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Abstract. At the end of the eighties, continuous Petri nets were intro-
duced for: (1) alleviating the combinatory explosion triggered by discrete
Petri nets and, (2) modelling the behaviour of physical systems whose
state is composed of continuous variables. Since then several works have
established that the computational complexity of deciding some standard
behavioural properties of Petri nets is reduced in this framework. Here we
first establish the decidability of additional properties like boundedness
and reachability set inclusion. We also design new decision procedures
for the reachability and lim-reachability problems with a better compu-
tational complexity. Finally we provide lower bounds characterising the
exact complexity class of the boundedness, the reachability, the deadlock
freeness and the liveness problems.

1 Introduction

From Petri nets to continuous Petri nets. Continuous Petri nets (CPN)
were introduced in [5] by considering continuous states (specified by a non neg-
ative real number of tokens in places) where the dynamics of the system is
triggered either by discrete events or by a continuous evolution ruled by speed
of firings. In the former case such nets are called autonomous CPNs while in
the latter they are called timed CPNs. In both cases, the evolution is due to a
fractional transition firing (infinitesimal and simultaneous in the case of timed
CPNs).

Modelling with CPNs. CPNs have been used in several significant applica-
tion fields. In [3], a method based on CPNs is proposed for the fault diagnosis
of manufacturing systems that manage systems intractable with discrete Petri
nets (for modelling of manufacturing systems see also [17]). In [15], the authors
introduce a bottom-up modelling methodology based on CPNs to represent cell
metabolism and solve in this framework the regulation control problem. Combin-
ing discrete and continuous Petri nets yields hybrid Petri nets with applications
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to modelling and simulation of water distribution systems [9] and to the analysis
of traffic in urban networks [16].

Analysis of CPNs. While several analysis methods have been developed for
timed CPNs there is no hope for fully automatic techniques in the general case
since standard problems of dynamic systems are known to be undecidable even
for bounded nets [13].

Due to the semantics of autonomous CPNs, a marking can be the limit of
the markings visited along an infinite firing sequence. Thus most of the usual
properties are duplicated depending on whether these markings are considered
or not. When considering these markings, reachability (resp. liveness, deadlock-
freeness) becomes lim-reachability (resp. lim-liveness, lim-deadlock-freeness).

Contrary to the timed case, the analysis of autonomous CPNs (that we simply
call CPNs in the sequel) appears to be less complex than the one of discrete Petri
nets. In [10], exponential time decision procedures are proposed for the reach-
ability and lim-reachability problems for general CPNs. In [14] assuming addi-
tional hypotheses on the net, the authors design polynomial time decision pro-
cedures for (lim-)reachability and boundedness. In [13], (lim-)deadlock-freeness
and (lim-)liveness are shown to belong in coNP. These procedures are based on
“simple” characterisations of the properties.

Our contributions. First we revisit characterisations of properties in CPN
establishing an alternative characterisation for reachability and the first charac-
terisation for boundedness. Then based on these characterisations, we show that
(lim-)reachability and boundedness are decidable in polynomial time. We also es-
tablish that the (lim-)reachability set inclusion problem is decidable in exponen-
tial time. Finally we prove that (lim-)reachability and boundedness are PTIME-
hard and that (lim-)deadlock-freeness, (lim-)liveness and (lim-)reachability set
inclusion problems are coNP-hard. We establish these lower bounds even when
considering restricted cases of these problems.

Organisation. In Section 2, we introduce CPNs and the properties that we
are analysing. In Section 3, we develop the characterisations of reachability and
boundedness. Afterwards in Section 4, we design the decision procedures. Then,
we provide complexity lower bounds in Section 5. Finally in Section 6, we sum-
marise our results and give perspectives to this work. All missing proofs can be
found in [8].

2 Continuous Petri nets: definitions and properties

2.1 Continuous Petri nets

Notations. N (resp. Q, R) is the set of non negative integers (resp. rational, real
numbers). Given a set of numbers E, E≥0 (resp. E>0) denotes the subset of non
negative (resp. positive) numbers of E. Given an E×F matrix M with E and F
sets of indices, E′ ⊆ E and F ′ ⊆ F , the E′ ×F ′ submatrix ME′×F ′ denotes the
restriction of M to rows indexed by E′ and columns indexed by F ′. The support



of a vector v ∈ RE , denoted JvK, is defined by JvK def
= {e ∈ E | v[e] 6= 0}. 0

denotes the null vector. One writes v ≥ w when v is componentwise greater or
equal than w and v  w when v ≥ w and v 6= w. One writes v > w when
v is componentwise strictly greater than w. ‖v‖1 is the 1-norm of v defined by

‖v‖1
def
=

∑
e∈E |v[e]|. Let E′ ⊆ E, then v[E′] denotes the restriction of v to

components of E′.

Here, we adopt the following terminology: a net denotes the structure without
initial marking while a net system denotes a net with an initial marking. The
structure of CPNs and discrete nets are identical.

Definition 1 A Petri net (PN) is a tuple N = 〈P, T,Pre,Post〉 where:

– P is a finite set of places;
– T is a finite set of transitions, with P ∩ T = ∅;
– Pre (resp. Post), is the backward (resp. forward) P × T incidence matrix,

whose items belong to N.

The incidence matrix C is defined by C
def
= Post− Pre.

Given a place (resp. transition) v in P (resp. in T ), its preset, •v, is defined

as the set of its input transitions (resp. places): •v
def
= {t ∈ T | Post[v, t] > 0}

(resp. •v
def
= {p ∈ P | Pre[p, v] > 0}). Its postset v• is defined as the set

of its output transitions (resp. places): v•
def
= {t ∈ T | Pre[v, t] > 0} (resp.

v•
def
= {p ∈ P | Post[p, v] > 0}). This notion generalizes to a subset V of

places (resp. transitions) by: •V
def
=

⋃
v∈V

•v and V •
def
=

⋃
v∈V v

•. In addition,
•V •

def
= •V ∪ V •.

Given T ′ ⊆ T , NT ′ is the subnet of N such that its set of transitions is T ′

and its set of places is •T ′
•
, and its backward and forward incidence matrices

are respectively Pre•T ′•×T ′ and Post•T ′•×T ′ .

We define N−1 as the “reverse” net of N , in which the places and transitions
coincide, and its arcs are inverted.

Definition 2 Given a PN N = 〈P, T,Pre,Post〉, its reverse net N−1 is de-

fined by N−1 def
= 〈P, T,Post,Pre〉.

A continuous PN system consists of a net and a non negative real marking.

Definition 3 A CPN system is a tuple 〈N ,m0〉 where N is a PN and m0 ∈
RP≥0 is the initial marking.

When a CPN system is an input of a decision problem, the items of m0 are
rational numbers in order to characterise the complexity of the problem.

In discrete PNs the firing rule of a transition requires tokens specified by Pre
to be present in the corresponding places. In continuous PNs a non negative real
amount of transition firing is allowed and this amount scales the requirement
expressed by Pre and Post.



Definition 4 Let N be a CPN, t be a transition and m ∈ RP≥0 be a marking.

– The enabling degree of t w.r.t. m, enab(t,m) ∈ R≥0 ∪ ∞, is defined by:

enab(t,m)
def
= min{ m[p]

Pre[p,t] | p ∈
•t} (enab(t,m) =∞ iff •t = ∅).

– t is enabled in m if enab(t,m) > 0.
– t can be fired by any amount α ∈ R such that3 0 ≤ α ≤ enab(t,m), and its

firing leads to marking m′ defined by: for all p ∈ P , m′[p] = m[p]+αC[p, t].

The firing of t from m by an amount α leading to m′ is denoted as m αt−→ m′.
We illustrate the firing rule of a CPN with the system in Fig. 1(a) (example taken
from [10]). In the initial marking m0 = (1, 0, 1, 0), only transition t1 is enabled
and its enabling degree is 1. Hence, it can be fired by any real amount α s.t.
0 ≤ α ≤ 1. If t1 is fired by an amount of 0.5, marking m1 = (0.5, 0.5, 1, 0) is
reached. In m1, transitions t1 and t2 are enabled, with enabling degree both
equal to 0.5.

Let σ = α1t1 . . . αntn be a finite sequence with for all i, ti ∈ T and αi ∈ R≥0.

σ is firable from m0 if for all 1 ≤ i ≤ n there exist mi such that mi−1
αiti−→ mi.

This firing is denoted by m0
σ−→ mn. When the destination marking is irrelevant

we omit it and simply write m0
σ−→ . Let σ = α1t1 . . . αntn . . . be an infinite

sequence then σ is firable from m0 if for all n, α1t1 . . . αntn is firable from m0.
This firing is denoted as m0

σ−→∞ .

Given a finite or infinite sequence σ = α1t1 . . . αiti . . . and α ∈ R≥0, the

sequence ασ is defined by σ
def
= αα1t1 . . . ααiti . . .. Given two infinite sequences

σ = α1t1 . . . αiti . . . and σ′ = α′1t
′
1 . . . α

′
it
′
i . . ., the (non commutative) sum σ +

σ′ is defined by: σ + σ′
def
= α1t1α

′
1t
′
1 . . . αitiα

′
it
′
i . . .. This notion generalises to

arbitrary sequences by extending them to infinite sequences with null amounts
of firings (the selected transitions are irrelevant).

Let σ = α1t1 . . . αntn be a finite sequence and denote σ−1 = αntn . . . α1t1.

By definition of the reverse net, m σ−→ m′ in N iff m′ σ
−1

−→ m in N−1.

The Parikh image (also called firing count vector) of a (finite or infinite)
firing sequence σ = α1t1 . . . αntn . . . denoted −→σ ∈ (R≥0 ∪ {∞})T is defined by:
−→σ [t]

def
=

∑
i|ti=t αi. As in discrete PNs, when m σ−→ m′, m′ = m + C−→σ and

this equation is called the state equation.

A set of places P ′ is a siphon if •P ′ ⊆ P ′•. When a siphon does not contain
tokens in some marking, it will never contain tokens after any firing sequence
starting from this marking. One call it an empty siphon.

An interesting difference between discrete and continuous PN systems is that
the sequence of markings visited by an infinite firing sequence may converge
to a given marking. For example, let us consider again the CPN of Fig. 1(a),
and the marking m1 = (0.5, 0.5, 1, 0). From m1, 0.5t2 can be fired, reaching
m2 = (0.5, 0.5, 0, 0.5). From m2 transition t3 can be fired by an amount of 0.5,

3 So from every marking, any (even disabled) transition can fire by a null amount
without modifying the marking.
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Fig. 1. (a) A CPN system (b) its lim-reachability set [10]

leading to m3 = (0.5, 0.5, 0.5, 0). Iterating this process leads to the infinite fir-
ing sequence σ = 2−1t22−1t3 . . . 2

−nt22−nt3 . . . whose visited markings converge
toward (0.5, 0.5, 0, 0). Observe that the Parikh image −→σ =

−→
t2 +

−→
t3 does not

correspond to any finite firing sequence starting from m1.

t1 t2

p1

p2

Fig. 2. A simple CPN system.

Consider now the PN in Fig. 2 with initial marking m0 = (1, 0). Let σ =
1t1

1
2 t2

1
3 t1

1
4 t2 . . .

1
2i−1 t1

1
2i t2 . . . The sequence σ is infinite and its sequence of vis-

ited markings converges toward marking m defined by: m
def
= (1− log(2), log(2)).

Here −→σ =∞−→t1 +∞−→t2 .

Let σ be an infinite firing sequence starting from m whose sequence of visited
markings converges toward m′, one says that m′ is limit reachable from m which



is denoted by: m σ−→∞ m′. Thus in CPNs, two sets of reachable markings are
defined.

Definition 5 Given a CPN system 〈N ,m0〉,

– Its reachability set RS(N ,m0) is defined by:

RS(N ,m0)
def
= {m | there exists a finite sequence m0

σ−→ m}.
– Its lim-reachability set, lim−RS(N ,m0), is defined by:

lim−RS(N ,m0)
def
= {m | there exists an infinite sequence m0

σ−→∞ m}.

RS or lim−RS are convex sets (see Section 3) but not necessarily topologi-
cally closed. In Fig. 1, marking m = (1, 0, 0, 0) belongs to the closure of RS or
lim−RS, but it does not belong to these sets. Since an infinite sequence can in-
clude null amounts of firings, RS(N ,m0) ⊆ lim−RS(N ,m0). More interestingly,
for all m ∈ lim−RS(N ,m0), lim−RS(N ,m) ⊆ lim−RS(N ,m0) (see the proof
in appendix of [8]). So there is no need to consider iterations of lim-reachability.

2.2 CPN properties

Here we introduce the standard properties that a modeller wants to check on a
net. In the framework of CPNs, every property its defined either w.r.t. to the
reachability set or w.r.t. to the lim-reachability set.

Reachability is the main property as it is the core of safeness properties.

Definition 6 (reachability) Given a system 〈N ,m0〉 and a marking m, m
is (lim-)reachable in 〈N ,m0〉 if m ∈ (lim−)RS(N ,m0).

Boundedness is often related to the resources needed by the system. For CPN,
boundedness and lim-boundedness coincide [14].

Definition 7 (boundedness) A system 〈N ,m0〉 is (lim-)bounded if there ex-
ists b ∈ R≥0 such that for all m ∈ (lim−)RS(N ,m0) and all p ∈ P , m[p] ≤ b.

Deadlock-freeness ensures that a system will never reach a marking where no
transition is enabled, i.e a dead marking.

Definition 8 (deadlock-freeness) A system 〈N ,m0〉 is (lim-)deadlock-free if
for all m ∈ (lim−)RS(N ,m0), there exists t ∈ T such that t is enabled at m.

The net of Fig. 1 is deadlock-free but not lim-deadlock-free: m
def
= (0, 1, 0, 0)

is a dead marking which is limit-reachable but not reachable and no reachable
marking is dead.

Liveness ensures that whatever the reachable state, any transition will be
fireable in some future. So the system never “looses its capacities”.

Definition 9 (liveness) A system 〈N ,m0〉 is (lim-)live if for all transition t
and for all marking m ∈ (lim−)RS(N ,m0) there exists m′ ∈ (lim−)RS(N ,m)
such that t is enabled at m′.



The net of Fig. 1 is neither live nor lim-live: once t1 becomes disabled, it will
remain so whatever the finite or infinite firing sequence considered.

A home state is a marking that can be reached whatever the current state.
This property can express for instance that recovering from faults is always
possible. A net is reversible if its initial marking is an home state. Both properties
are particular cases of the reachability set inclusion problem.

Definition 10 (reachability set inclusion)
Given systems 〈N ,m0〉 and 〈N ′,m′0〉 with P = P ′, 〈N ,m0〉 is (lim-)reachable
included in 〈N ′,m′0〉 if (lim−)RS(N ,m0) ⊆ (lim−)RS(N ′,m′0).

A marking m is a home state if RS(N ,m0) ⊆ RS(N−1,m).
When m = m0, one says that 〈N ,m0〉 is reversible.

The following table summarises the results already known about the com-
plexity of the associated decision problems. A net is consistent if there exists
a vector v ∈ R≥0 with JvK = T and Cv = 0. No lower bounds have been
established.

Table 1. Complexity bounds: previous results

Problems Upper bounds

(lim-)reachability in EXPTIME [10]
in PTIME for lim-reachability
when all transitions are fireable at least once
and the net is consistent [14]

(lim-)boundedness in PTIME
when all transitions are fireable at least once [14]

(lim-)deadlock-freeness in coNP [13]

(lim-)liveness in coNP [13]

(lim-)reachability no result
set inclusion

3 Properties characterisations

3.1 Preliminary results about reachability and firing sequences

Most of the results of this subsection are generalisations of results given in [14,
10].

The following lemma is an almost immediate consequence of firing definition
and has for corollary the convexity of the (lim-)reachability set. In this lemma
depending on the sequences −→(∞) denotes either −→ or −→∞ .



Lemma 11 Given a CPN system 〈N ,m0〉, (finite or infinite) sequences σ, σ1, σ2
markings m,m′,m1,m2,m

′
1,m

′
2 and α, α1, α2 ∈ R>0:

(0) m1
σ−→ m′1 and m1 ≤m2 implies m2

σ−→ m′2 with m′1 ≤m′2
(1) m σ−→(∞) m iff αm ασ−→(∞) αm

′

(2) m σ−→∞ iff αm ασ−→∞
(3) m1

σ1−→(∞) m′1 and m2
σ2−→(∞) m′2 implies m1 + m2

σ1+σ2−→ (∞) m′1 + m′2

(4) m1
σ1−→∞ and m2

σ2−→∞ implies m1 + m2
σ1+σ2−→ ∞

(5) m1
α1σ−→(∞) m′1 and m2

α2σ−→(∞) m′2 implies m1 +m2
(α1+α2)σ−→ (∞) m′1 +m′2

(6) m1
α1σ−→∞ and m2

α2σ−→∞ implies m1 + m2
(α1+α2)σ−→ ∞

The two next lemmas constitute a first step for the characterisation of reacha-
bility since they provide sufficient conditions for reachability and lim-reachability
in particular cases.

Lemma 12 Let 〈N ,m0〉 be a continuous system, m be a marking and v ∈ RT≥0
that fulfill:

– m = m0 + Cv;
– ∀p ∈ •JvK m0[p] > 0;
– ∀p ∈ JvK• m[p] > 0.

Then there exists a finite sequence σ such that m0
σ−→ m and −→σ = v.

Proof. Define α1
def
= min( m0[p]∑

t∈JvK Pre[p,t]v[t] | p ∈
•JvK)

and α2
def
= min( m[p]∑

t∈JvK Post[p,t]v[t] | p ∈ JvK•) with the convention that α1
def
= 1

(resp. α2
def
= 1) if •JvK (resp. JvK•) is empty.

Due to the second and the third hypotheses α1 and α2 are positive.

Let n
def
= max(d 1

min(α1,α2)
e, 2).

Denote JvK def
= {t1, . . . , tk} and define σ′

def
= v[t1]

n t1 . . .
v[tk]
n tk and σ

def
= σ′n.

We claim that σ is the required firing sequence.

Let us denote mi
def
= m0 + i

nCv. Thus m = mn.

By definition of α1 and n, inN m0
σ′−→ m1 and by definition of α2, mn

σ′−1

−→ mn−1

in N−1. So in N mn−1
σ′−→ mn.

Let 1 < i < n− 1.

Using lemma 11, n−1−in−1 m0

n−1−i
n−1 σ′

−→ n−1−i
n−1 m1 and i

n−1mn−1
i

n−1σ
′

−→ i
n−1mn.

Using lemma 11 again and summing, one gets: m = mi
σ′−→ mi+1.

Lemma 13 Let 〈N ,m0〉 be a continuous system, m be a marking and v ∈ RT≥0
that fulfill:

– m = m0 + Cv;
– ∀p ∈ •JvK• m0[p] > 0.



Then there exists an infinite sequence σ such that m0
σ−→∞ m and −→σ = v.

Proof. Let mi be inductively defined by mi+1 = 1
2mi + 1

2m. and for i ≥ 1, let
vi = 1

2i v (thus JviK = JvK). Observe that mi = 1
2im0 + (1− 1

2i )m. So:

– mi+1 = mi + Cvi;
– ∀p ∈ •JviK• mi[p] > 0 and mi+1[p] > 0.

Applying lemma 12, for all i ≥ 1 there exists σi such that mi
σi−→ mi+1. Since

limi→∞mi = m, the sequence σ = σ1σ2 . . . is the required sequence.

p1

t1

p2 pn+1
...

pn

t2 tn

t2 tn 't1 '  '

Fig. 3. a CPN system with an exponentially sized firing set.

The key concept in order to get characterisation of properties, is the notion
of firing set of a CPN system [10].

Definition 14 Let 〈N ,m0〉 be a CPN system. Then its firing set FS(N ,m0) ⊆
2T is defined by:

FS(N ,m0) = {J−→σ K |m0
σ−→ }

Due to the empty sequence, ∅ ∈ FS(N ,m0). The size of a firing set may be
exponential w.r.t. the number of transitions of the net. For example, consider
the CPN system of Fig. 3. Its firing set is:

{T ′ | ∀1 ≤ j < i ≤ n {ti, t′i} ∩ T ′ 6= ∅ ⇒ {tj , t′j} 6= ∅}

Thus its size is at least 2
|T |
2 .

The next two lemmas establish elementary properties of the firing set and
leads to new notions.

Lemma 15 Let N be a CPN and m,m′ be two markings such that JmK = Jm′K.
Then FS(N ,m) = FS(N ,m′).



Proof. Since JmK = Jm′K, there exists α > 0 such that αm ≤m′.
Let m σ−→ . Using lemma 11 αm ασ−→ . Since αm ≤m′, m′ ασ−→ .
Thus FS(N ,m) ⊆ FS(N ,m′). By symmetry, FS(N ,m) = FS(N ,m′).

So given P ′ ⊆ P , without ambiguity we define FS(N , P ′) by:

FS(N , P ′) def
= FS(N ,m) for any m such that P ′ = JmK

Lemma 16 Let 〈N ,m0〉 be a CPN system. Then FS(N ,m0) is closed by union.

Proof. Let m0
σ−→ and m0

σ′−→ .

Then using three times lemma 11, 0.5m0
0.5σ−→ , 0.5m0

0.5σ′−→ and m0
0.5σ+0.5σ′−→ .

Since J
−−−−−−−−→
0.5σ + 0.5σ′K = J−→σ K ∪ J

−→
σ′K, the conclusion follows.

Notation. We denote maxFS(N ,m0) the maximal set of FS(N ,m0) that is the
union of all members of FS(N ,m0).

The next proposition is a structural characterisation for a subset of transi-
tions to belong to the firing set. In addition, it shows that in the positive case,
a “useful” corresponding sequence always exists and furthermore one may build
this sequence in polynomial time.

Proposition 17 Let 〈N ,m0〉 be a CPN system and T ′ be a subset of transi-
tions. Then:

T ′ ∈ FS(N ,m0) iff NT ′ has no empty siphon in m0.
Furthermore if T ′ ∈ FS(N ,m0) then there exists σ = α1t1 . . . αktk with αi > 0
for all i, T ′ = {t1, . . . , tk} and a marking m such that:

– m0
σ−→ m;

– for all place p, m(p) > 0 iff m0(p) > 0 or p ∈ •T ′•.

Proof.
Necessity. Suppose NT ′ contains an empty siphon Σ in m0. Then none of the
transitions belonging Σ• can be fired in the future. Since NT ′ does not contain
isolated places Σ•(= •Σ•) 6= ∅ and so T ′ 6∈ FS(N ,m0).

Sufficiency. Suppose that NT ′ has no empty siphon in m0. We build by induc-
tion the sequence σ of the proposition. More precisely, we inductively prove for
increasing values of i that:

– for every j < i there exists a non empty set of transitions Tj ⊆ T ′ that fulfill
for all j 6= j′, Tj ∩ Tj′ = ∅;

– for every j ≤ i there exists a marking mj with mj(p) > 0 iff
m0(p) > 0 or p ∈ •Tk• for some k < j;

– for every j < i there exists a sequence σj = αj,1tj,1 . . . αj,kj tj,kj with
Tj = {tj,1 . . . tj,kj} and mj

σ−→ mj+1.

There is nothing to prove for the basis case i = 0.
Suppose that the assertion holds until i. If T ′ = T1∪ . . .∪Ti−1 then we are done.
Otherwise define T ′′ = T ′ \ (T1 ∪ . . . ∪ Ti−1) and Ti = {t enabled in mi | t ∈
T ′′}. We claim that Ti is not empty. Otherwise for all t ∈ T ′′, there exists



an empty place pt in mi. Due to the inductive hypothesis, m0(pt) = 0 and
•pt ∩ (T1 ∪ . . . ∪ Ti−1) = ∅. So the union of places pt is an empty siphon of
〈NT ′ ,m0〉 which contradicts our hypothesis.

Let us denote Ti = {ti,1 . . . ti,ki}. Define α = min(mi(p)
2ki

| p ∈ •Ti) with the
convention that α = 1 if •Ti = ∅. The sequence σi = αti,1 . . . αti,ki is fireable
from mi and leads to a marking mi+1 fulfilling the inductive hypothesis.

Since T ′′ is finite the procedure terminates.

Algorithm 1: Decision algorithm for membership of FS(N ,m0)

Fireable(〈N ,m0〉, T ′): status
Input: a CPN system 〈N ,m0〉, a subset of transitions T ′

Output: the membership status of T ′ w.r.t. FS(N ,m0)
Output: in the negative case the maximal firing set included in T ′

Data: new: boolean; P ′: subset of places; T ′′: subset of transitions
1 T ′′ ← ∅; P ′ ← Jm0K
2 while T ′′ 6= T ′ do
3 new ← false
4 for t ∈ T ′ \ T ′′ do
5 if •t ⊆ P ′ then T ′′ ← T ′′ ∪ {t}; P ′ ← P ′ ∪ t•; new ← true
6 end
7 if not new then return (false, T ′′)

8 end
9 return true

We include the complexity result below since its proof relies in a straightfor-
ward manner on the sufficiency proof of the previous proposition.

Corollary 18 Let 〈N ,m0〉 be a CPN system and T ′ be a subset of transitions.
Then algorithm 1 checks in polynomial time whether T ′ ∈ FS(N ,m0) and in
the negative case returns the maximal firing set included in T ′ (when called with
T = T ′, it returns maxFS(N ,m0)).

3.2 Characterisation of reachability and boundedness

In [10] a characterisation of reachability was presented. The theorem below is
an alternative characterisation that only relies on the state equation and firing
sets.

Theorem 19 Let 〈N ,m0〉 be a CPN system and m be a marking.

Then m ∈ RS(N ,m0) iff there exists v ∈ R|T |≥0 such that:

1. m = m0 + Cv
2. JvK ∈ FS(N ,m0)
3. JvK ∈ FS(N−1,m)



Proof.
Necessity. Let m ∈ RS(N ,m0). So there exists a finite firing sequence σ such
that m0

σ−→ m. Let v = −→σ , then m = m0 + Cv.

Since σ is fireable from mo in N , JvK ∈ FS(N ,m0). In N−1, m σ−1

−→ m0. Since

v =
−−→
σ−1, JvK ∈ FS(N−1,m).

Sufficiency. Since JvK ∈ FS(N ,m0), using Proposition 17 and Lemma 11 there
exists a sequence σ1 such that JvK = J−→σ1K, for all 0 < α1 ≤ 1, m0

α1σ1−→ m1 with
m1(p) > 0 for p ∈ •JvK•.
Since JvK ∈ FS(N−1,m), using Proposition 17 and Lemma 11 there exists a
sequence σ2 such that JvK = J−→σ2K, for all 0 < α2 ≤ 1, m α2σ2−→ m2 in N−1 with
m2(p) > 0 for p ∈ •JvK•.
Choose α1 and α2 enough small such that the vector v′ = v − α1

−→σ1 − α2
−→σ2 is

non negative and Jv′K = JvK. This is possible since JvK = J−→σ1K = J−→σ2K.
Since m2 = m1 + Cv′ and m1,m2 fulfill the hypotheses of Lemma 12, there
exists a sequence σ3 such that v′ = −→σ3 and m1

σ3−→ m2.
Let σ = (α1σ1)σ3(α2σ2)−1 then m0

σ−→ m.

The following characterisation has been stated in [10]. We include the proof
here since in that paper, the proof of necessity was not developed.

Theorem 20 Let 〈N ,m0〉 be a CPN system and m be a marking.

Then m ∈ lim−RS(N ,m0) iff there exists v ∈ R|T |≥0 such that:

1. m = m0 + Cv
2. JvK ∈ FS(N ,m0)

Proof.
Necessity. Let m ∈ lim−RS(N ,m0). So there exists a firing sequence σ =

α1t1 . . . αntn . . . such that m = limn→∞mn, where mn
αn+1tn+1−→ mn+1.

Thus there exists B ∈ N such that for all p ∈ P and all n ∈ N, mn[p] ≤ B.

Let T ′
def
= {t | ∃i ∈ N t = ti}. There exists n0 such that T ′ = {t | ∃i ≤ n0 t = ti}

and so T ′ ∈ FS(N ,m0).
Let α ∈ Q>0 such that α ≤ min(

∑
i≤n0,ti=t

αi | t ∈ T ′).
Let us define LPn an existential linear program where v ∈ RT is the vector of
variables by:

1. mn −m0 = Cv
2. ∀t ∈ T ′ v[t] ≥ α
3. ∀t ∈ T \ T ′ v[t] = 0

Due to the existence of the firing sequence σ, for all n ≥ n0 LPn admits a
solution. Using linear programming theory (see [12]), since mn[p] ≤ B for all n
and all p, there exists B′ such that for all n ≥ n0, LPn admits a solution vn
whose items are bounded by B′.



So the sequence {vn}n≥n0
admits a subsequence that converges to some v. By

continuity, v fulfills m−m0 = Cv,∀t ∈ T ′ v[t] ≥ α and ∀t ∈ T \ T ′ v[t] = 0.
So JvK = T ′ and v is the desired vector.

Sufficiency. Since JvK ∈ FS(N ,m0), using Proposition 17 and Lemma 11 there
exists a sequence σ1 such that JvK = J−→σ1K, for all 0 < α1 ≤ 1, m0

α1σ1−→ m1 with
m1(p) > 0 for p ∈ •JvK•.
Choose α1 enough small such that the vector v′ = v−α1

−→σ1 is non negative and
Jv′K = JvK. This is possible since JvK = J−→σ1K.
Since m = m1 + Cv′ and m1 fulfills the hypotheses of lemma 13, there exists
an infinite sequence σ2 such that v′ = −→σ2 and m1

σ2−→∞ m.
Let σ = (α1σ1)σ2 then m0

σ−→∞ m.

We present below the first characterisation of boundedness for CPN systems.

Theorem 21 Given a CPN system 〈N ,m0〉. Then 〈N ,m0〉 is unbounded iff:
There exists v ∈ RT≥0 such that Cv  0 and JvK ⊆ maxFS(N ,m0).

Proof.
Sufficiency. Assume there exists v ∈ RT≥0 such that Cv  0 and JvK ⊆
maxFS(N ,m0). Denote T ′

def
= maxFS(N ,m0). Using proposition 17, there exists

m1 ∈ RS(N ,m0) such that for all p ∈ •T ′•, m1(p) > 0. Define m2
def
= m1+Cv,

thus m2 m1. Since JvK ⊆ T ′, m1 and m2 fulfill the hypotheses of lemma 12.
Applying it, yields a firing sequence m1

σ−→ m2. Iterating this sequence estab-
lishes the unboundedness of 〈N ,m0〉.
Necessity. Assume 〈N ,m0〉 is unbounded. Then there exists p ∈ P and a
family of firing sequences {σn}n∈N such that m0

σn−→ mn and mn(p) ≥ n. Since
{J−→σ nK}n∈N is finite by extracting a subsequence w.l.o.g. we can assume that all
these sequences have the same support, say T ′ ⊆ maxFS(N ,m0).

Let vn
def
= C−→σ n. Define wn = vn

‖vn‖1 . Since {wn}n∈N belongs to a compact set,

there exists a convergent subsequence {wα(n)}n∈N. Denote w its limit. Since
‖w‖1 = 1, w is non null. We claim that w is a non negative vector. Since
mn(p) ≥ n, ‖vn‖1 ≥ vn[p] ≥ n −m0[p]. On the other hand, for all p′ ∈ P ,

wn[p′] ≥ −m0[p
′]

‖vn‖1 . Combining the two inequalities, for n > m0[p], wn[p′] ≥
−m0[p

′]
n−m0[p]

. Applying this inequality to α(n) and letting n go to infinity yields

w[p′] ≥ 0.
Due to standard results of polyhedra theory (see [1] for instance), the set
{CP×T ′u | u ∈ RT ′≥0} is closed. So there exists u ∈ RT ′≥0 such that w = Cu.

Considering u as a vector of RT≥0 by adding null components for T \ T ′ yields
the required vector.

4 Decision procedures

Naively implementing the characterisation of reachability would lead to an expo-
nential procedure since it would require to enumerate the items of FS(N ,m0)



(whose size is possibly exponential). For each item, say T ′, the algorithm would
check in polynomial time (1) whether T ′ belongs to FS(N−1,m) and (2) whether
the associated linear program v > 0 ∧ CP×T ′v = m −m0 admits a solution.
Guessing T ′ shows that the reachability problem belongs to NP.

Algorithm 2: Decision algorithm for reachability

Reachable(〈N ,m0〉,m): status
Input: a CPN system 〈N ,m0〉, a marking m
Output: the reachability status of m
Output: the Parikh image of a witness in the positive case
Data: nbsol: integer; v, sol: vectors; T ′: subset of transitions

1 if m = m0 then return (true,0)
2 T ′ ← T
3 while T ′ 6= ∅ do
4 nbsol← 0; sol← 0
5 for t ∈ T ′ do
6 solve ∃?v v ≥ 0 ∧ v[t] > 0 ∧CP×T ′v = m−m0

7 if ∃v then nbsol← nbsol + 1; sol← sol + v

8 end
9 if nbsol = 0 then return false else sol← 1

nbsol
sol

10 T ′ ← JsolK
11 T ′ ← T ′ ∩ maxFS(NT ′ ,m0[•T ′

•
])

12 T ′ ← T ′ ∩ maxFS(N−1
T ′ ,m[•T ′

•
]) /* deleted for lim-reachability */

13 if T ′ = JsolK then return (true,sol)

14 end
15 return false

In fact, we improve this upper bound with the help of Algorithm 2. When
m 6= m0, this algorithm maintains a subset of transitions T ′ which fulfills
J−→σ K ⊆ T ′ for any m0

σ−→ m (as will be proven in proposition 22). Initially
T ′ is set to T . Then lines 4-9 build a solution to the state equation restricted
to transitions of T ′ with a maximal support (if there is at least one). If there
is no solution then the algorithm returns false. Otherwise T ′ is successively re-
stricted to (1) the support of this maximal solution (line 10), (2) the maximal
firing set in maxFS(NT ′ ,m0[•T ′

•
]) (line 11) and, (3) the maximal firing set in

maxFS(N−1T ′ ,m[•T ′
•
]) (line 12). If the two last restrictions do not modify T ′ then

the algorithm returns true. If T ′ becomes empty then the algorithm returns false.

Omitting line 12, Algorithm 2 decides the lim-reachability problem.

Proposition 22 Algorithm 2 returns true iff m is reachable in 〈N ,m0〉.
Algorithm 2 without line 12 returns true iff m is lim-reachable in 〈N ,m0〉.

Proof. We only consider the non trivial case m 6= m0.
Soundness. Assume that the algorithm returns true at line 13.
By definition, vector sol which is a barycenter of solutions is also a solution



with maximal support and so fulfils the first statement of Theorem 19. Since
T ′ = JsolK at line 13, JsolK ∈ FS(N ,m0) due to line 11 and JsolK ∈ FS(N−1,m)
due to line 12. Thus m is reachable in 〈N ,m0〉 since it fulfills the assertions of
Theorem 19. In case of lim-reachability, line 12 is omitted. So the assertions of
Theorem 20 are fulfilled and m is lim-reachable in 〈N ,m0〉.
Completeness. Assume the algorithm returns false.
We claim that at any time the algorithm fulfils the following invariant: for any
m0

σ−→ m, J−→σ K ⊆ T ′.
This invariant initially holds since T ′ = T . At line 10 due to the first as-
sertion of Theorem 19, for any such σ, J−→σ K ⊆ JsolK since sol is a solution
with maximal support. So the assignment of line 10 lets true the invariant.
Due to the second assertion of Theorem 19 and the invariant, any σ fulfils
J−→σ K ⊆ maxFS(NT ′ ,m0[•T ′

•
]). So the assignment of line 11 lets true the in-

variant. Due to the third assertion of Theorem 19 and the invariant, any σ fulfils
J−→σ K ⊆ maxFS(N−1T ′ ,m[•T ′

•
]). So the assignment of line 12 lets true the invariant.

If the algorithm returns false at line 9 due to the invariant the first assertion of
Theorem 19 cannot be satisfied. If the algorithm returns false at line 15 then
T ′ = ∅. So due to the invariant and since m 6= m0, m is not reachable from m0.

The case of lim-reachability is similarly handled with the following invariant: for
any m0

σ−→∞ m, J−→σ K ⊆ T ′.

Proposition 23 The reachability and the lim-reachability problems for CPN
systems are decidable in polynomial time.

Proof. Let us analyse the time complexity of Algorithm 2. Since T ′ must be
modified in lines 11 or 12 in order to start a new iteration of the main loop, there
are at most |T | iterations of this loop. The number of iterations of the inner loop
is also bounded by |T |. Finally solving a linear program can be performed in
polynomial time [12] as well as computing the maximal item of a firing set (see
corollary 18).

In [10], it is proven that the lim-reachability problem for consistent CPN
systems with no empty siphons in the initial marking is decidable in polynomial
time. We improve this result by showing that this problem and a similar one
belong to NC ⊆ PTIME (a complexity class of problems that can take advantage
of parallel computations, see [11]).

Proposition 24 The reachability problem for consistent CPN systems with no
empty siphons in the initial marking and no empty siphons in the final marking
for the reverse net belongs to NC.
The lim-reachability problem for consistent CPN systems with no empty siphons
in the initial marking belongs to NC.

Proof. Due to the assumptions on siphons and proposition 17 only the first
assertion of Theorems 19 and 20 needs to be checked. Due to consistency, there
exists w > 0 such that Cw = 0. Assume there is some v ∈ RT such that
m −m0 = Cv. For some n ∈ N large enough, v′

def
= v + nw ∈ RT≥0 and still

fulfils m−m0 = Cv′.



Now the decision problem ∃?v ∈ RT m−m0 = Cv belongs to NC [4].

Proposition 25 The boundedness problem for CPN systems is decidable in
polynomial time.

Proof. Using the characterisation of Theorem 21, one first computes in polyno-
mial time T ′ = maxFS(N ,m0) (see corollary 18). Then for all p ∈ P , one solves
the existential linear program ∃?v ≥ 0 CP×T ′v ≥ 0 ∧ (CP×T ′v)[p] > 0. The
CPN system is unbounded if some of these linear programs admits a solution.

In discrete Petri nets, the reachability set inclusion problem is undecidable,
while the restricted problem of home state is decidable (see [7] for a detailed
survey about decidability results in PNs). In CPN systems, this problem is de-
cidable thanks to the special structure of the (lim-)reachability sets.

Proposition 26 The reachability set inclusion and the lim-reachability set in-
clusion problems for CPN systems are decidable in exponential time.

Proof. Let us define TP
def
= {(T ′, P ′) | T ′ ∈ FS(N ,m0) ∧ P ′ ⊆ P ∧ T ′ ∈

FS(N−1, P ′)}. For every pair (T ′, P ′) ∈ TP , define the polyhedron ET ′,P ′ over

RP × RT ′ by:

ET ′,P ′
def
= {(m,v) |m[P ′] > 0 ∧m[P \ P ′] = 0 ∧ v > 0 ∧m = CP×T ′v}

and RT ′,P ′ by: RT ′,P ′
def
= {m | ∃v (m,v) ∈ ET ′,P ′}

Using the characterisation of Theorem 19 and Lemma 15,
RS(N ,m0) =

⋃
(T ′,P ′)∈TP RT ′,P ′ .

Due to Lemma 11, the reachability set of a CPN system is convex. So RS(N ,m0)
can be rewritten as:

RS(N ,m0) = {
∑

(T ′,P ′)∈TP

λT ′,P ′mT ′,P ′ |

∑
(T ′,P ′)∈TP

λT ′,P ′ = 1 ∧ ∀(T ′, P ′) ∈ TP λT ′,P ′ ≥ 0 ∧mT ′,P ′ ∈ RT ′,P ′}

Observe that this representation is exponential w.r.t. the size of the CPN system.

Let 〈N ,m0〉 and 〈N ′,m′0〉 be two CPN systems for which one wants to check
whether RS(N ,m0) ⊆ RS(N ′,m′0). One builds the representation above for
RS(N ,m0) and RS(N ′,m′0). Then one transforms the representation of the set
RS(N ′,m′0) as a system of linear constraints. This can be done in polynomial
time w.r.t. the original representation [2]. So the number of constraints is still
exponential w.r.t. the size of 〈N ′,m′0〉.
Afterwards for every constraint of this new representation, one adds its negation
to the representation of RS(N ,m0) and check for a solution of such a system.
RS(N ,m0) 6⊆ RS(N ′,m′0) iff at least one of these linear programs admits a
solution. The overall complexity of this procedure is still exponential w.r.t. the
size of the problem. The procedure for lim-reachability set inclusion is similar.



5 Hardness results

We now provide matching lower bounds for almost all problems analysed in the
previous sections.

Proposition 27 The reachability, lim-reachability and boundedness problems
for CPN systems are PTIME-complete.

We want to prove that the lower bounds are robust. To this aim, we recall
free-choice CPNs.

Definition 28 A CPN N is free-choice if:

– ∀p ∈ P ∀t ∈ T{Pre[p, t],Post[p, t]} ⊆ {0, 1};
– ∀t, t′ ∈ T •t ∩ •t′ 6= ∅ ⇒ •t = •t′.

b1

l11

t1 f1

nc1

suc

nc2 nc3

l12 l31 l32

l21 l22 l23

b2

t2 f2 t3 f3

b3

back

Fig. 4. The CPN corresponding to formula (¬x1 ∨¬x3)∧ (x1 ∨¬x2 ∨ x3)∧ (x2 ∨¬x3).

Proposition 29 The (lim-)deadlock-freeness and (lim-)liveness problems in free-
choice CPN systems are coNP-hard.



Proof. We use almost the same reduction from the 3SAT problem as the one
proposed for free-choice Petri nets in [6]. However the proof of correctness is
specific to continuous nets.

Let {x1, x2, . . . , xn} denote the set of propositions and {c1, c2, . . . , cm} denote

the set of clauses. Every clause cj is defined by cj
def
= litj1 ∨ litj2 ∨ litj3 where

for all j, k, litjk ∈ {x1, . . . , xn,¬x1, . . . ,¬xn}. The satisfiability problem consists
in the existence of an interpretation ν : {x1, x2, . . . , xn} −→ {false, true}, such
that for all clause cj , ν(cj) = true.

Every proposition xi yields a place bi initially marked with a token (all other
places are unmarked) and input of two transitions ti, fi corresponding to the
assignment associated with an interpretation. Every of literal litjk yields a place
ljk which is the output of transition ti if litjk = xi or transition fi if litjk = ¬xi
Every clause cj yields a transition ncj with three input “literal” places corre-
sponding to literals ¬litj1,¬litj2,¬litj3. An additional place suc is the output
of every transition ncj . Finally, transition back has suc as a loop place and bi
for all i as output places. The reduction is illustrated in Fig. 4.

Assume that there exists ν such that for all clause cj , ν(cj) = true. Then fire the
following sequence σ = 1t∗1 . . . 1t

∗
n where t∗i = ti when ν(xi) = true and t∗i = fi

when ν(xi) = false. Consider m the reached marking. Since ν(cj) = true, at
least one input place of ncj is empty in m. Moreover m(suc) = m(bi) = 0 for
all i. So m is dead.

Assume that there does not exist ν such that for all clause cj , ν(cj) = true.
Observe that given a marking m such that m(suc) > 0 all transitions will be
fireable in the future and suc will never decrease (thus m(suc) > 0 for a lim-
reachable marking m as well).

So we only consider reachable marking m such that m(suc) = 0, i.e. when no
transitions ncj have been fired. Our goal is to prove that from such marking
there is a sequence that produces tokens in suc. Examining the remaining tran-
sitions, the following invariants hold. For all atomic proposition xi, and reachable
marking m, one has

∀i m[bi] +
∑

ljk∈{xi,¬xi}

m[ljk] ≥ 1

∀j, k, j′, k′ litjk = litj′k′ ⇒m[ljk] = m[lj′k′ ]

If for some i, m[bi] > 0, we fire ti in order to empty bi. Thus the invariants
become:

∀i
∑

ljk∈{xi,¬xi}

m[ljk] ≥ 1

∀j, k, j′, k′ litjk = litj′k′ ⇒m[ljk] = m[lj′k′ ]

Now define ν by ν(xi) = true if for some litjk = xi, m(ljk) > 0. Due to the
hypothesis, there is a clause cj such that ν(cj) = false. Due to our choice of ν
and the invariants, all inputs of ncj are marked. So firing ncj marks suc.



We show that even the hypotheses that allow the lim-reachability to belong
in NC do not reduce the complexity of other problems.

Proposition 30 The (lim-)deadlock-freeness, (lim-)liveness and reversibility prob-
lems in consistent CPN systems with no initially empty siphons are coNP-hard.

6 Conclusions

In this work we have analysed the complexity of the most standard problems
for continuous Petri nets. For almost all these problems, we have characterised
their complexity class by designing new decision procedures and/or providing
reductions to complete problems. We have also shown that the reachability set
inclusion, undecidable for Petri nets, becomes decidable in the continuous frame-
work. These results are summarised in Table 2.

There are three fruitful possible extensions of this work. Other properties like
coverability could be studied. A temporal logic provides a specification language
for expressing properties. In Petri nets, the model checking problem lies on the
boundary of decidability depending on the type of logics (branching versus lin-
ear, propositional versus evenemential). We want to investigate this problem for
continuous Petri nets. Hybrid Petri nets encompass both discrete and continuous
Petri nets. So it would be interesting to examine the complexity and decidability
of standard problems for the whole class or some appropriate subclasses of this
formalism.

Table 2. Complexity bounds

Problems Upper and lower bounds

(lim-)reachability PTIME-complete
in NC for lim-reachability (resp. reachability)
when all transitions are fireable at least once
(resp. and also in the reverse CPN)
and the net is consistent

(lim-)boundedness PTIME-complete

(lim-)deadlock-freeness coNP-complete
and (lim-)liveness coNP-hard even for free-choice CPNs

or for CPNs when all transitions are fireable at least once
and the net is consistent

(lim-)reachability in EXPTIME
set inclusion coNP-hard even for reversibility in CPNs

when all transitions are fireable at least once
and the net is consistent
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