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Hybrid systems combine continuous and discrete behavior. Hybrid Automata are a pow-
erful formalism for the modeling and verification of such systems. A common problem in
hybrid system verification is the good parameters problem, which consists in identifying
a set of parameter valuations which guarantee a certain behavior of a system. Recently,
a method has been presented for attacking this problem for Timed Automata. In this
paper, we show the extension of this methodology for hybrid automata with linear and
affine dynamics. The method is demonstrated with a hybrid system benchmark from the
literature.
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1. Introduction

Hybrid systems combine continuous and discrete behavior. They are especially use-
ful for the verification of embedded systems, as they allow the unified modeling and
the interaction of discrete control and the continuous environment or system state
such as position, temperature or pressure.

There are several classes of formal models for hybrid systems. In general, there
is a trade-off between the expressivity of the model and the complexity of the algo-
rithmic apparatus that is needed for its formal analysis. Linear Hybrid Automata
(LHA) provide a good compromise. In contrast to more general hybrid automata
models, which allow arbitrary dynamics of the continuous state variables, LHA are
restricted to linear dynamics. This allows the use of efficient algorithms based on
convex polyhedra. Furthermore, more complex dynamics – like hybrid automata
with affine dynamics (AHA) – can easily be approximated conservatively by LHA.
Although reachability is undecidable for LHA [16], practically relevant results have
been obtained using this formalism [15].
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For the modeling of embedded systems it is handy to use parameters either to
describe uncertainties or to introduce tuning parameters that are subject to op-
timization. Instead of setting these parameters manually and then verifying the
resulting concrete system, parameterized models are used to perform automatic pa-
rameter synthesis. A common assumption is the existence of a set of bad states that
should never be reached. Then the parameter synthesis can be solved by treating the
parameters as additional state variables and computing the reachable states of the
parameterized system in a standard manner[15]. However, this standard approach
is not feasible except for very simple cases. It is therefore essential to dynamically
prune the search space. The method presented in [12] is based on the CEGAR
approach, iteratively refining a constraint over the parameters by discarding states
that violate a given property. A similar refinement scheme has already been used for
(non-parameterized) reachability problems of hybrid systems (see e.g. [18]), starting
with an abstraction and refining until the property has been proved or a counterex-
ample has been found.

While these traditional approaches to parameter synthesis are based on the
analysis of bad states or failure traces, a complementary – or inverse – method has
been proposed in [5]. It uses a parameter instantiation that is known to guarantee
a good behavior in order to derive a constraint on the parameters that leads to the
same behavior. While the algorithm in [5] is restricted to Timed Automata (TA),
we present its extension to LHA in this paper.

There are different scenarios for the application of the presented approach. If
a given parameter instantiation is known to guarantee certain properties, the in-
verse method can be used to derive an enlarged area of the parameter space that
preserves these properties, while possibly allowing for enhanced performance of the
system. The inverse method can also be used to obtain a measure of coverage of the
parameter space by computing the zones of equivalent behavior for each point. This
approach is also known as behavioral cartography [6] and will be discussed in this
paper. While the natural extension of these algorithms works well for simple LHA,
it does not scale well to LHA models that approximate more complex dynamics.
Therefore, we present an enhanced algorithm that can be applied on affine hybrid
automata.

The presented algorithms have been implemented in a tool called IMITATOR
(Inverse Method for Inferring Time AbstracT behaviOR) [4]. The tool has originally
been developed for the analysis of TA. The new versiona HYMITATOR implements
the semantics of LHA as presented in Sect. 3. The manipulation of symbolic states
is based on the polyhedral operations of the Parma Polyhedra Library [8].

The paper is structured as follows. First, we will discuss related work in Sect. 2.
In Sect. 3, the formal basis for the rest of the paper is given. The algorithms are
introduced and discussed in Sect. 4. The results are discussed in Sect. 5 and the

aThe tool can be downloaded from www-lipn.univ-paris13.fr/˜andre/software/hymitator
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paper is concluded in Sect. 6. Throughout the paper, we will use a running example
– a distributed temperature control system – to illustrate the presented concepts.
Further applications can be found in [13].

2. Related Work

The presented approach exhibits the same general differences with the CEGAR-
based approach of [12] at the LHA level as formerly at the TA level. First, the
input of CEGAR-based methods is a bad location to be avoided while the input
of our inverse method is a good reference valuation for the parameters; second,
the constraint in CEGAR-based methods guarantees the avoidance of bad locations
while the constraint generated by the inverse method guarantees the same behavior
(in terms of discrete moves) as under the reference valuation.

Additionally, our inverse method based approach for LHA is comparable to the
symbolic analysis presented in [2] for improving the simulation coverage of hybrid
systems. In their work, Alur et al. start from an initial state x and a discrete-time
simulation trajectory, and compute a constraint describing those initial states that
are guaranteed to be equivalent to x, where two initial states are considered to be
equivalent if the resulting trajectories contain the same locations at each discrete
step of execution. The same kind of constraint can be generated by our inverse
method when initial values of the continuous variables are defined using parameters.
The two methods are however methodologically different. On the one hand, the
generalization process done by the inverse method works, using forward analysis,
by refining the current constraint over the parameters that repeatedly discards the
generated states that are incompatible with the initial valuation of x; on the other
hand, the method of Alur et al. generalizes the initial value of x by performing
a backward propagation of sets of equivalent states. This latter approach can be
practically done because the system is supposed to be deterministic, thus making
easy the identification of transitions between discrete states during the execution.
Our inverse method, in contrast, can also treat nondeterministic systems. Since the
method of [2] is based on simulation, scalability is less an issue, given that the
examined model is simulateable.

The approach presented in [19] shares a similar goal, namely identifying for single
test cases a robust environment that leads to the same qualitative behavior. Instead
of using symbolic reachability techniques, their approach is based on the stability of
the continuous dynamics. By using a bisimulation function (or contraction map), a
robust neighborhood can be constructed for each test point. As traditional numeric
simulation can be used, this makes the technique computationally effective. But, for
weakly stable systems, a lot of test points have to be considered in order to achieve
a reasonable coverage. Note that both [2] and [19] only consider the coverage of
the initial states, while our approach can be applied in the more general context of
parameter synthesis.
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3. Hybrid Automata with Parameters

3.1. Basic Definitions

In the sequel, we will refer to a set of continuous variables X = x1, . . . , xN and a
set of parameters P = p1, . . . , pM . Continuous variables can take any real value.
We define a valuation as a function w : X → R, and the set of valuations over
variables X is denoted by V(X). A valuation w will often be identified with the
point (w(x1), . . . , w(xN )) ∈ RN . A parameter valuation is a function π : P → R
mapping the parameters to the real numbers.

Given a set of variables X , a linear inequality has the form
∑N

i=1 αixi #$ β,
where xi ∈ X , αi,β ∈ Z and #$ ∈ {<,≤,=}. A convex linear constraint is a
finite conjunction of linear inequalities. The set of convex linear constraints over
X is denoted by L(X). For a constraint C ∈ L(X) satisfied by a valuation w ∈
V(X), we write w |= C. For a constraint over continuous variables and parameters
C ∈ L(X ∪ P ) satisfied by a valuation w and a parameter valuation π, we write
〈w,π〉 |= C. By convention, we also write w |= C for partial valuations. For example,
a valuation w ∈ V(X) is said to satisfy a constraint C ∈ L(X ∪ P ) iff it can be
extended with at least one parameter valuation π such that 〈w,π〉 |= C.

Sometimes we will refer to a variable domain X ′, which is obtained by renaming
the variables in X . Explicit renaming of variables is denoted by the substitution
operation. Here, (C)[X/Y ] denotes the constraint obtained by replacing in C the
variables of X by the variables of Y .

A convex linear constraint can also be interpreted as a set of points in the space
RN , more precisely as a convex polyhedron. We will use these notions synonymously.
In this geometric context, a valuation satisfying a constraint is equivalent to the
polyhedron containing the corresponding point, written as w ∈ C. Also here, for
a partial valuation w (i.e. a point of a subspace of C), we write w ∈ C iff w is
contained in the projection of C on the variables of w.

Definition 1. Given a set of continuous variables X and a set of parameters P , a
(parameterized) hybrid automaton is a tuple A = (Σ, Q, q0, I,D,→), consisting of
the following

• a finite set of actions Σ
• a finite set of locations Q
• an initial location q0 ∈ Q
• a convex linear invariant Iq ∈ L(X ∪ P ) for each location q
• an activity Dq : Rn → Rn for each location q

• discrete transitions q
g,a,µ−−−→ q′, with guard condition g ∈ L(X ∪ P ), action

a ∈ Σ and a jump relation µ ∈ L(X ∪ P ∪X ′).

Given a parameter constraint K ∈ L(P ), the automaton A with the parameters
restricted to K is denoted by A(K). Given a parameter valuation π, the automaton
A with all parameters instantiated as in π is denoted by A[π].
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Without loss of generality, it is assumed here that all continuous variables x
are initialized with x = 0. Arbitrary initial values can be modeled by adding a
transition with appropriate variable updates. Parameters can be seen as additional
state variables which do not evolve in time (null activity).

The activities Dq describe how the continuous variables evolve within each lo-
cation q. In order to obtain automata models which can be symbolically analyzed,
restrictions have to be made to these activities. This leads to the following classes
of hybrid automata.

Definition 2. We define the following subclasses of hybrid automata.

(1) A linear hybrid automaton (LHA) is a hybrid automaton, where in each
location q, the activity is given by a convex linear constraint Dq ∈ L(Ẋ)
over the time derivatives of the variables.

(2) An affine hybrid automaton (AHA) is a hybrid automaton, where in each
location q, the activity is given by a convex linear constraint Dq ∈ L(X∪Ẋ)
over the variables and the time derivatives.

The class of timed automata can be obtained by restricting the derivatives to
ẋ = 1 and limiting the jump relations to either x′ = x or x′ = 0 (clock reset) for
all variables x ∈ X . In total, the automata models defined above form a hierarchy
TA ⊂ LHA ⊂ AHA.

The reachable states of LHA can be efficiently represented by convex polyhedra.
Due to the more complex dynamics, this is not true for AHA. In the following, we
consider linear hybrid automata with parameters. But, AHA can be approximated
by LHA with arbitrary precision by partitioning the state space, as e.g. described
in [11]. In Sect. 4.3 it is discussed, how these techniques can be adapted to suit our
methods. In the following, we give an example of a hybrid system, that will later
on be used to illustrate the approaches proposed here.

Example 3. The room heating benchmark (RHB) has been described in [10]. It
models a distributed temperature control system. There are m movable heaters for
n > m rooms. The temperature xi in each room i is a continuous variable that
depends on the (constant) outside temperature u, the temperature of the adjacent
rooms, and whether there is an activated heater in the room.

Depending on the relations between the temperatures measured, the heaters will
be moved. If there is no heater in room i, a heater will be moved there from an
adjacent room j, if the temperature has reached a threshold xi ≤ geti and there is a
minimum difference of the temperatures xj − xi ≥ difi. Note that in contrast with
the RHB modeled in [2], the heater move from a room to another one is nondeter-
ministic, since multiple guard conditions can be enabled simultaneously (in [2], the
nondeterminism is resolved by moving only the heater with the smallest index). The
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t = h ∧ (x1 ≥ 18 ∨ x2 − x1 < 1) / t′ = 0 t = h ∧ (x3 ≥ 18 ∨ x2 − x3 < 1) / t′ = 0

t = h ∧ (x2 ≥ 18 ∨ (x1 − x2 < 1 ∧ x3 − x2 < 1)) / t′ = 0

t = h ∧ x1 < 18∧
x2 − x1 ≥ 1/t′ = 0t = h ∧ x2 < 18∧

x1 − x2 ≥ 1/t′ = 0

t = h ∧ x3 < 18∧
x2 − x3 ≥ 1/t′ = 0 t = h ∧ x2 < 18∧

x3 − x2 ≥ 1/t′ = 0

Fig. 1. Automaton model for room heating benchmark

dynamics is given by equations of the form:

ẋi = cihi + bi(u− xi) +
∑

i"=j

ai,j(xj − xi) (1)

where ai,j are constant components of a symmetric adjacency matrix, constants bi
and ci define the influence of the outside temperature and the effectiveness of the
heater for each room i, and hi = 1 if there is a heater in room i and hi = 0
otherwise. Here, we will study an instantiation of RHB as given in [2] with n =
3,m = 2, outside temperature u = 4, the constants b = (0.4, 0.3, 0.4), c = (6, 7, 8).

The adjacency matrix ai,j is given as
(

0.0 0.5 0.0
0.5 0.0 0.5
0.0 0.5 0.0

)
and the thresholds are set to

get = 18 and dif = 1 for all rooms.
The system can be modeled as an AHA, as shown in Fig. 1. There are three

control modes, corresponding to the positions of the two heaters. The automaton
has four variables, the temperatures X = {x1, x2, x3} and a variable t acting as
clock. In this example, the temperatures are sampled at a constant rate 1

h , where
h is a parameter of the automaton. This sampling scheme is used in the models of
sampled-data hybrid systems of [20] and simulink/stateflow models [2].

3.2. Symbolic semantics

The symbolic semantics of a LHA A(K) are defined at the level of constraints, a
symbolic state is a pair (q, C) of a location q and a constraint C over variables and
parameters. The corresponding operations are therefore performed on convex poly-
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Fig. 2. Forward reachability for hybrid automata

hedra rather than on concrete valuations. One necessary operation is the progress
of time within a symbolic state, modeled by the time-elapse operation.

Definition 4. Given a symbolic state (q, C), the states reached by letting t time
units elapse, while respecting the invariant of q, are characterized as follows:

w′ ∈ C ↑tq iff ∃w ∈ C, v ∈ Dq : w
′ = w + t · v ∧w′ ∈ Iq.

We write w′ ∈ C ↑q if w′ ∈ C ↑tq for some t ∈ R+.

Note that due to the convexity of the invariants, if C ⊆ Iq and C ↑tq⊆ Iq , then

also ∀t′ ∈ [0, t] : C ↑t′q ⊆ Iq. The operator preserves the convexity of C. Furthermore,
the operator C ↓X denotes the projection of the constraint C on the variables in
X . Based on these definitions, the symbolic semantics of a LHA A(K) is given by
a labeled transition system (LTS).

Definition 5. A labeled transition system over a set of symbols Σ is a triple
(S, S0,⇒) with a set of states S, a set of initial states S0 ⊆ S and a transition
relation ⇒ ⊆ S ×Σ× S. We write s

a⇒ s′ for (s, a, s′) ∈⇒. A run of length m is a

finite alternating sequence of states and symbols of the form s0
a0⇒ s1

a1⇒ . . .
am−1⇒ sm,

where s0 ∈ S0.

Definition 6. The symbolic semantics of LHA A(K) is a LTS with

• states S = {(q, C) ∈ Q × L(X ∪ P ) | C ⊆ Iq}
• initial state s0 = (q0, C0) with C0 = K ∧ [

∧N
i=1 xi = 0] ↑q0

• transitions (q, C)
a⇒ (q′, C′) if ∃t, C′′ : (q, C)

a→ (q′, C′′)
t→ (q′, C′), with

• discrete transitions (q, C)
a→ (q′, C′) if exists q

a,g,µ→ q′ and
C′ =

(
[C(X) ∧ g(X) ∧ µ(X,X ′)] ↓(X′∪P ) ∧Iq′ (X ′)

)
[X′/X]

• delay transitions (q, C)
t→ (q, C′) with C′ = C ↑tq.

The forward reachability induced by this definition is illustrated in Figure 2.
Starting from symbolic state (q, C), the time elapse C ↑ q is intersected with the
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guard g. Then the discrete jump µ is performed, ending in the new state (q′, C′),
where C′ is the region obtained by intersecting with the new invariant Iq′ .

The trace of a symbolic run (q0, C0)
a0⇒ . . .

am−1⇒ (qm, Cm) is obtained by pro-

jecting the symbolic states to the locations, which gives: q0
a0⇒ . . .

am−1⇒ qm. Two
runs are said to be equivalent, if their corresponding traces are equal. In this notion
of trace equivalence, the delay transitions are existentially abstracted, i.e. we only
consider the discrete behavior.

The set of states reachable from any state in a set S in exactly i steps is denoted
as PostiA(K)(S) = {s′ | ∃s ∈ S : s

a0⇒ . . .
ai−1⇒ s′}. Likewise, the set of all reachable

states from S is defined as Post∗A(K)(S) =
⋃

i≥0 PostiA(K). The reachable states of
an automaton A(K) are defined as ReachA(K) = Post∗A(K)({s0}), where s0 is the
initial state of A(K).

Note that during a run of A(K), the parameter constraints associated to the
reachable states can only get stronger, since the parameters do not evolve under the
time elapse operation, and can only be further constrained by invariants or guard
conditions. This gives rise to the following observation.

Lemma 7. For any reachable state (q, C) ∈ ReachA(K), it holds that (∃X : C) ⊆
K. This implies that for each parameter valuation π |= C, also π |= K.

The lemma follows directly from the definition of the symbolic semantics. We say
that a state (q, C) is compatible with a parameter valuation π, or just π-compatible,
if π |= C. Conversely, it is π-incompatible if π 2|= C. These observations are the
basis for the Inverse Method, is described in next section.

4. Algorithm

4.1. Inverse Method

The Inverse Method for LHA attacks the good parameters problem by generalizing
a parameter valuation π that is known to guarantee a good behavior. Thereby, the
valuation π is relaxed to a constraintK such that the discrete behavior – i.e. the set
of traces – of A[π] and A(K) is identical. The algorithm has first been described for
parametric timed automata in [5]. It has been applied for the synthesis of timing
constraints for memory circuits [3].

Algorithm 1 describes the Inverse Method for LHA. The overall structure is sim-
ilar to a reachability analysis. In the main loop, the reachable states with increasing
depth i are computed. In parallel, the constraint K is derived. It is initialized with
true. Each time a π-incompatible state (q, C) is reached, K is refined such that the
incompatible state is unreachable for A(K). If C is π-incompatible, then there must
be at least one inequality J in its projection on the parameters (∃X : C), which is
incompatible with π. The algorithm selects one such inequality and adds its nega-
tion ¬J to the constraintK. Before continuing with the search, the reachable states
found so far are updated to comply with the new constraint K (line 7). If there are
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Algorithm 1: IM (A,π)

input : Parametric linear hybrid automaton A
input : Valuation π of the parameters
output: Constraint K0 on the parameters

1 i ← 0 ; K ← true ; S ← {s0}
2 while true do
3 while there are π-incompatible states in S do
4 Select a π-incompatible state (q, C) of S (i.e., s.t. π 2|= C) ;
5 Select a π-incompatible inequality J in (∃X : C) (i.e., s.t. π 2|= J) ;
6 K ← K ∧ ¬J ;

7 S ←
⋃i

j=0 Post
j
A(K)({s0}) ;

8 if PostA(K)(S) 4 S then return K0 ←
⋂

(q,C)∈S(∃X : C)

9 i ← i+ 1 ;
10 S ← S ∪ PostA(K)(S)

no more π-incompatible states, then i is increased and the loop continues.
The algorithm stops as soon as no new states are found (line 8). The output

of the algorithm is then a parameter constraint K0, obtained as the intersection of
the constraints associated with the reachable states. The resulting constraint can
be characterized as follows.

Proposition 8. Suppose that the algorithm IM (A,π0) terminates with the output
K0. Then the following holds:

• π0 |= K0

• For all π |= K0, A[π0] and A[π] have the same sets of traces.

A proof along the lines of [17] can be found in [13]. We obtain a (convex) con-
straintK0 including the initial point π0, that describes a set of parameter valuations
for which the same set of traces is observable. In particular, if A[π0] is known to
avoid a set of (bad) locations for π0, so will A[π] for any π |= K0. In fact, by mimic-
ing the abstract discrete behavior, any linear time property is preserved. However,
branching time properties are not necessarily preserved.

Note that the intersection in line 8 is necessary – rather than just returning K
– in order to guarantee the equivalence of the traces. Without this operation, it is
possible that the symbolic semantics of A(K) contains additional traces caused by
deadlocks that do not occur in A[π0]. For more details, refer to [5].

The algorithm IM is not guaranteed to terminateb. Also note that the presented
algorithm involves nondeterminism. In Algorithm 1 in lines 4 and 5, one can pos-

bTermination of such a general reachability-based procedure cannot be guaranteed due to unde-
cidability of reachability for TA with parameters and LHA [16]
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(a) Starting from a single point

(b) Starting from a tile synthesized by the Inverse Method

Fig. 3. Reachable states for room heating benchmark

sibly choose among several incompatible states and inequalities. This may lead to
different – nevertheless correct – results. This implies in particular that the result-
ing constraint K0 is not maximal in general. (In order to overcome this limitation,
the behavioral cartography method will be proposed in Section 4.2).

Example 9. In order to enable the application of the inverse method as described
above to the RHB from example 3, the AHA automaton is converted to a LHA. This
is done using the method described in [11]. The space is partitioned into regions, and
within each region, the activity field is overapproximated using linear sets of activity
vectors. For each region R delimiting a portion of the partitioned state space, the
activities are statically overapproximated as

ẋi ∈ [min{fi(x) | x ∈ R},max{fi(x) | x ∈ R}] ,

where fi(x) corresponds to the right-hand side in (1). The approximation can be
made arbitrarily accurate by approximating over suitably small regions of the state
space. Here, each region R corresponds to a unit cube (of size 1 degree Celsius) in
the dimensions x1, x2, x3.

We now consider the following (bounded liveness) property:

Prop1: At least one of the heaters will be moved within a given time interval
[0, tmax] with tmax = 1

2 and a sampling time h = 1
10 .

The upper bound tmax plays here the role of the maximal number of discrete transi-
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Algorithm 2: BC

input : Parametric linear hybrid automaton A
input : Parameter bounds min1 . . .minM and max1 . . .maxM

input : Step sizes δ1 . . . δM
output: Set of constraints Z on the parameters

1 Z ← ∅
2 V ← {π | πi = mini + 'i · δi, πi ≤ maxi, '1, . . . , 'M ∈ N}
3 while true do
4 Select point π ∈ V with ∀K ∈ Z : π 2|= K
5 K ← IM (A,π)
6 Z ← Z ∪ {K}
7 if ∀π ∈ V : ∃K ∈ Z : π |= K then
8 return Z

tions that are used in the method of [2]. In the automaton model, a violation of the
property is modeled by a transition to a location qbad. To check the property Prop1 for
varying initial conditions, we add the parameters a1, a2, a3 and constrain the initial
state with x1 = a1∧x2 = a2∧x3 = a3. For initial point (a1, a2, a3) = (18, 17, 18), the
reachable states for the variables x1, x2 and x3 are shown in Fig. 3(a). The bad loca-
tion is not reached from this point. Using the Inverse Method (Algorithm 1), the ini-
tial point can be generalized to a larger region around the starting point (18, 17, 18),
resulting in the constraint

a1 ≥ a2 + 181
200 ∧ a1 < a3

2 + 37
4 ∧ a2 > 3381

200 ∧ a2 < 35
2 ∧ a3 > 35

2 ∧ a3 < 456
25 .

The symbolic runs starting from this enlarged initial region are depicted in
Fig. 3(b). The sets of traces of the two figures coincide, i.e. the sequence of dis-
crete transitions of every run represented in Fig. 3(b) is identical to the sequence of
discrete transitions of some run in Fig. 3(a).

4.2. Behavioral Cartography

The inverse method works efficiently in many cases, since large parts of the state
space can effectively be pruned by refining the parameter constraint K. In this
way, many bad states never have to be computed, in contrast to the traditional
approach to parameter synthesis. A drawback of the inverse method is that the
notion of equivalence of the traces may be too strictc for some cases. If e.g. one
is interested in the non-reachability of a certain bad state, then there may exist
several admissible regions in the parameter space that differ in terms of the discrete

cNote that variants of the original algorithm on Timed Automata have been explored in [7],
satisfying weaker conditions than trace equivalence.
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Fig. 4. Cartography of the initial states of RHB

behavior or trace-sets. In order to discover these regions, the inverse method needs
to be applied iteratively with different starting points.

The systematic exploration of the parameter space using the inverse method
is called behavioral cartography [6]. It works as shown in Algorithm 2. For each
parameter pi, the interval [mini,maxi], possibly containing a single point, specifies
the region of interest. This results in a rectangular zone v0 = [min1,max1]× · · ·×
[minM ,maxM ]. Furthermore, step sizes δi ∈ R are given. The algorithm selects
(yet uncovered) points defined by the region v0 and the step sizes and calls the
inverse method on them. The set Z contains the tiles (i.e. parameter constraints)
computed so far. The algorithm proceeds until all starting points are covered by
some tile K ∈ Z.

By testing the inclusion in some computed tile, repeated computations are
avoided for already covered points. The result of the cartography is a set of tiles of
the parameter space, each representing a distinct behavior of the LHA A. Note that
the computed tiles do not necessarily cover the complete region v0. On the other
hand, it is possible that v0 be covered by very few calls to the inverse method. Note
also that, compared to the algorithm in [2], this is a stronger result, as each tile
corresponds to a set of traces that exploits all possible behavior for the covered
parameter valuations, including nondeterminism.

Example 10. The cartography is illustrated by a further experiment on the RHB
model from example 9. Again, we check Prop1. The initial point is varied for the
initial values a1 and a2, while fixing a3 = 18. Therefore, the cartography procedure is
used, iterating the initial point within the rectangle [16, 18]2 (i.e, min1 = min2 = 16
and max1 = max2 = 18) with a step size of δ1 = δ2 = 1

3 . This leads to a total of 32
tiles, shown in Fig. 4. By analyzing the cartography, one gets a quantitative measure
of the coverage of the considered region (shown as a dashed rectangle in the figure).
In this case, the computed tiles cover 56% of the rectangle. All tiles in the figure
have been classified as good tiles.
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Fig. 5. Enhanced algorithm for affine dynamics

4.3. Enhancement of the method for affine dynamics

It can be observed that for some systems there are areas in the parameter space,
where slight variations of the initial conditions lead to many different traces. In
this case, a good coverage based on the cartography approach will be very costly,
since many points have to be considered. In general, the inverse method and the
behavioral cartography is quite limited when applied to LHA models that were
obtained from AHA by static partitioning.

As described in [11], AHA can be approximated by LHA with arbitrary precision.
This is done by partitioning the invariant of a location, usually into a set of small
rectangular regions. For each region R, the affine dynamics are over-approximated
by linear dynamics. In this way, the locations are split up until the desired precision
is obtained.

Due to this partitioning, the resulting LHA will have more locations than the
original AHA, leading also to more different traces for each parameter instantia-
tion. This renders the inverse method ineffective for AHA, as the region around
a parameter valuation π that corresponds to the same trace set, will generally be
very small. This is because the traces contain a lot of information on the transitions
between partitions that are irrelevant wrt. the system’s behavior.

These limitations can be overcome by grouping reachable states that only repre-
sent different partitions of the same invariant of a location q. In our algorithm, this
is done as an extension of the time-elapse operator. Each time that the time-elapse
C ↑q needs to be computed for a location with affine dynamics Dq, the following
steps are performed:

(1) Build local partitions P of the invariant Iq
(2) Compute a linear over-approximation D̂P of Dq for each partition P
(3) Compute the locally reachable states S wrt. partitions P and dynamics D̂P

(4) Compute the convex hull of the states S

Here, the number of partitions ∆ per dimension is chosen by the user. The
algorithm is illustrated in Figure 5. While on the left hand side, static partitioning
of the four original states leads to a complex trace set, the merged local partitions
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on the right hand side lead to a simpler trace set with only minor loss of precision
by the convex hull operation.

Note that cost and precision of the overall analysis may strongly depend on the
chosen value for ∆. In practice, one would iterate the methods presented in this
paper in order to refine the analysis by increasing ∆.

Given this variant of the time-elapse for affine dynamics, the computed reachable
states are an over-approximation due to the piecewise linearization of the dynam-
ics and the convex hull operation. Thus, the trace equivalence is no longer valid.
But, as we compute an over-approximation of the possible runs, non-reachability is
preserved.

Proposition 11. Given an AHA A, suppose that the algorithm IM (A,π0, k) ter-
minates with the output K0. Then the following holds:

• π0 |= K0

• If for A[π0], a location qbad is unreachable, then it is also unreachable for all
A[π] with π |= K0

Example 12. The adapted algorithm is applied to the RHB. With the discussed
techniques, we can apply the inverse method and thus the cartography directly on
the AHA model, without statically partitioning the state space in order to obtain a
LHA. Again, by repeating the inverse method, a large part of the system’s initial
state space is decomposed into tiles of distinct discrete behavior. The reachability
analysis for the AHA model is quite costly. Therefore, we will try to cover large parts
of the parameter space using a very coarse linearization, given by a small number
∆ of partitions. This is illustrated in the following. As reported in Example 10,
applying the cartography on the statically linearized RHB model delivers a coverage
of only 56% when fixing a3 = 18. Instead, we apply the enhanced method directly
on the AHA model, again regarding property Prop1. Here, the initial values a1
and a2 are varied within the rectangle [15.5, 18.5]2 (i.e, min1 = min2 = 15.5 and
max1 = max2 = 18.5) with a step size of δ1 = δ2 = 1

2 . In the first step, the
invariants will be uniformly linearized, i.e. we set ∆ = 1. The resulting cartography
in Fig. 6 consists of 12 tiles, where the good ones are shown in green, while the tiles
corresponding to a bad behavior are shown in red (and outlined in bold). Note that
the whole rectangular region is covered and that already with a coarse linearization,
most of the tiles could be proved good. In a next step, one could concentrate a more
costly analysis on the bad region.

5. Discussion

As shown in the previous sections, the inverse method – having been introduced for
the analysis of timed automata – can be applied as well for hybrid systems. The
extension to automata with rectangular and linear dynamics is straightforward, us-
ing the relation between concrete and symbolic semantics which extends nicely to
these classes of hybrid automata. However, almost all non-trivial examples of hybrid
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Fig. 6. Enhanced cartography for room heating benchmark

systems from the literature have affine dynamics. The naive approach – approxi-
mating affine models statically by LHA – shows limited results, as the partitioning
of locations leads to a great number of distinct trace sets.

Instead, the partitioning can be applied locally, incorporating it into the time-
elapse operator and thereby grouping states that belong to the same location of
the original affine model. In this way, more general constraints and thus a better
coverage can be achieved. The additional convex hull operation can however be
quite costly and strongly depends on the chosen number of partitions per dimension.
This can be seen as a trade-off between precision and performance of the analysis.
In practice, the method can be applied in an iterative manner, starting with a very
coarse linearization, and then concentrating on small parts of the parameter space
with a finer approximation.

The presented methods rely only on trace sets, abstracting from the valuations
of the continuous variables. For this reason they are best suited for the verification
of qualitative properties, like the (non-)reachability of a set of locations. Since many
interesting properties – like safety conditions – can be expressed as reachability, this
is not a serious limitation. There are also quantitative properties that can be coded
as reachability, e.g. by adding a transition to a bad state when a certain deadline
or threshold value is violated. Also for this class of properties, our methods can be
applied.

Besides the application examples in this paper, further hybrid systems have been
treated, as e.g. the Fischer mutual exclusion protocol and the navigation bench-
mark [10]. For the results, see [13]. We would like to point out that like for all
exhaustive reachability algorithms for hybrid systems, the scalability of the meth-
ods presented here is limited, with runtimes increasing exponentially with the size
of the examined system. Techniques and optimizations for computing the reachable
states of hybrid automata are still improving thanks to ongoing research in this
area. However, most of the methods can only be considered semi-automatic, since
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a lot of manual fine-tuning of both the models and the algorithmic parameters are
necessary to achieve good results.

An interesting subclass of LHA are TA with stopwatches [9], for which the
derivatives of the clocks are either 1 or 0. TA with stopwatches are very useful
for modeling scheduling problems with preemption, as shown in [1]. Recently, the
specialization of our tool to this subclass of LHA allowed us to treat a number of
preemptive scheduling problems, including a spacecraft industrial case study [14].

6. Conclusion

In this paper, we present a method to derive parameter constraints for LHA, that
guarantee the same behavior as for a reference valuation of the parameters. This
method has been recently introduced for deriving timing constraints for timed au-
tomata. Here, we provide the extension of the method to LHA. Furthermore, it
is shown how the reachability procedure can be adapted to enable the analysis of
systems with affine dynamics.

The method can be used to attack the parameter synthesis problem for LHA,
by generalizing a reference valuation that is known to guarantee a good behavior.
By early pruning of invalid states, the method is more efficient than the parameter
synthesis based on standard reachability analysis. Repeated analysis for different
starting points yields a “behavioral cartography”. This allows to cover large parts
of the initial state space of nondeterministic hybrid systems, and provides an alter-
native tool to the symbolic simulation method of [2].
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[5] E. André, T. Chatain, E. Encrenaz, and L. Fribourg. An inverse method for para-
metric timed automata. IJFCS, 20(5):819–836, Oct. 2009.
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