Parametric Verification and Test Coverage for
Hybrid Automata Using the Inverse Method

Laurent Fribourg and Ulrich Kiihne

LSV ENS de Cachan, 94235 Cachan, France
{kuehne, fribourg}@lsv.ens-cachan.fr

Abstract. Hybrid systems combine continuous and discrete behavior.
Hybrid Automata are a powerful formalism for the modeling and verifi-
cation of such systems. A common problem in hybrid system verification
is the good parameters problem, which consists in identifying a set of
parameter valuations which guarantee a certain behavior of a system.
Recently, a method has been presented for attacking this problem for
Timed Automata. In this paper, we show the extension of this method-
ology for hybrid automata with linear and affine dynamics. The method
is demonstrated with a hybrid system benchmark from the literature.

1 Introduction

Hybrid systems combine continuous and discrete behavior. They are especially
useful for the verification of embedded systems, as they allow the unified mod-
eling and the interaction of discrete control and the continuous environment or
system state such as position, temperature or pressure.

There are several classes of formal models for hybrid systems. In general,
there is a trade-off between the expressivity of the model and the complexity of
the algorithmic apparatus that is needed for its formal analysis. Linear Hybrid
Automata (LHA) provide a good compromise. In contrast to more general hy-
brid automata models, which allow arbitrary dynamics of the continuous state
variables, LHA are restricted to linear dynamics. This allows the use of efficient
algorithms based on convex polyhedra. Furthermore, more complex dynamics
— like hybrid automata with affine dynamics (AHA) — can easily be approxi-
mated conservatively by LHA. Although reachability is undecidable for LHA
[12], practically relevant results have been obtained using this formalism [11].

For the modeling of embedded systems it is handy to use parameters either to
describe uncertainties or to introduce tuning parameters that are subject to op-
timization. Instead of setting these parameters manually and then verifying the
resulting concrete system, parameterized models are used to perform automatic
parameter synthesis. A common assumption is the existence of a set of bad states
that should never be reached. Then the parameter synthesis can be solved by
treating the parameters as additional state variables and computing the reach-
able states of the parameterized system in a standard manner[11]. However, this
standard approach is not feasible except for very simple cases. It is therefore

essential to dynamically prune the search space. The method presented in [9]
is based on the CEGAR approach, iteratively refining a constraint over the pa-
rameters by discarding states that violate a given property. A similar refinement
scheme has already been used for (non-parameterized) reachability problems of
hybrid systems (see e.g. [14]), starting with an abstraction and refining until the
property has been proved or a counterexample has been found.

While these traditional approaches to parameter synthesis are based on the
analysis of bad states or failure traces, a complementary — or inverse — method
has been proposed in [4]. It uses a parameter instantiation that is known to
guarantee a good behavior in order to derive a constraint on the parameters
that leads to the same behavior. While the algorithm in [4] is restricted to
Timed Automata (TA), we present its extension to LHA in this paper.

There are different scenarios for the application of the presented approach.
If a given parameter instantiation is known to guarantee certain properties, the
inverse method can be used to derive an enlarged area of the parameter space
that preserves these properties, while possibly allowing for enhanced performance
of the system. In the The inverse method can also be used to obtain a measure of
coverage of the parameter space by computing the zones of equivalent behavior
for each point. This approach is also known as behavioral cartography [5] and will
be discussed in this paper. While the natural extension of these algorithms works
well for simple LHA, it does not scale well to LHA models that approximate
more complex dynamics. Therefore, we present an enhanced algorithm that can
be applied on affine hybrid automata.

The presented algorithms are implemented in a tool called IMITATOR (In-
verse Method for Inferring Time AbstracT behaviOR) [3]. The tool has orig-
inally been developed for the analysis of TA. The new version IMITATOR 3
implements the semantics of LHA as presented in Sect. 3. The manipulation of
symbolic states is based on the polyhedral operations of the Parma Polyhedra
Library [6].

Throughout the paper, we will use a running example — a distributed tem-
perature control system — to illustrate the presented concepts. Further examples
can be found in [10].

2 Related Work

The presented approach exhibits the same general differences with the CEGAR-
based approach of [9] at the LHA level as formerly at the TA level. First, the
input of CEGAR-based methods is a bad location to be avoided while the input
of our inverse method is a good reference valuation for the parameters; second,
the constraint in CEGAR-based methods guarantees the avoidance of bad loca-
tions while the constraint generated by the inverse method guarantees the same
behavior (in terms of discrete moves) as under the reference valuation.
Additionally, our inverse method based approach for LHA is comparable to
the symbolic analysis presented in [1] for improving the simulation coverage of
hybrid systems. In their work, Alur et al. start from an initial state z and a

discrete-time simulation trajectory, and compute a constraint describing those
initial states that are guaranteed to be equivalent to x, where two initial states
are considered to be equivalent if the resulting trajectories contain the same lo-
cations at each discrete step of execution. The same kind of constraint can be
generated by our inverse method when initial values of the continuous variables
are defined using parameters. The two methods are however methodologically
different. On the one hand, the generalization process done by the inverse method
works, using forward analysis, by refining the current constraint over the param-
eters that repeatedly discards the generated states that are incompatible with
the initial valuation of z; on the other hand, the method of Alur et al. generalizes
the initial value of x by performing a backward propagation of sets of equiva-
lent states. This latter approach can be practically done because the system is
supposed to be deterministic, thus making easy the identification of transitions
between discrete states during the execution. Our inverse method, in contrast,
can also treat nondeterministic systems.

The approach presented in [15] shares a similar goal, namely identifying for
single test cases a robust environment that leads to the same qualitative behav-
ior. Instead of using symbolic reachability techniques, their approach is based
on the stability of the continuous dynamics. By using a bisimulation function
(or contraction map), a robust neighborhood can be constructed for each test
point. As traditional numeric simulation can be used, this makes the technique
computationally effective. But, for weakly stable systems, a lot of test points
have to be considered in order to achieve a reasonable coverage. For some of the
examples in [15], we achieve better or comparable results (see [10]).

3 Hybrid Automata with Parameters

3.1 Basic Definitions

In the sequel, we will refer to a set of continuous variables X = z1,...,z5 and a
set of parameters P = pq,...,py. Continuous variables can take any real value.
We define a valuation as a function w : X — R, and the set of valuations over
variables X is denoted by V(X). A valuation w will often be identified with the
point (w(z1),...,w(ry)) € RY. A parameter valuation is a function 7 : P — R
mapping the parameters to the real numbers.

Given a set of variables X, a linear inequality has the form vazl a;x; 3,
where z; € X, o, f € Z and <t € {<, <,=}. A convex linear constraint is a finite
conjunction of linear inequalities. The set of convex linear constraints over X is
denoted by £(X). For a constraint C' € £(X) satisfied by a valuation w € V(X),
we write w = C. For a constraint over continuous variables and parameters
C € L(X U P) satisfied by a valuation w and a parameter valuation 7, we write
(w,m) = C. By convention, we also write w |= C for partial valuations. For
example, a valuation w € V(X)) is said to satisfy a constraint C € L(X U P) iff it
can be extended with at least one parameter valuation 7 such that (w,7) = C.

Sometimes we will refer to a variable domain X', which is obtained by re-
naming the variables in X. Explicit renaming of variables is denoted by the

substitution operation. Here, (C)x/y] denotes the constraint obtained by re-
placing in C the variables of X by the variables of Y.

A convex linear constraint can also be interpreted as a set of points in the
space RN, more precisely as a convex polyhedron. We will use these notions
synonymously. In this geometric context, a valuation satisfying a constraint is
equivalent to the polyhedron containing the corresponding point, written as
w € C. Also here, for a partial valuation w (i.e. a point of a subspace of C), we
write w € C' iff w is contained in the projection of C' on the variables of w.

Definition 1. Given a set of continuous variables X and a set of parameters
P, a (parameterized) hybrid automaton is a tuple A = (X, Q, qo, I, D,—), con-
sisting of the following

— a finite set of actions X

— a finite set of locations Q)

— an initial location gy € Q

— a convez linear invariant I, € L(X U P) for each location g

— an activity Dy : R™ = R" for each location q

— discrete transitions ¢ 22 ¢, with guard condition g € L(X U P), action
a € X and a jump relation p € L(X UPUX').

Given a parameter constraint K € L(P), the automaton A with the parame-
ters restricted to K is denoted by A(K). Given a parameter valuation m, the
automaton A with all parameters instantiated as in w is denoted by A[r].

Without loss of generality, it is assumed here that all continuous variables x
are initialized with = = 0. Arbitrary initial values can be modeled by adding a
transition with appropriate variable updates. Parameters can be seen as addi-
tional state variables which do not evolve in time (null activity).

The activities D, describe how the continuous variables evolve within each
location ¢. In order to obtain automata models which can be symbolically ana-
lyzed, restrictions have to be made to these activities. This leads to the following
classes of hybrid automata.

Definition 2. We define the following subclasses of hybrid automata.

(1) A linear hybrid automaton (LHA) is a hybrid automaton, where in each
location q, the activity is given by a convex linear constraint D, € E(X)
over the time derivatives of the variables.

(2) An affine hybrid automaton (AHA) is a hybrid automaton, where in each
location g, the activity is given by a convex linear constraint Dy € L(X UX)
over the variables and the time derivatives.

The class of timed automata can be obtained by restricting the derivatives
to & = 1 and limiting the jump relations to either 2’ = z or 2’ = 0 (clock reset)
for all variables x € X. In total, the automata models defined above form a
hierarchy TA C LHA C AHA.

The reachable states of LHA can be efficiently represented by convex poly-
hedra. Due to the more complex dynamics, this is not true for AHA. In the fol-
lowing, we consider linear hybrid automata with parameters. But, AHA can be
approximated by LHA with arbitrary precision by partitioning the state space,
as e.g. described in [8]. In Sect. 4.3 it is discussed, how these techniques can be
adapted to suit our methods. In the following, we give an example of a hybrid
system, that will later on be used to illustrate the approaches proposed here.

Ezample 1. The room heating benchmark (RHB) has been described in [7]. It
models a distributed temperature control system. There are m movable heaters
for n > m rooms. The temperature x; in each room i is a continuous variable
that depends on the (constant) outside temperature u, the temperature of the
adjacent rooms, and whether there is an activated heater in the room.

Depending on the relations between the temperatures measured, the heaters
will be moved. If there is no heater in room i, a heater will be moved there
from an adjacent room j, if the temperature has reached a threshold z; < get;
and there is a minimum difference of the temperatures z; — z; > dif;. Note
that in contrast with the RHB modeled in [1], the heater move from a room to
another one is nondeterministic, since multiple guard conditions can be enabled
simultaneously (in [1], the nondeterminism is resolved by moving only the heater
with the smallest index). The dynamics is given by equations of the form:

L.UZ' = clhl—l—bl(u—xl) —l—Zam(xj —xi) (1)
i#j

where a; ; are constant components of a symmetric adjacency matrix, constants
b; and ¢; define the influence of the outside temperature and the effectiveness of
the heater for each room i, and h; = 1 if there is a heater in room ¢ and h; =0
otherwise. Here, we will study an instantiation of RHB as given in [1] with
n = 3,m = 2, outside temperature v = 4, the constants b = (0.4,0.3,0.4),¢c =
(6,7,8). The adjacency matrix a; ; is given as (§Z§ §ﬁ§ §f%) and the thresholds
are set to get = 18 and dif = 1 for all rooms. S

The system can be modeled as an AHA, as shown in Fig. 1. There are three
control modes, corresponding to the positions of the two heaters. The automaton
has four variables, the temperatures X = {1, 22,23} and a variable ¢ acting as
clock. In this example, the temperatures are sampled at a constant rate %, where
h is a parameter of the automaton. This sampling scheme is used in the models
of sampled-data hybrid systems of [16] and simulink/stateflow models [1].

3.2 Symbolic semantics

The symbolic semantics of a LHA A(K) are defined at the level of constraints, a
symbolic state is a pair (¢, C') of a location ¢ and a constraint C over variables and
parameters. The corresponding operations are therefore performed on convex
polyhedra rather than on concrete valuations. One necessary operation is the
progress of time within a symbolic state, modeled by the time-elapse operation.

t:h/\(ZB1218\/3}2—3}1<1)/t/:0 t:h/\(l‘3218\/$2—1§3<1)/t/:0

A

Qo11 Q110
t<hAt=1A t<hAt=1A
. —-09 05 0 1.6 . —-0.9 05 0 7.6
X:(Q —-1.3 045)X+(8,2> X:(o.s —1.3 0.5)X+(8.2)
0 0.5 —0.9 9.6 0 05 —0.9 1.6

t=hAz <18A t=hAx3 < 18A
t=hAmy<18A| T2 @121/t =0 |22 —23 21t/ =0 |4 — h A g, < 187
$1—$221/t,:0 .’[3—.’[221/25/:0
Q101

t<hAt=1A
. —-0.9 0.5 0
X:(O.s —1.3 0.5)X—|—<
0 0.5 —0.9

U

t:h/\(l'zZIBV(I1—$2<1/\$3—$2<1))/tl:0

©r=
oo

Fig. 1. Automaton model for room heating benchmark

Definition 3. Given a symbolic state (q,C), the states reached by letting t time
units elapse, while respecting the invariant of q, are characterized as follows:

w'eCt, iff IweCveDg:w' =w+t-vAw €l
We write w' € C 14 if w’ € C 1, for somet € Ry.

Note that due to the convexity of the invariants, if C' C I, and C Tf]g 1y,
then also Vt' € [0,t] : C Tg’g I,. The operator preserves the convexity of C.
Furthermore, the operator C' | x denotes the projection of the constraint C' on
the variables in X. Based on these definitions, the symbolic semantics of a LHA
A(K) is given by a labeled transition system (LTS).

Definition 4. A labeled transition system over a set of symbols X is a triple
(S, So,=) with a set of states S, a set of initial states Sy C S and a transition
relation = C S x X x S. We write s = s' for (s,a,s') €=. A run of length
m is a finite alternating sequence of states and symbols of the form sg = s; 2

am_1
= 5,,, where 5o € Sp.

Definition 5. The symbolic semantics of LHA A(K) is a LTS with

— states S ={(¢,C) e Q x L(XUP)|CCI,}
— initial state sg = (qo, Co) with Cy = K A [/\f\]:1 z; = 0] T4
— discrete transitions (q,C) < (¢/,C") if exists ¢ “5" ¢/ and

C" = (1C(X) A g(X) A (X, X)] L Ay (X)) 0

— delay transitions (q,C) BA (q,C") with C"' =C TZ
— transitions (¢,C) = (¢, C") if 3t,C" : (¢,C) > (¢, C") BN (¢,C")

The trace of a symbolic run (qo,Cy) = ... ot (¢m,Cy) is obtained by
.] Am—1
projecting the symbolic states to the locations, which gives: gqg = ... = ¢m.

Two runs are said to be equivalent, if their corresponding traces are equal.
The set of states reachable from any state in a set S in exactly ¢ steps is
ai—1

denoted as Posth(K)(S) ={s'|3s€S:s8 ... 5" 5'}. Likewise, the set of all
reachable states from S is defined as Posty) (S) = U;>o Posti‘(K). The reach-
able states of an automaton A(K) are defined as Reacha k) = Post’y) ({s0}),
where sq is the initial state of A(K).

Note that during a run of A(K), the parameter constraints associated to the
reachable states can only get stronger, since the parameters do not evolve under
the time elapse operation, and can only be further constrained by invariants or
guard conditions. This gives rise to the following observation.

Lemma 1. For any reachable state (q,C) € Reach k), it holds that (3X :
C) C K. This implies that for each parameter valuation 7 |= C, also 7 = K.

The lemma follows directly from the definition of the symbolic semantics.
We say that a state (¢, C) is compatible with a parameter valuation , or just
mw-compatible, if 7 = C. Conversely, it is w-incompatible if m [~ C. These obser-
vations are the basis for the Inverse Method, is described in next section.

4 Algorithm

4.1 Inverse Method

The Inverse Method for LHA attacks the good parameters problem by gener-
alizing a parameter valuation 7 that is known to guarantee a good behavior.
Thereby, the valuation 7 is relaxed to a constraint K such that the discrete be-
havior — i.e. the set of traces — of A[r] and A(K) is identical. The algorithm has
first been described for parametric timed automata in [4]. It has been applied
for the synthesis of timing constraints for memory circuits [2].

Algorithm 1 describes the Inverse Method for LHA. The overall structure is
similar to a reachability analysis. In the main loop, the reachable states with
increasing depth ¢ are computed. In parallel, the constraint K is derived. It is
initialized with true. Each time a m-incompatible state (g, C) is reached, K
is refined such that the incompatible state is unreachable for A(K). If C is n-
incompatible, then there must be at least one inequality J in its projection on the
parameters (3X : '), which is incompatible with 7. The algorithm selects one
such inequality and adds its negation —J to the constraint K. Before continuing
with the search, the reachable states found so far are updated to comply with
the new constraint K (line 7). If there are no more m-incompatible states, then
1 is increased and the loop continues.

Algorithm 1: IM (A, 7)
input : Parametric linear hybrid automaton A
input : Valuation 7 of the parameters
output: Constraint Ko on the parameters

i< 0; K< true; S< {so}

while true do

while there are w-incompatible states in S do
Select a w-incompatible state (¢, C) of S (i.e., s.t. @ £ O) ;
Select a m-incompatible inequality J in (3X : C) (ie., s.t. w & J) ;
K+ KAN-J;

S Ujo Post’y g ({s0}) ;
if Postacx)(S) E S then return Ko < (1, 0yes(3X : C)
141+ 1;
0 | S(—SUPOStA(K)(S)

N 0 A W

©

The algorithm stops as soon as no new states are found (line 8). The output
of the algorithm is then a parameter constraint Ky, obtained as the intersection
of the constraints associated with the reachable states. The resulting constraint
can be characterized as follows.

Proposition 1. Suppose that the algorithm IM (A, o, k) terminates with the
output Ky. Then the following holds:

— 7o = Ko
— For all m = Ky, A[mg] and A[r] have the same sets of traces.

A proof along the lines of [13] can be found in [10]. We obtain a (convex)
constraint Ky including the initial point 7, that describes a set of parameter
valuations for which the same set of traces is observable. In particular, if A[mo]
is known to avoid a set of (bad) locations for g, so will A[x] for any 7 = K.

The algorithm IM is not guaranteed to terminate'. Note also that the pre-
sented algorithm involves nondeterminism. In Algorithm 1 in lines 4 and 5, one
can possibly choose among several incompatible states and inequalities. This may
lead to different — nevertheless correct — results. This implies in particular that
the resulting constraint K is not maximal in general. (In order to overcome this
limitation, the behavioral cartography method will be proposed in Section 4.2).

Ezxample 2. In order to enable the application of the inverse method as described
above to the RHB from example 1, the AHA automaton is converted to a LHA.
This is done using the method described in [8]. The space is partitioned into
regions, and within each region, the activity field is overapproximated using

! Termination of such a general reachability-based procedure cannot be guaranteed
due to undecidability of reachability for TA with parameters and LHA [12]

]
=]
18 18 18-
o .
17 17 17 \\{
S¢E \IA sl
16 16 16
15 15 _ 15
30 01 02 03 04 05 20 01 02 03 04 05 30 o1 02 03 04 05

t t t

(a) Starting from a single point

20 20 20
19 19 19 —
11
~ ~N
18 18 18 Ll
I~ . o o .
g R % ‘ >
17 17 17 A
< I =
16 16 16 <
15 15 15
00 01 02 03 04 05 00 o1 02 03 04 05 00 01 02 03 04 05

t t t

(b) Starting from a tile synthesized by the Inverse Method

Fig. 2. Reachable states for room heating benchmark

linear sets of activity vectors. For each region R delimiting a portion of the
partitioned state space, the activities are statically overapproximated as

x; € [min{f;(x) | x € R}, max{fi(z) | z € R}],

where f;(z) corresponds to the right-hand side in (1). The approximation can be
made arbitrarily accurate by approximating over suitably small regions of the
state space. Here, each region R corresponds to a unit cube (of size 1 degree
Celsius) in the dimensions 1, z2, T3.

We now consider the following (bounded liveness) property:

Prop1: At least one of the heaters will be moved within a given time interval

[0, tinaz] With tyae = % and a sampling time h = 1—10.

The upper bound ¢, plays here the role of the maximal number of discrete
transitions that are used in the method of [1]. In the automaton model, a viola-
tion of the property is modeled by a transition to a location gqq. To check the
property Propl for varying initial conditions, we add the parameters ai, as, a3
and constrain the initial state with x1 = a1 Azs = as Axz = a3. For initial point
(a1, a2,a3) = (18,17,18), the reachable states for the variables z1, zo and z3 are
shown in Fig. 2(a). The bad location is not reached from this point. Using the
Inverse Method (Algorithm 1), the initial point can be generalized to a larger
region around the starting point (18,17, 18), resulting in the constraint

a12a2—|—%/\a1<%3+%7/\a2>%/\a2<3—25/\a3>3—25/\a3<%.

Algorithm 2: BC

input : Parametric linear hybrid automaton .4

input : Parameter bounds min; ... miny and mazx: ... mazry
input : Step sizes 01...0m

output: Set of constraints Z on the parameters

R 8]
Ve{ﬂ|7r1:mzm+&5“ 7T7;§ma$7;7 €1,...,£1M€N}
while true do

Select point m € V with VK € Z : 7 £ K

K+ IM(A,x)

Z +— ZU{K}

ifvreV:3K € Z: 7= K then

LreturnZ

0 N O Uk W N

The symbolic runs starting from this enlarged initial region are depicted
in Fig. 2(b). The sets of traces of the two figures coincide, i.e. the sequence
of discrete transitions of every run represented in Fig. 2(b) is identical to the
sequence of discrete transitions of some run in Fig. 2(a).

4.2 Behavioral Cartography

The inverse method works efficiently in many cases, since large parts of the state
space can effectively be pruned by refining the parameter constraint K. In this
way, many bad states never have to be computed, in contrast to the traditional
approach to parameter synthesis. A drawback of the inverse method is that the
notion of equivalence of the traces may be too strict for some cases. If e.g. one
is interested in the non-reachability of a certain bad state, then there may exist
several admissible regions in the parameter space that differ in terms of the
discrete behavior or trace-sets. In order to discover these regions, the inverse
method needs to be applied iteratively with different starting points.

The systematic exploration of the parameter space using the inverse method
is called behavioral cartography [5]. It works as shown in Algorithm 2. For each
parameter p;, the interval [min;, maz;], possibly containing a single point, speci-
fies the region of interest. This results in a rectangular zone vy = [ming, maz;] x

- X [minpr, maxps]. Furthermore, step sizes §; € R are given. The algorithm
selects (yet uncovered) points defined by the region vy and the step sizes and
calls the inverse method on them. The set Z contains the tiles (i.e. parameter
constraints) computed so far. The algorithm proceeds until all starting points
are covered by some tile K € Z.

By testing the inclusion in some computed tile, repeated computations are
avoided for already covered points. The result of the cartography is a set of
tiles of the parameter space, each representing a distinct behavior of the LHA
A. Note that the computed tiles do not necessarily cover the complete region
vg. On the other hand, it is possible that vy be covered by very few calls to

18.5
18.0 4

175 C

a2

17.0 P
16.5

16.0 NN /SO :

55 1 1 1 1 1
155 16.0 165 170 175 180 185
al

Fig. 3. Cartography of the initial states of RHB

the inverse method. Note also that, compared to the algorithm in [1], this is a
stronger result, as each tile corresponds to a set of traces that exploits all possible
behavior for the covered parameter valuations, including nondeterminism.

Ezample 3. The cartography is illustrated by a further experiment on the RHB
model from example 2. Again, we check Propl. The initial point is varied for
the initial values a; and ao, while fixing ag = 18. Therefore, the cartography
procedure is used, iterating the initial point within the rectangle [16,18]? (i.e,
miny = ming = 16 and max; = maxe = 18) with a step size of 6; = o = %
This leads to a total of 32 tiles, shown in Fig. 3. By analyzing the cartography,
one gets a quantitative measure of the coverage of the considered region (shown
as a dashed rectangle in the figure). In this case, the computed tiles cover 56%
of the rectangle. All tiles in the figure have been classified as good tiles.

4.3 Enhancement of the method for affine dynamics

It can be observed that for some systems there are areas in the parameter space,
where slight variations of the initial conditions lead to many different traces. In
this case, a good coverage based the cartography approach will be very costly,
since many points have to be considered. In general, the inverse method and the
behavioral cartography is quite limited when applied to LHA models that were
obtained from AHA by static partitioning.

As described in [8], AHA can be approximated by LHA with arbitrary pre-
cision. This is done by partitioning the invariant of a location, usually into a set
of small rectangular regions. For each region R, the affine dynamics are over-
approximated by linear dynamics. In this way, the locations are split up until
the desired precision is obtained.

Due to this partitioning, the resulting LHA will have more locations than the
original AHA, leading also to more different traces for each parameter instantia-
tion. This renders the inverse method ineffective for AHA, as the region around
a parameter valuation m that corresponds to the same trace set, will generally

be very small. This is because the traces contain a lot of information on the
transitions between partitions that are irrelevant wrt. the system’s behavior.

These limitations can be overcome by grouping reachable states that only
represent different partitions of the same invariant of a location ¢. In our algo-
rithm, this is done as an extension of the time-elapse operator. Each time that
the time-elapse C' 1, needs to be computed for a location with affine dynamics
Dy, the following steps are performed:

. Build local partitions P of the invariant I,
. Compute a linear over-approximation Dp of D, for each partition P

1
2
3. Compute the locally reachable states S wrt. partitions P and dynamics Dp
4. Compute the convex hull of the states S

Here, the number of partitions A per dimension is chosen by the user. Note
that cost and precision of the overall analysis may strongly depend on the chosen
value for A. In practice, one would iterate the methods presented in this paper
in order to refine the analysis by increasing A.

Given this variant of the time-elapse for affine dynamics, the computed reach-
able states are an over-approximation due to the piecewise linearization of the
dynamics and the convex hull operation. Thus, the trace equivalence is no longer
valid. But, as we compute an over-approximation of the possible runs, non-
reachability is preserved.

Proposition 2. Given an AHA A, suppose that the algorithm IM (A, mo, k) ter-
minates with the output Ko. Then the following holds:

— T): KO
— If for A[mo], a location qpaq is unreachable, then it is also unreachable for all

Alr] with m = Ko

FEzample 4. The adapted algorithm is applied to the RHB. With the discussed
techniques, we can apply the inverse method and thus the cartography directly
on the AHA model, without statically partitioning the state space in order to
obtain a LHA. Again, by repeating the inverse method, a large part of the sys-
tem’s initial state space is decomposed into tiles of distinct discrete behavior.
The reachability analysis for the AHA model is quite costly. Therefore, we will
try to cover large parts of the parameter space using a very coarse linearization,
given by a small number A of partitions. This is illustrated in the following.
As reported in Example 3, applying the cartography on the statically linearized
RHB model delivers a coverage of only 56% when fixing as = 18. Instead, we
apply the enhanced method directly on the AHA model, again regarding prop-
erty Propl. Here, the initial values a; and ay are varied within the rectangle
[15.5,18.5)% (i.e, miny = miny = 15.5 and maxr; = maze = 18.5) with a step
size of 61 = dp = % In the first step, the invariants will be uniformly linearized,
i.e. we set A = 1. The resulting cartography in Fig. 4 consists of 12 tiles, where
the good ones are shown in green, while the tiles corresponding to a bad behavior
are shown in red (and outlined in bold). Note that the whole rectangular region
is covered and that already with a coarse linearization, most of the tiles could
be proved good.

15 16 17 18 19
al

Fig. 4. Enhanced cartography for room heating benchmark

5 Final Remarks

In this paper, we present a method to derive parameter constraints for LHA,
that guarantee the same behavior as for a reference valuation of the parame-
ters. This method has been recently introduced for deriving timing constraints
for timed automata. Here, we provide the extension of the method to LHA.
Furthermore, it is shown how the reachability procedure can be adapted to en-
able the analysis of systems with affine dynamics. By early pruning of invalid
states, the method is more efficient than the parameter synthesis based on stan-
dard reachability analysis. Repeated analysis for different starting points yields
a “behavioral cartography”. This allows to cover large parts of the initial state
space of nondeterministic hybrid systems, and provides an alternative tool to
the symbolic simulation method of [1], which gives sometimes better results.

References

1. R. Alur, A. Kanade, S. Ramesh, and K. Shashidhar. Symbolic analysis for improv-
ing simulation coverage of simulink/stateflow models. In EMSOFT, pages 89-98,
2008.

2. E. André. IMITATOR: A tool for synthesizing constraints on timing bounds of
timed automata. In Proc. of the Int’l Colloguium on Theoretical Aspects of Com-
puting (ICTAC), volume 5684 of LNCS, pages 336-342. Springer, 2009.

3. E. André. IMITATOR 1II: A tool for solving the good parameters problem in timed
automata. In INFINITY, volume 39 of EPTCS, pages 91-99, Sept. 2010.

4. E. André, T. Chatain, E. Encrenaz, and L. Fribourg. An inverse method for
parametric timed automata. IJFCS, 20(5):819-836, Oct. 2009.

5. E. André and L. Fribourg. Behavioral cartography of timed automata. In RP,
volume 6227 of LNCS, pages 76-90. Springer, 2010.

6. R. Bagnara, P. Hill, and E. Zaffanella. Applications of polyhedral computations
to the analysis and verification of hardware and software systems. Theoretical
Computer Science, 410(46):4672-4691, 20009.

10.

11.

12.

13.

14.

15.

16.

. A. Fehnker and F. Ivancic. Benchmarks for hybrid systems verification. In HSCC,
pages 326-341. Springer, 2004.

G. Frehse. PHAVer: algorithmic verification of hybrid systems past HyTech. STTT,
10(3):263-279, 2008.

G. Frehse, S. Jha, and B. Krogh. A counterexample-guided approach to parameter
synthesis for linear hybrid automata. In HSCC, volume 4981 of LNCS, 2008.

L. Fribourg and U. Kiihne. Parametric verification of hybrid automata using the
inverse method. Research Report LSV-11-04, LSV, ENS Cachan, France, 2011.
T. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid
systems. STTT, 1:110-122, 1997.

T. Henzinger, P. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid
automata? In JCSS, pages 373—-382, 1995.

T. Hune, J. Romijn, M. Stoelinga, and F. Vaandrager. Linear parametric model
checking of timed automata. JLAP, 52-53:183 — 220, 2002.

S. Jha, B. Krogh, J. Weimer, and E. Clarke. Reachability for linear hybrid au-
tomata using iterative relaxation abstraction. In HSCC, volume 4416 of LNCS,
pages 287-300, 2007.

A. Julius, G. Fainekos, M. Anand, I. Lee, and G. Pappas. Robust test generation
and coverage for hybrid systems. In HSCC, volume 4416 of LNCS. 2007.

B. Silva and B. Krogh. Modeling and verification of sampled-data hybrid systems.
In ADPM, 2000.

