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Abstract. At the end of the eighties, continuous Petri nets were introduced for: (1) alleviating the
combinatory explosion triggered by discrete Petri nets (i.e. usual Petri nets) and, (2) modelling the
behaviour of physical systems whose state is composed of continuous variables. Since then several
works have established that the computational complexity of deciding some standard behavioural
properties of Petri nets is reduced in this framework. Here we first establish the decidability of
additional properties like coverability, boundedness and reachability set inclusion. We also design
new decision procedures for reachability and lim-reachability problems with a better computational
complexity. Finally we provide lower bounds characterising the exact complexity class of the reach-
ability, the coverability, the boundedness, the deadlock freeness and the liveness problems. A small
case study is introduced and analysed with these new procedures.
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1. Introduction

From Petri nets to continuous Petri nets. Continuous Petri nets (CPN) were introduced in [5] by
considering continuous states (specified by nonnegative real numbers of tokens in places) where the
dynamics of the system is triggered either by discrete events or by a continuous evolution ruled by the
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speed of firings. In the former case, such nets are called autonomous CPNs while in the latter they are
called timed CPNs. In both cases, the evolution is due to a fractional transition firing (infinitesimal and
simultaneous in the case of timed CPNs).
Modelling with CPNs. CPNs have been used in several significant application fields. In [3], a method
based on CPNs is proposed for the fault diagnosis of manufacturing systems while such a diagnosis is
intractable with discrete Petri nets (for modelling of manufacturing systems see also [18]). In [16], the
authors introduce a bottom-up modelling methodology based on CPNs to represent cell metabolism and
solve in this framework the regulation control problem. Combining discrete and continuous Petri nets
yields hybrid Petri nets, with applications to modelling and simulation of water distribution systems [9]
and to the analysis of traffic in urban networks [17].
Analysis of CPNs. While several analysis methods have been developed for timed CPNs, there is no
hope for fully automatic techniques in the general case since standard problems of dynamic systems are
known to be undecidable even for bounded nets [14].

Due to the semantics of autonomous CPNs, a marking can be the limit of the markings visited along
an infinite firing sequence. Thus most of the usual properties are duplicated depending on whether
these markings are considered or not. Taking into account these markings, reachability (resp. liveness,
deadlock-freeness) becomes lim-reachability (resp. lim-liveness, lim-deadlock-freeness).

Contrary to the timed case, the analysis of autonomous CPNs (that we simply call CPNs in the
sequel) appears to be less complex than the one of discrete Petri nets. In [10], exponential time decision
procedures are proposed for the reachability and lim-reachability problems for general CPNs. In [15],
assuming additional hypotheses on the net, the authors design polynomial time decision procedures for
(lim-)reachability and boundedness. In [14], (lim-)deadlock-freeness and (lim-)liveness are shown to
belong in coNP. These procedures are based on “simple” characterisations of the properties.
Our contributions. First we revisit characterisations of properties in CPN establishing an alternative
characterisation for reachability and the first characterisation for coverability and boundedness. Then,
based on these characterisations, we show that (lim-)reachability, (lim-)coverability and boundedness are
decidable in polynomial time. We also establish that the (lim-)reachability set inclusion problem is decid-
able in exponential time. Finally we prove that (lim-)reachability, (lim-)coverability and boundedness are
PTIME-hard and that (lim-)deadlock-freeness, (lim-)liveness and (lim-)reachability set inclusion prob-
lems are coNP-hard. We establish these lower bounds even when considering restricted cases of these
problems.
Organisation. In Section 2, we introduce CPNs and the properties that we are analysing. In Section 3,
we develop the characterisations of reachability, coverability and boundedness. Afterwards in Section 4,
we design the decision procedures. Then, we provide complexity lower bounds in Section 5. In Section 6
we illustrate our results with a small case study. Finally in Section 7, we summarise our results and give
perspectives to this work.

2. Continuous Petri nets: definitions and properties

2.1. Continuous Petri nets

Notations. N (resp. Q, R) is the set of nonnegative integers (resp. rational, real numbers). Given a set
of numbers E, E≥0 (resp. E>0) denotes the subset of nonnegative (resp. positive) numbers of E. Given
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an E ×F matrix M with E and F sets of indices, E′ ⊆ E and F ′ ⊆ F , the E′×F ′ submatrix ME′×F ′

denotes the restriction of M to rows indexed by E′ and columns indexed by F ′. The support of a vector
v ∈ RE , denoted JvK, is defined by JvK def

= {e ∈ E | v[e] 6= 0}. 0 denotes the null vector. We write
v ≥ w when v is componentwise greater or equal than w and v 
 w when v ≥ w and v 6= w. We
write v > w when v is componentwise strictly greater than w. ‖v‖1 is the 1-norm of v defined by

‖v‖1
def
=

∑
e∈E |v[e]|. Let E′ ⊆ E, then v[E′] denotes the restriction of v to components of E′.

Here, we adopt the following terminology: a net denotes the structure without initial marking while
a net system denotes a net with an initial marking. The structure of CPNs and discrete nets are identical.

Definition 1. A Petri net (PN) is a tuple N = 〈P, T,Pre,Post〉 where:

• P is a finite set of places;

• T is a finite set of transitions, with P ∩ T = ∅;

• Pre (resp. Post), is the backward (resp. forward) P ×T incidence matrix, whose entries belong
to N.

The incidence matrix C is defined by C
def
= Post− Pre.

Given a place (resp. transition) v in P (resp. in T ), its preset, •v, is defined as the set of its input
transitions (resp. places): •v def

= {t ∈ T | Post[v, t] > 0} (resp. •v def
= {p ∈ P | Pre[p, v] > 0}). Its

postset v• is defined as the set of its output transitions (resp. places): v• def
= {t ∈ T | Pre[v, t] > 0}

(resp. v•
def
= {p ∈ P | Post[p, v] > 0}). This notion generalizes to a subset V of places (resp.

transitions) by: •V def
=

⋃
v∈V

•v and V • def
=

⋃
v∈V v

•. In addition, •V • def
= •V ∪ V •.

Given T ′ ⊆ T , NT ′ is the subnet of N such that its set of transitions is T ′ and its set of places is
•T ′•, and its backward and forward incidence matrices are respectively Pre•T ′•×T ′ and Post•T ′•×T ′ .

We define N−1 as the “reverse” net of N , in which the arcs are inverted.

Definition 2. Given a PN N = 〈P, T,Pre,Post〉, its reverse net N−1 is defined by:

N−1 def
= 〈P, T,Post,Pre〉.

A continuous PN system, denoted CPN system, consists of a net and a nonnegative real marking. A
CPN is a CPN system without initial marking.

Definition 3. A CPN system is a tuple 〈N ,m0〉 whereN is a PN and m0 ∈ RP≥0 is the initial marking.

When a CPN system is an input of a decision problem, the items of m0 are rational numbers (represented
by pairs of integers) in order to characterise the complexity of the problem.

In discrete PNs the firing rule of a transition requires tokens specified by Pre to be present in the
corresponding places. In continuous PNs a nonnegative real amount of transition firing is allowed and
this amount scales the requirement expressed by Pre and Post.

Definition 4. Let N be a CPN, t be a transition and m ∈ RP≥0 be a marking.
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Figure 1. (a) A CPN system (b) its lim-reachability set [10]

• The enabling degree of t w.r.t. m, enab(t,m) ∈ R≥0 ∪∞, is defined by:

enab(t,m)
def
= min{ m[p]

Pre[p,t] | p ∈
•t} (enab(t,m) =∞ iff •t = ∅).

• t is enabled in m if enab(t,m) > 0.

• t can be fired by any amount α ∈ R such that1 0 ≤ α ≤ enab(t,m), and its firing leads to marking

m′ defined by: for all p ∈ P , m′[p] def
= m[p] + αC[p, t].

The firing of t from m by an amount α leading to m′ is denoted as m αt−→m′. We illustrate the
firing rule of a CPN with the CPN system in Fig. 1(a) (example taken from [10]). In the initial marking
m0 = (1, 0, 1, 0), only transition t1 is enabled and its enabling degree is 1. Hence, it can be fired by
any real amount α s.t. 0 ≤ α ≤ 1. If t1 is fired by an amount of 0.5, marking m1 = (0.5, 0.5, 1, 0) is
reached. In m1, transitions t1 and t2 are enabled, with enabling degree both equal to 0.5.

Let σ = α1t1 . . . αntn be a finite sequence with, for all i, ti ∈ T and αi ∈ R≥0. σ is firable from m0

if, for all 1 ≤ i ≤ n there exist mi such that mi−1
αiti−→mi. This firing is denoted by m0

σ−→mn. When
the destination marking is irrelevant we omit it and simply write m0

σ−→ . Let σ = α1t1 . . . αntn . . . be
an infinite sequence. Then σ is firable from m0 if, for all n, α1t1 . . . αntn is firable from m0. This firing
is denoted as m0

σ−→∞ .

Given a finite or infinite sequence σ = α1t1 . . . αiti . . . and α ∈ R≥0, the sequence ασ is defined by

σ
def
= αα1t1 . . . ααiti . . .. Given two infinite sequences σ = α1t1 . . . αiti . . . and σ′ = α′1t

′
1 . . . α

′
it
′
i . . .,

the (non commutative) sum σ + σ′ is defined by: σ + σ′
def
= α1t1α

′
1t
′
1 . . . αitiα

′
it
′
i . . .. This notion

generalises to arbitrary sequences by extending them to infinite sequences with null amounts of firings
(the selected transitions are irrelevant).

Let σ = α1t1 . . . αntn be a finite sequence and denote σ−1 = αntn . . . α1t1. By definition of the
reverse net, m σ−→m′ in N iff m′ σ

−1

−→m in N−1.

1So from every marking, any (even disabled) transition can fire by a null amount without modifying the marking.
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The Parikh image (also called firing count vector) of a (finite or infinite) firing sequence σ =

α1t1 . . . αntn . . ., denoted −→σ ∈ (R≥0 ∪ {∞})T , is defined by: −→σ [t]
def
=

∑
i|ti=t αi. As in discrete

PNs, when m σ−→m′, m′ = m + C−→σ and this equation is called the state equation.

A nonempty set of places P ′ is a siphon if •P ′ ⊆ P ′•. When a siphon does not contain tokens in
some marking, it will never contain tokens after any firing sequence starting from this marking. When a
siphon does not contain tokens, it is called an empty siphon.

An interesting difference between discrete and continuous PN systems is that the sequence of mark-
ings visited by an infinite firing sequence may converge to a given marking. For example, let us
consider again the CPN system of Fig. 1(a), and the marking m1 = (0.5, 0.5, 1, 0). From m1, 0.5t2
can be fired, reaching m2 = (0.5, 0.5, 0, 0.5). From m2 transition t3 can be fired by an amount
of 0.5, leading to m3 = (0.5, 0.5, 0.5, 0). Iterating this process leads to the infinite firing sequence
σ = 2−1t22

−1t3 . . . 2
−nt22

−nt3 . . . whose visited markings converge toward (0.5, 0.5, 0, 0). Observe
that the Parikh image −→σ =

−→
t2 +

−→
t3 does not correspond to any finite firing sequence starting from m1.

•p1

t1 t2

p2

Figure 2. A simple CPN system.

Consider now the PN in Fig. 2 with initial marking m0 = (1, 0). Let σ be the infinite sequence
1t1

1
2 t2

1
3 t1

1
4 t2 . . .

1
2i−1 t1

1
2i t2 . . . Its sequence of visited markings converges toward marking m defined

by: m def
= (1− log(2), log(2)). Here −→σ =∞−→t1 +∞−→t2 .

Let σ be an infinite firing sequence starting from m whose sequence of visited markings converges
toward m′, one says that m′ is limit reachable from m which is denoted by: m σ−→∞m′. Thus in CPN
systems, two sets of reachable markings are defined.

Definition 5. Given a CPN system 〈N ,m0〉,

• Its reachability set RS(N ,m0) is defined by:

RS(N ,m0)
def
= {m | there exists a finite sequence m0

σ−→m}.

• Its lim-reachability set, lim−RS(N ,m0), is defined by:

lim−RS(N ,m0)
def
= {m | there exists an infinite sequence m0

σ−→∞m}.

RS or lim−RS are convex sets (see Section 3) but not necessarily topologically closed. In Fig. 1,
marking m = (1, 0, 0, 0) belongs to the closure of RS or lim−RS, but it does not belong to these
sets. Since an infinite sequence can include null amounts of firings, RS(N ,m0) ⊆ lim−RS(N ,m0).
More interestingly, for all m ∈ lim−RS(N ,m0), lim−RS(N ,m) ⊆ lim−RS(N ,m0) (see later
Theorem 22). So there is no need to consider iterations of lim-reachability.
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2.2. CPN properties

Here we introduce the standard properties that a modeller wants to check on a net. In the framework
of CPNs, every property its defined either with respect to the reachability set or with respect to the
lim-reachability set.

Reachability is the main property as it is the core of safeness properties.

Definition 6. (reachability)
Given a CPN system 〈N ,m0〉 and a marking m, m is (lim-)reachable in 〈N ,m0〉
if m ∈ (lim−)RS(N ,m0).

Coverability is a useful property. For example, in PNs coverability can witness violation of mutual
exclusion.

Definition 7. (coverability)
Given a CPN system 〈N ,m0〉 and a marking m, m is (lim-)coverable in 〈N ,m0〉
if there exists m′ ≥m with m′ ∈ (lim−)RS(N ,m0).

Boundedness is often related to the resources needed by the system. For CPNs, boundedness and
lim-boundedness coincide [15].

Definition 8. (boundedness)
A CPN system 〈N ,m0〉 is (lim-)bounded if there exists b ∈ R≥0 such that,
for all m ∈ (lim−)RS(N ,m0) and all p ∈ P , m[p] ≤ b.

Deadlock-freeness ensures that a system will never reach a marking where no transition is enabled,
i.e a dead marking.

Definition 9. (deadlock-freeness)
A CPN system 〈N ,m0〉 is (lim-)deadlock-free if for every m ∈ (lim−)RS(N ,m0), there exists t ∈ T
such that t is enabled at m.

The net of Fig. 1 is deadlock-free but not lim-deadlock-free: m
def
= (0, 1, 0, 0) is a dead marking

which is limit-reachable but not reachable and no reachable marking is dead.

Liveness ensures that whatever the reachable state is, any transition will be fireable in some future.
So the system never “loses its capacities”.

Definition 10. (liveness)
A CPN system 〈N ,m0〉 is (lim-)live if for every transition t and for each marking m ∈ (lim−)RS(N ,m0)
there exists m′ ∈ (lim−)RS(N ,m) such that t is enabled at m′.

The net of Fig. 1 is neither live nor lim-live: once t1 becomes disabled, it will remain so whatever
finite or infinite firing sequence considered.

A home state is a marking that can be reached whatever the current state is. This property can express
for instance that recovering from faults is always possible. A net is reversible if its initial marking is a
home state. Both properties are particular cases of the reachability set inclusion problem.
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Definition 11. (reachability set inclusion)
Given CPN systems 〈N ,m0〉 and 〈N ′,m′0〉 with P = P ′, 〈N ,m0〉 is (lim-)reachable included in
〈N ′,m′0〉 if (lim−)RS(N ,m0) ⊆ (lim−)RS(N ′,m′0).
A marking m is a home state if RS(N ,m0) ⊆ RS(N−1,m).
If moreover m = m0, one says that 〈N ,m0〉 is reversible.

The following table summarises the results already known about the complexity of the associated
decision problems. A net is consistent if there exists a vector v ∈ R≥0 with JvK = T and Cv = 0. No
lower bounds have been established.

Table 1. Complexity bounds: previous results

Problems Upper bounds

(lim-)reachability in EXPTIME [10]
in PTIME for lim-reachability
when all transitions are fireable at least once
and the net is consistent [15]

(lim-)coverability no result

(lim-)boundedness in PTIME
when all transitions are fireable at least once [15]
(stated without proof)

(lim-)deadlock-
freeness

in coNP [14]

(lim-)liveness in coNP [14]

(lim-)reachability no result
set inclusion

3. Properties characterisations

3.1. Preliminary results about reachability and firing sequences

Most of the results of this subsection are generalisations of results given in [15, 10].

The following lemma is an almost immediate consequence of the firing definition of CPNs. It entails
the convexity of the (lim-)reachability set. In this lemma, depending on the sequences, −→(∞) denotes
either −→ or −→∞ .

Lemma 12. Given a CPN system 〈N ,m0〉, (finite or infinite) sequences σ, σ1, σ2 markings m,m′,m1,
m2,m

′
1,m

′
2 and α, α1, α2 ∈ R>0:

(0) m1
σ−→m′1 and m1 ≤m2 implies m2

σ−→m′2 with m′1 ≤m′2
(1) m σ−→(∞) m iff αm ασ−→(∞) αm

′
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(2) m σ−→∞ iff αm ασ−→∞
(3) m1

σ1−→(∞) m
′
1 and m2

σ2−→(∞) m
′
2 implies m1 + m2

σ1+σ2−→ (∞) m
′
1 + m′2

(4) m1
σ1−→∞ and m2

σ2−→∞ implies m1 + m2
σ1+σ2−→ ∞

(5) m1
α1σ−→(∞) m

′
1 and m2

α2σ−→(∞) m
′
2 implies m1 + m2

(α1+α2)σ−→ (∞) m
′
1 + m′2

(6) m1
α1σ−→∞ and m2

α2σ−→∞ implies m1 + m2
(α1+α2)σ−→ ∞

px ∈ JvK•

py ∈ •JvK
m0

m1
m2

mn−1
m

•

•

•

•
•
. . .

σ

1
nσ

1
nσ

The two next lemmas constitute a first step for the characterisation of reachability since they provide
sufficient conditions for reachability and lim-reachability in particular cases. Let us explain why the three
items of the next lemma ensure reachability of m from m0. The first item is a necessary condition for
reachability since the Parikh image v of a reachability sequence σ must satisfy this equation (see [7] for
another application of this condition). The figure above shows the effect of an arbitrary firing sequence
σ built from such a vector v on the marking of two places: the vertical axis corresponds to a place
py ∈ •JvK while the horizontal axis corresponds to a place px ∈ JvK•. As shown in the figure, after
the firing of the first transition of σ the marking of py may be negative and before the firing of the last
transition of σ the marking of px may be negative. However, for a large enough n, due to the second
item, 1

nσ may be fired from m0 and due to the third item 1
nσ
−1 may be fired from m (see the figure).

One gets the conclusion using the convexity of the set of nonnegative markings.

Lemma 13. Let 〈N ,m0〉 be a CPN system, m be a marking and v ∈ RT≥0 that fulfill:

• m = m0 + Cv;

• ∀p ∈ •JvK m0[p] > 0;

• ∀p ∈ JvK•m[p] > 0.

Then there exists a finite sequence σ such that m0
σ−→m and −→σ = v.

Proof:
Define α1

def
= min( m0[p]∑

t∈JvK Pre[p,t]v[t] | p ∈
•JvK)

and α2
def
= min( m[p]∑

t∈JvK Post[p,t]v[t] | p ∈ JvK•) with the convention that α1
def
= 1 (resp. α2

def
= 1) if •JvK

(resp. JvK•) is empty.
Due to the second and the third hypotheses, α1 and α2 are positive.
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Figure 3. A CPN system with an exponentially sized firing set.

Let n def
= max(d 1

min(α1,α2)
e, 2).

Denote JvK def
= {t1, . . . , tk} and define σ′ def

= v[t1]
n t1 . . .

v[tk]
n tk and σ def

= σ′n.

We claim that σ is the required firing sequence.
Let us denote mi

def
= m0 + i

nCv. Thus m = mn.

By definition of α1 and n, in N m0
σ′−→m1 and by definition of α2, mn

σ′−1

−→mn−1 in N−1. So in N
mn−1

σ′−→mn.

Let 1 < i < n− 1.

Using lemma 12, n−1−in−1 m0

n−1−i
n−1

σ′

−→ n−1−i
n−1 m1 and i

n−1mn−1
i

n−1
σ′

−→ i
n−1mn.

Using lemma 12 again and summing, one gets: mi
σ′−→mi+1. ut

Based on the previous lemma, we develop a sufficient condition for lim-reachability. The main ideas
are: (1) to build an infinite firing sequence of the form m0 −→ 1

2m0+ 1
2m −→

1
4m0+ 3

4m −→ . . . and
(2) as a fraction of m0 occurs in every intermediate marking, to merge the two positivity requirements
on a single requirement for m0.

Lemma 14. Let 〈N ,m0〉 be a CPN system, m be a marking and v ∈ RT≥0 that fulfill:

• m = m0 + Cv;

• ∀p ∈ •JvK•m0[p] > 0.

Then there exists an infinite sequence σ such that m0
σ−→∞m and −→σ = v.

Proof:
Let mi be inductively defined by mi+1 = 1

2mi + 1
2m. and for i ≥ 1, let vi = 1

2i
v (thus JviK = JvK).

Observe that mi = 1
2i
m0 + (1− 1

2i
)m. So:

• mi+1 = mi + Cvi;

• ∀p ∈ •JviK•mi[p] > 0 and mi+1[p] > 0.

Applying lemma 13, for all i ≥ 1 there exists σi such that mi
σi−→mi+1. Since limi→∞mi = m, the

sequence σ = σ1σ2 . . . is the required sequence. ut
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The key concept in order to get characterisation of properties, is the notion of firing set of a CPN
system [10].

Definition 15. Let 〈N ,m0〉 be a CPN system. Then its firing set FS(N ,m0) ⊆ 2T is defined by:

FS(N ,m0)
def
= {J−→σ K |m0

σ−→ }

Due to the empty sequence, ∅ ∈ FS(N ,m0). The size of a firing set may be exponential w.r.t. the
number of transitions of the net. For example, consider the CPN system of Fig. 3. Its firing set is:

{T ′ | ∀1 ≤ j < i ≤ n {ti, t′i} ∩ T ′ 6= ∅ ⇒ {tj , t′j} ∩ T ′ 6= ∅}

Thus its size is at least 2
|T |
2 .

The next two lemmas establish elementary properties of the firing set and lead to new notions.

Lemma 16. Let N be a CPN and m,m′ be two markings such that JmK = Jm′K.
Then FS(N ,m) = FS(N ,m′).

Proof:
Since JmK = Jm′K, there exists α > 0 such that αm ≤m′.
Let m σ−→ . Using lemma 12, αm ασ−→ . Since αm ≤m′, m′ ασ−→ .
Thus FS(N ,m) ⊆ FS(N ,m′). By symmetry, FS(N ,m) = FS(N ,m′). ut

So given P ′ ⊆ P , without ambiguity we define FS(N , P ′) by:

FS(N , P ′) def
= FS(N ,m) for any m such that P ′ = JmK

Lemma 17. Let 〈N ,m0〉 be a CPN system. Then FS(N ,m0) is closed by union.

Proof:
Let m0

σ−→ and m0
σ′−→ .

Then using three times lemma 12, 0.5m0
0.5σ−→ , 0.5m0

0.5σ′−→ and m0
0.5σ+0.5σ′−→ .

Since J
−−−−−−−−→
0.5σ + 0.5σ′K = J−→σ K ∪ J

−→
σ′K, the conclusion follows. ut

Notation. We denote by maxFS(N ,m0) the maximal set ofFS(N ,m0), that is the union of all members
of FS(N ,m0).

The next proposition is a structural characterisation for a subset of transitions to belong to the firing
set. In addition, it shows that in the positive case, a “useful” corresponding sequence always exists and
furthermore one may build this sequence in polynomial time. In order to improve the understanding
of the proof, we first informally explain why the condition is sufficient and how to build the sequence.
Assume that NT ′ has no empty siphon in m0 (i.e. a siphon with no tokens in in m0). So there is at
least one initially fireable transition. Otherwise, for each transition t ∈ T ′, there would be a place pt
with m0(pt) = 0, and so the union of theses places would be an empty siphon in m0. Let T1 be the set
of initially fireable transitions. Then one can fire a small amount of each transition of T1 leading to a
marking m1 so that all marked places in m0 remain marked in m1. Then either T1 = T ′ or, by a similar
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argument, there is at least a transition of T ′ \ T1 fireable in m1. Let us illustrate it on the CPN system
of Figure 1(a) with T ′ = T . Initially only t1 is fireable, so one fires it with any amount less than 1, say
0.5t1 for instance. Thus m1 = (0.5, 0.5, 1, 0) and in m1, t2 is fireable, one fires 0.25t2 in order that p3
remains marked in m2 = (0.5, 0.5, 0.5, 0.25). Then one fires 0.2t3 leading to m3 = (0.5, 0.5, 0.7, 0.05).
Observe that once a place is marked, the selected sequence never unmarks it.

Proposition 18. Let 〈N ,m0〉 be a CPN system and T ′ be a subset of transitions. Then:
T ′ ∈ FS(N ,m0) iff NT ′ has no empty siphon in m0.

Furthermore, if T ′ ∈ FS(N ,m0) then there exists σ = α1t1 . . . αktk with αi > 0 for all i, T ′ =
{t1, . . . , tk} and a marking m such that:

• m0
σ−→m;

• for all place p, m(p) > 0 iff m0(p) > 0 or p ∈ •T ′•.

Proof:

Necessity. Suppose NT ′ contains an empty siphon Σ in m0. Then none of the transitions belonging
Σ• can be fired in the future. Since NT ′ does not contain isolated places Σ•(= •Σ•) 6= ∅ and so
T ′ 6∈ FS(N ,m0).

Sufficiency. Suppose thatNT ′ has no empty siphon in m0. We build by induction the sequence σ of the
proposition. More precisely, we inductively prove for increasing values of i that:

• for every 0 < j < i there exists a non empty set of transitions Tj ⊆ T ′ that fulfill for all j 6= j′,
Tj ∩ Tj′ = ∅;

• for every j ≤ i there exists a marking mj with mj(p) > 0 iff
m0(p) > 0 or p ∈ •Tk• for some k < j;

• for every j < i there exists a sequence σj = αj,1tj,1 . . . αj,kj tj,kj with
Tj = {tj,1 . . . tj,kj} and mj

σj−→mj+1.

There is nothing to prove for the basis case i = 0.
Suppose that the assertion holds until i. If T ′ = T1 ∪ . . . ∪ Ti−1 then we are done.
Otherwise define T ′′ = T ′ \ (T1 ∪ . . . ∪ Ti−1) and Ti = {t enabled in mi | t ∈ T ′′}. We claim that
Ti is not empty. Otherwise, for each t ∈ T ′′ there exists an empty place pt in mi. Due to the inductive
hypothesis, m0(pt) = 0 and •pt ∩ (T1 ∪ . . . ∪ Ti−1) = ∅. So the union of places pt is an empty siphon
of 〈NT ′ ,m0〉, which contradicts our hypothesis.

Let us denote Ti = {ti,1 . . . ti,ki}. Define α = min(mi(p)
2ki
| p ∈ •Ti) with the convention that α = 1 if

•Ti = ∅. The sequence σi = αti,1 . . . αti,ki is fireable from mi and leads to a marking mi+1 fulfilling
the inductive hypothesis.

Since T ′′ is finite the procedure terminates. ut

We include the complexity result below since its proof relies in a straightforward manner on the
sufficiency proof of the previous proposition.
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Algorithm 1: Decision algorithm for membership of FS(N ,m0)

Fireable(〈N ,m0〉, T ′): status
Input: a CPN system 〈N ,m0〉, a subset of transitions T ′

Output: the membership status of T ′ w.r.t. FS(N ,m0)
Output: in the negative case the maximal firing set included in T ′

Data: new: boolean; P ′: subset of places; T ′′: subset of transitions
1 T ′′ ← ∅; P ′ ← Jm0K
2 while T ′′ 6= T ′ do
3 new ← false
4 for t ∈ T ′ \ T ′′ do
5 if •t ⊆ P ′ then T ′′ ← T ′′ ∪ {t}; P ′ ← P ′ ∪ t•; new ← true
6 end
7 if not new then return (false, T ′′)

8 end
9 return true

Corollary 19. Let 〈N ,m0〉 be a CPN system and T ′ be a subset of transitions. Then algorithm 1 checks
in polynomial time whether T ′ ∈ FS(N ,m0) and in the negative case returns the maximal firing set
included in T ′ (when called with T = T ′, it returns maxFS(N ,m0)).

3.2. Characterisation of reachability, coverability and boundedness

In [10] a characterisation of reachability was presented. The theorem below is an alternative characteri-
sation that only relies on the state equation and firing sets.

Theorem 20. Let 〈N ,m0〉 be a CPN system and m be a marking.
Then m ∈ RS(N ,m0) iff there exists v ∈ RT≥0 such that:

1. m = m0 + Cv

2. JvK ∈ FS(N ,m0)

3. JvK ∈ FS(N−1,m)

Proof:

Necessity. Let m ∈ RS(N ,m0). So there exists a finite firing sequence σ such that m0
σ−→m. Let

v = −→σ , then m = m0 + Cv.
Since σ is fireable from mo in N , JvK ∈ FS(N ,m0). In N−1, m σ−1

−→m0. Since v =
−−→
σ−1, JvK ∈

FS(N−1,m).

Sufficiency. Since JvK ∈ FS(N ,m0), using Proposition 18 and Lemma 12, there exists a sequence σ1
such that JvK = J−→σ1K, for all 0 < α1 ≤ 1, m0

α1σ1−→m1 with m1(p) > 0 for p ∈ •JvK•.
Since JvK ∈ FS(N−1,m), there exists a sequence σ2 such that JvK = J−→σ2K, for all 0 < α2 ≤ 1,
m α2σ2−→m2 in N−1 with m2(p) > 0 for p ∈ •JvK•.
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Choose α1 and α2 enough small such that the vector v′ = v − α1
−→σ1 − α2

−→σ2 is nonnegative and Jv′K =
JvK. This is possible since JvK = J−→σ1K = J−→σ2K.

Since m2 = m1 + Cv′ and m1,m2 fulfill the hypotheses of Lemma 13, there exists a sequence σ3
such that v′ = −→σ3 and m1

σ3−→m2.
Let σ = (α1σ1)σ3(α2σ2)

−1 then m0
σ−→m. ut

Example. Let us illustrate the reachability characterisation on the CPN of Figure 1(a). Let m0 =
(1, 0, 1, 0) and m = (0, 1, 0, 0), the single solution of the linear equation system is

−→
t1 +

−→
t2 +

−→
t3 .

On the other hand, FS(N ,m0) = {∅, {t1}, {t1, t2}, {t1, t2, t3}}. So the second condition is satisfied.
However, FS(N−1,m) = {∅, {t1}}. So the third condition is not satisfied and m is not reachable from
m0.

The following characterisation has been stated in [10]. We include the proof here because in that
paper the proof of necessity was not developed.

Theorem 21. Let 〈N ,m0〉 be a CPN system and m be a marking.
Then m ∈ lim−RS(N ,m0) iff there exists v ∈ RT≥0 such that:

1. m = m0 + Cv

2. JvK ∈ FS(N ,m0)

Proof:

Necessity. Let m ∈ lim−RS(N ,m0). So there exists a firing sequence σ = α1t1 . . . αntn . . . such that
m = limn→∞mn, where mn

αn+1tn+1−→ mn+1.
Thus there exists B ∈ N such that for all p ∈ P and all n ∈ N, mn[p] ≤ B.

Let T ′ def
= {t | ∃i ∈ N t = ti}. There exists n0 such that T ′ = {t | ∃i ≤ n0 t = ti} and so

T ′ ∈ FS(N ,m0).
Let α ∈ Q>0 such that α ≤ min(

∑
i≤n0,ti=t

αi | t ∈ T ′).
Let us define LPn, an existential linear program where v ∈ RT is the vector of variables, by:

1. mn −m0 = Cv

2. ∀t ∈ T ′ v[t] ≥ α

3. ∀t ∈ T \ T ′ v[t] = 0

Due to the existence of the firing sequence σ, for all n ≥ n0 LPn admits a solution. Using linear
programming theory (see [13]), since mn[p] ≤ B for all n and all p, there exists B′ such that for all
n ≥ n0, LPn admits a solution vn whose items are bounded by B′.

So the sequence {vn}n≥n0 admits a subsequence that converges to some v. By continuity, v fulfills
m−m0 = Cv,∀t ∈ T ′ v[t] ≥ α and ∀t ∈ T \ T ′ v[t] = 0.
So JvK = T ′ and v is the desired vector.

Sufficiency. Since JvK ∈ FS(N ,m0), using Proposition 18 and Lemma 12, there exists a sequence σ1
such that JvK = J−→σ1K, for all 0 < α1 ≤ 1, m0

α1σ1−→m1 with m1(p) > 0 for p ∈ •JvK•.
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Choose α1 enough small such that the vector v′ = v − α1
−→σ1 is nonnegative and Jv′K = JvK. This is

possible since JvK = J−→σ1K.

Since m = m1 + Cv′ and m1 fulfills the hypotheses of lemma 14, there exists an infinite sequence σ2
such that v′ = −→σ2 and m1

σ2−→∞m.
Let σ = (α1σ1)σ2 then m0

σ−→∞m. ut

Example. Let us illustrate the lim-reachability characterisation on the CPN of Figure 1(a). Let m0 =
(1, 0, 1, 0) and m = (0, 1, 0, 0). Since the third condition of reachability is not required for lim-
reachability, m is reachable from m0. Let m′ = (1, 0, 0, 0), the single solution of the linear equation
system is

−→
t2 +

−→
t3 , and {t2, t3} does not belong to FS(N ,m0). So m′ is not lim-reachable from m0.

Using the previous theorem, we develop a short proof showing that iterating the lim-reachability is
useless.

Theorem 22. Let 〈N ,m0〉 be a CPN system.
Then for all m ∈ lim−RS(N ,m0), lim−RS(N ,m) ⊆ lim−RS(N ,m0).

Proof:
Let m′ ∈ lim−RS(N ,m). Due to Theorem 21, there exists v,v′ ∈ RT≥0 such that:

1. m = m0 + Cv and m′ = m + Cv′

2. JvK ∈ FS(N ,m0) and Jv′K ∈ FS(N ,m)

Thus m′ = m0 + C(v + v′).

Due to proposition 18, since JvK ∈ FS(N ,m0), there exists a sequence σ and a marking m∗ such that
m0

σ−→m∗ and J−→σ K = JvK and Jm∗K = Jm0K ∪ •JvK•.
Since m = m0 + Cv, JmK ⊆ Jm∗K and so Jv′K ∈ FS(N ,m∗). Hence Jv + v′K = JvK ∪ Jv′K ∈
FS(N ,m0). Using in the other direction the characterization of Theorem 21 with v + v′, one gets
m′ ∈ lim−RS(N ,m0). ut

The two following theorems related to coverability are direct consequences of Theorems 20 and 21
and the definition of (lim-)coverability.

Theorem 23. Let 〈N ,m0〉 be a CPN system and m be a marking. Then m is coverable in 〈N ,m0〉 iff
there exists v ∈ RT≥0 and w ∈ RP≥0 such that:

1. m + w = m0 + Cv

2. JvK ∈ FS(N ,m0)

3. JvK ∈ FS(N−1,m + w)

Theorem 24. Let 〈N ,m0〉 be a CPN system and m be a marking. Then m is lim-coverable in 〈N ,m0〉
iff there exists v ∈ RT≥0 and w ∈ RP≥0 such that:
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1. m + w = m0 + Cv

2. JvK ∈ FS(N ,m0)

We present below the first characterisation of boundedness for CPN systems.

Theorem 25. Given a CPN system 〈N ,m0〉. Then 〈N ,m0〉 is unbounded iff:
There exists v ∈ RT≥0 such that Cv 
 0 and JvK ⊆ maxFS(N ,m0).

Proof:

Sufficiency. Assume there exists v ∈ RT≥0 such that Cv 
 0 and JvK ⊆ maxFS(N ,m0). Denote

T ′
def
= maxFS(N ,m0). Using proposition 18, there exists m1 ∈ RS(N ,m0) such that for all p ∈ •T ′•,

m1(p) > 0. Define m2
def
= m1 + Cv, thus m2 
 m1. Since JvK ⊆ T ′, m1 and m2 fulfill the

hypotheses of lemma 13. Applying it, a firing sequence m1
σ−→m2 yields. Iterating this sequence

establishes the unboundedness of 〈N ,m0〉.

Necessity. Assume 〈N ,m0〉 is unbounded. Then there exists p ∈ P and a family of firing sequences
{σn}n∈N such that m0

σn−→mn and mn(p) ≥ n. Since {J−→σ nK}n∈N is finite, by extracting a subse-
quence w.l.o.g. we can assume that all these sequences have the same support, say T ′ ⊆ maxFS(N ,m0).

Let vn
def
= C−→σ n. Define wn = vn

‖vn‖1 . Since {wn}n∈N belongs to a compact set, there exists a convergent
subsequence {wα(n)}n∈N. Denote by w its limit. Since ‖w‖1 = 1, w is non null. We claim that w is a
nonnegative vector. Since mn(p) ≥ n, ‖vn‖1 ≥ vn[p] ≥ n−m0[p]. On the other hand, for all p′ ∈ P ,
wn[p′] ≥ −m0[p′]

‖vn‖1 . Combining the two inequalities, for n > m0[p], wn[p′] ≥ −m0[p′]
n−m0[p]

. Applying this
inequality to α(n) and letting n go to infinity yields w[p′] ≥ 0.
Due to standard results of polyhedra theory (see [1] for instance), the set
{CP×T ′u | u ∈ RT

′
≥0} is closed. So there exists u ∈ RT ′≥0 such that w = Cu. Considering u as a vector

of RT≥0 by adding null components for T \ T ′ yields the required vector. ut

Example. Let us illustrate the boundedness characterisation on the CPN system depicted below. The
solutions of the equation system Cv 
 0 are x

−→
t2 with x > 0. On the other hand, maxFS(N ,m0) =

{t1, t2}. So the CPN system is unbounded. Observe that considering it as a (discrete) Petri net, this net
is bounded.

•
p1 t1 p2 t22

3

4. Decision procedures

Naively implementing the characterisation of reachability would lead to an exponential procedure since
it would require to enumerate the items of FS(N ,m0) (whose size is possibly exponential). For each
item, say T ′, the algorithm would check in polynomial time (1) whether T ′ belongs to FS(N−1,m) and
(2) whether the associated linear program v > 0∧CP×T ′v = m−m0 admits a solution. Guessing T ′

shows that the reachability problem belongs to NP.
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Algorithm 2: Decision algorithm for reachability

Reachable(〈N ,m0〉,m): status
Input: a CPN system 〈N ,m0〉, a marking m
Output: the reachability status of m
Output: the Parikh image of a witness in the positive case
Data: nbsol: integer; v, sol: vectors; T ′: subset of transitions

1 if m = m0 then return (true,0)
2 T ′ ← T
3 while T ′ 6= ∅ do
4 nbsol← 0; sol← 0
5 for t ∈ T ′ do
6 solve ∃?v v ≥ 0 ∧ v[t] > 0 ∧CP×T ′v = m−m0

7 if ∃v then nbsol← nbsol + 1; sol← sol + v

8 end
9 if nbsol = 0 then return false else sol← 1

nbsolsol
10 T ′ ← JsolK
11 T ′ ← T ′ ∩ maxFS(NT ′ ,m0[

•T ′•])

12 T ′ ← T ′ ∩ maxFS(N−1T ′ ,m[•T ′•]) /* deleted for lim-reachability */

13 if T ′ = JsolK then return (true,sol)
14 end
15 return false

In fact, we improve this upper bound with the help of Algorithm 2. When m 6= m0, this algorithm
maintains a subset of transitions T ′ which fulfills J−→σ K ⊆ T ′ for any m0

σ−→m (as will be proven in
proposition 26). Initially T ′ is set to T . Then lines 4-9 build a solution to the state equation restricted
to transitions of T ′ with a maximal support (if there is at least one). If there is no solution then the
algorithm returns false. Otherwise T ′ is successively restricted to (1) the support of this maximal solution
(line 10), (2) the maximal firing set in maxFS(NT ′ ,m0[

•T ′•]) (line 11) and, (3) the maximal firing set in
maxFS(N−1T ′ ,m[•T ′•]) (line 12). If the two last restrictions do not modify T ′ then the algorithm returns
true. If T ′ becomes empty then the algorithm returns false.

Omitting line 12, Algorithm 2 decides the lim-reachability problem.

Proposition 26. Algorithm 2 returns true iff m is reachable in 〈N ,m0〉.
Algorithm 2 without line 12 returns true iff m is lim-reachable in 〈N ,m0〉.

Proof:
We only consider the non trivial case m 6= m0.

Soundness. Assume that the algorithm returns true at line 13.
By definition, vector sol, which is a barycenter of solutions, is also a solution with maximal support and
so fulfils the first statement of Theorem 20. Since T ′ = JsolK at line 13, JsolK ∈ FS(N ,m0) due to
line 11 and JsolK ∈ FS(N−1,m) due to line 12. Thus m is reachable in 〈N ,m0〉 since it fulfills the
assertions of Theorem 20. In case of lim-reachability, line 12 is omitted. So the assertions of Theorem 21
are fulfilled and m is lim-reachable in 〈N ,m0〉.
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Completeness. Assume the algorithm returns false.
We claim that at any time the algorithm fulfils the following invariant: for any m0

σ−→m, J−→σ K ⊆ T ′.
This invariant initially holds since T ′ = T . At line 10 due to the first assertion of Theorem 20, for any
such σ, J−→σ K ⊆ JsolK since sol is a solution with maximal support. So the assignment of line 10 lets the
invariant being true. Due to the second assertion of Theorem 20 and the invariant, any σ fulfils J−→σ K ⊆
maxFS(NT ′ ,m0[

•T ′•]). So the assignment of line 11 lets true the invariant. Due to the third assertion of
Theorem 20 and the invariant, any σ fulfils J−→σ K ⊆ maxFS(N−1T ′ ,m[•T ′•]). So the assignment of line 12
lets the invariant being true.
If the algorithm returns false at line 9 due to the invariant the first assertion of Theorem 20 cannot be
satisfied. If the algorithm returns false at line 15 then T ′ = ∅. So due to the invariant and since m 6= m0,
m is not reachable from m0.
The case of lim-reachability is similarly handled with the following invariant: for any m0

σ−→∞m,
J−→σ K ⊆ T ′. ut

Proposition 27. The reachability and the lim-reachability problems for CPN systems are decidable in
polynomial time.

Proof:
Let us analyse the time complexity of Algorithm 2. Since T ′ must be modified in lines 11 or 12 in order
to start a new iteration of the main loop, there are at most |T | iterations of this loop. The number of
iterations of the inner loop is also bounded by |T |. Finally solving a linear program can be performed in
polynomial time [13] as well as computing the maximal item of a firing set (see Corollary 19). ut

In [10], it is proven that the lim-reachability problem for consistent CPN systems with no empty
siphons in the initial marking is decidable in polynomial time. We improve this result by showing that
this problem and a similar one belong to NC ⊆ PTIME (a complexity class of problems that can take
advantage of parallel computations, see [12]).

Proposition 28. The reachability problem for consistent CPN systems with no empty siphons in the
initial marking and no empty siphons in the final marking for the reverse net belongs to NC.
The lim-reachability problem for consistent CPN systems with no empty siphons in the initial marking
belongs to NC.

Proof:
Due to the assumptions on siphons and proposition 18 only the first assertion of Theorems 20 and 21
needs to be checked. Due to consistency, there exists w > 0 such that Cw = 0. Assume there is some
v ∈ RT such that m−m0 = Cv. For some n ∈ N large enough, v′ def

= v + nw ∈ RT≥0 and still fulfils
m−m0 = Cv′.
Now the decision problem ∃?v ∈ RT m−m0 = Cv belongs to NC [4]. ut

Based on Theorems 23 and 24, we follow the same lines for designing Algorithm 3 which decides
(lim-)coverability.

Proposition 29. The coverability and the lim-coverability problems for CPN systems are decidable in
polynomial time.
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Algorithm 3: Decision algorithm for coverability

Coverable(〈N ,m0〉,m): status
Input: a CPN system 〈N ,m0〉, a marking m
Output: the coverability status of m
Output: the Parikh image of a witness in the positive case
Data: nbsol: integer; v, solv: vectors over transitions; T ′: subset of transitions
Data: w, solw: vectors over places

1 if m ≤m0 then return (true,0)
2 T ′ ← T
3 while T ′ 6= ∅ do
4 nbsol← 0; solv← 0; solw← 0
5 for t ∈ T ′ do
6 solve ∃?v,w v ≥ 0 ∧w ≥ 0 ∧ v[t] > 0 ∧CP×T ′v −w = m−m0

7 if ∃v,w then nbsol← nbsol + 1; solv← solv + v; solw← solw + w

8 end
/* The next loop is deleted for lim-coverability */

9 for p ∈ P do
10 solve ∃?v,w v ≥ 0 ∧w ≥ 0 ∧w[p] > 0 ∧CP×T ′v −w = m−m0

11 if ∃v then nbsol← nbsol + 1; solv← solv + v; solw← solw + w

12 end
13 if nbsol = 0 then return false else solv← 1

nbsolsolv; solw← 1
nbsolsolw

14 T ′ ← JsolvK
15 T ′ ← T ′ ∩ maxFS(NT ′ ,m0[

•T ′•])
/* The next line deleted for lim-coverability */

16 T ′ ← T ′ ∩ maxFS(N−1T ′ , (m + solw)[•T ′•])
17 if T ′ = JsolvK then return (true,solv)
18 end
19 return false

Proof:
The polynomial time complexity of Algorithm 3 is established similarly as the one of Algorithm 2. Let
us focus on the correctness of the algorithm. We only handle the case of coverability since the case of
lim-coverability is similar and even simpler.

Soundness. Assume that the algorithm returns true at line 17.
By definition, the pair (solv, solw), which is a barycenter of solutions, is also a solution with maximal
support and so fulfils the first statement of Theorem 23. Since T ′ = JsolvK at line 17, JsolvK ∈
FS(N ,m0) due to line 15 and JsolvK ∈ FS(N−1,m + solw) due to line 16. Thus m is coverable in
〈N ,m0〉 since it fulfills the assertions of Theorem 23.

Completeness. Assume the algorithm returns false.
We claim that at any time the algorithm fulfils the following invariant: for any σ such that there exists
m′ ≥m with m0

σ−→m′, J−→σ K ⊆ T ′.
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This invariant initially holds since T ′ = T . At line 14 due to the first assertion of Theorem 23, for any
such σ, J−→σ K ⊆ JsolvK and Jm′K ⊆ Jm + solwK since the pair (solv, solw) is a solution with maximal
support. So the assignment of line 14 lets the invariant being true. Due to the second assertion of
Theorem 23 and the invariant, any σ fulfils J−→σ K ⊆ maxFS(NT ′ ,m0[

•T ′•]). So the assignment of line 15
lets true the invariant. Due to the third assertion of Theorem 23 and the invariant, any pair (σ,m′) fulfils
J−→σ K ⊆ maxFS(N−1T ′ ,m

′[•T ′•]) ⊆ maxFS(N−1T ′ , (m + solw)[•T ′•]). So the assignment of line 16 lets
true the invariant.
If the algorithm returns false at line 13 then, due to the invariant, the first assertion of Theorem 23 cannot
be satisfied. If the algorithm returns false at line 19 then T ′ = ∅. So due to the invariant and since
m 6≤m0, m is not coverable from m0. ut

Proposition 30. The boundedness problem for CPN systems is decidable in polynomial time.

Proof:
Using the characterisation of Theorem 25, one computes in polynomial time T ′ = maxFS(N ,m0) (see
Corollary 19). Then for all p ∈ P , one solves the existential linear program:

∃?v ≥ 0 CP×T ′v ≥ 0 ∧ (CP×T ′v)[p] > 0

The CPN system is unbounded if some of these linear programs admits a solution. ut

In discrete Petri nets, the reachability set inclusion problem is undecidable, while the restricted prob-
lem of home state is decidable (see [8] for a detailed survey about decidability results in PNs). In CPN
systems, this problem is decidable thanks to the special structure of the (lim-)reachability sets.

Proposition 31. The reachability set inclusion and the lim-reachability set inclusion problems for CPN
systems are decidable in exponential time.

Proof:
Let us define TP

def
= {(T ′, P ′) | T ′ ∈ FS(N ,m0) ∧ T ′ 6= ∅ ∧ P ′ ⊆ P ∧ T ′ ∈ FS(N−1, P ′)}. For

every pair (T ′, P ′) ∈ TP , define the polyhedron ET ′,P ′ over RP × RT ′ by:

ET ′,P ′
def
= {(m,v) |m[P ′] > 0 ∧m[P \ P ′] = 0 ∧ v > 0 ∧m = m0 + CP×T ′v}

and RT ′,P ′ by: RT ′,P ′
def
= {m | ∃v (m,v) ∈ ET ′,P ′}

Using the characterisation of Theorem 20 and Lemma 16,
RS(N ,m0) = {m0} ∪

⋃
(T ′,P ′)∈TP RT ′,P ′ .

Due to Lemma 12, the reachability set of a CPN system is convex. So RS(N ,m0) can be rewritten as:

RS(N ,m0) = {λ0m0 +
∑

(T ′,P ′)∈TP

λT ′,P ′mT ′,P ′ |

λ0 +
∑

(T ′,P ′)∈TP

λT ′,P ′ = 1 ∧ λ0 ≥ 0 ∧ ∀(T ′, P ′) ∈ TP λT ′,P ′ ≥ 0 ∧mT ′,P ′ ∈ RT ′,P ′}

Observe that this representation is exponential w.r.t. the size of the CPN system.
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Let 〈N ,m0〉 and 〈N ′,m′0〉 be two CPN systems for which one wants to check whether RS(N ,m0) ⊆
RS(N ′,m′0). We first build the representation above for RS(N ,m0) and RS(N ′,m′0). Then we
transform the representation of the set RS(N ′,m′0) as a system of linear constraints. This can be done
in polynomial time w.r.t. the original representation [2]. So the number of constraints is still exponential
w.r.t. the size of 〈N ′,m′0〉.
Afterwards, for every constraint of this new representation, we add its negation to the representation of
RS(N ,m0) and check for a solution of such a system. RS(N ,m0) 6⊆ RS(N ′,m′0) iff at least one
of these linear programs admits a solution. The overall complexity of this procedure is still exponential
w.r.t. the size of the problem.

The procedure for lim-reachability set inclusion is similar. We first observe that:

lim−RS(N ,m0) = {m0} ∪
⋃

∅6=T ′∈FS(N ,m0)

{m | ∃v > 0m = m0 + CP×T ′v}

Due to Lemma 12, the lim-reachability set of a CPN system is convex. So we proceed as before. ut

5. Hardness results

We now provide matching lower bounds for almost all problems analysed in the previous sections. There
are two lower bounds: PTIME and coNP. The difference of complexity between the problems can be
illustrated by contrasting the reachability problem and the deadlock-freeness problem. While the search
of a firing sequence for the reachability can be done in polynomial time, to falsify the deadlock-freeness
one looks for a dead marking and then checks that this marking is reachable. Unfortunately the guess of
dead marking cannot be avoided by a deterministic procedure operating in polynomial time (as shown
by the lower bound below).

Proposition 32. The reachability, lim-reachability, coverability, lim-coverability and boundedness prob-
lems for CPN systems are PTIME-complete.

Proof:
Due to propositions 27 and 30, we only have to prove that these problems are PTIME-hard. So we
design a LOGSPACE reduction from the circuit value problem (a PTIME-complete problem [12]) to
these problems.

A circuit C is composed of four kinds of gates: False, True, AND, OR. Each gate has an output. There
is a single False gate and a single True gate and they have no inputs. Gates whose type is AND or OR
have two inputs. Any input of a gate is connected to an output of another gate. Let the binary relation ≺
between the gates be defined by: a ≺ b if the output of a is connected to an input of b. Then one requires
that the transitive closure of ≺ is irreflexive. One of the gates of the circuit, out, is distinguished and its
output is not the input of any gate. The value of the inputs and outputs of a circuit is defined inductively
according to the relation ≺. The output of gate False (resp. True) is false (resp. true). The input of
a gate is equal to the value of the output to which it is connected. The output of a gate AND or OR is
obtained by applying its truth table to its inputs. The circuit value problem consists in determining the
value of the output of gate out.
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The reduction is done as follows: The gate True is modelled by a place pTrue initially containing a token.
This is the only place initially marked. The gate False is modelled by a place pFalse. Any gate c of kind
AND yields a place pc and a transition tc whose inputs and outputs is represented in Fig. 4(a) and any gate
c of kind OR yields a place pc and two transitions tc1 and tc2 whose inputs and outputs are represented
in Fig. 4(b). Finally one adds the subnet represented in Fig. 5 with one transition cleanp per place p
different from pout. This reduction can be performed in LOGSPACE.

We prove by induction on ≺ that a transition tc (resp. tc1 or tc2) is enabled iff the gate c of kind AND

(resp. OR) has value true.

Assume that gate c of kind AND has value false. Then one of its input say a has value false. If a is the
gate False then pa is initially unmarked and cannot be marked since it has no input. If a is a gate of kind
AND then by induction on ≺, ta is never enabled and so pa will always be empty. If a is a gate of kind OR

then by induction on ≺, ta1 and ta2 are never enabled and so pa will always be empty. Thus whatever
the case tc can never be enabled. The case of a gate c of kind OR is similar.

Assume that gate c of kind AND has value true. Then both its inputs say a and b have value true. If
a (resp. b) is the gate True then pa (resp. pb) is initially marked. If a (resp. b) is a gate of kind
AND then by induction on ≺, ta (resp. tb) can be enabled. If a is a gate of kind OR then by induction
on ≺, some tai (resp. tbi) can be enabled. Now consider the sequence m0

σ−→m of Proposition 18
w.r.t. maxFS(N ,m0). In m, every place initially marked or output of a transition that belongs to
maxFS(N ,m0) is marked. So tc is enabled in m. The case of a gate c of kind OR is similar.

Now observe that the total amount of tokens in the net can only be increased by transition grow and in
this case place pout is unbounded. Since pout can contain tokens iff the value of gate out is true, we have
proved that the CPN system is unbounded iff the gate out is true.

Finally let m be defined by m(pout) = 1 and m(p) = 0 for all p 6= pout. If the value of gate out is false
then pout will never be marked and consequently m is neither (lim-)reachable nor (lim-)coverable. If the
value of gate out is true then transition tout can be fired by some small amount say 0 < ε ≤ 1. Then all
the other places can be unmarked by transitions cleanp followed by a finite number of firings of grow in
order to reach m. So m is (lim-)reachable (and (lim-)coverable) iff the value of gate out is true. ut
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pa pb
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tc

→
(a)

a

b
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pa pb
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tc1 tc2
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Figure 4. Reductions of the gates (a) AND and (b) OR to CPN.

p
cleanp pout
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2

Figure 5. An additional subnet.
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The next propositions establish coNP-hardness for some problems of CPNs. Furthermore we want
to show that these lower bounds are robust i.e. that they hold for subclasses of CPNs. To this aim, we
recall free-choice CPNs.

Definition 33. A CPN N is free-choice if:

• ∀p ∈ P ∀t ∈ T {Pre[p, t],Post[p, t]} ⊆ {0, 1};

• ∀t, t′ ∈ T •t ∩ •t′ 6= ∅ ⇒ •t = •t′.

•
b1 •

b2 •
b3

t1 f1 t2 f2 t3 f3

l11 l12

l21 l22 l23

l31 l32

nc1 nc2 nc3

suc

back

Figure 6. The CPN corresponding to formula (¬x1 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3).

It is shown in [14] that the (lim-)deadlock-freeness and (lim-)liveness problems in free-choice CPN
systems belong to coNP. We prove below that they are in fact coNP-complete.

Proposition 34. The (lim-)deadlock-freeness and (lim-)liveness problems in free-choice CPN systems
are coNP-hard.

Proof:
We use almost the same reduction from the 3SAT problem as the one proposed for free-choice Petri nets
in [6]. However the proof of correctness is specific to continuous nets.

Let {x1, x2, . . . , xn} denote the set of propositions and {c1, c2, . . . , cm} denote the set of clauses. Every

clause cj is defined by cj
def
= litj1 ∨ litj2 ∨ litj3 where for all j, k, litjk ∈ {x1, . . . , xn,¬x1, . . . ,¬xn}.

The satisfiability problem consists in the existence of an interpretation

ν : {x1, x2, . . . , xn} −→ {false, true}

such that for each clause cj , ν(cj) = true.
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Every proposition xi yields a place bi initially marked with a token (all other places are unmarked) and
being input of two transitions ti, fi corresponding to the assignment associated with an interpretation.
Every literal litjk yields a place ljk which is the output of transition ti if litjk = xi or transition fi
if litjk = ¬xi Every clause cj yields a transition ncj with three input “literal” places corresponding
to literals ¬litj1,¬litj2,¬litj3. An additional place suc is the output of every transition ncj . Finally,
transition back has suc as a loop place and bi for all i as output places. The reduction is illustrated in
Fig. 6.

Assume that there exists ν such that for all clause cj , ν(cj) = true. Then fire the following sequence
σ = 1t∗1 . . . 1t

∗
n where t∗i = ti when ν(xi) = true and t∗i = fi when ν(xi) = false. Consider the

reached marking m. Since ν(cj) = true, at least one input place of ncj is empty in m. Moreover
m(suc) = m(bi) = 0 for all i. So m is dead.

Assume that there does not exist ν such that for each clause cj , ν(cj) = true. Observe that given
a marking m such that m(suc) > 0, all transitions will be fireable in the future and suc will never
decrease (thus m(suc) > 0 for a lim-reachable marking m as well).

So we only consider reachable marking m such that m(suc) = 0, i.e. when no transitions ncj have
been fired. Our goal is to prove that from such a marking there is a sequence that produces tokens in suc.
Examining the remaining transitions, the following invariants hold. For all atomic proposition xi, and
reachable marking m, one has

∀im[bi] +
∑

litjk∈{xi,¬xi}

m[ljk] ≥ 1

∀j, k, j′, k′ litjk = litj′k′ ⇒m[ljk] = m[lj′k′ ]

If for some i, m[bi] > 0, we fire ti in order to empty bi. Thus the invariants become:

∀i
∑

litjk∈{xi,¬xi}

m[ljk] ≥ 1

∀j, k, j′, k′ litjk = litj′k′ ⇒m[ljk] = m[lj′k′ ]

Now define ν by ν(xi) = true if for some litjk = xi, m(ljk) > 0. Due to the hypothesis, there is a
clause cj such that ν(cj) = false. Due to our choice of ν and the invariants, all inputs of ncj are marked.
So firing ncj marks suc. ut

We show that even the hypotheses that allow the lim-reachability to belong in NC (see Proposition 28)
do not reduce the complexity of other problems.

Proposition 35. The (lim-)deadlock-freeness, (lim-)liveness and reversibility problems in consistent
CPN systems with no initially empty siphons are coNP-hard.

Proof:
We use another reduction from the 3SAT problem already described in the proof of proposition 34.

Every proposition xi yields a place bi initially marked with a token (all other places are unmarked) and
input of two transitions: (1) ti with output place pi and, (2) fi with output place ni corresponding to the



24 E. Fraca and S. Haddad / Complexity Analysis of Continuous Petri Nets

•
b1

•
b2

tb1 t1 f1 fb1 tb2 t2 f2 fb2

p1 n1 p2 n2

nc1 nc2

suc

nd

Figure 7. The CPN corresponding to formula (¬x1 ∨ ¬x2) ∧ x2.

assignment associated with an interpretation. Every clause cj yields a transition ncj . Transition ncj has
three loop places corresponding to literals litjk: if litjk = xi then the input is ni, if litjk = ¬xi then the
input is pi. An additional place suc is the output of transition ncj . A transition nd has suc as input place
and no output place. Finally for every xi, there are transitions tbi and fbi which are respectively reverse
transitions of ti and fi with an additional loop over place suc. The reduction is illustrated in Fig. 7. The
net is consistent with consistency vector:

∑
i(ti+ tbi+fi+fbi)+

∑
j(ncj +nd). It does not contain an

initially empty siphon since every siphon includes some place bi. This proves that every transition can
be fired at least once from m0.
Assume that there exists ν such that for each clause cj , ν(cj) = true. Then fire the following sequence
σ = 1t∗1 . . . 1t

∗
n where t∗i = ti when ν(xi) = true and t∗i = fi when ν(xi) = false. Consider the

reached marking m. Since ν(cj) = true, at least one input place of ncj is empty in m. Moreover
m(suc) = m(bi) = 0 for all i. So m is dead and the net is not reversible.
Assume that there does not exist ν such that for each clause cj , ν(cj) = true. Our goal is to prove
that from any (lim-)reachable marking there is a sequence that comes back to m0. Since from m0 all
transitions are fireable at least once this proves that the net is (lim-)live and (lim-)deadlock free.
For all atomic proposition xi, and reachable marking m, one has

∀im[bi] + m[pi] + m[ni] = 1

Since a lim-reachable marking is a limit of reachable markings, this invariant also holds for lim-reachable
markings.
If for some i, m[bi] > 0, we fire ti in order to empty bi. So the invariant becomes: ∀im[pi]+m[ni] = 1.
Now define ν by ν(xi) = true if m(pi) > 0. Due to the hypothesis, there is a clause cj such that
ν(cj) = false. Due to our choice of ν and the invariant, all inputs of ncj are marked. So firing ncj
marks suc. Now fire transitions tbi and fbi in order to empty places pi and ni. So m(bi) = 1. Finally
one fires nd in order to empty place suc and we are done. ut
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6. Application to a case study: a manufacturing system

6.1. Modelling a flexible manufacturing system

Figure 8. (a) Logical layout of a manufacturing system; and (b) its production process

Let us consider a flexible manufacturing system which consists of three machines [11], in which
some competition and cooperation relations appear (see Fig. 9(a)). The production process consists of

Figure 9. A PN which models the FMS of Figure 8 (see [11])
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two production lines (see Fig. 9) in which subproducts A and B are produced. Subproduct A is first
processed by Machine1 and then processed by Machine2, while subproduct B is processed in the
opposite order. Once both subproducts are processed, they are assembled by Machine3, to obtain the
final product.

The flexible manufacturing system in Fig. 8 is modeled by the PN in Fig. 9. Places p17 and p18
represent the availability of Machine1 and Machine2, respectively. Places {pi}1≤i≤5 represent the
processing of subproduct A, which is first processed by Machine1 (place p17), and then by Machine2
(place p18). The number of subproducts A which can be simultanuously been processed is determined
by the initial marking in p2. Subproduct A is stored in Buffer A (place p6), whose size is determined
by the initial marking of place p1. Places {pi}7≤i≤12 model the processing and storage of Subproduct
B. Machine3 (p13 models the idle machine) assembles the subproducts obtained from p6 and p12 and it
stores them in the Buffer C. Place p15 represents the size of Buffer C. In the initial marking depicted in
the figure, the sizes of Buffer A, Buffer B and Buffer C, are 20, 15 and 1 respectively, and these buffers
are initially empty. So only a Subproduct A and a Subproduct B can be initially produced.

6.2. Properties analysis

If the net of Figure 9 is considered as a discrete PN, its reachability space has 15,455 markings and its
size grows exponentially with the sizes of the buffer.

Reachability. It is interesting to check whether Buffer A and Buffer B can be simultaneously full with
Machine1 and Machine2 idle. This would be a good situation for the manufacturing plant to perform
some cleanance tasks over both machines. Several markings witness such a situation like m1 = p2 +
20p6 + 15p12 + p13 + p15 + p17 + p18. Algorithm 2 establishes that m1 is reachable in 〈N ,m0〉 and
outputs the following Parikh image of sequence 20t1 + 20t2 + 20t3 + 20t4 + 15t5 + 15t6 + 15t7 + 15t8.

Other properties. The net is bounded, reversible and (lim-)live. Observe that lim-liveness of a contin-
uous PN system implies structural liveness of the corresponding discrete PN [15]. Consequently, there
exists an initial marking such that the discrete PN is also live.

7. Conclusions

In this work we have analysed the complexity of the most standard problems for continuous Petri nets.
For almost all these problems, we have characterised their complexity class by designing new decision
procedures and/or providing reductions from complete problems. We have also shown that the reacha-
bility set inclusion, undecidable for Petri nets, becomes decidable in the continuous framework. These
results are summarised in Table 2.

There are three fruitful possible extensions of this work. Other properties could be studied. A
temporal logic provides a specification language for expressing properties. In Petri nets, the model
checking problem lies on the boundary of decidability depending on the type of logics (branching versus
linear, atomic propositions related to markings or to transition firings). We want to investigate this
problem for continuous Petri nets. Hybrid Petri nets encompass both discrete and continuous Petri nets.
So it would be interesting to examine the complexity and decidability of standard problems for the whole
class or some appropriate subclasses of this formalism.



E. Fraca and S. Haddad / Complexity Analysis of Continuous Petri Nets 27

Table 2. Complexity bounds

Problems Upper and lower bounds

(lim-)reachability PTIME-complete
in NC for lim-reachability (resp. reachability)
when all transitions are fireable at least once
(resp. and also in the reverse CPN)
and the net is consistent

(lim-)coverability PTIME-complete

(lim-)boundedness PTIME-complete

(lim-)deadlock-
freeness

coNP-complete

and (lim-)liveness coNP-hard even for:
• free-choice CPNs
• CPNs when all transitions are fireable at least

once and the net is consistent

(lim-)reachability in EXPTIME
set inclusion coNP-hard even for reversibility in CPNs

when all transitions are fireable at least once
and the net is consistent
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[11] Júlvez, J., Recalde, L., Silva, M.: Steady state performance evaluation of continuous mono-T-semiflow Petri
nets, Automatica, 41(4), May 2005, 605–616.

[12] Papadimitriou, C. H.: Computational complexity, Addison-Wesley, 1994, ISBN 0201530821.

[13] Papadimitriou, C. H., Steigliz, K.: Combinatorial Optimization. Algorithms and Complexity, Dover publica-
tions, second edition, 1998.

[14] Recalde, L., Haddad, S., Silva, M.: Continuous Petri Nets: Expressive Power and Decidability Issues, Int.
Journal of Foundations of Computer Science, 21(2), 2010, 235–256.

[15] Recalde, L., Teruel, E., Silva, M.: Autonomous Continuous P/T systems, Application and Theory of Petri
Nets 1999 (S. Donatelli, J. Kleijn, Eds.), 1639, Springer, Williamsburg, Virginia, USA, 1999.

[16] Ross-Leon, R., Ramirez-Trevino, A., Morales, J. A., Ruiz-Leon, J.: Control of Metabolic Systems Modeled
with Timed Continuous Petri Nets., ACSD/Petri Nets Workshops, 827, 2010.

[17] Vázquez, C. R., Sutarto, H. Y., Boel, R. K., Silva, M.: Hybrid Petri Net Model of a Traffic Intersection in
an Urban Network, Proceedings of the IEEE International Conference on Control Applications, CCA 2010,
Yokohama, Japan, 2010.

[18] Zerhouni, N., Alla, H.: Dynamic Analysis of Manufacturing Systems using Continuous Petri Nets., Proceed-
ings of the IEEE International Conference on Robotics and Automation, 2, Cincinnati, OH, USA, 1990.


