
A counter-example to the minimal coverability tree algorithm

A. Finkel, G. Geeraerts, J.-F. Raskin and L. Van Begin

Abstract

In [1], an algorithm to compute a minimal coverability tree for Petri nets has been
presented. This document demonstrates, thanks to a simple counter-example, that this
algorithm may compute an under-approximation of a coverability tree, i.e. a tree whose
set of nodes is not sufficient to cover all the reachable markings.

1 Preliminaries

Definition 1 A Petri Net (PN for short) N is a tuple 〈P, T ,m0〉, where P = {p1, p2, . . . pn}
is a finite set of places, T is finite set of transitions. A marking of the places is a function m :
P 7→ N. A marking m can also be seen as a vector v such that vT = [m(p1),m(p2), . . . ,m(pn)].
m0 is the initial marking. A transition t ∈ T is a pair 〈I,O〉 where I : P 7→ N and O : P 7→ N.

Given a Petri net N = 〈P, T ,m0〉, an ω-marking is a function m that associates to
each place of P either a natural number, or ω. Notice that markings are particular cases of
ω-markings. We define ω + c = ω and ω − c = ω for all c ∈ N.

Definition 2 Given a PN N = 〈P, T ,m0〉, and an ω-marking m of N , a transition t =
〈I,O〉 is said to be enabled in m iff ∀p ∈ P : m(p) ≥ I(p). An enabled transition t = 〈I,O〉
can occur, which transforms the ω-marking m into a new ω-marking m′ (we denote this by

m
t
−→ m′). m′ is computed as follows: ∀p ∈ P : m′(p) = m(p) − I(p) + O(p). We note

m
∗
−→ m′ when there exists a sequence of transitions t1, . . . , tk and a sequence of ω-markings

m1, . . . ,mk−1 such that m
t1−→ m1

t2−→ . . .
tk−1

−−−→ mk−1

k
−→ m′. The set of reachable markings

of N , noted RS(N), is the set {m |m0

∗
−→m}.

Given two ω-markings m1 and m2 ranging over set of places P , we have m1 4 m2 iff
∀p ∈ P : m1(p) ≤ m2(p). In particular: i < ω, for any i ∈ N. Moreover m1 ≺ m2 iff m1 4 m2

and m2 64 m1.
A coverability set of a PN N = 〈P, T ,m0〉 is a set of ω-markings CS(N) such that

RS(N) = {m ∈ N
|P| | ∃m′ ∈ CS(N) : m 4 m′}. A coverability set CS(N) is minimal if and

only if ∀m,m′ ∈ CS(N) : m 4 m′ implies m = m′.

Proposition 1 For any PN N , there exists a minimal coverability set CS(N) such that (i)
CS(N) is unique and (ii) CS(N) is finite.

Definition 3 A labelled tree of a Petri net N = 〈P, T ,m0〉 is a directed acyclic graph
〈N, root,B,Λ〉 where N is a finite set of nodes, root is the root node, B ⊆ N × N is a
transition relation and Λ : B 7→ (N ∪ {ω})|N | is a function labelling the nodes by ω-markings
of N . B is such that (i) for all n ∈ N \ {root}, there exists one and only one n′ ∈ N such
that B(n′, n) and (ii) there does not exist n ∈ N such that B(n, root).

1

A labelled tree T = 〈N, root,B,Λ〉 is a coverability tree for the Petri net N = 〈P, T ,m0〉
if the set {m | ∃n ∈ N : Λ(n) = m} is a coverability set of N . If that set is the minimal
coverability set of N , we say that T is a minimal coverability tree.

2 The minimal coverability tree algorithm [1]

In this section we briefly recall the main ideas of the algorithm to compute a minimal cover-
ability tree, as presented by Finkel in [1]. The algorithm is given at Algorithm 1.

Let us first detail several auxiliary function we use in the algorithm. Given a labelled tree
T , nodes(T) returns the set of all the nodes of T . Given a node n, subtree(n) returns the
maximal subtree rooted at n.

Algorithm 1 is essentially a refinement of the classical Karp&Miller algorithm, see [2]. A
set to treat holds the nodes that are waiting to be processed (initially, this sets contains the
root node of the labelled tree, whose label is the initial marking of the net). The processing of
a node consist in trying to apply several reduction rules, which are detailed along the various
cases of the if. Whenever there exists in the labelled tree computed so far a node n1 that is
larger than the node n currently processed, the algorithm decides to discard n. This node
gets suppressed from the labelled tree. When one finds in the labelled tree computed so far a
node n1 that is smaller than n, the Accelerate function, which is the same as in the K&M
algorithm, is first called. Remark that in the case where n has no ancestor smaller than itself,
the function simply returns Λ(n).

Accelerate(n)
begin

mω ← Λ(n) ;
m← Λ(n) ;
foreach ancestor n1 of n s.t. Λ(n1) ≺ m do

m1 ← Λ(n1) ;
foreach place p s.t. m1(p) < m(p) do

mω(p)← ω ;

return(mω) ;

end

Then, we check whether there exists an ancestor n1 of n that is smaller than n. In this case,
the marking returned by Accelerate contains ω’s, and we place it as high as possible in the
labelled tree. Finally, we look at all the other nodes that are smaller than n (without being
one of its ancestors). Of course, all these nodes have to be forgotten.

Finally, in the case where none of the reductions could be applied, we simply develop the
successors of the node n that has been taken out of to treat, and add them to the labelled
tree, as well as to to treat.

3 Counter-example to the algorithm

This section presents our counter-example to the algorithm recalled in the previous section.
The algorithm presented in [1] is supposed to compute the minimal coverability set of any

2

Algorithm 1: The solution of [1] to compute a minimal coverability tree of a Petri net.

Data : A Petri net P with initial marking m0.

Result : a minimal coverability tree of P.

begin

Let T = 〈N,n0, B,Λ〉 be the labelled tree computed as follows:
to treat = {n0} such that Λ(n0) = m0, N = {n0}, B = ∅ ;
while to treat 6= ∅ do

chose and remove n in to treat ;
if There is n1 ∈ N s.t. Λ(n) = Λ(n1) then

/* Nothing to do */

else if There is n1 ∈ N s.t. Λ(n) ≺ Λ(n1) then

/* n being smaller, we can forget it */
N ← N \ {n} ;
Let n′ be the direct ancestor of n ;
B ← B \ (n′, n);

else if There is n1 ∈ N s.t. Λ(n1) ≺ Λ(n) then

/* The classical Karp& Miller acceleration */
m←Accelerate(n) ;
/* Ancestors are treated first */
if There is an ancestor n′ of n s.t. Λ(n′) ≺ m then

Let n′ be the highest such ancestor in T ;
Λ(n′)← m ;
to treat← to treat \ nodes(subtree(n′)) ;
Remove subtree(n′) from T (but keep n′) ;
to treat← to treat ∪ {n′} ;

else to treat← to treat ∪ {n} ;
/* Then the other nodes that are smaller than m */
foreach n′ ∈ N s.t. Λ(n′) ≺m do

to treat← to treat \ nodes(subtree(n′)) ;
Remove subtree(n′) from T (including n′) ;

else

/* When we couldn’t apply reductions, we compute the successors of n */
foreach marking m′ successor of Λ(m) do

Let n′ be a new node s.t. Λ(n′) = m′ ;
N ← N ∪ {n′} ;
B ← B ∪ {(n, n′)} ;
to treat← to treat ∪ {n′} ;

Return(T) ;

end

3

Petri net. The counter-example relies on the Petri net of Fig. 1. Its analysis by Algorithm 1
is presented at Fig. 2 and 3. It is not difficult to see that not all the reachable markings in the
net of Fig. 1 are covered by the labelled tree (Fig.3(b)) obtained at the end of the algorithm.

Let us further comment on these figures:

Step 1 At the first step (Fig. 2(a)), we first compute the three successors of the initial mark-
ing, and add them to the labelled tree. Then, the node that is picked up from to treat

is 〈0, 1, 0, 0, 0, 0, 0〉. We unroll its successors in a branch of the labelled tree by firing
t2 and t3. Remark that all the markings obtained so far are incomparable. After the
development of t4, we obtain 〈0, 0, 1, 0, 1, 0, 0〉 which is strictly greater than its ancestor
〈0, 0, 1, 0, 0, 0, 0〉. The Accelerate function returns the marking 〈0, 0, 1, 0, ω, 0, 0〉.

Step 2 Fig. 2(b) shows the labelled tree obtained after: (i) having thoroughly applied
the acceleration and (ii) having successively picked up the nodes 〈0, 0, 0, 0, 0, 1, 0〉 and
〈0, 0, 0, 1, 2, 0, 0〉 from to treat. One then obtains the marking m1 = 〈0, 0, 1, 0, 3, 0, 0〉
which is strictly smaller than 〈0, 0, 1, 0, ω, 0, 0〉. Hence m1 is removed from the labelled
tree and its successors won’t be explored any further.

Step 3 At that point, we pick up the node 〈0, 0, 0, 0, 0, 0, 1〉 from to treat and compute its
unique successor, by firing t8. This is showed at Fig 2(c). The successor is 〈0, 1, 0, 0, 1, 0, 0〉
and is strictly smaller than the previously obtained marking m2 = 〈0, 1, 0, 0, 0, 0, 0〉.
Thus, m2 and its whole subtree (including the marking resulting from the acceleration)
disappear from the labelled tree.

Step 4 〈0, 1, 0, 0, 1, 1, 0〉 is the next marking to be looked at. From this marking, we can
compute two successive successors by unrolling the branch labelled t2 · t3. This is shown
at Fig.3(b). We obtain 〈0, 0, 0, 1, 1, 0, 0〉 which is strictly smaller than 〈0, 0, 0, 1, 2, 0, 0〉,
and thus removed from the labelled tree. At that point, the set to treat is empty
and the algorithm terminates. The labelled tree computed by the algorithm is shown
at Fig.3(b). However, some reachable markings are not covered by any nodes of this
labelled tree. Indeed, if it was the case, we could conclude that the place p5 is bounded,
which is obviously not the case: the sequence t1 · t2 · (t3 · t4)

n, which puts n tokens in
p5, can be fired for any n ≥ 0.

References

[1] A. Finkel. The minimal coverability graph for Petri nets. In Proceedings of Advances in
Petri Nets, volume 674 of LNCS, pages 210–243. Springer, 1993.

[2] R. M. Karp and R. E. Miller. Parallel Program Schemata. Journal of Computer and
System Sciences, 3:147–195, 1969.

4

•

p1

p2

p4

p5

p3

p6 p7

t1

t3

t4

t5

t6

t7

t8t2

2

Figure 1: The Petri net on which the algorithm proposed in [1] may not compute the whole
coverability set

5

〈1, 0, 0, 0, 0, 0, 0〉

〈0, 1, 0, 0, 0, 0, 0〉

〈0, 0, 1, 0, 0, 0, 0〉

〈0, 0, 1, 0, 1, 0, 0〉

〈0, 0, 0, 0, 0, 1, 0〉 〈0, 0, 0, 0, 0, 0, 1〉

t1

t2

t3 · t4

t5 t7

∧

(a) Step 1

〈1, 0, 0, 0, 0, 0, 0〉

〈0, 1, 0, 0, 0, 0, 0〉

〈0, 0, 1, 0, ω, 0, 0〉

〈0, 0, 0, 0, 0, 1, 0〉 〈0, 0, 0, 0, 0, 0, 1〉

〈0, 0, 0, 1, 2, 0, 0〉

〈0, 0, 1, 0, 3, 0, 0〉

t6

t4
<

(b) Step 2

〈1, 0, 0, 0, 0, 0, 0〉

〈0, 1, 0, 0, 0, 0, 0〉

〈0, 0, 1, 0, ω, 0, 0〉

〈0, 0, 0, 0, 0, 1, 0〉 〈0, 0, 0, 0, 0, 0, 1〉

〈0, 0, 0, 1, 2, 0, 0〉

〈×〉

〈0, 1, 0, 0, 1, 0, 0〉

t8
<

(c) Step 3

Figure 2: A counter-example to Finkel’s algorithm

6

〈1, 0, 0, 0, 0, 0, 0〉

〈×〉〈0, 0, 0, 0, 0, 1, 0〉 〈0, 0, 0, 0, 0, 0, 1〉

〈0, 0, 0, 1, 2, 0, 0〉

〈×〉

〈0, 1, 0, 0, 1, 0, 0〉

〈0, 0, 0, 1, 1, 0, 0〉

〈0, 0, 1, 0, 1, 0, 0〉

t2

t3
>

(a) Step 4

〈1, 0, 0, 0, 0, 0, 0〉

〈×〉〈0, 0, 0, 0, 0, 1, 0〉 〈0, 0, 0, 0, 0, 0, 1〉

〈0, 0, 0, 1, 2, 0, 0〉

〈×〉

〈0, 1, 0, 0, 1, 0, 0〉

〈×〉

〈0, 0, 1, 0, 1, 0, 0〉

(b) The result of the algorithm

Figure 3: A counter-example to Finkel’s algorithm (cont’d)

7

