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Abstract. A usual way to find positive invariant sets of ordinary differ-
ential equations is to restrict the search to predefined finitely generated
shapes, such as linear templates, or ellipsoids as in classical quadratic
Lyapunov function based approaches. One then looks for generators or
parameters for which the corresponding shape has the property that the
flow of the ODE goes inwards on its border. But for non-linear sys-
tems, where the structure of invariant sets may be very complicated,
such simple predefined shapes are generally not well suited. The present
work proposes a more general approach based on a topological property,
namely Ważewski’s property. Even for complicated non-linear dynam-
ics, it is possible to successfully restrict the search for isolating blocks
of simple shapes, that are bound to contain non-empty invariant sets.
This approach generalizes the Lyapunov-like approaches, by allowing for
inwards and outwards flow on the boundary of these shapes, with ex-
tra topological conditions. We developed and implemented an algorithm
based on Ważewski’s property, SOS optimization and some extra com-
binatorial and algebraic properties, that shows very nice results on a
number of classical polynomial dynamical systems.

1 Introduction

This paper describes a new method for proving the existence of a positive nvari-
ant set (generally called invariant set in computer science - we will stick to the
former terminology, classical in the dynamical systems community) of a dynam-
ical system, inside some region of the state space. Positive invariant sets are
central to control theory and to validation of systems, such as programs (when
considering discrete dynamical systems), physical systems (considering contin-
uous dynamical systems), or hybrid systems. In this paper, we are focusing on
continuous dynamical systems, but part of the method described here makes
sense in a discrete setting - in particular, Conley’s index theory [20] can be de-
veloped for discrete systems, only the differential conditions we are giving in



this paper have to be replaced by different conditions, which will be developed
elsewhere.

Let us consider an autonomous polynomial differential equation, for the rest
of this article :

dx

dt
= f(x) (1)

where x is a vector (x1, . . . , xn) of Rn and f is a vector of n polynomials in
x1, . . . , xn, e.g. for all i = 1, . . . , n, fi ∈ R[x1, . . . , xn], the multivariate poly-
nomial ring on n variables. As a polynomial function is locally Lipschitz, we
know by the Cauchy-Lipschitz theorem that the vector field f generates a flow
ϕ : U → Rn, where U is an open subset of R×Rn in such a way that t 7→ ϕ(x, t)
is a solution of the differential equation.

A positive invariant set is a subset of the state-space such that if the initial
state of the system belongs to this set, then the state of the system remains inside
the set for all future time instances. An invariant set is a subset of the state-
space which is positively invariant under the flow, and positively invariant under
the opposite flow (i.e. it is also a negative invariant). The classical approach to
find positive invariant sets of dynamical systems is through the determination of
a Lyapunov function, generally polynomial, which decreases along trajectories
of the dynamical system, positive in a neighborhood of the equilibrium point
(the only point on which its value is zero). This approach is particularly well-
suited to linear dynamical systems, where quadratic Lyapunov functions prove
to be the right class of functions, but in the case of non-linear systems [30,15]
the shape of the invariant set itself may be very complicated, in fact, far too
complicated to be easily found in general by polynomial Lyapunov functions.
Some authors, including the authors of the present article, have shown how to
find, in some cases, rational functions [30], and even functions in the differential
field extension of rational functions by some logarithms and exponentials, which
could be candidate Lyapunov functions [11]. This is of course highly costly in
computational power.

Recently, some authors have proposed to use piecewise linear [24] or piece-
wise quadratic [2] Lyapunov functions inspired both by abstract interpretation
of programs [25] and recent results in hybrid systems theory, most notably in
switched systems theory [26,3]. If these methods, based on “templates”, are com-
putationally tractable, they are limited by the fact that they can only find very
specific shaped positive invariant sets ; they must be in particular convex, which
is not always the case, even for simple classical systems.

We propose in this paper a method that also builds on templates. But instead
of considering more complicated Lyapunov functions (or shapes of candidate in-
variant sets) as in [11], we relax the classical condition that, for a template (given
by a piecewise linear, quadratic, and even more general polynomial Lyapunov
function) to be positively invariant, the flow of the differential system must go
inwards, condition that can be expressed as a negativity condition on a certain
Lie derivative (a notion defined in Section 3). We relax this classical condition by
asking only some parts of the boundary of the template to have inwards flows,
relying on some simple techniques of Conley’s index theory [8], and in particular



Ważewski’s property, to show the existence of a positive invariant set within this
template. The positive invariant set itself may be very complicated, but we do
not need to precisely describe it ; the template serves as an outer approximation
of this positive invariant set.

Let us for instance consider the case of Example 1, which will be our running
example throughout this paper.

Example 1. (Ex 2.8 of [20]) : ẋ = y, ẏ = y + (x2 − 1)
(
x+ 1

2

)
. This system has

several invariant sets in B = [−2, 2] × [−2, 2] ⊂ R2 : there are in particular 3
fixed points (−1, 0),

(
− 1

2 , 0
)

and (1, 0) for this system within this box. On this
system, it would be difficult to find a linear template on which we can prove
the inward flows property (in fact, there is a “natural” degree 4 polynomial
Lyapunov function, see [20]), whereas we will see that boxes such as B can be
easily shown to contain a positive invariant set, using our approach.

Claims and contents of this article. The main idea of our article is that even
though invariant sets for nonlinear dynamics may be very complicated to rep-
resent, and thus to find (e.g. by an explicit Lyapunov function), there exist
topological criteria to deduce that there exists a non-empty positive invariant set
inside some region of the state space. Note that not all positive invariant sets
contain a point onto which the dynamical system converges. There might be a
limit cycle, or a more complicated recurrent sets, for instance. For more compli-
cated asymptotic behaviours, within invariant sets, we rely on notions from the
Conley index theory [20], which we quickly state in Section 2. The key useful
notions here, are that of an isolating block and the Ważewski’s theorem, which
gives a sufficient condition to the existence of a non-empty (positive) invariant
set within an isolating block.

Several approaches have been developed over the years to algorithmically
compute such isolating sets and index pairs, but most of them have been derived
for discrete time dynamical systems [29,21]. Most approaches for continuous-
time systems reduce the problem to the discrete-time setting by constructing
rigorous outer approximations of a map for the flow, which of course involves
approximating the solution of the ordinary differential equation which describes
the system.

In this work, we generalize the template based approach of [24], designed
originally for linear systems, to derive some algebraic conditions for a template
to be an isolating block. This is done in Section 3, in which we give a sufficient
condition for a polynomial template to be an isolating block, expressed as condi-
tions on the Lie derivatives of the polynomial functions involved, on the faces of
the template, that generalize the conditions given in [28]. The main difficulty is
in fact of a topological nature : most of Section 3 is concerned with proving that
the so-called exit set on the template, under the flow given by Equation 1, i.e.
the set of states leaving the template, on its faces, is closed. This is necessary for
the template to be an isolating block. Note that our templatized isolating blocks
are particular C∞ isolating-block-with-corners of [14], that are as powerful as
(generalized) Lyapunov functions for finding invariant sets (Theorem 2.4 of [14])



; but these isolating blocks are “robust” : they are still isolating blocks for nearby
flows (Theorem 3.5 of [14]), which make them more robust numerically. They
are also close to the polyfacial sets of [23] attributed there to the original paper
of Ważewski [31].

We remark then, that the conditions we gave for a template to be an iso-
lating block can be solved, in particular, by Sum of Squares programming [17]
using Stengle’s nichtnegativstellensatz and even, most often, just Putinar’s posi-
tivstellensatz [22], which is computationally tractable using a SdP (Semi Definite
Programming) relaxation. This makes a second major difference with [28] where
an interval-based method is used instead. Finally, an isolating block may only
contain an empty invariant set, unless the conditions for Ważewski’s principle are
satisfied. For the purpose of this paper, we use a simpler condition, of a purely
combinatorial nature, in Section 4. We end up by discussing the algorithm on
simple examples from the literature, in Section 5. The first simple experiments
obtained with our Matlab implementation are still quite costly, but we propose
in the conclusion a number of possible algorithmical improvements.

2 Some basics of dynamical systems theory

The following definitions come from Conley index theory, and the qualitative
description of nonlinear dynamics [20]. Let us call ϕ : R × Rn → Rn the flow
function, such that ϕ(., x1, . . . , xn) is the unique solution to the differential equa-
tion system (1) starting, at time 0, at state (x1, . . . , xn) ∈ Rn, meaning that
ϕ(0, x1, . . . , xn) = (x1, . . . , xn) and dϕ

dt (t, x1, . . . , xn) = f ◦ϕ(t, x1, . . . , xn). (Pos-
itive) invariant sets are invariant under the flow ϕ, for all (resp. positive) times,
i.e. they are sets S such that (resp. ϕ(R+, S) ⊂ S) ϕ(R, S) ⊂ S.

A subtle point is that the method is designed to find invariant sets S within a
compact set N , but not quite positive invariant sets. But in fact, it is well-known
that when we have one, we will have the other [5,23].

For non-linear dynamics, the shape of invariant sets can be very complicated.
A central notion to our method is that of isolating block, that isolates invariant
sets, meaning that invariant sets therein, if ever they exist, are necessarily in the
interior of isolating blocks.

Definition 1. (Isolating block). A compact set B is an isolating block if

(a) B− = {x ∈ B | ϕ([0, T ), x) 6⊆ B, ∀T > 0} is closed
(b) ∀T > 0, {x ∈ B | ϕ([−T, T ], x) ⊆ B} ⊆ intB

Condition (a) imposes that the exit set B−, i.e. the set of states of B which
leave B under flow ϕ, is closed in the topology of Rn. When condition (b) is
satisfied, B is called an isolating neighborhood. The combination of (a) and (b)
guarantees that no trajectory is inner tangential to the boundary ∂B of B. A
fundamental difficulty in computational topological dynamics is that isolating
neighborhood are generally much easier to construct than isolating block.



Fig. 1. The three fixed points and the exit set (in red) of the system of Example 1.

Example 2. For Example 1, we will see that for B = [−2, 2]× [−2, 2] the box of
Figure 2, B− is the set of four red segments, one on each face, on the same Figure,
and we will prove (Example 5.) that B− is closed, so that B is an isolating block
for this system. Note that this is a robust notion : all B = [−a, a]× [−b, b] with
a > 1 and b > 1, in particular, are isolating blocks.

Still, isolating blocks may not contain interesting (meaning non-empty) in-
variant sets. There is a simple topological condition on isolating blocks that
implies the existence of a non empty invariant set therein.

Theorem 1. (Ważewski Property [20]). If B is an isolating block and B− is
not a deformation retract of B then there exists a not-empty invariant set S in
the interior of B.

We will not define formally a deformation retract, for the sake of simplicity.
Let us just say that a deformation retract of a topological space B is a subspace
which is an “elastic” deformation of it, so that it retains its essential topological
features. For the method we are developing here, we will content ourselves with
the much weaker statement that among the topological features that are retained
in a deformation retract, is the number of connected components.

Example 3. We saw in Example 2 that we had a square B with closed exit set
B− made of two connected components. Clearly B− is not a deformation retract
of B, as B− is made of two connected components, and B of only one.

3 Isolating blocks : algebraic conditions

We are now giving a simple criterion for a compact set B, given as a general
polynomial template, to be an isolating block for the dynamics given by Equa-
tion 1. Note that although the method can be defined for general polynomial
templates, which is what we describe here, isolating blocks are robust properties



that permit the use of very simple templates in general, which will be the case
in the experiments presented here. The set B ⊆ Rn is defined, for some vector
c = (c1, . . . , cm) ∈ Rm, by the m polynomial inequalities :

(P )

 p1(x1, . . . , xn) ≤ c1
. . .

pm(x1, . . . , xn) ≤ cm

We call P ci the face of template B given by {(x1, . . . , xn)|pi(x1, . . . , xn) = ci}∩B
which might be proper (non-empty) or not. In what follows, we suppose that
each face of B is proper.

We call minimal polynomial templates, the templates B whose border ∂B is
equal (and not just included as would be generally the case) to

⋃s
i=1{x|pi(x) =

ci, pj(x) ≤ cj ∀j 6= i}. For x ∈ ∂B, we note I(x) the non-empty and maximal
set of indices in 1, . . . ,m such that for all i ∈ I(x), pi(x) = ci.

Let us now define Lie derivatives, that we will use hereafter.

Definition 2. (Lie derivative and higher-order Lie derivatives). The Lie deriva-
tive of h ∈ R[x] along the vector field f = (f1, . . . , fn) is defined by

Lf (h) =

n∑
i=1

∂h

∂xi
fi = 〈f,∇h〉

Higher-order derivatives are defined by Lk+1
f (h) = Lf (L(k)

f (h)) with L0
f (h) = h.

For polynomial dynamical systems, only a finite number of Lie derivatives are
necessary to generate all higher-order Lie derivatives. Indeed, let h ∈ R[x1, . . . , xn],
we recursively construct an ascending chain of ideals of R[x1, . . . , xn] by append-
ing successive Lie derivatives of h to the list of generators:

< h >⊆< h,L1
f (h) >⊆ · · · ⊆< h,L1

f (h), . . . ,L(N)
f (h) >

Since the ring R[x] is Noetherian [16], this increasing chain of ideals has neces-
sarily a finite length: the maximal ideal is called the differential radical ideal of
h and will be noted L

√
< h >. Its order is the smallest N such that:

L(N)
f (h) ∈< h,L(1)

f (h), . . . ,L(N−1)
f (h) > (2)

Not surprisingly, this is a notion that has already been used to characterize
algebraic positive invariant sets of dynamical systems [10].

This N is computationally tractable. If we note Ni the order of the differ-
ential radical ideal L

√
< pi >, then for face i we should compute the succes-

sive Lie derivatives until Ni. This can be done by testing if the Gröbner basis
spanned by the derivatives changes. Indeed, two ideals are equal if they have the
same reduced Gröbner basis (usually a Gröbner basis software produces reduced
bases) [1]. If we denote by G({g1, · · · , gn}) the Gröbner basis of {g1, · · · , gn}, the

first n s.t. G({L(0)
f (pi), · · · ,L(n)

f (pi)}) = G({L(1)
f (pi), · · · ,L(n+1)

f (pi)}) is equal to
Ni. It can be observed that upper bounds for Ni could be used instead of com-
puting Gröbner bases in some cases, see [27].



Example 4. If we take the first face P c1 of the template {p1 = −x, p2 = x, p3 =
−y, p4 = y} with {c1 = 2, c2 = 2, c3 = 2, c4 = 2} i.e P c1 = {−x = 2, x ≤
2,−y ≤ 2, y ≤ 2} then L(1)

f (p1) = −y, G({L(0)
f (p1),L(1)

f (p1)}) = {−x,−y} ;

L(2)
f (p1) = −y − (x2 − 1)

(
x+ 1

2

)
, G({L(0)

f (p1),L(1)
f (p1),L(2)

f (p1)}) = 1. We can
already deduce from this that N1 = 3.

Now, in order to find isolating blocks, we need to find and prove some topo-
logical properties on the exit sets, see Definition 1. For polynomial templates,
we rely on Lemma 1:

Lemma 1. Let x0 be a point on the border ∂B of a minimal polynomial template
B. Then x0 is in the exit set B− of B if and only if, for some i0 ∈ I(x),

∃k0 > 0 such L(k0)
f (pi0) > 0 and ∀0 < k < k0 L(k)

f (pi0) = 0

For a template B to be an isolating block, we know from Definition 1 that
we need to check first that the exit set B− is closed :

Lemma 2. Let B be a compact minimal polynomial template defined by the set
of inequalities (P ) and let Ni be the order of the differential radical ideal L

√
< pi >

(i.e. the index defined by Equation 2) for the dynamical system of Equation 1.
If for each face P ci of template B, for all k ∈ {1, · · · , Ni − 2},

(Hi
k) :

{
{x ∈ P ci | L

(1)
f (pi)(x) = 0, · · · , L(k)

f (pi)(x) = 0,

L(k+1)
f (pi)(x) < 0} = ∅

then B− is closed and is equal to
⋃m
i=1{x ∈ P ci | L

(1)
f (pi)(x) ≥ 0}.

Proof. We begin to show that if for each face P ci of template B, for all k ∈
{1, · · · , Ni − 2}, we have {x ∈ P ci | L

(1)
f (pi)(x) = 0, · · · , L(Ni−1)

f (pi)(x) =

0} = ∅ as well as (Hi
k) as above, then B− is closed and is equal to

⋃m
i=1{x ∈

P ci | L
(1)
f (pi)(x) ≥ 0}. If we set, for k = 0, . . . , Ni − 1:

Pk = {x | L(1)
f (pi)(x) = 0, · · · , L(k)

f (pi)(x) = 0,L(k+1)
f (pi)(x) ≥ 0}

Qk = {x | L(1)
f (pi)(x) = 0, · · · , L(k)

f (pi)(x) = 0,L(k+1)
f (pi)(x) > 0}

Rk = {x | L(1)
f (pi)(x) = 0, · · · , L(k)

f (pi)(x) = 0,L(k+1)
f (pi)(x) < 0}

We then have, for k = 1, . . . , Ni−2, Pk = Qk∪Pk+1∪Rk+1. Given that Ni is the
index of the differential ideal L

√
< pi >, we know that QNi−1 = ∅, RNi−1 = ∅,

since L(1)
f (pi)(x) = 0, · · · , L(Ni−1)

f (pi)(x) = 0 implies L(Ni)
f (pi)(x) = 0. Given

the hypotheses, we know also that for all k = 1, . . . , Ni−2, Rk = ∅, and PNi−1 =

∅. This means that Pk =
⋃Ni−2
i=k Qi.

By Lemma 1, x is in B−∩P ci if and only if it is in ∪∞i=0Qi∪ = ∪Ni−2
i=0 Qi. This

last set is, by the equation above, equal to P0, which is the inverse image by a con-

tinuous function (the higher Lie derivative) of the closed set [0,max L(1)
f (pi)(B)]

(since B is compact in Rn).



We can then notice that the exit set B− is the union of B− ∩ P ci , for all
i = 1, . . . ,m, each one of which is closed, hence is closed.

Note now that pi = c∧L1
f (pi) . . . LNi−1

f (pi) = 0 is equivalent to saying that
all solutions to the ODE are constant on face pi. This implies that the face P ci is
not an exit set, and the exit set relative to P ci is trivially closed (since empty).
This means that, to check that a template is an isolating block, we only need to
check that for all k ∈ {1, · · · , Ni − 2}, :

pi = ci∧(pj ≤ cj)j 6=i∧L(1)
f (pi)(x) = 0, · · · , L(k)

f (pi)(x) = 0, ⇒ L(k+1)
f (pi)(x) ≥ 0

Note that the criterion used in [28] strictly implies all (Hi
k).

Finally, for B a polynomial template to be an isolating block, we need to
show (see Definition 1) that there is no inner tangential flow within it. It is easy
to see that not having any inner tangential flow is equivalent to asking that
for each of its faces P ci , for all k ∈ {0, · · · , Ni − 1}, no x ∈ P ci can satisfy the
following set of equalities and inequalities :

L(1)
f (pi)(x) = 0, · · · , L(2k−1)

f (pi)(x) = 0, L(2k)
f (pi)(x) < 0 (3)

This is clearly satisfied when the condition of Lemma 2 is satisfied.
The algorithm we are going to develop now thus relies on checking the con-

dition of Lemma 2. This can be checked using Sum of Squares optimization [17]
and Stengle’s nichtnegativstellensatz, for increasing k from 1 to Ni− 2, for each
face i of the template. This is done as follows. We determine polynomials αj
(j = 0, . . . , k), SoS polynomials βS,µ (S ⊆ {1, . . . , i− 1, i+ 1, . . . ,m}, µ ∈ {0, 1})
and an integer l, such that

k∑
j=0

αjL(j)
f +

∑
S⊂{1,...,i−1,i+1,...,m}

βS,µGS,µ +
(
L(k+1)
f

)2l
= 0 (4)

where GS,µ = (−L(k+1)
f )µΠs∈S(cs − ps) for any S ⊆ {1, . . . , i − 1, i + 1, . . . ,m}

and µ ∈ {0, 1} and the convention that L0
f (pi) = ci − pi. Practically speaking,

this is done by bounding the degrees of the polynomials αj and βS,µ we are
looking for, and taking low values for l (in all our examples, we took l = 1).
Hence we get the following Proposition, at the heart of our algorithm :

Proposition 1. For each face P ci , if for all k = 1, . . . , Ni − 2, there exist
polynomials αj (j ∈ {0, . . . , k}) and sum-of-squares polynomials βS,µ (S ⊆
{1, . . . , i − 1, i + 1, . . . ,m} and µ ∈ {0, 1}) such that Equation 4 holds, then
the template P ci is an isolating block.

To provide for faster results, in most cases, we begin, for a given k (and i),
instead of solving (Hi

k) by Equation 4, by solving the simpler property pi =

ci ∧ (pj ≤ cj)j 6=i ∧ L(1)
f (pi)(x) = 0, · · · , L(k)

f (pi)(x) = 0, ⇒ L(k+1)
f (pi)(x) > 0.

If so, we can stop testing (Hi
k) for higher values of k since they are then trivially

satisfied. We can test whether this equation above is true using Putinar’s posi-
tivstellensatz [22] which is much less computationally demanding than Stengle’s



nichtnegativstellensatz, and which also stops the algorithm potentially before
reaching k = Ni − 2. A sufficient condition for this to be true is to find polyno-
mials αl (l = 1, . . . , k), γi and sum-of-squares polynomials βj j = 1, . . . ,m, j 6= i

such that L(k+1)
f (pi) =

∑k
j=1 αjL

(j)
f (pi) +β0 +

∑m
j=1,j 6=i βj(cj−pj) +γi(pi− ci).

For each fixed integer D > 0, which we choose as a bound on the degree of
polynomials αl, γi and βj , this can be tested by semidefinite programming (see
[18] and the improvement of [19] for a discussion on the maximal degree for these
problems).

Example 5. We take again the face P c1 , and try to prove (H1
1 ) for example. A

sufficient condition is to find polynomials α, γ (for equality conditions) and
sum-of-squares polynomials β0, β1, β2, β3 (for inequality conditions) such that

L(2)
f (p1) = αL(1)

f (p1) + β0 + β1(c2 − p2) + β2(c3 − p3) + β3(c4 − p4) + γ(p1 − c1)

which is trivially satisfied with α = 1, β0 = 9
2 , β1 = β2 = β3 = 0 and

γ =
((

1
2 + x

)
(2− x)− 3

)
. Using SOSTools with the SdP solver SeDuMi un-

der Matlab gives more complicated solutions.

4 A simple combinatorial condition for proving the
existence of (non-empty) invariant sets

Even though we found a compact minimal polynomial template B with closed
exit set, i.e. an isolating block, it can be the case that the inner invariant set is
empty. We use Ważewski’s property, Theorem 1, to ensure that it is not empty.

It is difficult, in general, to test whether B− is a deformation retract of B
or not. We will use sufficient conditions to guarantee that B− is not a defor-
mation retract of B, in the simpler case where B is contractible (i.e. there is a
deformation retract of B onto any of its points).

Using Lemma 2, we know that exit sets on each of the faces P ci is given as

the set of points x on P ci such that L(1)
f (pi)(x) ≥ 0. Define G as the graph whose

nodes are the P ci for which P ci ∩ B− is non-empty and whose edges are given

by pairs P ci , P cj of faces of B, such that L(1)
f (pi)(x) ≥ 0 ∧ L(1)

f (pj)(x) ≥ 0 is
satisfiable on P ci ∩ P cj (when non-empty).

If G is not connected, then the exit set B− is trivially not connected either,
because G has a number of components less or equal than that of B− (this can
be stricly less if some P ci ∩ B− is not connected). But B is connected because
it is in particular contractible. Thus B− cannot be a deformation retract of B.
This is what we used in Example 3 to prove that there is a positive invariant
set within B. Note that we can do the same for the complement of the exit
set (i.e. the entrance set), combined, and that, by Alexander duality [13], these
two connectedness tests are rather fine tests : the connected components of the
entrance set give information on the first cohomology group of the exit set in
dimension n = 3.

This leads to Proposition 2, that uses positivstellensatz once again as an
algorithmic method to determine connectivity of (an abstraction of) graph G.



Proposition 2. Let G] be the graph whose nodes are given by the faces P ci of the

template considered such that there exists an x with pi(x) = ci and L(1)
f (pi)(x) =

β0 +
∑m
k=1,k 6=i βk(ck−pk)+γi(ci−pi) (where β0, βk are SoS polynomials and γi

is any polynomial), and whose edges are given by pair of faces (P ci , P
c
j ) such that

there exists an x with pi(x) = ci, pj(x) = cj, and −L(1)
f (pi)(x) × L(1)

f (pj)(x) =

β′0 +
∑m
k=1,k 6=i,k 6=j β

′
k(ck − pk) + γi(ci − pi) + γj(cj − pj) (where β′0, β′k are

SoS polynomials and γi is any polynomial). Then if G] is disconnected and the
template is an isolating block then its invariant subset is non-empty.

Algorithmically, on top of the classical SdP relaxation for solving positivstel-
lensatz, we use a simple depth-first traversal of the graph to compute the set of
connected components of G].

Example 6. We consider again Example 1. Each of the four faces of B is a
node in G]. The faces are respectively given by {(−2, y)| − 2 ≤ y ≤ 2} (face
P c1 ), {(2, y)| − 2 ≤ y ≤ 2} (face P c2 ), {(x,−2)| − 2 ≤ x ≤ 2} (face P c3 ) and
{(x, 2)|−2 ≤ x ≤ 2} (face P c4 ). We thus have non-empty intersections P c1 ∩P c3 =
{(−2,−2)}, P c1 ∩ P c4 = {(−2, 2)}, P c2 ∩ P c3 = {(2,−2)} and P c3 ∩ P c4 = {(2, 2)}.
Therefore we have an edge from P c1 to P c3 if and only if L(1)

f (p1)(−2,−2) = 2

and L(1)
f (p3)(−2,−2) = 13

2 are both positive - which is true ; we have an edge

from P c1 to P c4 if and only if L(1)
f (p1)(−2, 2) = −2 and L(1)

f (p4)(−2, 2) = 5
2 are

both positive - which is false ; and similarly, we obtain that there is no edge
between P c2 and P c3 , and there is an edge between P c2 and P c4 .

We conclude that B− has (at least) two connected components, and that
there is a non empty invariant set within the square B.

5 Experiments

The algorithm was implemented in Matlab, with the Symbolic Math Toolbox to
compute the Lie derivatives, and MuPaD for Gröbner basis manipulations. Sum
of square problems are solved with the semi-definite programs solver SeDumi.
Timings of the execution of our algorithm on classical examples are given for a
MacBook Air (Processor) 1,3 GHz Intel Core i5 , (Memory) 4 GB 1600 MHz
DDR3 and expressed in seconds as follows : t Gröbner is the time needed to
find the order of the differential radical for a given face, t SoS optim is the time
taken to solve the SoS optimization problems for each face. We also indicate in
Figure 2 the order of the differential radical in column “Ni” and the maximal
degree of polynomials in the corresponding Gröbner base.

Example A. It is our running example, Example 1 from Section 1. Just as a
matter of comparison, if we had applied directly Stengle’s nichtnegativstellen-
satz, the time it would have taken to prove closedness of the exit set, for each
face, would have been around 130 seconds, in sharp contrast with the 4 seconds,
using Putinar’s positivstellensatz.



Example B. It is defined by
(
ẋ = y, ẏ = −y − x+ 1

3x
3
)

(Example 4 of [7], with
a quadratic Lyapunov function), with as template, the box defined by c =
(2.4, 2.4, 2.4, 2.4)t. We are able to show, using the method of Proposition 2,
that this box contains a non-trivial invariant.

Example C. It is given by
(
ẋ = − 1

10x+ y − x3, ẏ = −x− 1
10y, ż = 5z

)
, Example

4.1 (page 21) of [28]. There are three fixed points p0 = (1, 0, 0), p1 = (1, 0, 0),
and p2 = (0, 1, 1), and rather complicated dynamics between neighborhoods of
these points. The only face we are considering is the sphere of radius 1

5 centered
at p2, which is defined by the template x2 + (y − 1)2 + (z + 1)2 = 1

25 . The exit
set can be shown to have two connected components, but Proposition 2 fails to
see that, because we have only one face. This can be solved by considering the
two hemispheres, one with z ≥ −1, the other with z ≤ −1. Our method then
finds one connected component in one of the hemispheres and the other in the
opposite one : G] is disconnected, hence contains a non-empty invariant. Note
that the direct SoS approach seems to find only degree ≥3 polynomials [28].

Ex. Face t Gröbner do G-base Ni t SoS optim

Example A Face 1 (−x) 0.39 3 3 4.7
Face 2 (x) 0.43 3 3 4.67
Face 3 (−y) 0.45 3 3 5.01
Face 4 (y) 0.45 3 3 5.07

Example B Face 1 (x) 0.38 2 3 4.8
Face 2 (−x) 0.43 2 3 4.7
Face 3 (y) 0.36 2 3 4.9
Face 4 (−y) 0.39 2 3 5.0

Example C Face 1 0.51 3 4 14.6

Example D Face 1 1.83 7 4 158.42

Fig. 2. Some benchmarks

Example D. It is the same as Example C (i.e. Example 4.1 of [28]), but using as
template a 4-norm ellipsoid centered at the point (0, 12 ,

1
2 ) whose principal axes

are pointing in the coordinate directions x, y, and z and have lengths 3
2 , 1, and

1, respectively. This is described by the only face
(
2
3x
)4

+
(
y − 1

2

)4
+
(
z + 1

2

)4
=

1. The exit set is connected but is not simply connected : this can be seen
by noticing that the entrance set has two components. But as for Example C,
Proposition 2 cannot help distinguish them right away as we have encoded the
template by just one face.

6 Conclusion and future work

This paper is a first step towards more involved criteria for finding (positive) in-
variant sets. First, this can be generalized to switched systems, a particular class



of hybrid systems which have regained recent interest in the control community.
Also, the nature of the invariant sets isolated by our method can be more pre-
cisely characterized, using further the Conley index theory, making for instance
the difference between a stable point or a limit cycle. We can also generalize the
combinatorial criterion of Section 4 : we used the first step of a general nerve
lemma [32], there might be an interest in going one step further.

Another direction of improvement concerns the choice of templates. For in-
stance, classical linear templates are quite hard to use for Van der Pol’s equation,
but the results of [6] seem to indicate that refining them should be possible.

There are also numerous algorithmic improvements over the costly Gröbner
base and SoS computations. Instead of SoS methods, we could think of using
simpler but still precise inner [12] and outer [9] approximations of the image of a
polynomial function on a box. Some quantifier elimination methods might also
been useful, using Cylindrical Algebraic Decomposition [4].

Finally, turning the SoS problems that we used for finding solutions to some
polynomial inequalities into real optimization problems will provide a way to find
the vector c defining the faces of a template isolating block, instead of merely
checking the property for a given c. For finite or regular control problems, a
finite set of parameters defining a stabilizing control may also be found this way.
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