the
same instance.

In fact, consider the case thatSj andSi are executing on two different processors:
there is no rule that prevents the possibility of the two tasks to interfere many times
on different critical sections even on the same resource.

To simplify the equation for the interference, we make the assumption that every
task accesses a resourceRk with at most one critical section. The following Lemma
restricts the number of interfering tasks on a specific resource.

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 19

Lemma 4 Consider a task τi, served by server Si on a system with m processors,
and let Rk be a resource on which τi may block: τi ∈ Γk. Then, at most m− 1 tasks
in Γk with server period less than Pi contribute to the interference Ii.

Proof Since servers execute in tasks’ deadline order, the runningservers will be the
m earliest deadline ones, at any given time. Then, the worst possible situation for a
taskτi (attached toSi) is being one of the running ones, at the moment in which they
are all trying to accessRk. Therefore, given the FIFO ordering policy, in the worst
case it will have to wait for the otherm − 1 tasks to complete their requests, and
suffering for their interference (in terms of busy waiting).

Let Ψk
i = {τh ∈ Ψi ∩ Γk|Ph > Pi} denote the set of servers with larger period

thanSi that can interfere withSi onRk. Let alsoΩk
i = {ξh(Rk) | τh ∈ Γk ∧ Ph <

Pi}−{ξi(Rk)} denote the set of maximal critical sections length of tasks interacting
with τi with server periods smaller thanPi. Given the two Lemmas, the interference
a serverSi is subject to, due to M-BWI, can be expressed as follows:

∀Rk | τi ∈ Γk, I
k
i =

∑

j|τj∈Ψk
i

ξj(Rk) +

m−1
⊎

Ωk
i (4)

and

Ii =
∑

k|τi∈Γk

Iki (5)

where
⊎n

S is the sum of themin(n, ‖S‖) largest elements of setS (and‖S‖ is the
number of elements inS).

In open systems it is also possible that hard real-time tasksshare some resources
with soft real-time ones, e.g., if critical sections are part of a shared library. In this
scenario, even if the duration of the critical sections are known in advance, the prob-
lem that soft real-time tasks can deplete the budget of theirservers — even inside
these code segments — has to be taken into account. When this happens, the condi-
tions of Lemma 3 and 4 are no longer verified, and this means that all the potentially
interfering tasks must be considered. An upper bound to the interference a serverSi

incurs serving a hard task, due to the presence of soft tasks,is:

Iki =
∑

j|τj∈Γk,j 6=i

ξj(Rk) (6)

If a system consists only of hard real-time tasks, then M-BWImay not the best
solution. In fact, other protocols, specifically aimed at this kind of systems, might
provide more a precise estimation of blocking times, and thus attain a superior per-
formance. Where M-BWI is, as per the authors’ knowledge, really unique, is in het-
erogeneous environments where temporal isolation is the key feature.

20 Dario Faggioli(∗) et al.

6.2 Examples

For better understanding the schedulability analysis and the interference calculation,
the second example of section 5.2 is considered again. Let uslist all possible blocking
chains:

HA,C = {τA → R1 → τc}

HC,A = {τC → R1 → τA}

HC,D = {τC → R2 → τD}

HC,E = {τC → R2 → τE}

HD,E = {τD → R2 → τE}

HD,A = {τD → R2 → τC → R1 → τA}

HE,D = {τE → R2 → τD}

HE,A = {τE → R2 → τC → R1 → τA}

Let us compute the usage the setΓ for R1 andR2: Γ1 = {τA, τC , τD, τE} and
Γ2 = {τC , τD, τE}. Let us compute the upper bound on the interferenceIC . Fol-
lowing directly from the definitions,Ψ1

C = {τA} andΩ2
C = {ξD(R2), ξE(R2)}, the

others being empty sets. Therefore, since there are2 CPUs, and thus only1 contribu-
tion from eachΩ has to be considered, and assumingξD(R2) > ξE(R2), we obtain
IC = ξA(R1) + ξD(R2).

The interferenceIE only amounts to the contribution fromΨ1
E andΨ2

E . In fact,
Ω1

E andΩ2
E are empty, sinceSE is the server with the shortest period.

6.3 Remarks

The choice of using FIFO waking order for blocked tasks mightbe questionable,
mainly because it does not reflect the priority/deadline of tasks and servers in the
system, as it usually happens in real-time systems and literature.

Using a priority-based wake-up order is certainly possiblewith the M-BWI pro-
tocol. The lemma and theorems presented till now continue tobe valid, and in par-
ticular the timing isolation property does not depend on thewake-up order. Such a
priority-based policy can be useful to reduce the interference time ofimportant tasks.
However, it comes at the expenses of a larger interference for less-important tasks,
and makes the analysis more difficult, as higher priority tasks may interfere more than
once on the same critical section. The FIFO policy has at least the interesting prop-
erty of being starvation free, which also makes it simpler tocalculate blocking and
interference times. Also, in most cases critical sections are very short, as reported by
Brandenburg et al. [7], therefore we expect a limited amountof interference. Notice
that the same choice has been made in other protocols, as FMLP[6] and M-SRP [21].

Another important remark to be made concerns with those servers which are busy
waiting in BWI.Running.Spinning state. Busy waiting is a waste of resources
that could be used to execute other tasks. Indeed, it is not difficult to modify the

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 21

protocol to reclaim such wasted busy waiting. For example, while the server is in the
BWI.Running.Spinning state, it could execute other ready tasks. However, we
must be careful in doing this, because the reclaimed task might try to access some
resource, and this complicates the protocol. Also, the reclaiming task may pollute
the cache and increase the computation time of the suspendedtask. Finally, notice
that currently it is not possible to take into account the reclamation in the interference
analysis. Therefore, considering that most critical sections are short [7], a reclamation
policy may make the protocol unnecessarily complex, without a significant gain.

7 Implementation in LITMUS
RT

The M-BWI protocol has been implemented on the real-time scheduling and syn-
chronisation testbed calledLITMUSRT , developed and maintained by the UNC
real-time research group. Having a real implementation of the protocol allows us
to perform more complex evaluations than just simulations,and get real data about
scheduling overheads and actual execution times of the real-time tasks, as well as to
measure performance figures.

LITMUSRT was chosen as the basis for the implementation of M-BWI be-
cause it is a well-established evaluation platform (especially for scheduling and syn-
chronisation overheads) in the real-time research community. In fact,LITMUSRT

includesfeather-trace, an efficient and minimally intrusive mechanism for recording
timestamps and tracing overheads of kernel code paths. Moreover, it already supports
a variety of scheduling and synchronisation schemes. Therefore it will be easier (in
future works) to adapt M-BWI to them and compare it with othersolutions. The cur-
rent version ofLITMUSRT is available as a patch against Linux 2.6.36, or via UNC
git repository (seeLITMUSRT web page).

LITMUSRT employs a “plug-in based” architecture, where different scheduling
algorithms can be “plugged”, activated, and changed dynamically at run-time. Con-
sistently with the remainder of this paper, M-BWI has been implemented for global
EDF, i.e., inside the plug-in calledC-EDF (since it also supports clustered schedul-
ing if configured accordingly). Our M-BWI patch against the development trunk (the
git repository) version ofLITMUSRT is available at:
http://retis.sssup.it/people/tommaso/papers/RTSJ11/ index.html .

This section reports the principal aspects and the fundamental design choices that
drove the implementation.

7.1 Implementing the Constant BandWidth Server

As the first step, theC-EDF plug-in has been enriched with the typical deadline post-
ponement of the CBS algorithm, which was not included in the standard distribution
of LITMUSRT . After this modification it is possible for a task to ask for budget en-
forcement but, upon reaching the limit, to have it replenished and get a deadline post-
ponement, rather than being suspended till the next period.This is done by a new pa-
rameter in the real-time APILITMUSRT offers to tasks, calledbudget action
that can be set toPOSTPONEDEADLINE.

22 Dario Faggioli(∗) et al.

Of course, CBS also prescribes that, when a new instance arrives, the current
scheduling parameters need to be checked against the possibility of keeping using
them, or calculating a new deadline and issue a budget replenishment. This was re-
alised by instrumenting the task wake-up hook of the plug-in, i.e.,cedf task wake up .

The amount of modified code is small (8 files changed, 167 linesinserted, 33
deleted), thanks to the neat architecture ofLITMUSRT and to the high level of
separation of concerns between tasks, jobs and budget enforcement it achieves.

7.2 Implementing Proxy Execution

The fundamental block on top of which M-BWI has been implemented is a mecha-
nism known asproxy execution. This basically means that a taskτi can be theproxy
of some other tasksτj , i.e., whenever the scheduler selectsτi, it is τj that is actually
dispatched to run. It is a general mechanism, but it is also particularly well suited for
implementing a protocol like M-BWI.

Thanks to the simple plug-in architecture ofLITMUSRT , the implementation
of this mechanism was rather simple, although some additional overhead may have
been introduced. In fact, it has been necessary to decouple what the scheduling al-
gorithm thinks it is the “scheduled” task (theproxy), from the task that is actually
sent to the CPU (theproxied). Also, touching the logic behind the implementation of
the scheduling algorithm (global or clustered EDF, in this case) can be completely
avoided, and the code responsible for priority queues management, task migration,
etc., keeps functioning the same as before the introductionof proxy execution.

If tasks are allowed to block or suspend (e.g., for the purpose of accessing an
I/O device) while being proxied, this has to be dealt with explicitly (it corresponds
to transition fromBWI.Running to BWI.Idle in the state diagram of Figure 2).
In fact, when a task self-suspends, it is necessary to removeall its proxies from the
ready queue. However, walking through the list of all the proxies of a task isO(n) —
with n number of tasks blocked on the resources the task owns when itsuspends —
overhead that can be easily avoided, at least for this case. In fact, the proxies of the
suspending task are left in the ready queue, and it is only when one of them is picked
up by the scheduler that, if the proxied task is still not runnable, they are removed
from the queue and a new candidate task is selected. On the other hand, when a task
that is being proxied by some other tasks wakes up, not only that task, but also all its
proxies have to wake up. In this case, there is no way for achieving this than going
through the list of all the waking task’s proxies, during itsactual wakeup, and putting
all of them back to the ready queue.

In LITMUSRT , self-suspension and blocking are handled by the same function
cedf task block . Therefore, to implement the correct behaviour,cedf task block
andcedf task wake up have been modified. For each task, a list of tasks that are
proxying it at any given time is added to the process control block (task struct).
The list is updated when a new proxying relationship is established or removed, and
it is traversed at each self-suspension or wake-up of a proxied task. Each task is
provided with a pointer to its current proxy (proxying for) which is filled and
updated when the proxying status of the task changes. Such field is also referenced

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 23

within the scheduler code, in order to determine whether theselected task is a proxy
or not.

Implementing proxy execution was more complex than just adding budget post-
ponement (478 line additions, 74 line deletions).

As a final remark, consider that
when resource reservations are being used, the budgets of the involved servers

need to be properly managed while the proxy execution mechanism is triggered. The
details of the budget updating are described in the next section.

7.3 Implementing Multiprocessor BandWidth Inheritance

Using a mechanism like proxy execution, implementing M-BWIis a matter of having
FIFO wait queues for locks and taking care of the busy waitingof all the proxies
whose proxying task is already running on some CPU.

The former is achieved by adding a new type of lock (bwi semaphore) in the
LITMUSRT kernel, backed up with a standard Linuxwaitqueue , which supports
FIFO enqueue and dequeue operations. Each semaphore protects its internal data
structures (mainly thewaitqueue and a pointer to the owner of the lock itself) by
concurrent access from more than one CPU at the same time by a non-preemptive
spin-lock (a native Linuxspinlock t). Moreover, when the locking or releasing
code for a lock needs to update aproxying for field, it is required for it to acquire
the spin-lock that serialises all the scheduling decision for the system (or for the
cluster) of theLITMUSRT scheduler.

For the busy wait part, a special kernel thread (a native Linux kthread) called
pe stub-k is spawned for each CPU during plug-in initialisation, and it is initially
in a blocked state. When a taskτi running on CPUk needs to busy wait, this special
thread is selected as the new proxy forτi, while the real value ofproxying for of
τi is cached. Therefore,pe stub-k executes in place ofτi, depleting its budgetτi
as it runs.

The special thread checks if the real proxied task ofτi is still running some-
where;LITMUSRT provides a dedicated field for that in the process control block,
calledscheduled on . Such field is accessed and modified by the scheduler, thus
holding the scheduling decision spin-lock is needed for dealing with it. However, the
busy waiting done bype stub-k must be preemptive and with external interrupts
enabled for CPU-k. Therefore,pe stub-k performs the following loop:

1. it checks if the real proxying task ofτi is still running somewhere by looking at
scheduled on without holding any spin-lock;

2. as soon as it reveals something changed, e.g.,scheduled on for the proxying
task becomesNOCPU, it takes the spin-lock and checks the condition again:
– if it is still NOCPUit means the proxying task has been preempted or sus-

pended and, through a request for rescheduling, it tries to start running it;
– if it is no longerNOCPU, someone has already started executing the proxying

task (recall the busy wait performed insidepe-stub-k is preemptable), thus
it goes back to point1.

24 Dario Faggioli(∗) et al.

8 Simulation Results

The closed-form expression for the interference time can beused to evaluate how
large is the impact of M-BWI on the schedulability of hard real-time tasks in the sys-
tem. To this end, we performed an analysis of the formula on synthetically generated
task sets, and we compared the results against the Flexible Multiprocessor Locking
Protocol – FMLP [6], another well-known algorithm for multiprocessor systems.

The task sets were generated according to the following algorithm. A variable
number of CPUsm ∈ {2, 4, 6, 8} have been considered. For each value ofm, the
maximum number of tasksN was set toN ∈ {m, 2 · m, 4 · m, 5 · m}, and tasks
were added to the set until this limit was reached or their total utilisation exceeded
m/2. Each task has a processor utilisation chosen uniformly within (0, Umax], and a
computation time chosen uniformly within[0.5ms, 500ms) (the task period is calcu-
lated accordingly). Execution times are inclusive of all the critical sections the tasks
access.

As per the resources, both short and long critical sections have been considered.
All critical sections have length between[60µs, 500µs]. We considershort critical
sections all those sections with length in[60µs, ξmax), while long ones are within
[ξmax, 500µs], whereξmax is a parameter of the simulation. We consider that a re-
source is accessed only through one type of critical section, either short or long;
therefore, we denoteshort resources the resources that are accessed only by sort
critical sections; andlong resources the ones that are accessed only by long critical
sections. Each task has a probability of accessing1, 2 or 3 short resources of0.375,
0.50 and0.125, respectively. Every long resource (if any) is accessed by2, 3 or 4
tasks with a probability of0.125, 0.625 and0.25, respectively. Finally, for each task
and each resource it uses,1 or 2 nested resources are generated with probability0.25
and0.0625. Nested resources are always short. Each resourceRh, nested insideRk

by means ofτj , will be accessed by other tasks that already useRk with probability
0.6, and with probability0.4 from the ones which do not.

We generated100 task sets for each combination of all these parameters. Then,
the interference time was computed according to Equation (5) for M-BWI, whereas
for FMLP the blocking time was computed according to the Equations in [6]. In the
case of M-BWI, a server has been prepared for each task with budget equal to the
task computation time plus its interference, and period equal to the task period. In
the case of FMLP, the blocking time was simply added to the task computation time.
Finally, the schedulability of the set of servers (and of theset of tasks for FMLP)
thus obtained has been checked using the test by Bertogna et al. [4]. We measure the
schedulability ratio, i.e. the percentage of set of servers that are deemed schedulable
against all task sets that are schedulable without considering resource access.

The remainder of this section shows some of the results of these simulations. For
all the figures, insets show simulations for different values ofUmax, varying between
0.2 and0.8 in steps of0.2; during each simulationξmax varied between0.60µs and
200µs, in steps of10µs.

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 25

 0

 20

 40

 60

 80

 100

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

%
 o

f S
ch

ed
ul

ab
le

 T
as

k
S

et
s

Max. Duration of Short Resources

M-BWI: Schedulability Ratio with Short and Long Resources

2 CPUs
4 CPUs
6 CPUs
8 CPUs

(a) M-BWI

 0

 20

 40

 60

 80

 100

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

%
 o

f S
ch

ed
ul

ab
le

 T
as

k
S

et
s

Max. Duration of Short Resources

FMLP: Schedulability Ratio with Short and Long Resources

2 CPUs
4 CPUs
6 CPUs
8 CPUs

(b) FMLP

Fig. 5 Schedulability ratio for M-BWI and FMLP. Total utilisationis Utot = 0.4 ·m; number of tasks is
N = 2 ·m, and number of resources is2 ·N .

8.1 Experiments with Short and Long Critical Sections

In this first set of experiments both short and long critical sections have been con-
sidered. Figure 5 shows the case in which the number of tasks is 4 times the number
of processors, the number of resources is twice the number oftasks, and the total
utilisation is0.4 times the number of CPUs.

Clearly, in this case the M-BWI schedulability analysis is more effective than the
FMLP analysis. As the number of processors increases, the schedulability of FMLP
reaches very low level. The reason is due to the fact that the schedulability test for
FMLP has to account also forblocking time of all tasks. In fact, FMLP uses blocking
and priority inheritance for long resources, and this may cause anindirect blocking
on all intermediate tasks that are not directly involved in the interaction (see [6] for
more details), whereas M-BWI has no notion of priority inversion and there is no
indirect blocking. Also, consider that the schedulabilityanalysis used in this paper
is rather pessimistic: for FMLP, the blocking time of a task is directly added to its
computation time, increasing the overall utilisation. However, by doing so the same
blocking time contribution can be accounted for several times. We believe that a
tighter schedulability analysis of global EDF with blocking would produce better
results for FMLP.

26 Dario Faggioli(∗) et al.

 0

 20

 40

 60

 80

 100

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

%
 o

f S
ch

ed
ul

ab
le

 T
as

k
S

et
s

Max. Duration of Short Resources

M-BWI: Schedulability Ratio with Short and Long Resources

2 CPUs
4 CPUs
6 CPUs
8 CPUs

(a) M-BWI

 0

 20

 40

 60

 80

 100

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

%
 o

f S
ch

ed
ul

ab
le

 T
as

k
S

et
s

Max. Duration of Short Resources

FMLP: Schedulability Ratio with Short and Long Resources

2 CPUs
4 CPUs
6 CPUs
8 CPUs

(b) FMLP

Fig. 6 Schedulability ratio for M-BWI and FMLP. Total utilisationis Utot = 0.4 ·m; number of tasks is
N = 4 ·m, and number of resources is4 ·N .

The same pattern repeats also with other combinations of theparameters. We
report only another combination of parameters: in Figure 6 we show the results of the
analysis when the number of tasks is four times the number of CPUs, the number of
resources is equal to the number of tasks, whereas the total utilisation is0.6 times the
number of CPUs.

8.2 Experiments with Only Short Resources

Since it is both desirable and common for critical sections to be short, a second set
of experiments has been performed where only short resources are used. In this case,
FMLP only performs spin-locks plus inheritance, hence the blocked tasks is not sus-
pended.

Figure 7 compares M-BWI and FMLP under two different conditions. In case
a), the total utilisation isUtot = 0.4 · m, with 16 tasks and16 resources onm =
4 CPUs; in case b), the total utilisation isUtot = 0.6 · m with 32 tasks and32
resources onm = 8 processors. In this case M-BWI performs slightly worse that
FMLP. This is probably due to the inheritance mechanisms of FMLP that is more
effective is shortening the overall blocking time that M-BWI mechanisms. In any

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 27

 0

 20

 40

 60

 80

 100

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

%
 o

f S
ch

ed
ul

ab
le

 T
as

k
S

et
s

Max. Duration of Short Resources

M-BWI vs. FMLP: Schedulability Ratio with Short Resources on 4 CPUs

M-BWI
FMLP

(a)m = 4, Utot = 0.4 ·m

 0

 20

 40

 60

 80

 100

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

%
 o

f S
ch

ed
ul

ab
le

 T
as

k
S

et
s

Max. Duration of Short Resources

M-BWI vs. FMLP: Schedulability Ratio with Short Resources on 8 CPUs

M-BWI
FMLP

(b) m = 8, Utot = 0.6 ·m

Fig. 7 Schedulability ratio for M-BWI and FMLP with short resources only. a)16 tasks and16 resources;
b) 32 tasks and32 resources.

case, both algorithm show very good performance, with a schedulability close to
100%.

It is important to highlight one final consideration about the length of short critical
sections. Brandenburg et al. [7] reported that the length ofcritical sections in appli-
cation code and in kernel code is shorter than 5µsec for more than 90% of the cases.
However, by settingξmax = 5µsec, our simulations showed a schedulability ratio of
100% in almost all cases. Therefore, for the sake of clarity and to exaggerate the im-
pact of the critical sections on the schedulability analysis, we choose to set the length
of short critical sections to be at least60µsec. However, it is clear from Figure 7 that,
even with such a conservative setting, the impact of the critical section length on the
schedulability ratio is almost always negligible. Therefore, the use of algorithms such
as M-BWI and FMLP is highly recommended for short critical sections.

9 Experimental Results

In this section, we report performance figures obtained by running synthetically gen-
erated task sets on our implementation of M-BWI on the LITMUSoperating system.
The aim is to gather insights about how much overhead the protocol entails when

28 Dario Faggioli(∗) et al.

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5

 6 12 18 24 30

A
V

G
. D

ur
at

io
n

[u
s]

Number of Tasks

Average. Duration of the Scheduling Function (6 CPUs)

Original
No Res.
M-BWI

Fig. 8 Average duration of the scheduling function, along with themeasured standard deviation (vertical
segments).

executing on real hardware. We have generated the task sets parameters as described
in Section 8. The hardware platform consists of a AMD Opteronprocessor with 48
cores, running at 1.9 GHz frequency. The cores are organisedinto 4 “islands” of 6
cores each, and all cores inside an island share the same L2 cache. In the experiments
we selected only one island, and disabled the other three. Inthis way, the performance
figures do not depend on unpredictable behaviours due to cache conflicts.

Therefore,10 randomly chosen task sets among the ones generated for 6 CPUs,
with different number of tasksN have been executed for 10 minutes each, while
tracing the overheads with Feather-trace [8]. The number ofshort resources was fixed
Nshort = 2 ·N andNlong = M

2 = 3.
In this work, the scheduling overhead (i.e. the duration of the main scheduling

function), the amount of time tasks wait (either being preempted, proxying or busy
waiting) for a resource and the duration of lock and unlock operations are considered.

Scheduling Overhead. To evaluate the impact of M-BWI on the scheduler, we mea-
sured how long it takes for taking a scheduling decision in the following cases: (i)
original LITMUSRT running the generated tasks sets but with tasksnot issuing
any resource request during their jobs (“Original” in the graphs); (ii) M-BWI en-
abledLITMUSRT but, again, with tasks not issuing resource requests (“No Res.”
in graphs); (iii) M-BWI enabledLITMUSRT with tasks actually locking and un-
locking resources as prescribed in the task set (“M-BWI” in the graphs). Figure 8
shows the average duration of the scheduler function along with the standard devia-
tion for the three cases, varying the number of tasks. The actual impact of M-BWI on
the scheduler is limited, since the duration of the scheduling function is comparable
for all the three cases, and independent from the number of tasks (when they exceed
the number of available cores). In fact, in the proposed implementation, tasks that
block do not actually leave the ready-queue, but stay there and act like proxies, and
therefore the number of tasks the scheduler has to deal with is practically the same in
all the three cases. It is, however, worth to note that the complexity added for enabling
the proxying logic does not impair scheduling performancesat noticeable levels.

Lock and Unlock Overheads. We also measured the overhead associated with the
slow paths of locking and unlocking operations in the M-BWI code. For the lock

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 29

path, we measured how long it takes, once it has been determined that a resource
is busy, to find the proxy and ask the scheduler to execute it. In the unlock path,
we measured how long it takes, once it has been determined that there are queued
task waiting for the resource to be released, to reset the proxy relationship for the
unlocking task and build up a new one for the next owner.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 6 12 18 24 30

A
vg

. D
ur

at
io

n
[u

s]

Number of Tasks

Average of Lock and Unlock (Slowpath) Durations with M-BWI (6 CPUs)

Lock
Unlock

Fig. 9 Average lock and unlock slow paths durations inLITMUSRT with M-BWI (vertical segments
highlight the measured standard deviation figures).

Figure 9 shows the average lock and unlock overheads with standard deviations.
In general, locking requires less overhead than unlocking.This can be easily under-
stood observing that, in this implementation, a lock operation only has to setup the
blocking task as a proxy and then asks the scheduler to put this under operation. Un-
locking requires to reset a proxy back to a normal task and finding the new owner of
the resource, but also updating the proxying relationship with the new owner in all
the tasks that are waiting for the resource and that were proxying the releasing task.

It is useful to estimate these two forms of overheads to increase the accuracy of
the hard real-time schedulability, including the overheads in the computation times of
the task. In particular, we added the lock/unlock overheadsfor each critical section.
After having converted the overheads from CPU cycles toms, new graphs similar to
the ones of section 8 can be produced, to check whether there are situations where the
overheads introduced by the protocol impair schedulability. Figure 10 shows this for
the case whereN = 2 ·m andNshort = 2 ·N , with both short and long resources.

Using the maximum value from lock and unlock overhead measurements pro-
duces the results shown in Figure 10, which looks identical to Figure 5.a, meaning
that the overhead introduced by the proposed implementation of M-BWI does not
introduce any further schedulability penalty.

Waiting Times. Figure 11 shows the average and standard deviation of the resource
waiting time, i.e., the time interval that elapses from whena task asks to lock a re-
source and when it actually is granted such permission. In M-BWI, during this time,
the task can lie in the ready-queue, preempted by others, it can run and act as a
proxy for the lock owner or it can busy wait, if the lock owner is already executing
elsewhere. The idea behind this experiment is to show that inaverage, the delay in
acquiring the resource is limited. Such information can be useful to soft real-time
programmers that can have an idea of the average case in a practical setting.

30 Dario Faggioli(∗) et al.

 0

 20

 40

 60

 80

 100

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

%
 o

f S
ch

ed
ul

ab
le

 T
as

k
S

et
s

Max. Duration of Short Resources

Schedulability Loss for Hard Tasks Including Locking Overheads

2 CPUs
4 CPUs
6 CPUs
8 CPUs

Fig. 10 Schedulability loss withN = 4 ·m andNshort = 2 ·N including the maximum of the overhead
of locking and unlocking resources. In this case, both shortand long resources were used with durations
ranging in[60µs, ξmax] and[ξmax, 500µs], respectively.

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 6 12 18 24 30

A
vg

. W
ai

tin
g

T
im

e
[u

s]

Number of Tasks

Average of the Resource Waiting Time with M-BWI (6 CPUs)

Wait Time

Fig. 11 Average resource waiting time as a function of the number of tasks. The vertical segments denote
the measured standard deviation figures.

Figure 11 shows that, on average, waiting for a resource happens for time in-
terval comparable with the length of the critical sections (short ones range from50
to 200µs, long ones up to500µs). Obviously there are cases where the resource is
available immediately or when the waiting time is large. Consider that, in these ex-
periments, long critical sections were also present, each one of them able to last up to
500µs, which is about the maximum value for the waiting time in the worst possible
case. Interestingly, when the number of tasks becomes high enough, the waiting time
tends to decrease. This mainly happens because of two reasons: first, it is less likely
for many tasks to insist on the same resources; second, it is more likely for resource
waiting tasks to have at least one running proxy helping the lock owner in releasing
the lock, thus shortening its waiting time.

10 Conclusions and Future Work

In this paper we presented the Multiprocessor Bandwidth Inheritance (M-BWI) pro-
tocol, an extension of BWI to symmetric multiprocessor systems. The protocol guar-
antees temporal isolation between non-interacting tasks,a property that is useful in

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 31

open systems, where tasks can join and leave the system at anytime. Like the Prior-
ity Inheritance Protocol, M-BWI does not require the user tospecify any additional
parameter, therefore it is ready to be implemented in real-time operating systems
without any special API. We indeed implemented the protocolon theLITMUSRT

real-time testbed, and we measure the overhead which is almost negligible for many
practical applications. However, it is also possible to perform off-line schedulability
analysis: by knowing the task-resource usage and the lengthof the critical sections,
it is possible to compute the interference that a task can have on its resource reser-
vation by other interacting tasks. We computed an upper bound on such interference
for EDF global scheduling, and we showed that such interference is somehow limited
even in the presence of long critical sections.

In the future we want to extend the protocol along different directions. First of
all, it would be interesting to provide interference analysis also for partitioned and
clustered scheduling algorithms, and compare it against other algorithms like M-SRP
and M-PCP. Also, we would like to implement the Clearing Fundmechanism [42] to
return the bandwidthstolen by an interfering task to the original server.

Finally, we would like to implement M-BWI on Linux, on top of the SCHEDDEADLINE
patch [28], in order to provide support to a wider class of applications.

References

1. Abeni L, Buttazzo G (1998) Integrating multimedia applications in hard real-
time systems. In: Proc. IEEE Real-Time Systems Symposium, Madrid, Spain,
pp 4–13

2. Anderson JH, Ramamurthy S (1996) A framework for implementing objects and
scheduling tasks in lock-free real-time systems. In: Proc.of the IEEE Real-Time
Systems Symposium (RTSS), IEEE Computer Society, pp 94–105

3. Behnam M, Shin I, Nolte T, Nolin M (2007) Sirap: a synchronization protocol
for hierarchical resource sharing real-time open systems.In: Proceedings of the
7th ACM and IEEE international conference on Embedded software

4. Bertogna M, Cirinei M (2007) Response-time analysis for globally scheduled
symmetric multiprocessor platforms. In: Proc. of the 28th IEEE Real-Time Sys-
tems Symposium (RTSS), Tucson, Arizona (USA)

5. Bertogna M, Checconi F, Faggioli D (2008) Non-PreemptiveAccess to Shared
Resources in Hierarchical Real-Time Systems. In: Proceedings of the 1st Work-
shop on Compositional Theory and Technology for Real-Time Embedded Sys-
tems, Barcelona, Spain

6. Block A, Leontyev H, Brandenburg BB, Anderson JH (2007) A flexible real-
time locking protocol for multiprocessors. In: Proceedings of the 13th IEEE In-
ternational Conference on Embedded and Real-Time Computing Systems and
Applications, pp 47–56

7. Brandenburg B, Calandrino JM, Block A, Leontyev H, Anderson JH (2008)
Real-Time Synchronization on Multiprocessors: To Block orNot to Block, to
Suspend or Spin? In: 2008 IEEE Real-Time and Embedded Technology and Ap-
plications Symposium, IEEE, pp 342–353, DOI 10.1109/RTAS.2008.27

32 Dario Faggioli(∗) et al.

8. Brandenburg BB, Anderson JH (2007) Feather-trace: A light-weight event trac-
ing toolkit. In: Proc. of the International Workshop on Operating Systems Plat-
forms for Embedded Real-Time applications (OSPERT)

9. Brandenburg BB, Anderson JH (2010) Optimality results for multiprocessor real-
time locking. In: Proc. of the IEEE Real-Time Systems Symposium (RTSS),
IEEE Computer Society, pp 49–60

10. Caccamo M, Sha L (2001) Aperiodic servers with resource constraints. In: Proc.
of the IEEE Real Time System Symposium (RTSS), London, UK

11. Chen CM, Tripathi SK (1994) Multiprocessor priority ceiling based protocols.
In: tech. rep., College Park, MD, USA

12. Cho H, Ravindran B, Jensen ED (2007) Space-optimal, wait-free real-time syn-
chronization. IEEE Trans Computers 56(3):373–384

13. Cucinotta T, Checconi F, Abeni L, Palopoli L (2010) Self-tuning schedulers for
legacy real-time applications. In: Proceedings of the5th European Conference
on Computer Systems (Eurosys 2010), European chapter of theACM SIGOPS,
Paris, France

14. Davis RI, Burns A (2006) Resource sharing in hierarchical fixed priority pre-
emptive systems. In: Proceedings of the IEEE Real-time Systems Symposium

15. Devi UC, Leontyev H, Anderson JH (2006) Efficient synchronization under
global edf scheduling on multiprocessors. In: Proceedingsof the 18th Euromicro
Conference on Real-Time Systems, pp 75–84

16. Easwaran A, Andersson B (2009) Resource sharing in global fixed-priority pre-
emptive multiprocessor scheduling. In: Proceedings of IEEE Real-Time Systems
Symposium

17. Faggioli D, Lipari G, Cucinotta T (2008) An efficient implementation of the
bandwidth inheritance protocol for handling hard and soft real-time applications
in the linux kernel. In: Proceedings of the4th International Workshop on Operat-
ing Systems Platforms for Embedded Real-Time Applications(OSPERT 2008),
Prague, Czech Republic

18. Faggioli D, Lipari G, Cucinotta T (2010) The multiprocessor bandwidth inheri-
tance protocol. In: Proc. of the 22nd Euromicro Conference on Real-Time Sys-
tems (ECRTS 2010), pp 90–99

19. Feng X, Mok AK (2002) A model of hierarchical real-time virtual resources. In:
Proc.23rd IEEE Real-Time Systems Symposium, pp 26–35

20. Fisher N, Bertogna M, Baruah S (2007) The design of an EDF-scheduled
resource-sharing open environment. In: Proceedings of the28th IEEE Real-Time
System Symposium

21. Gai P, Lipari G, di Natale M (2001) Minimizing memory utilization of real-time
task sets in single and multi-processor systems-on-a-chip. In: Proceedings of the
IEEE Real-Time Systems Symposium

22. Guan N, Ekberg P, Stigge M, Yi W (2011) Resource sharing protocols for real-
time task graph systems. In: Proc. of the 23rd Euromicro Conference on Real-
Time Systems (ECRTS 2011), Porto, Portugal

23. Herlihy MP, Wing JM (1990) Linearizability: a correctness condition for con-
current objects. ACM Trans Program Lang Syst 12:463–492, DOI http://doi.
acm.org/10.1145/78969.78972, URLhttp://doi.acm.org/10.1145/

Analysis and Implementation of the Multiprocessor BandWidth Inheritance Protocol 33

78969.78972
24. van den Heuvel MM, Bril RJ, Lukkien JJ (2011) Dependable Resource Sharing

for Compositional Real-Time Systems. In: 2011 IEEE 17th International Confer-
ence on Embedded and Real-Time Computing Systems and Applications, IEEE,
pp 153–163, DOI 10.1109/RTCSA.2011.29

25. Jansen PG, Mullender SJ, Havinga PJ, Scholten H (2003) Lightweight edf
scheduling with deadline inheritance. Tech. Rep. 2003-23,University of Twente,
URL http://doc.utwente.nl/41399/

26. Lakshmanan K, de Niz D, Rajkumar R (2009) Coordinated task scheduling, al-
location and synchronization on multiprocessors. In: Proceedings of IEEE Real-
Time Systems Symposium

27. Lamastra G, Lipari G, Abeni L (2001) A bandwidth inheritance algorithm for
real-time task synchronization in open systems. In: Proc. 22nd IEEE Real-Time
Systems Symposium

28. Lelli J, Lipari G, Faggioli D, Cucinotta T (2011) An efficient and scalable imple-
mentation of global edf in linux. In: Proceedings of the International Workshop
on Operating Systems Platforms for Embedded Real-Time Applications (OS-
PERT)

29. Lipari G, Bini E (2004) A methodology for designing hierarchical scheduling
systems. Journal of Embedded Computing 1(2)

30. Lipari G, Lamastra G, Abeni L (2004) Task synchronization in reservation-based
real-time systems. IEEE Trans Computers 53(12):1591–1601

31. Lopez JM, Diaz JL, Garcia DF (2004) Utilization bounds for EDF scheduling
on real-time multiprocessor systems. In: Real-Time Systems: The International
Journal of Time-Critical Computing, vol 28, pp 39–68

32. Macariu G (2011) Limited blocking resource sharing for global multiprocessor
scheduling. In: Proc. of the 23rd Euromicro Conference on Real-Time Systems
(ECRTS 2011), Porto, Portugal

33. Mancina A, Faggioli D, Lipari G, Herder JN, Gras B, Tanenbaum AS (2009)
Enhancing a dependable multiserver operating system with temporal protection
via resource reservations. Real-Time Systems 43(2):177–210

34. Nemati F, Behnam M, Nolte T (2009) An investigation of synchronization un-
der multiprocessors hierarchical scheduling. In: Proceedings of the Work-In-
Progress (WIP) session of the 21st Euromicro Conference on Real-Time Systems
(ECRTS’09), pp 49–52

35. Nemati F, Behnam M, Nolte T (2009) Multiprocessor synchronization and hi-
erarchical scheduling. In: Proceedings of the First International Workshop on
Real-time Systems on Multicore Platforms: Theory and Practice (XRTS-2009)
in conjunction with ICPP’09

36. Nemati F, Behnam M, Nolte T (2011) Independently-developed real-time sys-
tems on multi-cores with shared resources. In: Proc. of the 23rd Euromicro Con-
ference on Real-Time Systems (ECRTS 2011), Porto, Portugal

37. Nemati F, Behnam M, Nolte T (2011) Sharing resources among independently-
developed systems on multi-cores. ACM SIGBED Review 8(1)

38. Palopoli L, Abeni L, Cucinotta T, Lipari G, Baruah SK (2008) Weighted feed-
back reclaiming for multimedia applications. In: Proceedings of the6th IEEE

34 Dario Faggioli(∗) et al.

Workshop on Embedded Systems for Real-Time Multimedia (ESTIMedia 2008),
Atlanta, Georgia, United States, pp 121–126, DOI 10.1109/ESTMED.2008.
4697009

39. Rajkumar R (1990) Real-time synchronization protocolsfor shared memory
multiprocessors. In: Proceedings of the International Conference on Distributed
Computing Systems, pp 116–123

40. Rajkumar R, Sha L, Lehoczky J (1988) Real-time synchronization protocols for
multiprocessors. In: Proceedings of the Ninth IEEE Real-Time Systems Sympo-
sium, pp 259–269

41. Rajkumar R, Juvva K, Molano A, Oikawa S (1998) Resource Kernels: A
Resource-Centric Approach to Real-Time and Multimedia Systems. In: Proc.
Conf. on Multimedia Computing and Networking

42. Santos R, Lipari G, Santos J (2008) Improving the schedulability of soft real-time
open dynamic systems: The inheritor is actually a debtor. Journal of Systems and
Software 81(7):1093–1104, DOI 10.1016/j.jss.2007.07.004

43. Sha L, Rajkumar R, Lehoczky JP (1990) Priority inheritance protocols: An ap-
proach to real-time synchronization. IEEE Transactions onComputers 39(9)

44. Shih I, Lee I (2003) Periodic resource model for compositional real-time guar-
antees. In: Proc.24th Real-Time Systems Symposium, pp 2–13

45. Sprunt B, Sha L, Lehoczky J (1989) Aperiodic task scheduling for hard-real-time
systems. Journal of Real-Time Systems 1(1):27–60

