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Abstract The diagnosis problem for discrete event systems consists in deciding whe-
ther some fault event occurred or not in the system, given partial observations on
the run of that system. Diagnosability checks whether a correct diagnosis can be
issued in bounded time after a fault, for all faulty runs of that system. This problem
appeared two decades ago and numerous facets of it have been explored, mostly
for permanent faults. It is known for example that diagnosability of a system can be
checked in polynomial time, while the construction of a diagnoser is exponential. The
present paper examines the case of transient faults, that can appear and be repaired.
Diagnosability in this setting means that the occurrence of a fault should always be
detected in bounded time, but also before the fault is repaired, in order to prepare for
the detection of the next fault or to take corrective measures while they are needed.
Checking this notion of diagnosability is proved to be PSPACE-complete. It is also
shown that faults can be reliably counted provided the system is diagnosable for faults
and for repairs.

1 Introduction

The diagnosis problem for discrete event systems appeared two decades ago [22]. In
its standard version the problem assumes a dynamic system A with runs of two types :
some runs are safe (e.g. they contain no fault event), and the others are faulty. More
generally, one may assume a regular property P on runs of A. This property P is ab-
sorbing, in the sense that once P is satisfied by some partial run (like the fact of being
faulty) it remains true in all extensions of that run. System A is supposed to perform
some hidden run u, which is partially observed by an external supervisor : only some
events of the hidden run u are visible, possibly through some filtering operation, and
the other events of u are silent. The problem then consists in deciding whether the
hidden run u satisfies the property P of interest given the observed sequence and the
model of A. Specifically, assuming that u satisfies P at some instant t, one would like
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to detect that P holds in bounded time after t. If this is feasible for all runs satisfying
P, the system is declared diagnosable.

Property P can be seen as an abstraction on the behaviors of A, which are par-
tially observed. This is certainly the simplest possible abstraction, as it separates runs
of A into two (regular) classes. Diagnosability then amounts to detecting when P
holds with bounded delay. A dual version of the problem relates to opacity [1,6]: one
would like to ensure that property P (a “secret”) is never detectable by an external
observer. Diagnosability and opacity are thus two dual facets of the same problem:
the observability of a hidden bit of information in a run of a dynamic system. Beyond
its simple statement, the diagnosis problem thus readily has numerous implications
in terms of security and of safety. But moslty, it is the simplest milestone toward the
analysis of observability problems for more complex abstractions over runs of A.

Numerous facets of the diagnosis problem have been explored since its first in-
troduction. A wide variety of models have been considered, covering automata [21],
Petri nets [7,11], concurrent systems [2], visibly pushdown automata [13]... It has
been extended to stochastic systems [25,3,4], to infinite runs [12], to decentralized
and distributed settings. We refer the reader to [27] for a thorough review of these
different settings.

In this article, we examine the case of non-persistent properties P, or non-persistent
faults, i.e. P may hold only on segments of the hidden run u. Diagnosing P thus means
being able to detect that P holds in bounded time after it becomes true, and in any
case before P vanishes, i.e. before the fault is repaired or becomes irrelevant. A first
natural motivation for this choice is that a repair action should be triggered in time, so
detection must not be late. In terms of opacity, fault repair corresponds to a secret dis-
closure, i.e. declaring that the secret part of a run is no longer relevant, so it becomes
useless for an attacker to guess this outdated secret. More importantly, the choice of
a timely detection prepares the ground for a counting of faults, which is central to
evaluate the reliability of a system. Indeed, being able to count occurrences of some
events or faults allows one to detect whether a system works properly i.e. using met-
rics such as error rates. This can be a way to detect security breaches such as service
denial attacks. In a similar way, counting the number of times a secret is disclosed
provides a measure of the system’s opacity. In the same spirit, making elements of the
system observable at a regular pace gives opportunities to create covert information
flows [17,19].

The contributions of the paper are the following: We first formalize the notions of
non permanent properties such as repairable faults, and the notion of diagnosability
for repairable faults, named T-diagnosability. The systems considered in this paper
are partially observed automata, where states are tagged with the truth status of a
property P (for simplicity, one can consider this property as a fault). T-diagnosability
is defined as a property of runs of the automaton: a system is T-diagnosable if runs
ending with a fault can not be extended in such a way that they remain observa-
tionally equivalent to non-faulty runs for an arbitrary long time, or until the fault
is repaired. While the standard setting to decide diagnosability for persistent faults
has a quadratic complexity [14], being able to track non-persistent faults is surpris-
ingly much more complex: deciding T-diagnosability is PSPACE-complete. We then
propose a T-diagnosability test based on a product between the automaton of the
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system and the determined version of its observation, and on the characterization of
some particular runs on this machine. T-diagnosability makes sense only in a con-
text where transitions from a non-faulty status to a faulty one (and conversely) can
be observed. We hence impose that the considered systems do not contain vanishing
faults or repairs, i.e. that successive changes of the status of the considered property
P necessarily occur along runs that contain an observation. We show that detecting
whether a system has vanishing faults or repair is in NLOGSPACE, and propose a
technique to transform a system with vanishing faults into a new system in which
observations occur between status changes.

T-diagnosability is a first step towards counting fault occurrences. We show that
surprisingly, being able to detect the occurrence of faults before they vanish is not
sufficient to enable counting them! Counting needs more, namely that both faults are
repairs are T-diagnosable. We formalize the ability of counting fault occurrences, and
show that deciding whether faults of a system without vanishing faults can be counted
is an NLOGSPACE problem. This result is obtained by a twin-plant construction [14],
that memorizes in addition to a pair of followed path the difference between the
number of faults that have occurred. If this differences exceeds 1, then one can not
count fault occurrences in this system.

T-diagnosability is then compared to previous contributions on the topic of non-
persistent faults, and in particular to the notion of P-diagnosability introduced by [9].
P-diagnosability is slightly relaxed version of our notion of T-diagnosability, as it
does not impose that detection takes place before the fault vanishes. We highlight dif-
ferences between the notions of P-diagnosability and T-diagnosability. P-diagnosability
was already known to be in PSPACE [9], but no lower bound was known for this prob-
lem. We close this gap by showing that deciding P-diagnosability is also a PSPACE-
complete problem.

The paper is organized as follows. Section 2 briefly recalls standard results about
the classical notion of diagnosability. Section 3 introduces a notion of T-diagnosability
for repairable faults, shows that deciding T-diagnosability is PSPACE-complete, and
gives solutions to detect and suppress vanishing faults. Section 4 addresses the count-
ing of faults in a partially observed run. Section 5 relates these results to previous
contributions on the topic. Section 6 shows possible extensions of this work, and
concludes.

This paper extends a communication at WODES’16 [10]. New results cover in
particular the detection and the removal of vanishing faults and repairs in a model, a
detailed comparison of T-diagnosabiliy and P-diagnosability, the proof of the PSPACE
completeness of deciding T-diagnosability, and proofs in Section 4 for the counting
of faults.

2 Setting and known results

2.1 Diagnosis and diagnoser

Let Σ be a finite alphabet. A word over Σ is an element v ∈ Σ ∗. We denote by ε

the empty word. The length of a word v ∈ Σ ∗ is denoted |v|. Given a pair of words
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v,v′ ∈ Σ ∗, we will write v ≤ v′ when v is a prefix of v′, i.e. v′ = vv”. We will also
write v < v′ when v≤ v′ and |v|< |v′|. A finite automaton over alphabet Σ is a tuple
A = (S,Σ ,T,s0), where S is a finite set of states, s0 ∈ S is the initial state, and T ⊆
S×Σ ×S is a set of transitions. Transitions take the form t = (s,α,s′) and we denote
by s−(t) = s the origin of transition t, σ(t) = α the label attached to transition t,
and by s+(t) = s′ the target state of transition t. Paths of A are finite sequences of
transitions u = t1...tn such that s+(ti) = s−(ti+1), and runs of A are paths rooted at s0:
s−(t1) = s0. Functions s+,s−,σ extend from transitions to paths : we denote s−(u) =
s−(t1),s+(u) = s+(tn), and σ(u) = σ(t1)...σ(tn) the sequence of labels associated
to a path u. A path u = t1...tn is reachable iff there exists a run u′ of A such that
s+(u′) = s−(u). A path u is a cycle iff s+(u) = s−(u). The language of A is the set of
label sequences produced by runs of A : L(A) = {σ(u), u run of A}. An automaton
is deterministic iff ∀s,α, (s,α,s′) ∈ T ∧ (s,α,s′′) ∈ T ⇒ s′ = s′′.

Our starting point for the diagnosis problem, and without loss of generality, is a
deterministic automaton A. Let us partition states of A in two subsets S = SN ] SF ,
and let us name SN normal (or safe) states and SF faulty states, to help intuition. The
faulty language of A is derived from faulty runs, i.e. runs that terminate in a faulty
state: LF(A) = {σ(u), u run of A,s+(u) ∈ SF}. The normal (safe) language of A is
denoted LN(A), and is defined in similar way as LN(A) = {σ(u), u run of A,s+(u)∈
SN}. Obviously, we have LN(A)⊆ L(A) and LF(A)⊆ L(A). As A is deterministic, σ

establishes a one to one correspondence between runs of A and words of its language
L(A), so LN(A)∩LF(A) = /0, or LN(A)]LF(A) = L(A). In this section, we assume
that faults are permanent in A. Namely, there is no reachable path u in A such that
s−(u) ∈ SF and s+(u) ∈ SN . Equivalently, the faulty language of A is saturated in
L(A) : LF(A)Σ ∗∩L(A) = LF(A).

The diagnosis problem assumes partially observed systems, so we partition the
label set Σ into two disjoint sets of observable and unobservable labels: Σ = Σo]Σu.
The projection on observable labels Π : Σ ∗→ Σ ∗o is defined as the monoid morphism
generated by Π(α) = α whenever α ∈ Σo and Π(α) = ε otherwise. Given v ∈ Σ ∗,
we denote by |v|o the number of observable events in v i.e. |v|o = |Π(v)|.

The observable (or visible) language of A is defined as Lo(A) = {Π(v) | v ∈
L(A))}. For technical reasons commented later, we define the inverse projection Π−1

as follows :

∀w ∈ Σ
∗
o , Π

−1(w) = {v ∈ L(A) : Π(v) = w}∩Σ
∗
Σo (1)

i.e. we restrict the standard inverse projection to words of L(A) that end with an
observable letter1.

From a run u performed by A, or equivalently from the word v = σ(u), one only
observes the visible actions i.e. the word w = Π(v). For convenience, we define the
function σo = Π ◦σ : T ∗→ Σ ∗o that associates to every path u the sequence of letters
that are observed when u is executed. As a given observed word w ∈ Σ ∗o might be
the observation (i.e. the projection) of any word in Π−1(w), the diagnosis consists in

1 Alternatively, we can define L(A) as words that terminate with a letter of Σo, or equivalently by
assuming faulty states in A that can only be reached by visible transitions, which does not reduce the
generality of the setting.
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deciding whether a fault has occurred in system A given this observed sequence w. A
diagnoser for A can be seen as a function ∆ : Lo(A)→{N,F,U} where

∆(w) =

N iff Π−1(w) ⊆ LN(A)
F iff Π−1(w) ⊆ LF(A)
U otherwise

(2)

Letters N,F,U stand for “normal”, “faulty”, and “uncertain” (or “ambiguous”), as it
clearly appears above.

A diagnoser can be derived from an observer (or state estimator) of A. This ob-
server is built in two steps. The first step is the Σo-closure of A. The Σo-closure (to
the left) of A is defined as B = RedΣo(A) = (S,Σo,T ′,s0) where (s,α,s′)∈ T ′ iff there
exists a path u = t1...tn in A such that σo(t1...tn−1) = ε, σo(tn) = α, s−(u) = s and
s+(u) = s′. Intuitively, there is a transition from s to s′ in T ′ iff there exists a path
from s to s′ with a single observable action labeling the last transition of the path.
The Σo-closure of A is an ε-reduction (to the left) assuming all labels of Σu are first
replaced by ε in A. The second step needed to build a state estimator for A is the
determinization of the resulting B, performed by standard subset construction. Let
D = Det(B) = (Q,Σo,T ′′,q0) where Q = 2S, q0 = {s0} and t = (q,α,q′) ∈ T ′′ iff
q′ = {s′ ∈ S : ∃s ∈ q, (s,α,s′)∈ T ′}. Of course, both B and D can be trimmed to their
reachable part.

Observe that L(D) = L(B) = Lo(A). D is a state estimator of A in the following
sense : let w ∈ Lo(A), as D is deterministic, there exists a unique path r in D such that
σo(r) = w. The final state q = s+(r)∈Q of path r in D satisfies q = s+(σ−1

o (w))∈ 2S

in A, i.e. it contains all states of A that are reachable by runs that produce the observed
sequence w and that stop immediately after the last observable transition. This last
condition explains the specific definition of Π−1 and the choice of the Σo-closure of
A to the left. Let us call q ∈ Q = 2S a normal subset iff q ⊆ SN , a faulty subset iff
q⊆ SF , and an uncertain (or ambiguous) subset otherwise. D yields a diagnoser for A
as follows : ∆(w) is the type of q = s+(σ−1

o (w)) in D. By extension, D is often called
the diagnoser of A : D = Diag(A) = Det(RedΣo(A)).

Due to determinization, D can be exponentially larger than A and should not be
used for online diagnosis. One should use instead a recursive state estimation driven
by the observed sequence w, which has linear complexity in the size of w and A.
D can thus be considered as a precompiled version of the diagnosis for all possible
observed sequences.

2.2 Remarks and extensions

Let A1,A2 be two automata, with Ai = (Si,Σi,Ti,s0,i), their synchronous product
(or simply product for short) is the automaton A1 × A2 = (S1 × S2,Σ1 ∪ Σ2,T1 ⊗
T2,(s0,1,s0,2)) where transitions in T1⊗T2 are triples ((s1,s2),α,(s′1,s

′
2)) such that

(s1,α,s′1) ∈ T1 ∧ (s2,α,s′2) ∈ T2 for α ∈ Σ1∩Σ2

(s1,α,s′1) ∈ T1 ∧ s2 = s′2 ∈ S2 for α ∈ Σ1 \Σ2

s1 = s′1 ∈ S1 ∧ (s2,α,s′2) ∈ T2 for α ∈ Σ2 \Σ1
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Faulty runs in A are often not identified by a partition on states, but rather by the
firing of some transition carrying a “fault” label f ∈ Σu. This can be recast in the pre-
vious setting as follows. Consider the deterministic and complete memory automaton
M = ({N,F},Σ ,T,N) of Figure 1 where (N, f ,F) is the unique transition of T pro-
ducing a state change. The product A×M does not change the language of A, but
performs a state augmentation that keeps track of the firing of a faulty transition in A.
The label N or F now attached to states of A×M defines a partition of the state set
that characterizes faulty runs. This technique is present in most event-based papers
about diagnosability analysis, including the original ones, under the form of a label
propagation attached to states. It was also generalized in [13] to detect/diagnose runs
satisfying some regular pattern of labels, rather than the simple firing of a transition
labeled by f . This show that the event-based diagnosis problem can be reduced to
a state-based diagnosis problem in polynomial time. The converse reduction, from a
state-based setting to an event-based setting is also straightforward.

FN
f

ΣΣ \{ f}

Fig. 1 A fault detection automaton.

When faults are non permanent in A, that is when there exist transitions from SF
to SN , one may nevertheless be interested in detecting that some transient fault has
occurred, i.e. a fault followed by a repair. This can again be handled as a standard di-
agnosis problem: one can transform A into another automaton A′, that adds memory
to states of A to propagate the fact that a fault occurred sometime in the past, and then
build a diagnoser for A′. With the assumption that A is deterministic, this amounts
to saturating the fault language of A: LF(A′) = LF(A)Σ ∗ ∩L(A). A diagnoser for A′

detects faulty runs of A′, i.e. it also detects runs of A that contain a fault. This idea is
a variant of the pattern recognition of [13]. It was used in [15] to track the occurrence
of k transient faults. It is also present in [9] under the names of O-diagnosis (detection
of the occurrence of a fault) and I-diagnosis (detection of the occurrence of a repair).
All these notions are thus variants of the classical diagnosis approach, even if they
are recast in the context of transient failures. In [9], the authors propose a “memory
automaton” that can be composed with a specification to remember occurrences of
faults and repairs. However, even if fault repair is considered, their automaton prop-
agates the information that a fault occurred. Within this setting, past occurrences of
faults can be diagnosed, but without guarantee that faults are detected while the sys-
tem is faulty. In the next section, we consider a different setting, where diagnosis is
considered accurate if it detects a fault before it is repaired.

2.3 Diagnosability

Let us recall the notion of diagnosability for permanent faults, i.e. when A has no
transition from SF to SN . For simplicity, we assume that A is Σo-live : an observable
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transition is reachable from any state of A. More formally, an automaton is Σo-live
iff for every state s ∈ S, there exists a path u such that s−(u) = s and σo(u) 6= ε .
Intuitively, A is diagnosable iff, whenever it reaches SF , this is detected/diagnosed
after a finite number of extra observations. Formally, A is diagnosable iff

∀v1 ∈ LF(A), ∃n ∈ N, ∀v1v2 ∈ L(A),

[ |v2|o ≥ n ⇒ Π−1 ◦Π(v1v2)⊆ LF(A) ] (3)

where |v2|o is the length of Π(v2). This expression slightly differs from more fre-
quent ones (for ex. [22]), that count the number of transitions in v rather than the
number of observable transitions, (i.e. require |v2| ≥ n instead of |v2|o ≥ n) but re-
mains equivalent in essence. First, Definition (3) counts only visible transitions in
|v2|o, instead of counting all transitions. It makes more sense to have an observable
criterion to decide when to collect the diagnosis. And when A has no unobservable
cycle, which is generally assumed when one uses |v| instead of |v|o, this rephrasing
is harmless. Secondly, one generally assumes a uniform value of n covering all faulty
words v1. Again, taking into account the finiteness of A, this uniform bound comes
for free once (3) holds.

s1s0

s2

a
b

a

Fig. 2 Normal/faulty states are represented as circle/square boxes. The dashed line represents an unob-
servable transition. This automaton is diagnosable: after it reaches the faulty state, it can only produce a b
which characterizes the occurrence of the fault. Nevertheless, driven by sequence an, the diagnoser outputs
Un. So uncertainty can be arbitrarily long.

Def. (3) states that a system is diagnosable iff, when uncertainty appears after
a faulty run, it does not hold forever. Observe that the diagnosis may nevertheless
remain uncertain for an arbitrarily long time, even for a diagnosable system, as long
as no fault occurs (see Fig. 2). Conversely, A is not diagnosable iff after some faulty
run uncertainty may last for an arbitrary long time :

∃v1 ∈ LF(A), ∀n ∈ N, ∃v1v2 ∈ L(A),

[ |v2|o ≥ n ∧ Π−1 ◦Π(v1v2)∩LN(A) 6= /0 ] (4)

The last term in (4) can be rephrased as ∆(Π(v1v2))=U or equivalently ∃v′ ∈ LN(A),
Π(v1v2) = Π(v′). This new formulation expresses that one can find an arbitrary long
extension v2 of some faulty word v1 which is observationally equivalent (or equiva-
lent for short) to a safe word v′ of A, denoted by v1v2 ∼o v′. As faults are permanent,
any prefix of the safe word v′ is also safe. Def. (4) thus opens the way to a polynomial
test for (non-)diagnosability: one can build a twin-machine that recognizes pairs of
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runs made of a faulty one v1v2 and an equivalent (w.r.t observation) safe one v′, and
thus check how long uncertainty can last.

Consider B = RedΣo(A), the twin machine of A is obtained as the product C =
B×B. A run in C represents a pair of runs of B that are observationally equivalent.
Hence, for every run of C, there exists a pair (v,v′) of observationally equivalent
words of L(A). The set of states of C is a subset of S×S. So, using the same principle
as in D, the diagnoser of A, a state (s,s′) of C can be called normal/safe if s and s′ both
belong to SN , faulty if s and s′ both belong to SF and uncertain/ambiguous otherwise.
An ambiguous cycle in C is a reachable cycle that only goes through ambiguous
states.

Proposition 1 A is diagnosable iff its twin machine C has no ambiguous cycle.

This result was proved in [14]. The only if part is obvious as the presence of an
ambiguous cycle allows one to build an arbitrarily long suffix v2 to a faulty word v1
by repeating the cycle, while having this faulty word v1v2 equivalent to a safe one v′.
This proves non-diagnosability. The if part uses the finiteness of A applied to (4): a
long enough suffix v2 necessarily contains a (faulty) cycle of B that is observationally
equivalent to a safe/normal cycle of B.

The original version of Proposition 1 actually relied on a twin machine directly
built from A and not from B = RedΣo(A). Building a basis for cycles in a graph can
be done in polynomial time w.r.t the size of the original graph [26]. As C is at most
of quadratic size w.r.t. the size of A, Proposition 1 clearly yields a polynomial test for
the diagnosability of A.

3 Diagnosability of repairable faults

3.1 Diagnosis and T-diagnosability

We still consider a Σo-live deterministic automaton A, and now assume that some
faults in A can be repaired, i.e. A contains transitions from SF to SN , or equivalently
that the fault language LF(A) is not saturated. The diagnosis of an observed sequence
w = σo(u) produced by some run u of A is defined as in (2). However, we reinforce
the diagnosability criterion for A by requiring that, when some fault occurs, it is still
detected in finite time, but also before it is repaired.

Let us first introduce some notation. We denote by Lmin
F = {vα ∈ LF(A) | v /∈

LF(A)∧α ∈ Σ} the set of minimal faulty words of A, i.e. words that correspond to
a run ending with a transition from a normal state to a faulty one in A. For a word
v1 ∈ LF(A), let v1 → v1v2 ∈ LF(A) denote the continuous presence of a fault along
v2. Formally, v1 → v1v2 ∈ LF(A) iff ∀v′2 ≤ v2, v1v′2 ∈ LF(A), where ≤ denotes the
prefix relation on words.

Formally, an automaton A is timely diagnosable (T-diagnosable for short) iff

∀v1 ∈ Lmin
F (A), ∃n ∈ N, ∀v1v2 ∈ L(A),

[ |v2|o ≥ n ⇒ ∃v′2 ≤ v2 : v1→ v1v′2 ∈ LF(A)

∧ Π−1 ◦Π(v1v′2)⊆ LF(A) ] (5)
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T-diagnosability differs from Def. (3) mainly by requiring that the fault that appears
in v1 remains for the whole execution of prefix v′2. This notion is illustrated in Fig. 3,
that depicts several observationally equivalent runs, and shows observation times at
which a correct diagnosis/detection can be produced (before repair). Observe that if
faults are not repairable, v1 ∈ Lmin

F (A) implies that v1 → v1v′2 ∈ LF(A) for every v′2,
and Def. (5) reduces to Def. (3) (condition ∀v1 ∈ LF(A) in Def. (3) can equivalently
be replaced by ∀v1 ∈ Lmin

F (A)). So, in a setting of permanent faults, T-diagnosability
is equivalent to diagnosability.

detection detection

v’

v"

v

Fig. 3 A faulty word v and two equivalent words v′,v′′. The observed labels are represented as pins, and
the faulty zones as grey rectangles. Detections correspond to times (in number of observations) where all
equivalent words are faulty.

Fig. 4 illustrates the notion of T-diagnosability. Safe (resp. faulty) states are rep-
resented as circles (resp. boxes). One has Σ = {a,b,c,d} and Σo = {a}. Ignoring
the dashed transitions at the bottom, the automaton is T-diagnosable as after the ob-
servation of sequence a a fault occurred in both runs at the top, and this fault is
each time detected before it is repaired since ∆(a) = F . By adding the bottom part,
T-diagnosability is lost : once a has been observed, one knows for sure that a fault
occurred, but no detection can take place before repair, in all runs, as now ∆(a) =U .

s0 s4 s5

s1 s2

s6 s7

s8

b

c

d

a

a

a

a

a

a

a

Fig. 4 A T-diagnosable system, when the path at the bottom is ignored.

3.2 Vanishing faults and repairs

T-diagnosability seems to be a reasonable first step towards the ability to count fault
occurrences. Unfortunately, this is not the case as it is already apparent in Fig. 3 :
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an automaton with such equivalent runs can be T-diagnosable, and nevertheless the
same observed sequence matches a run with one fault (top) and one with two faults
(bottom). The situation is even worse. Let us call a vanishing fault a fault that oc-
curs and is repaired silently in A (between two observations), i.e. a path u = t1...tk
where σo(t1...tk−1) = ε and s−(t1) ∈ SN ,s+(t1) ∈ SF ,s+(tk) ∈ SN (the last event can
be visible). Similarly, let us call a vanishing repair the silent occurrence of a repair
followed by a new fault, i.e. a path u as above where SN and SF are interchanged. An
automaton A can exhibit runs with an arbitrary number of vanishing faults and repairs
without losing its T-diagnosability. This is illustrated by the example in Fig. 5, with
Σ = {a,b}, Σo = {a}. In this automaton A, one has ∆(a) = F . A vanishing repair ap-
pears between the last two b of word abb, and a vanishing fault appears between the
last two b of word abbb. Nevertheless, T-diagnosability holds : for v1 = a ∈ Lmin

F (A)
one gets immediate fault detection (v2 = ε works), for v1 = ab2 ∈ Lmin

F (A) one has
Π−1(Π(v1)) = {a} ⊆ LF(A) so again the fault detection is “immediate” with v2 = ε ,
and similarly for v1 = ab4 ∈ Lmin

F (A).

s0 s1 s2 s3 s4 s5 s6
a b b b b a

a

Fig. 5 An arbitrary number of vanishing faults and repairs may exist in a T-diagnosable automaton.

It is quite counter-intuitive that the “immediate” detection of the fault occurring at
v1 = ab2 actually relies on the detection of the fault that took place previously, at v1 =
a. This phenomenon is due to the fact that T-diagnosability, just as diagnosability,
only refers to runs that stop at a visible transition. Everything that happens between
observations is almost ignored. For permanent faults, this is harmless: it only shifts
the detection by one observation. For repairable faults, it introduces odd phenomena
like the ones mentioned above. A natural way to make fault detection causal (and
to open the way to a counting of faults) is thus to forbid the existence of vanishing
repairs

6 ∃v = v1v2α ∈ L(A) : v1 ∈ LF(A) ∧ v1v2 ∈ LN(A)

∧ α ∈ Σ ∧ v1v2α ∈ LF(A) ∧ Π(v2) = ε (6)

and of vanishing faults

6 ∃v = v1v2α ∈ L(A) : v1 ∈ LN(A) ∧ v1v2 ∈ LF(A)

∧ α ∈ Σ ∧ v1v2α ∈ LN(A) ∧ Π(v2) = ε (7)

Under these assumptions, at most one transition from SF to SN or from SN to SF
can take place between two visible events. Let us say that fault detection is causal
when observations following the fault enable its detection, so the detection does not
depend on observations that occurred strictly before the fault as in the pathological
cases above. Such a causality notion can then be expressed as follows.
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Proposition 2 Assuming (6) and (7), A is T-diagnosable if and only if

∀v1 ∈ Lmin
F,o (A)∪Lmin

F,u (A)Σ
∗
u Σo, ∃n ∈ N, ∀v1v2 ∈ L(A),

[ |v2|o ≥ n ⇒ ∃v′2 ≤ v2 : v1→ v1v′2 ∈ LF(A)

∧ v1v′2 ∈ Σ ∗Σo ∧ Π−1 ◦Π(v1v′2)⊆ LF(A) ] (8)

where Lmin
F,o (A) = Lmin

F (A)∩Σ ∗Σo represents minimal faulty runs that terminate with
a visible event, and Lmin

F,u (A) = Lmin
F (A)\Lmin

F,o (A) represents those that terminate with
a silent event.

So if there are no vanishing faults and repairs, fault detection in a T-diagnosable
system will occur after the observation that immediately follows (or produced) the
fault.

Proof The extra condition v1v′2 ∈ Σ ∗Σo requires that the fault detection takes place at
the moment one gets an observation. This could have been introduced in (5) without
loss of generality, as silent events at the end of v′2 are useless to the criterion Π−1 ◦
Π(v1v′2) ⊆ LF(A). So the only novelty lies in the first term. Recall that Lmin

F (A) =
Lmin

F,o (A)]Lmin
F,u (A). Words v1 ∈ Lmin

F,o (A) are considered by both (5) and (8). But words
v1 ∈ Lmin

F,u (A) in (5) are replaced by words v1 ∈ Lmin
F,u (A)Σ

∗
u Σo in (8). In other words,

for faults that occur silently, detection takes places after the next visible event.
Only if part. Assume A is T-diagnosable, and let v1 ∈ Lmin

F,u (A)Σ
∗
u Σo. v1 decom-

poses uniquely as v1 = v0u3 where v0 is the Lmin
F,u part and u3 the extension in Σ ∗u Σo.

v0 further decomposes as v0 = u1u2 where u2 is the longest silent suffix of v0. Thanks
to (6) and (7), one has that u1 ∈ LN(A), and u1u2 → u1u2u3 ∈ LF(A). As A is T-
diagnosable and v0 ∈ Lmin

F (A), let us take any long enough extension v2 ≥ u3 for the
fault detection in Def. (5), and let v′2 ≤ v2, v′2 ∈ Σ ∗Σo be the detection time. One can
not have v′2 < u3 because in that case Π(v0v′2) = Π(v0) = Π(u1) and u1 ∈ LN(A). So
the detection of the fault can not occur before the extra observation lying at the end
of u3. Since v′2 ≥ u3, one has v′2 = u3v′′2 and v0 → v0u3v′′2 ∈ LF(A). This proves the
existence of a detection time v′′2 after v1 = v0u3 which satisfies (8).

If part. Assume A satisfies (8) and let v1 ∈ Lmin
F,u (A). v1 decomposes uniquely as

v1 = u1u2 where u2 is the longest silent suffix of v1. Thanks to (6) and (7), one has
u1 ∈ LN(A). Let v1v2 ∈ L(A), with v2 long enough, in particular |v2|o ≥ 1. One can
write v2 = u3u4 with u3 ∈ Σ ∗u Σo. Thanks to (6) and (7) again, one has v1 → v1u3 ∈
LF(A). As v1u3 ∈ Lmin

F,u (A)Σ
∗
u Σo and u4 is long enough, there exists a prefix u′4 ≤ u4

such that v1u3 → v1u3u′4 ∈ LF(A) and ∆(Π(v1u3u′4)) = F . Taking v′2 = u3u′4 thus
satisfies the conditions of (5). �

Vanishing faults (or repairs) can be considered as design errors in system A, that
are either benign and should be disregarded, or conversely that are possibly harmful
and should be made visible. Changing the status of such events means modifying the
safe and faulty words of A, which is feasible (see later). Meanwhile we show that
the detection of vanishing faults/repairs is a simple problem: these events are regular
properties along a run, and they can thus be evidenced by standard state augmentation
techniques. The construction is given below.
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Proposition 3 Detecting whether an automaton has vanishing faults (resp. repairs)
can be done in NLOGSPACE, and in linear time wrt to the size of A.

Proof An automaton A can produce a vanishing fault iff it contains an accessible
path u = t1t2 . . . tk such that s−(ti) ∈ SF for every i ∈ 2 . . .k, s−(t1),s+(tk) ∈ SN , and
σ(t1 . . . tk−1) = ε (the last transition tk can be observable or not). Such path will be
called a vanishing fault sequence.

Starting from an automaton A one can build a non-deterministic automaton VA =
(S×V,T ′,Σ ,(s0,NO)) where V = {NO,UF,Van} is a label with the following mean-
ing : a state labeled by NO is a state encountered along a run in which the decision to
recognize a vanishing fault was not yet taken. A state labeled by UF is a state that is
encountered along a run in which a transition from a non-faulty state to a faulty one
was met, and no observable action was observed since this transition. A state labeled
by Van is a state appearing along a run in which a vanishing fault was found. The
transition relation T ′ is defined as follows:

– ((s,NO),σ ,(s′,NO))∈ T ′ if (s,σ ,s′)∈ T . Label σ can be observable or not. Note
that even if s is a non-faulty state and s′ a faulty one, the automaton is not forced
to recognize a vanishing sequence from this transition. We hence include copies
of original transitions in T ′.

– ((s,NO),σ ,(s′,UF)) ∈ T ′ if (s,σ ,s′) ∈ T,σ ∈ Σu,s ∈ SN ,s′ ∈ SF . This transition
is where recognition of a potential vanishing sequence starts.

– ((s,UF),σ ,(s′,UF))∈ T ′ if (s,σ ,s′)∈ T,σ ∈ Σu,s∈ SF ,s′ ∈ SF . A vanishing se-
quence recognition has started, and as long as the system remains faulty and does
not produce observable actions, the currently followed run can be a vanishing
sequence.

– ((s,UF),σ ,(s′,Van))∈ T ′ if (s,σ ,s′)∈ T,s∈ SF ,s′ ∈ SN . Label σ can be observ-
able or not. This transition occurs as soon as a vanishing sequence is detected: the
system was faulty and unobservable from the occurrence of a fault up to the oc-
currence of the repair.

– ((s,UF),σ ,(s′,NO)) ∈ T ′ if (s,σ ,s′) ∈ T,σ ∈ Σo,s ∈ SF . An observable transi-
tion was reached that was not a repair, so the last fault was not a vanishing fault.

Obviously, automaton A contains a vanishing sequence iff there exists a reachable
state of the form (s,Van) in VA. The size of VA is at most 3.|A|, so VA (restricted to
its reachable states) can be built in O(3.|A|), and the search for a vanishing sequence
can be performed non-deterministically using a standard reachability algorithm in
logarithmic space (in the size of |A|), and if all states have to be explored, in time in
O(3.|A|). �

Note that one a vanishing fault has been found, there is no need to continue ex-
ploration. Hence we create no transition from a state of the form (s,Van). Figure 6
illustrates the construction of an automaton that recognizes vanishing sequences. The
top sequence starts recognizing a sequence of unobserved action after a fault, but ac-
tion σk is observable, so the tag attached to the last state reached by the sequence
gets back to NO. In the bottom sequence, the system returns to a normal state after
observation of the empty word: a vanishing sequence has been detected. A similar
construction can be used to detect vanishing repairs, just by moving from a NO state
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to an UF state as soon as an unobservable repair occurs, and from an UF state to a
Van state when a new unobservable fault occurs.

NO NO UF UF UF Van

σ1 6∈ Σo σ2 6∈ Σo ε σk 6∈ Σo

NO NO UF UF UF NO

σ1 6∈ Σo σ2 6∈ Σo ε σk ∈ Σo

Fig. 6 Construction of automaton VA to detect vanishing faults.

In the rest of the paper, we will assume that the considered systems do not contain
vanishing faults (repairs). This assumption is not too constraining: a vanishing fault
(repair) might not be followed by an observation, hence hindering any chance to
diagnose it. If one wants to diagnose faults in a timely way, the assumption that
something observable necessarily occurs while the system is faulty is needed. We
shall come back to this point later in the paper.

3.3 A T-diagnosability test

As in Section 2.3, one can consider the converse of (5). Specifically, A is not T-
diagnosable iff

∃v1 ∈ Lmin
F (A), ∀n ∈ N, ∃v1v2 ∈ L(A) : |v2|o ≥ n, (9)

∀v′2 ≤ v2, v1→ v1v′2 6∈ LF(A) ∨ Π−1 ◦Π(v1v′2) 6⊆ LF(A)

In words, A is not T-diagnosable whenever it is possible to find a minimal faulty se-
quence v1 and arbitrarily long extensions v2 such that along the longest faulty prefix
v′2 ≤ v2 of v2, the detection of the fault can not occur in a timely way, either be-
cause repair occurs before any possible detection, or because the extension remains
ambiguous.

It is worth noticing that the twin-machine idea used to check the diagnosability
of permanent faults is not sufficient to check the T-diagnosability of repairable faults.
The main obstacle comes from the fact that T-diagnosability can not be character-
ized by pairs of equivalent runs. It is rather a global property on classes of equiv-
alent runs in A. This is illustrated in Fig. 7, where unobservable transitions are de-
picted as dashed arrows (Σo = {a}) and faulty states in red. This automaton is not
T-diagnosable. However, the twin machine built for this system in Fig. 9 contains no
ambiguous cycle. By checking only pairs of equivalent runs, one always finds a time
where ambiguity disappears. For example, considering only the top and central loops,
a3n+1 seem to be detection times for the faults that appear in these runs. To reveal that
T-diagnosability does not hold, one would have to check triples of equivalent runs
here. And it is quite easy to design examples where triples are not sufficient and one
needs to escalate to quadruples of equivalent runs to reveal the non T-diagnosability,
etc. This suggests a non polynomial complexity of the T-diagnosability test.
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s1 s2 s3
a a

a

s4 s5 s6
a a

a

s7 s8 s9
a a

a

s0

b

c

d

Fig. 7 A system that is not T-diagnosable. Considering only pairs of equivalent runs is not sufficient to
characterize non-T-diagnosability.

s0 s2,s5,s8 s3,s6,s9

s1,s4,s7

a a

a
a

Fig. 8 Diag(A) for the automaton of Figure 7

s2,s5 s3,s6 s1,s4
a a

a

s2,s8 s3,s9 s1,s7
a a

a

s5,s8 s6,s9 s4,s7
a a

a

s0,s0

a

a

a

Fig. 9 The twin machine for the system of Fig. 7. Square states represent states of the twim machine with
faulty pairs of states. Filled circle are states with non-faulty components, and dashed states are ambigu-
ous states, i.e. in which one component is faulty and the other is safe. Every cycle of this twin machine
contains a square faulty state. Though this system does not contain ambiguous cycles, the system is not
T-diagnosable.

The idea of the twin-machine construction is to check whether a faulty run can
create an ambiguity that can never be resolved. For repairable faults, this ambiguity
signal can be directly derived from Diag(A), the diagnoser of A. Consider the (de-
terministic) automaton G = A×Diag(A). Diag(A) is a deterministic automaton over
alphabet Σo ⊆ Σ , and L(Diag(A)) = Lo(A). So L(G) = L(A) : the construction of G
performs a simple state augmentation on A, without changing its behavior (just like
the memory automaton mentioned above). This state augmentation attaches an am-
biguity status to each state of A as follows. States of G take the form (s,q) ∈ S×Q
where Q = 2S. So they can be labeled by elements in {N,F}×{N,U,F} : for exam-
ple (s,q) is of type (N,U) iff s ∈ SN and q is uncertain. LN(A) and LF(A) are easily
identifiable in G as words terminating in a state of type (N, .) or (F, .) respectively. A
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state (s,q) is said to be minimally faulty iff s is the terminal state of a run v1 ∈ Lmin
F (A).

Notice that a state (s,q) labeled (F,N) can exist : it characterizes a run that was safe
up to the last observation and that later produced (silently) a fault, no yet detectable
that the diagnoser. Similarly, a state (s,q) labeled (F,U) characterizes a faulty run
that is not yet diagnosed.

Theorem 1 With the notation above, A is not T-diagnosable if and only if there exists
a reachable minimally faulty state (s,q) ∈ S×Q in G such that (s,q) is of type (F,N)
or (F,U) and either

1. there exists a state (s′,q′) of type (N,N) or (N,U)
2. or there exists a cycle of (F,U) states

that is reachable from (s,q) through a (possibly empty) sequence of (F,N) states
followed by a sequence of (F,U) states.

Proof By construction of G, observe that if word v ∈ L(A) reaches state s in A, then
word v reaches state (s,q) in G and ∆(Π(v)) is the type of state q ∈Q, either N,F or
U .

For the only if part, consider the witness v1 ∈ Lmin
F (A) of non T-diagnosability

in (9), which reaches state (s,q) in G. (s,q) is necessarily of type (F,N) or of type
(F,U), as if (s,q) is of type (F,F) then the correct diagnosis is output with v′2 = ε . For
a given n, let v2 be the extension of v1 satisfying (9), and let v′2 be the longest prefix of
v2 such that v1→ v1v′2 ∈ LF(A). All along v′2, the correct diagnosis can not be output,
so G only crosses states of type (F,N) or (F,U). States of type (F,N) come first (if
they exist), then (after the first observable event in v′2) one only crosses states of type
(F,U) as at least one faulty run lies in the inverse projection. If there exists a ∈ Σ

such that v′2a ≤ v2, then v1v′2a reaches state (s′,q′) which is either of type (N,N) or
of type (N,U). (N,F) is not possible as this would mean that the correct diagnosis
was produced for v1v′2. This makes point 1 in the theorem. If point 1 never occurs
for any n, this means that in the discussion above one always has v′2 = v2. As G is
finite, it then contains a cycle with at least one observable event (recall that n counts
observations). This cycle is thus made of (F,U) states, which makes point 2 in the
theorem.

The if part can be derived in a similar manner, starting from conditions in the
theorem and building a witness v1 and the associated v2 for every n satisfying (9). �

Back to the example depicted in Figure 7, the automaton G = A×Diag(A) is
given in Figure 10 (left-hand side), whereas its abstract view carrying only labels
of composite states is given in Figure 10 (right-hand side) (recall that {b,c,d} are
unobservable). It is easy to check that G does not fulfill the conditions of Theorem 1.
Indeed, G contains a (F,U) state, from which a (N,U) state is reachable (this is
highlighted in the figure by a dashed arrow). Thus, as already mentioned, A is not
T-diagnosable.

3.4 Complexity of T-diagnosability

Theorem 2 Deciding whether an automaton A is T-diagnosable is a PSPACE-complete
problem.
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s2
(s2,s5,s8)

s3
(s3,s6,s9)

s1
(s1,s4,s7)

a a

a

s5
(s2,s5,s8)

s6
(s3,s6,s9)

s4
(s1,s4,s7)

a a

a

s8
(s2,s5,s8)

s9
(s3,s6,s9)

s7
(s1,s4,s7)

a a

a

s1
(s0)

s4
(s0)

s7
(s0)

a

a

a

s0
(s0)

b

c

d

(F,U) (F,U) (N,U)
a a

a

(N,U) (F,U) (F,U)
a a

a

(F,U) (N,U) (F,U)
a a

a

(F,N)

(N,N)

(F,N)

a

a

a

(N,N)

b

c

d

Fig. 10 The augmented machine G = A×Diag(A) (top) and its abstract version (bottom), for the example
given in Fig. 7.

Proof First, we can easily show that T-diagnosability belongs to PSPACE. Following
the result of Theorem 1, A is not T-diagnosable iff one can find a witness cycle of
type (F,U) or a witness state of type (N,N) or (N,U) reachable after a minimally
faulty sequence ending in a state of type (F,N) or (F,U) in G. First of all, the size
of G is at most 2|A|.|A|. To witness a minimally faulty sequence ending in a (F,N)
of (F,U) state, one only needs to non-deterministically explore paths of size smaller
than 2|A|.|A|, which can be done with polynomial memory size (to remember current
state and whether previous state is faulty). Then, to witness ambiguous cycles or
moves to (N,N) or (N,U) states, one can again non-deterministically explore paths of
G of size smaller than 2|A|.|A|with polynomial memory. Hence, finding witness paths
for non-T-diagnosability is a NPSPACE process, and using Savitch’s theorem [23],
and remembering that PSPACE is closed under complementation, this shows that
T-diagnosability is in PSPACE.

The second step of the proof shows hardness of the problem by reduction from a
language inclusion problem, which is known to be PSPACE-complete (see [16] and
[18]). The problem can be formulated as follows: given A1, ...,An some deterministic
finite automata, does

⋂
i∈1..n L(Ai) = /0 ?

Let n ∈N and for 1≤ i≤ n, let Ai = (Si,Γ ,Ti,qi
0,Fi) be some deterministic finite

automaton on alphabet Γ , that recognizes language L(Ai) = {σ(u) | s−(u) = qi
0 ∧

s+(u) ∈ Fi}. We build the finite automaton A = (S,Σ ,T,q0) (see Figure 11) where:

– Σ = Γ ∪{u1, . . . ,un}∪{ f , ], [,r}
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Fig. 11 PSPACE-hardness of T-diagnosability. Red states are faulty, and blue states normal states.

– S = {qi,q0,q f ,r}∪{ fi | i ∈ 1..n}∪{q j
i | 1≤ i≤ j ≤ n}∪S1∪ . . .∪Sn

– T =
⋃

1≤i≤n Ti
∪ {(q0, f ,q f ),(qi, ],q0)( fn,r,r),(r, [,r),(q f , ], f1)}
∪ {( fi, ], fi+1) | i ∈ 1..n−1}
∪ {(q f ,a,q f ) | a ∈ Σ}
∪ {(q0,ui,qi

0) | i ∈ 1..n}
∪ {(qi

i, [,q
i
i) | i ∈ 1..n}

∪ {(q, ],qi
1) | q ∈ Fi, i ∈ 1..n}

∪ {(q j
i , ],q

j
i+1) | 1≤ i < j ≤ n}

The set of safe states is SN = {qi,q f ,r}∪{qi
i | i = 1 . . .n}. The set of faulty states

is S\SN . We set Σo = Γ ∪{], [,r}.
We claim that A is T-diagnosable if and only if

⋂
i∈1..n L(Ai) = /0.

First, remark that after observing ]w]m for m ≤ n and w ∈ Γ ∗, the current run is
either in state fm or in some state q j

m if j ≥ m, and automaton A j accepts w.
Suppose that A is T-diagnosable. Let w ∈ Γ ∗, and let v1 be the unique run of A

such that σ(v1) = ] f w]. As v1 is a minimal faulty run, there exists m ≤ n such that
the run v1v2 with σ(v1v2) = ] f w]m verifies Π−1 ◦Π(v1v2)⊆ LF(A), because a repair
occurs after ] f w]n.

According to the construction of A, if automaton Ai accepts w, then for i ≥ m,
there exists also a run of A which observation is ]w]m, and that ends in state qi

m.
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Furtermore, as Π−1 ◦Π(v1v2) ⊆ LF(A), the system can not be in state qm
m as this

state is safe. Hence, Am does not accept w and w does not belong to the intersec-
tion

⋂
i∈1..n L(Ai). As this is true for every w ∈ Γ ∗, T-diagnosability of A implies⋂

i∈1..n L(Ai) = /0.
Conversely suppose that

⋂
i∈1..n L(Ai) = /0. Let v1 be a minimal faulty run. Only

two cases can appear: either v1 is the word v1 = ] which ends in the faulty state q0,
or v1 is of the form v1 = ] f w]. If v1 = ], then we know that A is in q0 which is faulty
and we can claim the fault. In the second case s+(v1) = f1 and σ(v1) = ] f w] with
w ∈ Γ ∗. As

⋂
i∈1..n(Ai) = /0, there exists i ∈ 1..n such that w 6∈ L(Ai). Consider the

run v1v2 with σ(v1v2) = ] f w]i, this run ends in fi and was not repaired in between.
Even if w is recognized by Ak for some k < i, no run visiting a state of Ak and with
observation w]i exists. Moreover, for every j > i such that A j accepts w, runs with
the same observation w]i ends in state q j

i . As Ai does not accept w and as all states q j
i

for j > i are faulty, Π−1 ◦Π(v1v2) ∈ LF(A). Thus the fault can be claimed. As this is
true for every minimal faulty run v1, A is T-diagnosable.

As highlighted by Theorem 2, checking whether an automaton A is T-diagnosable
is a PSPACE-complete problem. This is not a real surprise: T-diagnosability compares
faulty and non-faulty languages, and most of algorithms that use languages compar-
isons are PSPACE-complete. In practice, PSPACE-complete problems are considered
as harder than NP-complete problems, as one already knows that NP ⊆ PSPACE.
Moreover, complexity of T-diagnosability should not be considered as a limitation
for several reasons. First of all, the complexity of Theorem 2 is a worst-case com-
plexity. It is well known that model checking a simple logic such as LTL is already
PSPACE-complete [24]. However, in practice, many model checking tools perform
quite well on large structures. Indeed, very often the worst time complexities are met
for degenerate cases, that are rarely met in real case studies.

3.5 Removing the vanishing fault hypothesis

It is worth noticing that the verification of the T-diagnosability assumes absence of
vanishing faults (resp. repairs). However, as mentioned at the end of section 3.2,
whenever there exists a vanishing fault in the system, the diagnoser is not able to
detect it, as its verdict is given according to the occurrence of observable events.
Thus, if one wants to diagnose faults in a timely way, the assumption that something
observable necessarily occurs while the system is faulty is needed. An easy way to
guarantee this property is to reduce the unobservable part of the alphabet. Obviously,
if Σo = Σ , there can be no vanishing fault, but finer modifications of the original sys-
tems exist. For instance one can easily reuse the paths of automaton VA leading from
a fault to a vanishing state to discover the smallest subsets of unobservable actions
that should become observable to avoid vanishing faults (the method would be sim-
ilar to the sensor minimization technique proposed in [8] which aims at minimizing
the size of observable events while keeping a system diagnosable).

However, unobservability of some actions is not always a design choice. In a
distributed system, for instance, one may observe actions on a limited subset of ma-
chines. Another way to avoid vanishing faults is to consider that vanishing and hence
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potentially fully unobservable faults are not important failures, but rather design er-
rors producing a specification where the incriminated state change leading to a van-
ishing fault should not be considered as a fault. So, the next question to study is:
how to transform a specification A with vanishing faults into a correct specification
A′ without vanishing faults such that non vanishing faults that can be timely detected
in A are also timely detected in A′?.

Let A = (S,Σ ,T,s0) be a deterministic automaton, and VA be the automaton built
in the proof of proposition 3 to detect sequences that contain a vanishing fault. We
denote by LVan(A) the language of vanishing faults, i.e. the set of words from Σ ∗ that
correspond to sequences with a vanishing fault. Formally,

LVan(A) = {w ∈ Σ ∗ | ∃t1 . . . tk ∈VA,s−(t1) = (s0,NO),s+(tk) ∈ S×{Van}, (10)
σ(t1 . . . tk) = w}.

To ignore vanishing faults, we use a construction similar to that of automaton VA.
Our aim is to design an automaton A′ such that L(A) = L(A′) and LVan(A′) = /0 and
such that all the faulty sequences that can be diagnosed in A are also diagnosed in A’.
We define the set of T-diagnosable sequences of A as follows:

Ldiag(A) = {v1 ∈ Lmin
F (A) | ∃n ∈ N, ∀v1v2 ∈ L(A),

[ |v2|o ≥ n ⇒ ∃v′2 ≤ v2 : v1→ v1v′2 ∈ LF(A)
∧ Π−1 ◦Π(v1v′2)⊆ LF(A)]}.

(11)

Such an automaton is obtained as follows: we let A′ = (SA′ ,Σ ,T ′,(s0,NO)), where2

SA′ = S×{NO,UF,Van} and T ′ is built as follows:

– ((s,NO),σ ,(s′,NO)) ∈ T ′ if (s,σ ,s′) ∈ T , and σ ∈ Σo
– ((s,NO),σ ,(s′,NO)) ∈ T ′ if (s,σ ,s′) ∈ T , σ ∈ Σuo and s′ ∈ SN
– ((s,NO),σ ,(s′,NO)) ∈ T ′ if (s,σ ,s′) ∈ T , and σ ∈ Σuo, s ∈ SF and s′ ∈ SF
– ((s,NO),σ ,(s′,UF)) ∈ T ′ if (s,σ ,s′) ∈ T , and σ ∈ Σuo, s ∈ SN and s′ ∈ SF

– ((s,UF),σ ,(s′,UF)) ∈ T ′ if (s,σ ,s′) ∈ T , and σ ∈ Σuo, and s′ ∈ SF
– ((s,UF),σ ,(s′,NO)) ∈ T ′ if (s,σ ,s′) ∈ T , and σ ∈ Σo
– ((s,UF),σ ,(s′,Van)) ∈ T ′ if (s,σ ,s′) ∈ T and s′ ∈ SN

Note that one necessarily has s ∈ SF in the three previous cases, as a fault has
occurred (witnessed by label UF), and is not yet repaired.

– ((s,Van),σ ,(s′,NO)) ∈ T ′ if (s,σ ,s′) ∈ T and σ ∈ Σo.
– ((s,Van),σ ,(s′,UF)) ∈ T ′ if (s,σ ,s′) ∈ T , σ ∈ Σuo and s′ ∈ SF .
– ((s,Van),σ ,(s′,NO)) ∈ T ′ if (s,σ ,s′) ∈ T , σ ∈ Σuo and s′ ∈ SN .

Note that s ∈ SN in the three previous cases, as vanishing faults are detected only
after a repair.

2 where NO,UF,Van have the same meaning as in the automaton VA.
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Let CoaccVan(A′,X) denote the set of states of A′ from which there exists a sequence
of transitions that are all unobservable, excepted possibly the last transition, leading
to a state of X . Then, we partition SA′ into S′N ] S′F , where S′F = SF ×{UF,NO} \
CoaccVan(A′,S×{Van}), and S′N = S′ \ SF . Informally, we consider as faulty the
sets of states from which a fault will necessarily be followed by an observation before
repair, i.e. it will not vanish.

Intuitively, in this construction, automaton A′ memorizes if a fault has occurred,
if an observable action has occurred since occurrence of a fault, and if a repair occurs
before occurrence of an observable action.

We can now prove the following propositions:

Proposition 4 L(A′) = L(A)

Proof We can show L(A′) ⊆ L(A) and L(A) ⊆ L(A′) by induction on the length of
words. Obviously, ε ∈ L(A′)∩L(A). Let us now suppose that inclusion is verified in
both directions for words of length at most n. Let w be a words of L(A) and L(A′).
This word corresponds to a run of A from s0 to some state s, and to a run from
(s0,NO) to a state (s, l) where l ∈ {NO,UF,Van}. Let us assume that (s,σ ,s′) ∈ T .
According to the construction rules, if σ ∈ Σo then regardless of label l, a transition
labeled by σ to some state (s′, l′) exists. Conversely, if w leads A to some state (s, l)
and a transition ((s, l),σ ,(s′, l′)) exists in T ′, then (s,σ ,s′) is also a transition of T .ut

Proposition 5 LVan(A′) = /0

Proof Let us assume that there exists a vanishing sequence in A′. This sequence is of
the form u= t1 . . . tn such that s−(t1)= (s0,NO)∈ S′N , s+(tn)∈ S′N , and there exists k∈
1...n−1 such that (sk−1, lk−1) = s−(tk)∈ S′N , (sk, lk) = s+(tk)∈ S′F , σ(tk . . . tn−1) = ε ,
and σ(tn) ∈ Σo. Let us first notice that S′F is a subset of SF ×{UF,NO}, and that
the transition from (sk−1, lk−1) to (sk, lk) along the chosen sequence is unobservable.
Hence, according to the construction rules for A′, we have lk =UF .

Similarly, one has li =UF for every i ∈ k+1...n−1 as otherwise, the considered
sequence tk . . . tn−1 would be an observable one. Let us now consider ln. As the last
state reached by the sequence is a normal state, but as ln−1 =UF , we necessarily have
ln = Van. This contradicts the rule imposed for the construction of S′F , that requires
that no unobservable path leads from a faulty state in S′F to a state with label Van .
One can handle similarly the case where the last transition tn is not observable. ut

Let us illustrate the construction of A′ on the example of Figure 12. In this au-
tomaton, Σo = {a,a′},Σuo = {b,c,d}. One can immediately notice that the run v =
(q0,b,q2)(q2,b,q3)(q3,b,q5) contains a vanishing fault. Figure 13 shows how the au-
tomaton A is unfolded and how the resulting states are tagged with NO,UF,Van. Let
us highlight the difference between q2,UF and q2,NO: q2,NO identifies state q2 of
the system reached when no unobservable move from a non-faulty sate to a faulty one
has been observed. Conversely, state q2,UF represents state q2 of the system when an
unobservable move from a safe state to a faulty one occurred. Rectangle dashed states
in this figure are states of the form (s, l) such that s∈ SF . However, as one must avoid
vanishing faults, all these dashed states are not considered faulty in A′. The final set
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of faulty states of A′ excludes the dashed states that are in CoaccVan(A′,{(q5,Van}):
indeed, from (q2,UF) and (q3,UF), there exist runs in which fault are repaired be-
fore any observation occurs. The final automaton A′ computed is depicted in Fig-
ure 14. We hence have S′F = {(q2,NO),(q3,NO),(q4,NO),(q7,UF),(q7,NO)}. Re-
mark that L(A) = L(A′) : both languages define the prefix closure of the regular lan-
guage (bab+cba)(aba′∗+ba′∗)+cbba′∗+da′a′∗. On this example, one can see that
the construction simply adds memory to states of the system, to capture the infor-
mation on whether a fault occurred, and whether an observable action followed or
not.

q0

q1

q2 q3

q4

q5

q6

q7

b

c
a

b

d

b

a

b

a′

a′

a′

Fig. 12 An example of system with vanishing faults. ΣO = {a,a′},Σuo = {b,c,d}.

q0,NO

q1,NO q2,NO

q2,UF q3,UF

q3,NO q4,NO q6,NO

q5,Van q5,NO

q7,UF q7,NO

b

c

d

a b

b b

a b

a′

a b

a′

a′

a′

a′

Fig. 13 Adding memory to the system of Figure 12. Σuo = {c,b,d}. Blue square states are states of
the form (s, l) where s ∈ SN . Red dashed square states are states of the form (s, l) where s ∈ SF .
Note that all these states are not necessarily faulty in A′. States in CoaccVan(A′,{(q5,Van)}) are
{(q0,NO),(q2,UF),(q3,UF)}, and are represented in the dotted zone.

The last question to address is how diagnosability of a system is affected by van-
ishing faults removal. Let us first recall that removing vanishing faults and repairs
allows one to get back to a setting where the characterization of diagnosability pro-
posed in Theorem 1 applies, and also makes T-diagnosis causal. Note however that
removing vanishing faults does not make a system diagnosable: Indeed, even if all
faults are eventually followed by an observation before they are repaired, this does
not mean that every ambiguity in a system is resolved, and several faults may remain
ambiguous forever. A desirable property is that all faults that were in Ldiag(A) remain
in Ldiag(A′). For example, this is the case in Figure 14. Indeed, for this example, we
have : Lmin

F (A)= {ba,c,d}, and Ldiag(A)= {ba,c,b} because for every fault, immedi-
ately after occurrence of an observation, one can claim that a fault has occurred, even
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Fig. 14 A new automaton A′ without vanishing faults. Σuo = {c,b,d}. Faulty states are S′F =
{(q2,NO),(q3,NO),(q4,NO),(q7,UF),(q7,NO)}.
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Fig. 15 Removing vanishing fault can make faults non-(T)diagnosable. In this example, state q3 becomes
a non-faulty state after transformation, and then in the obtained automaton, any observation of the form
a.b∗ corresponds to both faulty and non-faulty runs.

if the exact run followed remain uncertain. We then have Lmin
F (A′) = {ba,cba,d},

Ldiag(A′) = {ba,cba,d}. An intersting question is whether faults that appear both in
A and A′ and that are diagnosable in A remain diagnosable in A′. More formally, if
w ∈ Lmin

F (A)∩ Lmin
F (A′) and w ∈ Ldiag(A), does it implies that w ∈ Ldiag(A′) ? Un-

fortunately, in general, removing vanishing faults does not preserve diagnosability of
other faults. The example of Figure 15 shows an automaton A (at the left of the fig-
ure) and the automaton A′ obtained after removing vanishing faults (at the right of the
figure). This example shows a situation where changing the status of a state creates
new ambiguity on occurrence of a fault. Indeed, q3 is faulty in A and non faulty in
A′, because the fault occurring after action d may vanish. Hence, in A, one can claim
that a fault has occurred as soon as action a is observed, and in A′ observation of
any word of the form a.a′∗ may correspond to faulty or non-faulty runs. Hence, word
b.a ∈∈ Lmin

F (A)∩Lmin
F (A′) belongs to Ldiag(A), but not to Ldiag(A′).

Yet, removing vanishing faults and repairs is an interesting refactoring process for
a partially observed system. First of all, it is obvious that when status changes within
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a system are not followed by some observable event, one can not track the status of
the system even with a delay, nor count the number of faults,.... Our interpretation
of a vanishing fault (resp. repair) is the following: if a status change is not followed
by an observation, then either it is not a noticeable event in the system, or the sys-
tem is not well designed. Unimportant vanishing events should not be classified as
faults (resp. repairs), and as their presence prevents from counting and diagnosing
systems, the procedure shown above should be applied to remove these faults. If van-
ishing faults come from a lack of observation, then designers should impose more
observable events.

4 Counting faults

As faults are not permanent, counting the number of faults occurring at runtime is a
useful information: even if a system is able to repair all occurrences of faults, a too
large number of faults may indicate a major failure. To count faults, an immediate
idea is to maintain a fault counter that is incremented each time the diagnoser goes
from N to F and from U to F . Even if a diagnosis can be triggered in time, i.e. before
the fault is repaired, T-diagnosability is not sufficient to correctly count faults along
a trajectory. Fig. 3 reveals that this can not work as counting moves of the diagnoser
from {N,U} to F in this example would detect two faults, while v has only one
fault and v′′ has two. Conversely, counting only moves from N to F or from U to F
leads to minoring the real number of faults that occurred in some runs. This section
considers extra conditions that enable counting. A fault counter C of an automaton A
is a function from Σ ∗o to N such that: for every run v ∈ L(A), letting kv be the number
of faults in v, C(Π(v))∈ {kv−1,kv}. An automaton A is fault countable if there exists
a fault counter of A.

Given an automaton A, q,q′ ∈ Q, k ∈ N and a ∈ Σo, we write q→a,k
A q′ if there is

a path in A from q to q′ of unobservable events except for the last transition labeled
by a with k faulty transitions.

Proposition 6 Assuming that there are no vanishing repairs/faults in A, deciding if
A is fault countable w.r.t. F is in NLOGSPACE.

Proof Let A = (S,Σ ,T,s0) be an automaton. As there is no vanishing repairs/faults,
if q→a,k

A q′, then k ≤ 1. We build the following variant of the twin automaton AC =
(SC,Σ ,TC,{s0,s0,0}) where:

– SC = S×S×{−1,0,1,⊥},
– ((q1,q2,n),a,(q′1,q

′
2,m)) ∈ TC iff q1→a,k

A q′1,q2→a,k′
A q′2 and

– if n =⊥, then m =⊥,
– if n 6=⊥ and n+ k− k′ ∈ {−1,0,1}, then m = n− k+ k′,
– if n 6=⊥ and n+ k− k′ 6∈ {−1,0,1}, then m =⊥.

This construction is of size at most 4.|A|2. Remark that the third component of
the automaton keeps the difference of the number of faults by the two followed runs
as long as this difference is not strictly greater than 1. It is set to ⊥ if the difference
gets bigger than 1.
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We will now show that A is count diagnosable if and only if no state of the form
(q,q′,⊥) is reachable, which can be tested in NLOGSPACE.

Let us suppose that there exists q,q′ ∈ S such that (q,q′,⊥) is reachable. Let v be
a run reaching (q,q′,⊥). We suppose (q,q′,⊥) to be the first state of v which third
component is a ⊥. By construction of our twin product, we can associate v to two
runs v1 and v2 of A with same observation and such that one of the two runs (say v1)
contains at least two more faults than the other. Consequently, suppose there exists a
fault counter C, let k be the number of faults in v1 (v2 has thus less than k−2 faults),
let c =C(Π(v1)), then c≤ k−2 and c≥ k−1 by definition of a fault counter, which
is not possible. Therefore A is not fault countable.

Conversely, suppose A is not fault countable. Then there exists w ∈ Σ ∗o such that
w is the projection of several runs of A, for which no correct estimation of the number
of faults (up to one missing fault occurrence) can be given from observation w. By
definition of a fault counter, this means that there exists two runs v1 and v2 such that
w = Π(v1) = Π(v2) and the number of faults in v1 is at least two more than the
number of fault in v2. Let v be the run in AC following the two runs v1 and v2. This
run ends in a state (s+(v1),s+(v2),⊥). Thus a state of AC which third component is
⊥ is reachable.

Remark that this proof does not immediately give the construction of a fault
counter for the automaton. We will say that an automaton is T-Diagnosable w.r.t.
N if repairs can be faithfully detected. Intuitively, this property can be checked by in-
version of safe and faulty states, an then checking T-diagnosability of the so-obtained
system. Consider the Diagnosis function ∆ : Lo(A)→{N,F,U} defined by (2).

We define the function ]F
∆

from Lo(A) to N as follows: Let µ ∈ Lo(A) and ρ ∈
(N +U +F)∗ the associated sequence of verdict emitted by ∆ . Let ρ ′ ∈ (N +F)∗ be
the projection of ρ on the verdicts {N,F}, then ]F

∆
(µ) is the number of occurrences

of pairs NF that appear in ρ ′. Intuitively, ]F
∆

is a function that will be used to count
the number of faults the diagnoser is able to detect. We can define similarly function
]N

∆
, counting the number of detected repairs, by inverting N and F in the previous

definition.
Given a run u of A, ]F

A(u) denotes the number of times A moves from a normal
state to a faulty state in u and ]N

A (σ(u)) denotes the number of times A evolves from
a faulty state to a normal state in u. Remark that detecting faults before they are
repaired and detecting that a repair have occurred before the next fault are symmetric
problems. The first problem is the notion of T-Diagnosis studied in section 3. The
second problem can be handled with similar techniques, by considering that one has
to detect moves from faulty state to normal ones before the next move from a normal
state to a faulty one. We will hence say that A is T-Diagnosable w.r.t. F if one can
detect occurrences of faults before they are repaired (A is T-diagnosable), and that A
is T-Diagnosable w.r.t. N if one can detect that a system has been repaired before the
occurrence of the next fault. We can now state the following proposition:

Proposition 7 If A is T-Diagnosable w.r.t. F and T-Diagnosable w.r.t. N, and has no
vanishing faults nor repairs, then ∀v ∈ L(A) and µ = Π(v)

– 0≤ ]F
A(v)− ]F

∆
(µ)≤ 1.
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– 0≤ ]N
A (v)− ]N

∆
(µ)≤ 1.

Moreover if ∆(µ) = F then ]F
A(v) = ]∆ (µ) and if ∆(µ) = N then ]N

A (v) = ]N
∆
(µ).

Proof We proceed by induction. The base case is v = ε . In this case, ]N
A (v) = 0 and

]N
∆
(Π(v)) = 0 as so ∈N and ∆(Π(v))∈ {N,U}whereas ]F

A(v) = 0 and ]F
∆
(Π(v)) = 0.

Let us now consider a sequence

v = vN
1 vF

1 · · ·vN
k vF

k ∈ L(A)

such that ∀i≤ k,

– vN
1 vF

1 · · ·vF
i−1 −→ vN

1 vF
1 · · ·vF

i−1vN
i ∈ LN(A), and

– vN
1 vF

1 · · ·vN
i −→ vN

1 vF
1 · · ·vF

i−1vN
i vF

i ∈ LF(A)

and assume that

– 0≤ ]F
A(v)− ]F

∆
(Π(v))≤ 1.

– 0≤ ]N
A (v)− ]N

∆
(Π(v))≤ 1.

and that if ∆(Π(v)) = F then ]F
A(s) = ]F

∆
(Π(v)) and if ∆(Π(v)) = N then ]N

A (s) =
]N

∆
(Π(v)).

Consider now v′ = vvN
k+1vF

k+1 ∈ L(A) and let sk ∈ S be the unique state reached
by triggering v in A. By definition sk ∈ F and the state reached by triggering the first
event in vN

k+1 belongs to N. As A has no vanishing-repair, |Π(vN
k+1)| ≥ 1. Let uN

k+1 be
the minimal prefix of vN

k+1 that ends with an observable. We then have two different
cases

– either ∆(Π(vuN
k+1)) = N and we have

]N
A (vuN

k+1) = ]N
∆ (Π(vuN

k+1)) = k+1

as ]N
A (v) = ]N

∆
(Π(v)) = k, and as A is T-Diagnosable w.r.t F, ∆(·) emitted the

verdict F after Π(v) while observing a sub-sequence of vF
k . Thus ]N

∆
(·) is incre-

mented by 1 as well as ]N
A (·) as the sequence leads to a repair state.

– or ∆(Π(vuN
k+1)))) = U , meaning that the diagnoser is still not able to say that

the system is repaired and in that case ]N
A (vuN

k+1) = ]N
∆
(Π(vuN

k+1))+1. However,
as A is T-Diagnosable w.r.t. N, there exists a prefix uN ∈ Σ ∗Σo such that uN

k+1 ≤
uN ≤ vN

k+1, and ∆(Π(vuN)) = N. At this point ]N
A (vuN) = ]N

∆
(Π(vuN)) = k+ 1.

For the remaining sub-sequence up to vN
k+1 either the diagnoser can only emit the

verdict N or the verdict U as the corresponding sequence is not faulty and thus
the function ]N

∆
() is not incremented.

The proof showing that the function ]F
∆
() is also incremented by 1 after v.vN

k+1 while
reading vF

k+1 is symmetric to the previous case by replacing N by F and vice-versa.
Now, consider the case where v = vN

1 vF
1 · · ·vF

k−1.v
N
k ∈ L(A) ends in a normal state.

We have ∆(v) ∈ {N,U}, and sk ∈ N.
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Consider the extension of v with a sequence of faulty states vF
k+1. As sk is in N, as

vF
k+1 starts with a faulty state and as we have no vanishing repair and A is T-diag w.r.t

N, we have ]N
A (v) = ]N

∆
(v). As vF

k+1 is a sequence of faulty states, ]N
∆
(v) = ]N

∆
(v.vF

k+1)

We hence have ]N
A (v.v

F
k+1) = ]N

∆
(v) = k, and the property is still satisfied. �

Intuitively, this proposition states that we can build from the diagnoser a function
that counts the number of times the system becomes faulty (resp. is repaired) with
a difference of at most 1. Furthermore, the difference is null as soon as the fault
(resp repair) is diagnosed by the diagnoser. Note that the condition for counting in
proposition 7 is sufficient, but not necessary as shown by the automaton of Figure 16.

u′1

u1

a a

a a

a

a
a

Fig. 16 A T-Diagnosable automaton wr.t. N but not w.r.t. F

In this example, the automaton is T-diagnosable w.r.t. N but not w.r.t. F, moreover
the sequence of verdicts emitted by ∆ is NUUN. However, after reading aa we know
a single fault happened for sure.

5 Related work

The diagnosis of such transient faults has been considered in [9], which proposed
four notions of diagnosability. One of them (“O-diagnosability”) consists in detect-
ing the occurrence of a transient fault, even after it has been repaired, which amounts
to saturating LF(A) (see Section 2.2). Symmetrically, the “I-diagnosability” aims at
detecting the occurrence of a repair, even if fault(s) followed, which amounts to in-
verting the roles of SF and SN , or to saturating the safe language LN(A). Both notions
thus match the standard (or historical) notion of diagnosability for a slightly modified
version of A.

In [15], two definitions involving multiple occurrences of faults are given. A sys-
tem is K−diagnosable if the execution of any state-trace containing at least K failures
can be deduced within a finite delay from the observed behavior. K-diagnosability
is not monotonic, and the authors also introduce [1 · · ·K]-diagnosability, that is met
by systems that are J-diagnosable for every 1 ≤ J ≤ K. Compared with [1 · · ·K]-
diagnosability or simply K diagnosability, we introduced a sufficient condition under
which it is possible to count exactly the number of faults that occurred in the system.
Furthermore, similarly to [9], the definitions of diagnosability introduced in [15], do
not request the detection of the fault before its repair.

In the same manner, [9] introduced the notions of “P-diagnosability” and “R-
diagnosability”. These two notions are dual: P-diagnosability states that after the
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occurrence of a fault, it is always possible to detect the fact that the system is cur-
rently faulty, based on the observation (even though the fault has been repaired in
the past). Conversely, R−diagnosability states that after a fault is repaired, it is pos-
sible to detect in finite time whether the system is currently in a safe state. As we
are mainly detecting fault occurrences, our work should only be compared to the
notion of “P-diagnosability”. Our notion of T-Diagnosability is then stronger than P-
diagnosability, as we require that detection of faults occur before they are repaired.
It is then easy to show that whenever a system is T-diagnosable then it is also P-
diagnosable. We now express the notion of “P-diagnosability” in our context (i.e.
using a state-based approach (Note that a similar definition has been recently pro-
posed in [5])) and show that deciding whether an automaton A is P-diagnosable is a
PSPACE complete problem. Formally, we have:

Definition 1 An automaton A is P-diagnosable w.r.t. Σo, F iff

∃n ∈ N, ∀v1 ∈ Lmin
F (A), ∀v1v2 ∈ L(A),

[ |v2|o ≥ n ⇒ ∃v′2 ≤ v2 : Π−1 ◦Π(v1v′2)⊆ LF(A) ] (12)

The authors of [9] are interested in the dynamic behaviour of discrete event sys-
tems where failure and reset events occur continuously along any path of the sys-
tem’s evolution. To represent this, they introduce the notions of Σ f -recurrence and
Σr-recurrence.

An automaton A is Σ f -recurrent iff

∃n ∈ N, ∀v1 ∈ Lmin
F (A), ∀v1v2 ∈ L(A),

[ |v2|o ≥ n ⇒ ∃v′2 ≤ v2 : v1v′2 ⊆ LN(A) ] (13)

We denote by Lmin
R = {vα ∈ LN(A) | v ∈ LF(A)∧α ∈ Σ} the set of minimal repaired

words of A, i.e. words that correspond to a run ending with a transition from a faulty
state to a normal one in A. An automaton A is Σr-recurrent iff

∃n ∈ N, ∀v1 ∈ Lmin
R (A), ∀v1v2 ∈ L(A),

[ |v2|o ≥ n ⇒ ∃v′2 ≤ v2 : v1v′2 ⊆ LF(A) ] (14)

Under those restrictions, they obtained the following decidability result.

Proposition 8 ([9]) Given a Σ f -recurrent and Σr-recurrent automaton A, and assum-
ing there is no vanishing fault, P-diagnosability of A can be decided in PSPACE.

Note that, in [5], the authors propose another algorithm to decide the P-diagnosability
of a system A based on the classical notion of twin-plant. However the tests that are
necessary to check the P-diagnosability requires to check all the faulty runs that are
equivalents in this machine, leading to a PSPACE algorithm for the test.

We complete these results by proving the PSPACE-hardness of P−Diagnosability.
The proof reuses ingredient from the proof of hardness of T-diagnosability (Thm. 2)
with some subtle differences.
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Fig. 17 PSPACE-hardness of P-diagnosability. Red states are faulty, and blue states normal states.

Proposition 9 Given a Σ f -recurrent and Σr-recurrent automaton A with no vanish-
ing fault, P-diagnosability of A is PSPACE-hard.

Proof The proof shows hardness of the problem by reduction from a language in-
clusion problem, which is known to be PSPACE-complete. The language inclusion
problem can be formulated as follows: given A0, ...,An some deterministic finite au-
tomata, does

⋂
i∈0..n L(Ai) = /0 ?

Let n ∈ N and for 0 ≤ i ≤ n, Ai = (Si,Γ ,Ti,qi
in,Fi) be some deterministic finite

automaton on alphabet Γ . We build the finite automaton A = (S,Σ ,T,q0) (see Fig-
ure 17) where:

– Σ = Γ ∪{u0, . . .un}∪{ f , ], [}
– S = {q0}∪{q j

i | i, j ∈0..n}∪{q j
in | j ∈ 0..n}∪

⋃
0≤i≤n Si

– T = {(q0,u j,q
j
in) | j ∈ 0..n}∪{(q j

n, ],q
j
0 | j ∈ 0..n}∪{(q, [,q j

0) | q∈Fj, j ∈ 0..n}∪
{(q j

i , ],q
j
i+1 | i = 0..n, j = 0 . . .n−1}∪

⋃
0≤ j≤n Tj

The set of safe states is SF = {qi
i | i = 0 . . .n}. The set of faulty states is S \ SF .

We set Σo = Γ ∪{]}.
We claim that A is P-diagnosable if and only if

⋂
i∈0..n L(Ai) = /0.
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First, remark that after observing w[]m for m ∈ N, the current run leads the au-
tomaton in some state q j

k with j ≤ n, k ≤ n and k = m mod (n+ 1) such that A j
accepts w.

Suppose that A is P-diagnosable. Let w ∈ L(A0), v1 be the unique run of A such
that σ(v1) = u0w[]. This run is unique as u0 leads to the initial state of the determin-
istic automaton A0. As v1 is a minimal faulty run, there exists m ∈ N such that the
run v1v2 with σ(v1v2) = u0w[]m verifies Π−1 ◦Π(v1v2) ⊆ LF(A). From our initial
remark, as qk

k with k ≤ n and k = m mod (n+ 1) is safe, it means that Ak does not
accept w. As this is true for every w ∈ L(A0),

⋂
i∈0..n L(Ai) = /0.

Conversely suppose that
⋂

i∈0..n L(Ai) = /0. Let v1 be a minimal faulty run. v1 is of
the form σ(v1) = uiw[]m with i≤ n and w ∈ L(Ai). As

⋂
i∈0..n L(Ai) = /0, there exists

j ≤ n such that w 6∈ L(A j). Let m j ∈ N be such that j = m+m j mod n and consider
the run v1v2 with σ(v1v2) = uiw[]m+m j . Thanks to our initial remark, as qr

j with r 6= j
is a faulty state and A j does not accept w, Π−1 ◦Π(v1v2) ∈ LF(A). Thus the fault can
be claimed. As this is true for every minimal faulty run v1, A is P-diagnosable. �

6 Conclusion

We have proposed a notion of “timely-diagnosability” that requires the detection
(in bounded time) of transient faults after they occur, and before they are repaired.
T-diagnosability for a deterministic partially observed automaton is decidable (in
PSPACE). T-diagnosability is stronger than the P-diagnosability of [9] in the sense
that the latter does not require that a transient fault be detected before it is repaired.
Nevertheless, P-Diagnosability remains PSPACE complete, as shown in this paper.
For deterministic systems that do not contain vanishing faults nor repairs, checking
T-Diagnosability amounts to detecting ambiguous cycles and occurrences of repairs
before any possible diagnosis. The question of whether a system contains vanishing
faults (resp. repairs) is decidable with reasonable complexity. Requiring a system to
be free from vanishing faults and repairs is quite a sensible restriction, and when a
system does not satisfy this property, it can be corrected to avoid considering vanish-
ing faults as real faults. Now, while determinism allows one to express diagnosability
properties in terms of faulty and safe languages, it leads to quite complicated criteria
for T-diagnosability, as in Theorem 1. Cleary, the T-diagnosability setting extends to
systems with several types of faults by considering a set F = {F1, . . .Fk} of sets of
faulty states, each one corresponding to a particular fault. T-diagnosability of F is
deduced from the T-diagnosability of each type of fault.

As future line of research, it could be interesting to define T-diagnosability for
non-deterministic automata, and to explore whether criteria simplify. For example, it
is likely that in the absence of vanishing faults and of vanishing repairs, T-diagnosability
is preserved by Σo-closure. Also, while the T-diagnosability of faults relies on a com-
plicated criterion, it is likely that systems which are both T-diagnosable for faults and
for repairs are much easily characterized. This subclass is quite interesting, as it cor-
responds to systems where all changes of the status of the system from safe to faulty
and conversely are detected in bounded time, and in any case before they change
again. So ambiguity, when it appears, can not last forever.
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Theorem 2 shows that checking T-diagnosability is a PSPACE-complete problem.
PSPACE complexity yields an exponential time complexity in worst cases. It should
be noted that the worst cases appear due to the fact that a diagnoser has to maintain a
set of possible states reached after an observation, and that maintaining state estimates
yields an exponential blowup. Again, this is a worst case, and in practice, Diag(A)
may not have an exponential number of states. We believe that some properties of
automata, such as the observer property (see for instance [20]) can help mastering
complexity. Indeed, in automata that meet this property, all observationally equivalent
runs ending on different states are extended with equivalent runs. If an automaton
satisfies the observer property, then all branching in the automaton remain visible in
its projection on observable actions. In a diagnosis setting, this allows to keep the
same order of magnitude for the sizes of A and Diag(A).

Besides these immediate perspectives, the future of this work is definitely in the
direction of quantitative analysis. Being able to characterize exactly, after a bounded
delay, in which state class lies system A is a very strong property. A more relevant
question would be to determine how likely it is that A is in SN or SF given partial
observations, and whether this relative certainty passes some threshold in a bounded
time after that status of a system A has changed.
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