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ABSTRACT. Well-structured transition systems provide the right foundation to compute a finite basis
of the set of predecessors of the upward closure of a state. The dual problem, to compute a finite
representation of the set of successors of the downward closure of a state, is harder: Until now, the
theoretical framework for manipulating downward-closed sets was missing. We answer this problem,
using insights from domain theory (dcpos and ideal completions), from topology (sobrifications), and
shed new light on the notion of adequate domains of limits.

1. Introduction

The theory of well-structured transition systems (WSTS) is20 years old [9, 10, 2]. The most
often used result of this theory [10] is the backward algorithm for computing a finite basis of the
set↑ Pre∗(↑ s) of predecessors of the upward closure↑ s of a states. The starting point of this
paper is our desire to compute↓ Post∗(↓ s) in a similar way. We then need a theory to finitely (and
effectively) represent downward-closed sets, much as upward-closed subsets can be represented by
their finite sets of minimal elements. This will serve as a basis for constructing forward procedures.

Thecover, ↓ Post∗(↓ s), contains more information than the set of predecessors↑ Pre∗(↑ s)
because it characterizes a good approximation of the reachability set, while the set of predecessors
describes the states from which the system may fail; the cover may also allow the computation of a
finite-state abstraction of the system as a symbolic graph. Moreover, the backward algorithm needs a
finite basis of the upward closed set of bad states, and its implementation is, in general, less efficient
than a forward procedure: e.g., for lossy channel systems, although the backward procedure always
terminates, only the non-terminating forward procedure isimplemented in the tool TREX [1].

Except for some partial results [9, 7, 12], a general theory of downward-closed sets is missing.
This may explain the scarcity of forward algorithms for WSTS. Quoting Abdullaet al. [3]: “Finally,
we aim at developing generic methods for building downward closed languages, in a similar manner
to the methods we have developed for building upward closed languages in [2]. This would give a
general theory for forward analysis of infinite state systems, in the same way the work in [2] is for
backward analysis.” Our contribution is to provide such a theory of downward-closed sets.
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Related Work.Karp and Miller [15] proposed an algorithm that computes a finite representation of
the downward closure of the reachability set of a Petri net. Finkel [9] introduced the WSTS frame-
work and generalized the Karp-Miller procedure to a class ofWSTS. This is done by constructing
the completion of the set of states (by ideals, see Section 3)and in replacing theω-acceleration
of an increasing sequence of states (in Petri nets) by its least upper bound (lub). However, there
are no effective finite representations of downward closed sets in [9]. Emerson and Namjoshi [7]
considered a variant of WSTS (using cpos, but still without atheory of effective finite representa-
tions of downward-closed subsets) for defining a Karp-Miller procedure to broadcast protocols—
termination is then not guaranteed [8]. Abdullaet al. [1] proposed a forward procedure for lossy
channel systems using downward-closed languages, coded asSREs. Ganty, Geeraerts, and others
[12, 11] proposed a forward procedure for solving the coverability problem for WSTS equipped
with an effective adequate domain of limits. This domain ensures that every downward closed set
has a finite representation; but no insight is given how thesedomains can be found or constructed.
They applied this to Petri nets and lossy channel systems. Abdulla et al. [3] proposed another
symbolic framework for dealing with downward closed sets for timed Petri nets.

We shall see that these constructions are special cases of our completions (Section 3). We shall
illustrate this in Section 4, and generalize to a comprehensive hierarchy of data types in Section 5.
We briefly touch the question of computing approximations ofthe cover in Section 6, although we
shall postpone most of it to future work. We conclude in Section 7.

2. Preliminaries

We shall borrow from theories of order, both from the theory of well quasi-orderings, as used
classically in well-structured transition systems [2, 10], and from domain theory [5, 13]. We should
warn the reader that this is one bulky section on preliminaries. We invite her to skip technical points
first, returning to them on demand.

A quasi-ordering≤ is a reflexive and transitive relation on a setX. It is a (partial)ordering iff
it is antisymmetric. A setX equipped with a partial ordering is aposet.

We write≥ the converse quasi-ordering,≈ the equivalence relation≤ ∩ ≥, < associated strict
ordering (≤ \ ≈), and> the converse (≥ \ ≈) of <. The upward closure↑ E of a setE is
{y ∈ X | ∃x ∈ E · x ≤ y}. Thedownward closure↓ E is {y ∈ X | ∃x ∈ E · y ≤ x}. A subset
E of X is upward closedif and only if E = ↑ E, i.e., any element greater than or equal to some
element inE is again inE. Downward closedsets are defined similarly. When the ambient space
X is not clear from context, we shall write↓X E, ↑X E instead of↓ E, ↑ E.

A quasi-ordering iswell-foundediff it has no infinite strictly descending chain, i.e.,x0 > x1 >
. . . > xi > . . .. An antichainis a set of pairwise incomparable elements. A quasi-ordering is well
if and only it is well-founded and has no infinite antichain.

There are a number of equivalent definitions for well quasi-orderings (wqo). One is that, from
any infinite sequencex0, x1, . . . , xi, . . ., one can extract an infinite ascending chainxi0 ≤ xi1 ≤
. . . ≤ xik ≤ . . ., with i0 < i1 < . . . < ik < . . .. Another one is that any upward closed subset
can be written↑ E, with E finite. Yet another, topological definition [14, Proposition 3.1]is to
say thatX, with its Alexandroff topology, is Noetherian. TheAlexandroff topologyon X is that
whose opens are exactly the upward closed subsets. A subsetK is compact if it satisfies the Heine-
Borel property, i.e., every one may extract a finite subcoverfrom any open cover ofK. A topology
is Noetherianiff every open subset is compact, iff any increasing chain ofopens stabilizes [14,
Proposition 3.2]. We shall cite results from the latter paper as the need evolves.
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We shall be interested in rather particular topological spaces, whose topology arises from order.
A directed familyof X is any non-empty family(xi)i∈I such that, for alli, j ∈ I, there is ak ∈ I
with xi, xj ≤ xk. The Scott topologyon X has as opens all upward closed subsetsU such that
every directed family(xi)i∈I that has a least upper boundx in X intersectsU , i.e., xi ∈ U for
somei ∈ I. The Scott topology is coarser than the Alexandroff topology, i.e., every Scott-open is
Alexandroff-open (upward closed); the converse fails in general. The Scott topology is particularly
interesting ondcpos, i.e., posetsX in which every directed family(xi)i∈I has a least upper bound
supi∈I xi.

The way belowrelation≪ on a posetX is defined byx ≪ y iff, for every directed family
(zi)i∈I that has a least upper boundz ≥ y, thenzi ≥ x for somei ∈ I already. Note thatx ≪ y
implies x ≤ y, and thatx′ ≤ x ≪ y ≤ y′ implies x′ ≪ y′. However,≪ is not reflexive or
irreflexive in general. Write↑↑E = {y ∈ X | ∃x ∈ E · x ≪ y}, ↓↓E = {y ∈ X | ∃x ∈ E · y ≪ x}.
X is continuousiff, for every x ∈ X, ↓↓x is a directed family, and hasx as least upper bound. One
may be more precise: Abasisis a subsetB of X such that any elementx ∈ X is the least upper
bound of a directed family of elements way belowx in B. ThenX is continuous if and only if it
has a basis, and in this caseX itself is the largest basis. In a continuous dcpo,↑↑x is Scott-open for
all x, and every Scott-open setU is a union of such sets, viz.U =

⋃
x∈U ↑↑x [5].

X is algebraiciff every elementx is the least upper bound of the set of finite elements below
x—an elementy is finite if and only if y ≪ y. Every algebraic poset is continuous, and has a least
basis, namely its set of finite elements.

N, with its natural ordering, is a wqo and an algebraic poset. All its elements are finite, so
x ≪ y iff x ≤ y. N is not a dcpo, sinceN itself is a directed family without a least upper bound.
Any finite product of continuous posets (resp., continuous dcpos) is again continuous, and the Scott-
topology on the product coincides with the product topology. Any finite product of wqos is a wqo.
In particular,Nk, for any integerk, is a wqo and a continuous poset: this is the set of configurations
of Petri nets.

It is clear how to completeN to make it a cpo: letNω be N with a new elementω such that
n ≤ ω for all n ∈ N. ThenNω is still a wqo, and a continuous cpo, withx ≪ y if and only if x ∈ N

andx ≤ y. In general, completing a wqo is necessary to extend coverability tree techniques [9, 12].
Geeraertset al. (op. cit.) axiomatize the kind of completions they need in the form of so-called
adequate domains of limits. We discuss them in Section 3. For now, let us note that the second
author also proposed to use another notion of completion in another context, known assobrification
[14]. We need to recap what this is about.

A topological spaceX is always equipped with aspecialization quasi-ordering, which we shall
write ≤ again:x ≤ y if and only if any open subset containingx also containsy. X is T0 if and
only if ≤ is a partial ordering. Given any quasi-ordering≤ on a setX, both the Alexandroff and the
Scott topologies admit≤ as specialization quasi-ordering. In fact, the Alexandroff topology is the
finest (the one with the most opens) having this property. Thecoarsest is called theupper topology;
its opens are arbitrary unions of complements of sets of the form↓ E, E finite. The latter sets↓ E,
with E finite, will play an important role, and we call them thefinitary closedsubsets. Note that
finitary closed subsets are closed in the upper, Scott, and Alexandroff topologies, recalling that a
subset isclosediff its complement is open. Theclosurecl(A) of a subsetA of X is the smallest
closed subset containingA. A closed subsetF is irreducible if and only if F is non-empty, and
wheneverF ⊆ F1 ∪ F2 with F1, F2 closed, thenF ⊆ F1 or F ⊆ F2. The finitary closed subset
↓ x = cl({x}) (x ∈ X) is always irreducible. A spaceX is soberiff every irreducible closed subset
F is the closure of a unique point, i.e.,F = ↓ x for some uniquex. Any sober space isT0, and
any continuous cpo is sober in its Scott topology. Conversely, given aT0 spaceX, the spaceS(X)
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of all irreducible closed subsets ofX, equipped with upper topology of the inclusion ordering⊆, is
always sober, and the mapηS : x 7→ ↑ x is a topological embedding ofX insideS(X). S(X) is
thesobrificationof X, and can be thought asX together with all missing limits fromX. Note in
particular that a sober space is always a cpo in its specialization ordering [5, Proposition 7.2.13].

It is an enlightening exercise to check thatS(N) is Nω. Also, the topology onS(N) (the upper
topology) coincides with that ofNω (the Scott topology). In general,X is Noetherian if and only
if S(X) is Noetherian [14, Proposition 6.2], however the upper and Scott topologies do not always
coincide [14, Section 7]. In case of ambiguity, given any poset X, we writeXa the spaceX with
its Alexandroff topology.

Another important construction is theHoare powerdomainH(X) of X, whose elements are
the closed subsets ofX, ordered by inclusion. (We do allow the empty set.) We again equip it with
the corresponding upper topology.

3. Completions of Wqos

One of the central problems of our study is the definition of acompletionof a wqoX, with all
missing limits added. Typically, the Karp-Miller construction [15] works not withNk, but withNk

ω.
We examine several ways to achieve this, and argue that they are the same, up to some details.

ADLs, WADLs.We start with Geeraertset al.’s axiomatization of so-calledadequate domain of
limits for well-quasi-ordered setsX [12]. No explicit constructions for such adequate domains of
limits is given, and they have to be found by trial and error. Our main result, below, is that there is
a unique least adequate domain of limits: thesobrificationS(Xa) of Xa. (Recall thatXa is X with
its Alexandroff topology.) This not only gives a concrete construction of such an adequate domain
of limits, but also shows that we do not have much freedom in defining one.

An adequate domain of limits[12] (ADL) for a well-ordered setX is a triple(L,�, γ) where
L is a set disjoint fromX (the set oflimits); (L1) the mapγ : L ∪ X → P(X) is such thatγ(z) is
downward closed for allz ∈ L ∪ X, andγ(x) = ↓X x for all non-limit pointsx ∈ X; (L2) there
is a limit point⊤ ∈ L such thatγ(⊤) = X; (L3) z � z′ if and only if γ(z) ⊆ γ(z′); and (L4) for
any downward closed subsetD of X, there is a finite subsetE ⊆ L∪X such that̂γ(E) = D. Here
γ̂(E) =

⋃
z∈E γ(z).

Requirement (L2) in [12] only serves to ensure that all closed subsets ofL ∪ X can be repres-
ented as↓L∪X E for some finite subsetE: the closed subsetL∪X itself is then exactly↓L∪X {⊤}.
However, (L2) is unnecessary for this, sinceL ∪ X already equals↓L∪X E by (L3), whereE is
the finite subset ofL ∪ X such that̂γ(E) = L ∪ X as ensured by (L4). Accordingly, we drop
requirement (L2):

Definition 3.1 (WADL) . Let X be a poset. Aweak adequate domain of limits(WADL) on X is any
triple (L,�, γ) satisfying (L1), (L3), and (L4).

Proposition 3.2. LetX be a poset. Given a WADL(L,�, γ) onX, γ defines an order-isomorphism
from (L ∪ X,�) to some subset ofH(Xa) containingS(Xa).

Conversely, assumeX wqo, and letY be any subset ofH(Xa) containingS(Xa). Then(Y \
ηS(Xa),�, γ) is a weak adequate domain of limits, whereγ maps eachx ∈ X to ↓X x and each
F ∈ Y \ ηS(Xa) to itself;� is defined by requirement (L3).

Proof. The Alexandroff-closed subsets ofX are just its downward-closed subsets. Soγ(z) is in
H(Xa) for all z, by (L1). Let Y be the image ofγ. By (L3), γ defines an order-isomorphism of
L ∪ X ontoY . It remains to show thatY must containS(Xa). Let F be any irreducible closed
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subset ofXa. By (L4), there is a finite subsetE ⊆ L ∪ X such thatF =
⋃

x∈E γ(x). SinceF is
irreducible, there must be a singlex ∈ E such thatF = γ(x). SoF is in Y .

Conversely, letX be wqo,L = Y \ ηS(Xa), andγ, � be as in the Lemma. Properties (L1)
and (L3) hold by definition. For (L4), note thatXa is a Noetherian space, henceS(Xa) is, too
[14, Proposition 6.2]. However, by [14, Corollary 6.5], every closed subset of a sober Noetherian
space is finitary. In particular, take any downward closed subsetD of X. This is closed inXa,
hence its imageηS(D) by the topological embeddingηS is closed inηS(Xa), i.e., is of the form
ηS(Xa) ∩ F for some closed subsetF of S(Xa). Also, D = η−1

S (F ). SinceS(Xa) is both sober
and Noetherian,F is finitary, hence is the downward-closure↓S(X) E′ of some finite subsetE′ in
S(X). Let E be the set consisting of the (limit) elements inE′ ∩L, and of the (non-limit) elements
x ∈ X such that↓X x ∈ E′. We obtain̂γ(E) =

⋃
z∈E′ z. On the other hand,D = η−1

S (F ) = {x ∈
X | ↓ x ∈↓S(X) E′} = {x ∈ X | ∃z ∈ E′ · ↓ x ⊆ z} =

⋃
z∈E′ z = γ̂(E). So (L4) holds.

I.e., up to the coding functionγ, there is a uniqueminimal WADL on any given wqoX:
its sobrificationS(Xa). There is also a unique largest one: its Hoare powerdomainH(Xa). An
adequate domain of limits in the sense of Geeraertset al. [12], i.e., one that additionally satisfies
(L2) is, up to isomorphism, any subset ofH(Xa) containingS(Xa) plus the special closed setX
itself as top element. We contend thatS(Xa) is, in general, the sole WADL worth considering.

Ideal completions.We have already argued thatS(X), for any Noetherian spaceX, was in a sense
of completion ofX, adding missing limits. Another classical construction toadd limits to some
posetX is its ideal completionIdl(X). The elements of the ideal completion ofX are itsideals,
i.e., its downward-closed directed families, ordered by inclusion. Idl(X) can be visualized as a
form of Cauchy completion ofX: we add all missing limits of directed families(xi)i∈I from
X, by declaring these families to be their limits, equating two families when they have the same
downward-closure. InIdl(X), the finite elements are the elements ofX; formally, the mapηIdl :
X → Idl(X) that sendsx to ↓ x is an embedding, and the finite elements ofIdl(X) are those of
the formηIdl(x). It turns out that sobrification and ideal completion coincide, in a strong sense:

Proposition 3.3([16]). For any posetX, S(Xa) = Idl(X).

This is not just an isomorphism: the irreducible closed subsets ofXa areexactlythe ideals.
Note also thatIdl(X) is always an algebraic dcpo [5, Proposition 2.2.22, Item 4].

WhenX is wqo, any downward-closed subset ofX is afinite union of ideals. So(Idl(X) \
X,⊆, id) is a WADL onX. Proposition 3.2 and Proposition 3.3 entail this, and a bit more:

Theorem 3.4. For any wqoX, S(Xa) = Idl(X) is the smallest WADL onX.

Well-based continuous cpos.There is a natural notion of limit in dcpos: whenever(xi)i∈I is a
directed family, considersupi∈I xi. Starting from a wqoX, it is then natural to look at some dcpo
Y that would containX as a basis. In particular,Y would be continuous. This prompts us to define
awell-based continuous dcpoas one that has a well-ordered basis—namely the original posetX.

This has several advantages. First, in general there are several notions of “sets of limits” of
a given subsetA ⊆ Y , but we shall see that they all coincide in continuous posets. Such sets of
limits are important, because these are what we would like Karp-Miller-like procedures to compute,
through acceleration techniques. Here are the possible notions. First, defineLubY (A) as the set
of all least upper bounds inY of directed families inA. Second,IndY (A), the inductive hullof
A in Y , is the smallest sub-dcpo ofY containingA. Finally, the (Scott-topological) closurecl(A)
of A. It is well-known thatcl(A) is the smallestdownward closedsub-dcpo ofY containingA.
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(Recall that any open is upward closed, so that any closed setmust be downward closed.) In any
dcpoY , one hasA ⊆ LubY (A) ⊆ IndY (A) ⊆ cl(A), and all inclusions are strict in general. E.g.,
in Y = Nω, takeA to be the set of even numbers. ThenLubY (A) = IndY (A) = A ∪ {ω} while
cl(A) = Nω. While LubY (A) = IndY (A) in this case, there are cases whereLubY (A) is itself not
closed under least upper bounds of directed families, and one has to iterate theLubY operator to
computeIndY (A). On continuous posets however, all these notions coincide (see Appendix A).

Proposition 3.5. Let Y be a continuous poset. Then, for every downward-closed subset A of Y ,
IndY (A) = LubY (A) = cl(A).

We shall use this in Section 6. The key point now is that, again, well-based continuous dcpos co-
incide with completions of the formS(Xa) or Idl(X), and are therefore WADLs (see Appendix B).
This even holds for continuous dcpos having a well-founded (not well-ordered) basis:

Proposition 3.6. Any continuous dcpoY with a well-founded basis is order-isomorphic toIdl(X)
for some well-ordered setX. One may take the subset of finite elements ofX for Y . If Y is well-
based, thenX is well-ordered.

4. Some Concrete WADLs

We now build WADLs for several concrete posetsX. Following Proposition 3.2, it suffices to
characterizeS(Xa). AlthoughS(Xa) = Idl(X) (Proposition 3.3), the mathematics ofS(Xa) is
easier to deal with thanIdl(X).

Nk. We start withX = Nk, with the pointwise ordering. We have already recalled from[14]
that S(Nk

a) was, up to isomorphism,(Nω)k, ordered with the pointwise ordering, whereω is a
new element above any natural number. This is the structure used in the standard Karp-Miller
construction for Petri nets [15].

Σ∗. Let Σ be a finite alphabet. Thedivisibility ordering | on Σ∗, a.k.a. the subsequence (non-
continuous subword) ordering, is defined bya1a2 . . . an | w0a1w1a2 . . . anwn, for any letters
a1, a2, . . . , an ∈ Σ and wordsw0, w1, . . . , wn ∈ Σ∗. There is a more general definition, where
letters themselves are quasi-well-ordered. Our definitionis the special case where the wqo on let-
ters is=, and is the one required in verifying lossy channel systems [4]. Higman’s Lemma states
that| is wqo onΣ∗.

Any upward closed subsetU of Σ∗ is then of the form↑ E, with E finite. For any element
w = a1a2 . . . an of E, ↑ w is the regular languageΣ∗a1Σ

∗a2Σ
∗ . . . Σ∗anΣ∗. Forward analysis

of lossy channel systems is instead based on simple regular expressions (SREs). Recall from [1]
that anatomic expressionis any regular expression of the forma?, with a ∈ Σ, or A∗, whereA is
a non-empty subset ofΣ. WhenA = {a1, . . . , am}, we takeA∗ to denote(a1 + . . . + am)∗; a?

denotes{a, ǫ}. A productis any regular expression of the forme1e2 . . . en (n ∈ N), where eachei

is an atomic expression. Asimple regular expression, or SRE, is a sum, either∅ or P1 + . . . + Pk,
whereP1, . . . , Pk are products. Sum is interpreted as union. That SREs and products are relevant
here is no accident, as the following proposition shows.

Proposition 4.1. The elements ofS(Σ∗
a) are exactly the denotations of products. The downward

closed subsets ofΣ∗ are exactly the denotations of SREs.

Proof. The second part is well-known. IfF = P1 + . . . + Pk is irreducible closed, then by irre-
ducibility k must equal1, henceF is denoted by a product. Conversely, it is easy to show that any
product denotes an ideal, hence an element ofIdl(X) = S(Xa) (Proposition 3.3).
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Inclusion between products can then be checked in quadratictime [1]. Inclusion between SREs
can be checked in polynomial time, too, because of the remarkable property thatP1 + . . . + Pm ⊆
P ′

1 + . . . + P ′
n if and only if, for everyi (1 ≤ i ≤ m), there is aj (1 ≤ j ≤ n) with Pi ⊆ P ′

j [1,
Lemma 1].Similar lemmas are given by Abdullaet al. [3, Lemma 3, Lemma 4] for more general
notions of SREs on words on infinite alphabets, and for a similar notion for finite multisets of
elements from a finite set (both will be special cases of our constructions of Section 5). This is
again no accident, and is a general fact about Noetherian spaces:

Proposition 4.2. Let X be a Noetherian space, e.g., a wqo with its Alexandroff topology. Every
closed subsetF of X is a finite union of irreducible closed subsetsC1, . . . , Cm. If C ′

1, . . . , C
′
n are

also irreducible closed, ThenC1 ∪ . . .∪Cm ⊆ C ′
1 ∪ . . .∪C ′

n if and only if for everyi (1 ≤ i ≤ m),
there is aj (1 ≤ j ≤ n) with Ci ⊆ C ′

j .

Proof. For the first part, see Appendix C. The second part is an easy consequence of irreducibility.

Proposition 4.2 suggests to represent closed subsets ofX as finite subsetsA of S(X), inter-
preted as the closed set

⋃
C∈A C. WhenX = Σ∗

a, A is a finite set of products, i.e., an SRE. When
X = Nk

a, A is a finite subset ofNk
ω, interpreted as↓ A ∩ Nk.

Finite Trees.All the examples given above are well-known. Here is one thatis new, and also more
involved than the previous ones. LetF be a finite signature of function symbols with their arities.
We letFk the set of function symbols of arityk; F0 is the set ofconstants, and is assumed to be
non-empty. The setT (F) is the set of ground terms built fromF . Kruskal’s Tree Theorem states
that this is well-quasi-ordered by thehomeomorphic embeddingordering�, defined as the smallest
relation such that, wheneveru = f(u1, . . . , um) andv = g(v1, . . . , vn), u � v if and only if u � vj

for somej, 1 ≤ j ≤ n, or f = g, m = n, andu1 � v1, u2 � v2, . . . ,um � vm. (As for Σ∗, we take
a special case, where each function has fixed arity.)

The structure ofS(T (F)a) is described using an extension of SREs to the tree case. Thisuses
regular tree expressions as defined in [6, Section 2.2]. LetK be a countably infinite set of additional
constants, calledholes2. Most tree regular expressions are self-explanatory, except Kleene star
L∗,2 and concatenationL.2L′. The latter denotes the set of all terms obtained from a termt in L
by replacing all occurrences of2 by (possibly different) terms fromL′. The language of a hole2
is just{2}. L∗,2 is the infinite union of the languages of2, L, L.2L, L.2L.2L, etc.

Definition 4.3 (STRE). Tree productsandproduct iteratorsare defined inductively by:

• Every hole2 is a tree product.
• f?(P1, . . . , Pk) is a tree product, for anyf ∈ Σk and any tree productsP1, . . . , Pk. We take

f?(P1, . . . , Pk) as an abbreviation forf(P1, . . . , Pk) + P1 + . . . + Pk.
• (

∑n
i=1 Ci)

∗,2.2P is a tree product, for any tree productP , anyn ≥ 1, and any product
iteratorsCi over2, 1 ≤ i ≤ n. We write

∑n
i=1 Ci for C1 + C2 + . . . + Cn.

• f(P1, . . . , Pk) is a product iterator over2 for anyf ∈ Σk, where: 1. eachPi, 1 ≤ i ≤ k is
either2 itself or a tree product such that2 is not in the language ofPi; and 2.Pi = 2 for
somei, 1 ≤ i ≤ k.

A simple tree regular expression(STRE) is a finite sum of tree products.

A tree regular expression isclosediff it has no free hole, where a hole is free inf(L1, . . . , Lk),
L1 + . . . + Lk, or in f?(L1, . . . , Lk) iff it is free in someLi, 1 ≤ i ≤ k; the only free hole in2 is
2 itself; the free holes ofL∗,2 are those ofL, plus2; the free holes ofL.2L′ are those ofL′, plus
those ofL except2. E.g.,f?(a?, b?) and(f(2, g?(a?)) + f(g?(b?), 2))∗,2.2f?(a?, b?) are closed
tree products. We prove the following in Appendix D.
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Theorem 4.4. The elements ofS(T (F)a) are exactly the denotations of closed tree products. The
downward closed subsets ofT (F) are exactly the denotations of closed STREs. Inclusion is decid-
able in polynomial time for tree products and for STREs.

5. A Hierarchy of Data Types

The sobrification WADL can be computed in a compositional way, as we now show. Consider
the following grammar of data types of interest in verification:
D ::= N natural numbers

| A≤ finite setA, quasi-ordered by≤
| D1 × . . . × Dk finite product
| D1 + . . . + Dk finite, disjoint sum
| D∗ finite words
| D⊛ finite multisets

By compositional, we mean that the sobrification of any data typeD is computed in terms of the
sobrifications of its arguments. E.g.,S(D∗

a) will be expressed as some extended form of products
overS(Da). The semantics of data types is the intuitive one. Finite products are quasi-ordered
by the pointwise quasi-ordering, finite disjoint sums by comparing elements in each summand—
elements from different summands are incomparable. For anyposetX (even infinite),X∗ is the set
of finite words overX ordered by theembeddingquasi-ordering≤∗: w ≤∗ w′ iff, writing w as the
sequence ofm lettersa1a2 . . . am, one can writew′ asw0a

′
1w1a

′
2w2 . . . wm−1a

′
mw′

m with a1 ≤ a′1,
a2 ≤ a′2, . . . , am ≤ a′m. X⊛ is the set of finite multisets{|x1, . . . , xn|} of elements ofX, and is
quasi-ordered by≤⊛, defined as:{|x1, x2, . . . , xm|} ≤⊛ {|y1, y2, . . . , yn|} iff there is an injective
mapr : {1, . . . , m} → {1, . . . , n} such thatxi ≤ yr(i) for all i, 1 ≤ i ≤ m. When≤ is just
equality,m ≤⊛ m′ iff every element ofm occurs at least as many times inm′ as inm: this is the
≤m quasi-ordering considered, on finite setsX, by Abdullaet al. [3, Section 2].

The analogue of products and SREs forD∗ is given by the following definition, which gen-
eralizes theΣ∗ case of Section 4. Note thatD is in general aninfinite alphabet, as in [3]. The
following definition should be compared with [1]. The only meaningful difference is the replace-
ment of(a + ǫ), wherea is a letter, withC?, whereC ∈ S(Xa). It should also be compared with
theword language generatorsof [3, Section 6]. Indeed, the latter are exactly our products onA⊛,
whereA is a finite alphabet (in our notation,A≤, with ≤ given as equality).

Definition 5.1 (Product, SRE). Let X be a topological space. LetX∗ be the set of finite words
on X. For anyA, B ⊆ X∗, let AB be {ww′ | w ∈ A, w′ ∈ B}, A∗ be the set of words onA,
A? = A ∪ {ǫ}.

Atomic expressionsare either of the formC?, with C ∈ S(X), or A∗, with A a non-empty
finite subset ofS(X). Productsare finite sequencese1e2 . . . ek, k ∈ N, andSREsare finite sums of
products. The denotation of atomic expressions is given by

q
C?

y
= C?, JA∗K = (

⋃
C∈A JCK)∗; of

products byJe1e2 . . . ekK = Je1K Je2K . . . JekK; of SREs byJP1 + . . . + PkK =
⋃k

i=1 JPiK.
Atomic expressions are ordered byC? ⊑ C ′? iff C ⊆ C ′; C? ⊑ A′∗ iff C ⊆ C ′ for some

C ′ ∈ A′; A∗ 6⊑ C ′?; A∗ ⊑ A′∗ iff for every C ∈ A, there is aC ′ ∈ A′ with C ⊆ C ′. Products are
quasi-ordered byeP ⊑ e′P ′ iff (1) e 6⊑ e′ andeP ⊑ P ′, or (2) e = C?, e′ = C ′?, C ⊆ C ′ and
P ⊑ P ′, or (3)e′ = A′∗, e ⊑ A′∗ andP ⊑ e′P ′. We let≡ be⊑ ∩ ⊒.

Definition 5.2 (⊛-Product,⊛-SRE). Let X be a topological space. For anyA, B ⊆ X, let A ⊙
B = {m ⊎ m′ | m ∈ A, m′ ∈ B}, A⊛ be the set of multisets comprised of elements fromA,
A

g? = {{|x|} | x ∈ A} ∪ {∅∅∅}, where∅∅∅ is the empty multiset.
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The⊛-productsP are the expressions of the formA⊛ ⊙C
g?

1 ⊙ . . .⊙C
g?

n , whereA is a finite
subset ofS(X), n ∈ N, andC1, . . . , Cn ∈ S(X). Their denotationJP K is (

⋃
C∈A C)⊛⊙ JC1K

g? ⊙
. . .⊙ JCnK g? . They are quasi-ordered byP ⊑ P ′, whereP = A⊛ ⊙C

g?
1 ⊙C

g?
2 ⊙ . . .⊙C

g?
m and

P ′ = A′⊛⊙C ′
1

g? ⊙C ′
2

g? ⊙ . . .⊙C ′
n

g? , iff: (1) for everyC ∈ A, there is aC ′ ∈ A′ with C ⊆ C ′,
and (2) lettingI be the subset of those indicesi, 1 ≤ i ≤ m, such thatCi ⊆ C ′ for no C ′ ∈ A′,
there is an injective mapr : I → {1, . . . , n} such thatCi ⊆ C ′

r(i) for all i ∈ I. Let≡ be⊑ ∩ ⊒.

Theorem 5.3. For every data typeD, S(Da) is Noetherian, and is computed by:S(Na) = Nω;
S(A≤a) = A≤; S((D1 × . . . × Dk)a) = S(D1a) × . . . × S(Dka); S((D1 + . . . + Dk)a) =
S(D1a)+. . .+S(Dka); S(D∗) is the set of products onD modulo≡, ordered by⊑ (Definition 5.1);
S(D⊛) is the set of⊛-products onD modulo≡, ordered by⊑ (Definition 5.2).

For any data typeD, equality and ordering (inclusion) inS(Da) is decidable in the polynomial
hierarchy.

Proof. We show thatS(Da) is Noetherian and is computed as given above, by induction onthe
construction ofD. We in fact prove the following two facts separately: (1)S(D) is Noetherian (D,
notDa), whereD is topologized in a suitable way, and (2)D = Da.

To show (1), we topologizeN andA≤ with their Alexandroff topologies, sums and products
with the sum and product topologies respectively;X∗ with thesubword topology, viz. the smallest
containing the open subsetsX∗U1X

∗U2X
∗ . . .X∗UnX∗, n ∈ N, U1, U2, . . . , Un open inX; and

X⊛ with thesub-multiset topology, namely the smallest containing the subsetsX⊛ ⊙ U1 ⊙ U2 ⊙
. . . ⊙ Un, n ∈ N, whereU1, U2, . . . , Un are open subsets ofX. The case ofN has already been
discussed above. WhenA≤ is finite, it is both Noetherian and sober. The case of finite products is by
[14, Section 6], that of finite sums by [14, Section 4]. The case of X∗ is dealt with in Appendix E,
while the case ofX⊛ is dealt with in Appendix F. We also need to show that the quasi-orderings⊑
on products inX∗, resp.⊛-products inX⊛, denote inclusion inS(X∗), resp.S(X⊛). This is also
done in the appendices.

To show (2), we appeal to a series of coincidence lemmas, showing that(X∗)a = X∗
a (Lemma E.4)

and that(X⊛)a = X⊛
a (Lemma F.10) notably. The other cases are obvious.

Finally, we show that inclusion and equality are decidable in the polynomial hierarchy. For
this, we show in the appendices that inclusion onS(D∗) is ⊑ on products, and is decidable by a
polynomial time algorithm modulo calls to an oracle deciding inclusion inS(D). This is by dynamic
programming. Inclusion inS(D⊛) is ⊑ on ⊛-products, and is decidable by a non-deterministic
polynomial time algorithm modulo a similar oracle. We conclude since the orderings onNω and on
A≤ are polynomial-time decidable, while inclusion inS(D1 × . . .×Dk) ∼= S(D1)× . . .×S(Dk)
and inS(D1 + . . . + Dk) ∼= S(D1) + . . . + S(Dk) are polynomial time modulo oracles deciding
inclusion inS(Di), 1 ≤ i ≤ k.

Look at some special cases of this construction. First,Nk is the data typeN × . . . × N, and we
retrieve thatS(Nk) = Nk

ω. Second, whenA is a finite alphabet,A∗ is given by products, as given in
theΣ∗ paragraph of Section 4; i.e., we retrieve the products (and SREs) of Abdullaet al. [1]. The
more complicated case(A⊛)∗ was dealt with by Abdullaet al. [3]. We note that the elements of
S((A⊛)∗a) are exactly theirword language generators, which we retrieve here in a principled way.
Additionally, we can deal with more complex data structuressuch as, e.g.,(((N × A≤)∗ × N)⊛)⊛.

Finally, note that (1) and (2) are two separate concerns in the proof of Theorem 5.3. If we
are ready to relinquish orderings for the more general topological route, as advocated in [14], we
could also enrich our grammar of data types with infinite constructions such asP(D), whereP(D)
is interpreted as the powerset ofD with the so-called lower Vietoris topology. See Appendix G,
where we show thatS(P(X)) ∼= H(X) is Noetherian wheneverX is, and that its elements can be
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represented asfinitesubsetsA of S(X), interpreted as
⋃

C∈A C. In a sense, whileS(Xa) = Idl(X)
for all ordered spacesX, the sobrification construction is more robust than the ideal completion.

6. Completing WSTS, or: Towards Forward Procedures Computing the Cover

We show how one may use our completions on wqos to deal with forward analysis of well-
structured systems. We shall describe this in more detail inanother paper. First note that any data
typeD of Section 5 is suited to applying the expand, enlarge and check algorithm [12] out of the
box to this end, since thenS(Da) is (the least) WADL forD. We instead explore extensions of
the Karp-Miller procedure [15], in the spirit of Finkel [9] or Emerson and Namjoshi [7]. While the
latter assumes an already built completion, we construct it. Also, we make explicit how this kind of
acceleration-based procedure really computes the cover, i.e.,↓ Post∗(↓ x), in Proposition 6.1.

Recall that awell-structured transition system(WSTS) is a tripleS = (X,≤, (δi)
n
i=1), where

X is well-quasi-ordered by≤, and eachδi : X → X is a partial monotonic transition function.
(By “partial monotonic” we mean that the domain ofδi is upward closed, andδi is monotonic on
its domain.) LettingPre(A) =

⋃n
i=1 δ−1

i (A), Pre0(A) = A, andPre∗(A) =
⋃

k∈N
Prek(A),

it is well-known that any upward closed subset ofX is of the form↑ E for some finiteE ⊆ X,
and thatPre∗(↑ E) is an upward-closed subset↑ E′, E′ finite, that arises as

⋃m
k=0 Prek(↑ E) for

somem ∈ N. Hence, provided≤ is decidable andδ−1
i (↑ E) is computable for each finiteE, it is

decidable whetherx ∈ Pre∗(↑ E), i.e., whether one may reach↑ E from x in finitely many steps.
It is equivalent to check whethery ∈ ↓ Post∗(↓ x) for somey ∈ E, wherePost(A) =

⋃n
i=1 δi(A),

Post0(A) = A, andPost∗(A) =
⋃

k∈N
Postk(A).

All the existing symbolic procedures that attempt to compute ↓ Post∗(↓ x), even with a fi-
nite number of accelerations (e.g., Fast, Trex, Lash), can only compute subsets of the larger set
Lub(↓ Post∗(↓ x)). In general,Lub(↓ Post∗(↓ x)) does not admit a finite representation. On
the other hand, we know that the Scott-closurecl(Post∗(↓ x)), as a closed subset ofIdl(X) (in-
tersected withX itself), is always finitary. Indeed, it is also a closed subset of S(Xa) (Proposi-
tion 3.3), which is represented as the downward closure of finitely many elements ofS(Xa). Since
Y = Idl(X) is continuous, Proposition 3.5 allows us to conclude thatLubY (↓ Post∗(↓ x)) =
cl(Post∗(↓ x)) is finitary—hence representable providedX is one of the data types of Section 5.

This leads to the following construction. Any partial monotonic mapf : X → Y between
quasi-ordered sets lifts to acontinuouspartial mapSf : S(Xa) → S(Ya): for each irreducible
closed subset (a.k.a., ideal)C of S(Xa), eitherC ∩ dom f 6= ∅ andSf(C) = ↓ f(C) = {y ∈ Y |
∃x ∈ C ∩ dom f · y ≤ f(x)}, or C ∩ dom f = ∅ andSf(C) is undefined. Thecompletionof a
WSTSS = (X,≤, (δi)

n
i=1) is then the transition system̂S = (S(Xa),⊆, (Sδi)

n
i=1).

For example, whenX = Nk, andS is a Petri net with transitionsδi defined asδi(~x) = ~x + ~di

(where~di ∈ Zk; this is defined whenever~x + ~d ∈ Nk), thenŜ is the transition system whose set of
states isS(X) = Nk

ω, and whose transition functions are:Sδi(~x) = ~x + ~di, whenever this has only
non-negative coordinates, taking the convention thatω + d = ω for anyd ∈ Z.

We may emulate lossy channel systems through the followingfunctional-lossychannel systems
(FLCS). For simplicity, we assume just one channel and no local state; the general case would only
make the presentation more obscure. An FLCS differs from an LCS in that it loses only the least
amount of messages needed to enable transitions. TakeX = Σ∗ for some finite alphabetΣ of
messages; the transitions are either of the formδi(w) = wai for some fixed letterai (sendingai onto
the channel), or of the formδi(w) = w2 wheneverw is of the formw1aiw2, with w1 not containing
ai (expecting to receiveai). Any LCS is cover-equivalent to the FLCS with the same sendsand
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receives, where two systems arecover-equivalentif and only if they have the same sets↓ Post∗(F )
for any downward-closedF . EquatingS(Σ∗

a) with the set of products, as advocated in Section 4,
we find that transition functions of the first kind lift toSδi(P ) = Pa?

i , while transition functions
of the second kind lift to:Sδi(ǫ) is undefined,Sδi(a

?P ) = Sδi(P ) if ai 6= a, Sδi(a
?
i P ) = P ,

Sδi(A
∗P ) = Sδi(P ) if ai 6∈ A, Sδi(A

∗P ) = A∗P otherwise. This is exactly how Trex computes
successors [1, Lemma 6].

In general, the results of Section 5 allow us to use any domainof datatypesD for the state space
X of S. The construction̂S then generalizes all previous constructions, which used tobe defined
specifically for each datatype.

The Karp-Miller algorithm in Petri nets, or the Trex procedure for lossy channel systems, gives
information about the cover↓ Post∗(↓ x). This is true ofanycompletionŜ as constructed above:

Proposition 6.1. LetS be a WSTS. Let̂Post be thePost map of the completion̂S. For any closed

subsetF ofS(Xa), P̂ ost(F ) = cl(Post(F ∩X)), andP̂ ost
∗
(F ) = cl(Post∗(F ∩X)). Hence, for

any downward closed subsetF of X, ↓ Post(F ) = X ∩ P̂ ost(F ), ↓ Post∗(F ) = X ∩ P̂ ost
∗
(F ).

Proof. Let F be closed inS(Xa). P̂ ost(F ) =
⋃n

i=1 cl(δi(F )) = cl(
⋃n

i=1 δi(F )) = cl(Post(F )),

since closure commutes with (arbitrary) unions. We then claim thatP̂ ost
k
(F ) = cl(Postk(F )) for

eachk ∈ N. This is by induction onk. The casesk = 0, 1 are obvious. Whenk ≥ 2, we use

the fact that, for any continuous partial mapf : (∗) cl(f(cl(A))) = cl(f(A)). ThenP̂ ost
k
(F ) =

⋃n
i=1 cl(δi(P̂ ost

k−1
(F ))) =

⋃n
i=1 cl(δi(cl(Postk−1(F )))) =

⋃n
i=1 cl(δi(Postk−1(F ))) (by (∗))

= cl(Postk(F )). Finally, P̂ ost
∗
(F ) =

⋃
k∈N

P̂ ost
k
(F ) =

⋃
k∈N

cl(Postk(F )) = cl(Post∗(F )).
We conclude, since for anyA ⊆ X, ↓ A is the closure ofA in Xa; the topology ofXa is the
subspace topology of that ofS(Xa); so, writingcl for closure inS(Xa), ↓ A = X ∩ cl(A).

Writing F as the finite unionC1∪. . .∪Ck, whereC1, . . . , Ck ∈ S(Xa), P̂ ost(F ) is computable
as

⋃
1≤i1,...,in≤k Sδ1(Ci1)∪ . . .∪Sδn(Cin), assumingSδi computable for eachi. (We takeSδj(Ci)

to mean∅ if undefined, for notational convenience.) AlthoughSδi may be uncomputable even
whenδi is, it is computable on most WSTS in use. This holds, for example, for Petri nets and lossy
channel systems, as exemplified above.

So it is easy to compute↓ Post(↓ x), as (the intersection ofX with) P̂ ost(↓ x). Computing

↓ Post∗(↓ x) (our goal) is also easily computed aŝPost
∗
(↓ x) (intersected withX again), using

acceleration techniques for loops. This is what the Karp-Miller construction does for Petri nets, what
Trex does for lossy channel systems [1]. (We examine termination issues below.) Our framework
generalizes all these procedures, using a weak acceleration assumption, whereby we assume that
we can compute the least upper bound of the values of loops iteratedk times,k ∈ N. For any
continuous partial mapg : Y → Y (with open domain) on a dcpoY , let the iteration g be the
map of domaindom g such thatg(y) is the least upper bound of(gk(y))k∈N

if y < g(y), andg(y)
otherwise. Let∆ = {Sδ1, . . . ,Sδn}, ∆∗ be the set of all composites of finitely many maps from
∆. Our acceleration assumptionis that one can computeg(y) for any g ∈ ∆∗, y ∈ S(Xa). The

following procedure then computes↓ Post∗(↓ x), as (the intersection ofX with) P̂ ost
∗
(↓ x), itself

represented as a finite union of elements ofS(Xa): initially, let A be{x}; then, whileP̂ ost(A) 6⊆
↓ A, choose fairly(g, a) ∈ ∆∗ × A such thata ∈ dom g and addg(a) to A. If this terminates,A
is a finite set whose downward closure is exactly↓ Post∗(↓ x). Despite its simplicity, this is the
essence of the Karp-Miller procedure, generalized to a large class of spacesX.
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Termination is ensured for flat systems, i.e., systems whosecontrol graph has no nested loop, as
one only has to compute the effect of a finite number of loops. In general, the procedure terminates
on cover-flattablesystems, that is systems that are cover-equivalent to some flat system. Petri nets
are cover-flattable, while, e.g., not all LCS are: recall that, in an LCS,↓ Post∗(↓ x) is always
representable as an SRE, however not effectively so.

7. Conclusion and Perspectives

We have developed the first comprehensive theory of downward-closed subsets, as required for
a general understanding of forward analysis techniques of WSTS. This generalizes previous domain
proposals on tuples of natural numbers, on words, on multisets, allowing for nested datatypes, and
infinite alphabets. Each of these domains is effective, in the sense that each has finite presenta-
tions with a decidable ordering. We have also shown how the notion of sobrificationS(Xa) was
in a sense inevitable (Section 3), and described how this applied to compute downward closures
of reachable sets of configurations in WSTS (Section 6). We plan to describe such new forward
analysis algorithms, in more detail, in papers to come.
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Appendix A. All Sets of Limits Coincide on Continuous Posets

Continuous posets are nice spaces, in that one can compute the inductive closure in just one
LubY step, provided we start from a downward-closed set. This is Proposition 3.5, which also
states that we get the Scott-topological closure this way.

Lemma A.1. Let Y be a poset, andA a downward closed subset ofY . ThenLubY (A) ⊆
↓ LubY (A), and equality holds wheneverY is a continuous poset.

Proof. Inclusion is obvious. Let us show equality, assumingY is continuous. Letx ∈ ↓ LubY (A):
for somez ≥ x, z is the least upper bound of some directed family(zi)i∈I in A. SinceY is
continuous,x = supy≪x y, so by definition of≪, everyy ≪ x is less than or equal to somezi,
i ∈ I. In particular, every suchy is in ↓ A. Sox ∈ LubY (↓ A).

Equality may fail without the continuity assumption. E.g.,let Y beNω union a fresh element∗
with 0 < ∗ < ω, but incomparable with all other elements. ThenN is a downward closed subset of
Y , howeverLubY (A) = Nω, and↓ LubY (A) = Y = Nω ∪ {∗}.

We use the following technical lemma. This is folklore.

Lemma A.2. Let Y be a continuous poset,(xi)i∈I a directed family of elements ofY , with least
upper boundx, and assume that eachxi is the least upper bound of a directed family(xij)j∈Ji

,
i ∈ I. Then(xij) i∈I

j∈Ji

is a directed family, and hasx as least upper bound.

Proof. Givenxij andxi′j′ , one can findi′′ ∈ I such thatxi, xi′ ≤ xi′′ ; sincexij , xi′j′ ≪ xi′′ =
supj′′∈Ji′′

xi′′j′′ , there arek, k′ ∈ Ji′′ such thatxij ≤ zi′′k andxi′j′ ≤ xi′′k′ ; by directedness again,
there is anj′′ ∈ Ji′′ such thatxi′′k, xi′′k′ ≤ xi′′j′′ , whencexij , xi′j′ ≤ xi′′j′′ . So (xij) i∈I

j∈Ji

is

directed. It is clear thatsup i∈I
j∈Ji

xij = supi∈I supj∈Ji
xij = supi∈I xi = x.

We recall the statement of Proposition 3.5: LetY be a continuous poset, then, for every
downward-closed subsetA of Y , IndY (A) = LubY (A) = cl(A).

Proof. Clearly,LubY (A) ⊆ IndY (A) ⊆ cl(A). It remains to show thatcl(A) ⊆ LubY (A), i.e.,
thatLubY (A) is downward-closed and closed under directed least upper bounds. This is downward-
closed by Lemma A.1.

We note that:(∗) every elementx of LubY (A) is the least upper bound of some directed family
of elements ofA way-belowx. Indeed, we just take↓↓x, using the fact thatY is continuous, and
check that it is contained inA. Becausex ∈ LubY (A), x is the least upper bound of some directed
family (xi)i∈I in A. For anyy ∈ ↓↓x, we obtainy ≪ x = supi∈I xi, soy ≤ xi for somei ∈ I.
Sincexi ∈ A andA is downward closed,y ∈ A. Sincey is arbitrary,↓↓x ⊆ A.

Now let z ∈ LubY (LubY (A)). There is a directed family(zj)j∈J of elements ofLubY (A)

that hasz as least upper bound. Using(∗), write zj is the least upper bound of a family(zji)i∈Ij

of elements ofA such thatzji ≪ zj for all j, i. Then the family(zji)j∈J,i∈Ij
is again directed, and

hasz as least upper bound by Lemma A.2. Soz ∈ LubY (A). It follows thatLubY (LubY (A)) ⊆
LubY (A), i.e., thatLubY (A) is closed under directed least upper bounds.
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Appendix B. Well-Based Continuous Dcpos and Ideal Completions

Lemma B.1. Any continuous poset with a well-founded basis is algebraic, with a well-ordered set
of finite elements.

Proof. AssumeY is a continuous poset, has a well-founded basisB, but is not algebraic. There is
an elementx ∈ Y that is not the least upper bound of a directed family of finiteelements belowx.
We first claim that we can assumex ∈ B.

SinceY is continuous with basisB, x is the least upper bound of a directed family of elements
(xi)i∈I in B that are way-belowx. If every xi were the least upper bound of a directed family
(xij)j∈Ji

of finite elements, Lemma A.2 would entail thatx would be the least upper bound of the
directed family(xij) i∈I

j∈Ji

, consisting of finite elements, contradiction.

So there is anx ∈ B that is not the least upper bound of a directed family of finiteelements
below x. SinceB is well-founded, we may choosex minimal. SinceB is a basis ofY , write x
as the least upper bound of some directed family(xi)i∈I of elements ofB way belowx. Sincex
was chosen minimal, everyxi were the least upper bound of a directed family(xij)j∈Ji

of finite
elements. As above, Lemma A.2 entails thatx is the least upper bound of the directed family
(xij) i∈I

j∈Ji

, consisting of finite elements, contradiction.

So Y is algebraic. Since every finite element is in every basis, the set of finite elements is
contained inB, and is therefore well-ordered, sinceB is.

Recall the statement of Proposition 3.6:
Any continuous dcpoY with a well-founded basis is order-isomorphic toIdl(X)
for some well-ordered setX. One may take the subset of finite elements ofY for
X. If Y is well-based, thenX is well-ordered.

Proof. Let X be the set of finite elements ofY . By Lemma B.1,X is well-ordered, andY is
algebraic. NowY is order-isomorphic toIdl(X), using the well-known fact that any two continuous
dcpos with isomorphic bases are isomorphic. Concretely, here, the mapη : Y → Idl(X) that sends
eachy ∈ Y to {x ∈ X | x ≤ y} is monotonic and continuous: for each directed family(yi)i∈I

in Y with least upper boundy, η(y) = {x ∈ X | x ≤ supi∈I yi} = {x ∈ X | ∃i ∈ I · x ≤ yi}
(becausex is finite, i.e.,x ≪ x) =

⋃
i∈I η(yi). Conversely, the mapǫ : Idl(X) → Y that sends

each idealF to supx∈F x is also continuous: for every directed family(Fi)i∈I of ideals ofX,
ǫ(

⋃
i∈I Fi) = supx∈

S

i∈I Fi
x = sup∃i∈I·y∈Fi

x = supi∈I supx∈Fi
x = supi∈I ǫ(Fi). It is easy

to check thatη and ǫ are inverse of each other:ǫ(η(y)) = supx∈{x∈X|x≤y} x = y, η(ǫ(F )) =

{x ∈ X | x ≤ supx′∈F x′} = {x ∈ X | ∃x′ ∈ F · x ≤ x′} (since eachx ∈ X is finite)
= {x ∈ X | x ∈ F} (sinceF is downward closed)= F .

In other words, well-based continuous posets arespecial casesof the notion of weak adequate
domains of limits. These are the minimal cases where one takes a wqoX, and adds all limits in
Idl(X) = S(Xa).

Appendix C. Proof of Proposition 4.2

Let X be a Noetherian space. We show that every closed subset ofX is a finite union of
irreducible closed subsets.

By [14, Proposition 6.2],S(X) is Noetherian, too. The key to this result is the fact thatS(X)
has exactly the same opens asX, in the sense described in op.cit.: the map that sends each open
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U of X to the open3U = {F ∈ S(X) | F ∩ U 6= ∅} is an isomorphism. This extends to an
isomorphism between the lattices of closed subsets, mapping each closed subsetF ′ of X to the
closed subset2F ′ = S(X) \ 3(X \ F ′) = {F ∈ S(X) | F ⊆ F ′}.

Now, by [14, Corollary 6.5], sinceS(X) is both sober and Noetherian, every closed subset
of S(X) is finitary, i.e., of the form↓ E for some finite subsetE of S(X). In particular, every
closed subset ofS(X) is a finite union of irreducible closed subsets, namely↓ x, x ∈ E. Using
the isomorphismF ′ 7→ 2F ′, every closed subset ofX must also be a finite union of irreducible
closed subsets. Concretely, for any closed subsetF ′ of X, 2F ′ is a finite union of irreducible closed
subsets↓ Fi = {F ′′ ∈ S(X) | F ′′ ⊆ Fi} = 2Fi, whereFi, 1 ≤ i ≤ n, ranges over some finite set
of irreducible closed subsets. Now note that2F ′ = 2F1∪. . .∪2Fn equals2(F1∪. . .∪Fn). Indeed,
for everyF ′′ ∈ S(X) that is contained in someFi, F ′′ is contained inF1 ∪ . . . ∪ Fn; conversely, if
F ′′ ∈ S(X) is contained inF1 ∪ . . . ∪ Fn, then it must be contained in someFi, 1 ≤ i ≤ n, since
F ′′ is irreducible. From2F ′ = 2(F1 ∪ . . . ∪ Fn), we conclude thatF ′ = F1 ∪ . . . ∪ Fn.

Appendix D. Finite Trees, with Homeomorphic Embedding

The situation for finite trees is very similar to finite words.Let F be a finite signature of
function symbols with their arities. We letFp the set of function symbols of arityk; F0 is the set of
constants, and is assumed to be non-empty. The setT (F) is the set of ground terms built fromF .

We rest on a version of Kleene’s Theorem for trees [6, Section2.2]. LetK be a countably
infinite set of constants, disjoint fromF . The set of regular tree expressions onF andK is defined
by the grammar:

L ::= f(L1, . . . , Lp) | ∅

| 2 | L + L | L.2L | L∗,2

wheref ∈ Fp, p ∈ N, 2 ∈ K. The new thing, compared to word regular expressions, is thenotion
of hole2 ∈ K. This is used to give meaning to concatenationL1.2L2 and to Kleene starL∗,2.

Each tree regular expression defines a language of terms inT (F ∪ K) by: the language of
f(L1, . . . , Lp) is the set of termsf(t1, . . . , tp) with t1 is in the language ofL1, . . . ; tp is in the
language ofLp; the language of∅ is the empty set; the language of2 ∈ K is {2}; the language of
L1 +L2 is the union of those ofL1 andL2; the language ofL∗,2 is the union of the languages of2,
L = L.22, L.2L.22, . . . ,L.2L.2 . . . .2L.22 (n times), . . . The subtle point is the definition of the
language ofL1.2L2. For any termt ∈ F(T ∪ K) and any languageL, definet.2L as the language
defined by induction ont as follows:2.2L = L, 2′.2L = {2′} if 2′ 6= 2, f(t1, . . . , tp).2L =
{f(u1, . . . , up) | u1 in the language oft1.2L, . . . , up in the language oftp.2L}. Then the language
of L1.2L2 is the union of the languagest1.2L2 over all termst1 in the language ofL1. The subtlety
is that this isnot the set of termst1[2 := t2] with t1 in the language ofL1 andt2 in the language of
L2 (where substitution of terms for holes is defined in the obvious way). The difference arises when
2 occurs several times inL1. For example, ifL1 = f(2, 2) andL2 = a + b, for two constants
a, b, the set of termst1[2 := t2] would be{f(a, a), f(b, b)}. However, the language ofL1.2L2

is {f(a, a), f(a, b), f(b, a), f(b, b)}. In other words, we may replace different occurrences of the
same hole2 by different terms fromL2.

Kleene’s Theorem for trees [6, Theorem 19, Section 2.2] states that a tree language is regular
if and only if it is the language of some tree expression. There is subtlety here, related to the set
of function symbols we allow ourselves: we wish to define languages of terms inT (F), while
tree regular expressions give languages of terms inT (F ∪ K). So we need to restrict tree regular
expressions so that they recognize terms onT (F).
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Definition D.1. The set offree holesfh(L) of a tree regular expressionL is defined by:

fh(f(L1, . . . , Ln)) =
⋃n

i=1 fh(Li) fh(∅) = ∅ fh(2) = {2} fh(L∗,2) = fh(L) ∪ {2}
fh(L1 + L2) = fh(L1) ∪ fh(L2) fh(L1.2L2) = (fh(L1) \ {2}) ∪ fh(L2)

A regular tree expressionL is closedif and only if it has no free hole.

It is easy to see that any term in the language ofL is in T (F ∪ fh(L)), i.e., contains only holes
that are free inL.

Proposition D.2. LetF contain at least one constant. A language of terms inT (F) is regular if
and only if it is the language of some closed regular tree expression.

Proof. By the above remark, the language of any closed regular tree expression is not only regular,
but also inT (F). Conversely, any regular language of terms inT (F) is definable as the language
of some regular tree expressionL. Let a be a constant inF . Letting21, . . . , 2k be the free holes
in L, let L′ beL.21

a.22
a . . . .2k

a. Since the language ofL only contains terms without holes, the
language ofL′ is the same as that ofL. Moreover, it is easy to check thatL′ is closed.

Thehomeomorphic embeddingordering� onT (F) (or onT (F∪K)) is defined as the smallest
relation such that, wheneveru = f(u1, . . . , um) andv = g(v1, . . . , vn), u � v if and only if u � vj

for somej, 1 ≤ j ≤ n, or f = g, m = n, andu1 � v1, u2 � v2, . . . , um � vm. (In general,
the homeomorphic embedding ordering is defined relative to awell-quasi-ordering� on function
symbols, and, instead off = g in the second case, we would require thatf � g and there is an
increasing subsequence1 ≤ j1 < j2 < . . . < jm ≤ n such thatu1 � vj1 , u2 � vj2 , . . . ,um � vjm .)
Kruskal’s Theorem states that� is a well ordering onT (F).

We elucidate the structure of the adequate domain of limitsS(T (F)a).

Lemma D.3. Any downward closed subset ofT (F) is the language of a closed tree regular expres-
sion of the form:

L ::= f?(L1, . . . , Lp) | ∅

| 2 | L + L | L.2L | L∗,2

where the language off?(L1, . . . , Lp) is by convention the one off(L1, . . . , Lp) + L1 + . . . + Lp.

Accordingly, we extend Definition D.1 so thatfh(f?(L1, . . . , Lp)) =
⋃p

i=1 fh(Li).
Recall from Definition 4.3 thattree productsandproduct iteratorsare defined inductively by:

• Every hole2 is a tree product.
• f?(P1, . . . , Pk) is a tree product, for anyf ∈ Σk and any tree productsP1, . . . , Pk.
• (

∑n
i=1 Ci)

∗,2.2P is a tree product, for any tree productP , any integern ≥ 1, and any
product iteratorsCi over2, 1 ≤ i ≤ n. We write

∑n
i=1 Ci for C1 + C2 + . . . + Cn.

• f(P1, . . . , Pk) is a product iterator over2 for anyf ∈ Σk, where: 1. eachPi, 1 ≤ i ≤ k is
either2 itself or a tree product such that2 is not in the language ofPi; and 2.Pi = 2 for
somei, 1 ≤ i ≤ k.

A simple tree regular expression(STRE) is a finite sum of tree products (possibly empty, in which
case∅ is meant).

In the case of(
∑n

i=1 Ci)
∗,2.2P , note that we may rename2 to any other hole, in a way

reminiscent toα-renaming in theλ-calculus. Formally, we may defineC[2 := 2′], for any product
iteratorC = f(P1, . . . , Pk) over2, asf(P ′

1, . . . , P
′
k), where for eachi, 1 ≤ i ≤ k, eitherPi = 2

and thenP ′
i = 2′, or P ′

i = Pi. When2′ is not free inC (or 2′ = 2), C[2 := 2′] is a product
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iterator over2′. When2′ is not free in anyCi, moreover,(
∑n

i=1 Ci[2 := 2′])∗,2
′
.2′P defines the

same language as(
∑n

i=1 Ci)
∗,2.2P , and has the same free holes.

For example,f?(a?, b?) and(f(2, g?(a?)) + f(g?(b?), 2))∗,2.2f?(a?, b?) are tree products.
They are also closed tree products.

Lemma D.4. LetP , P ′ be two tree products, and2 be a hole.

(1) If 2 6∈ fh(P ), thenP.2P ′ defines the same language asP .
(2) If P = 2, thenP.2P ′ defines the same language asP ′.
(3) If P = f?(P1, . . . , Pk), whereP1, . . . , Pk are tree products, thenP.2P ′ defines the same

language asf?(P1.2P ′, . . . , Pk.2P ′).
(4) If P = (

∑n
i=1 Ci)

∗,2′
.2′P0, whereP0 is a tree product, and2′ 6= 2, 2′ 6∈ fh(P ′), then

P.2P ′ defines the same language as(
∑n

i=1 Ci.2P ′)∗,2
′
.2′(P0.2P ′).

Finally, if C is a product iteratorf(P1, . . . , Pk) over2′, P ′ is a tree product, and2′ 6= 2, 2′ 6∈
fh(P ′), thenf(P1.2P ′, . . . , Pk.2P ′) defines the same language asC.

Lemma D.5. LetP , P ′ be two tree products, and2 be a hole. Then there is a tree productP ′′ that
defines the same language asP.2P ′. Moreover,fh(P ′′) ⊆ fh(P.2P ′).

Proof. By induction onP . If 2 6∈ fh(P ), then takeP ′′ = P . By Lemma D.4, item 1, this defines
the same language asP.2P ′. Moreover,fh(P.2P ′) = fh(P ) ∪ fh(P ′), since2 6∈ fh(P ), hence
containsfh(P ′′) = fh(P ).

If 2 ∈ fh(P ), then we consider three cases, corresponding to the different possible forms for
P . If P is a box, thenP = 2, andP.2P ′ defines the same language asP ′ by Lemma D.4, item 2.
So takeP ′′ = P ′. We check thatfh(P.2P ′) ⊇ fh(P ′) = fh(P ′′).

If P = f?(P1, . . . , Pk), whereP1, . . . , Pk are tree products, then by induction hypothesis
there are tree productsP ′′

1 , . . . ,P ′′
k that define the same languages asP1.2P ′, . . . ,Pk.2P ′ respect-

ively. Moreoverfh(P ′′
i ) ⊆ fh(Pi.2P ′) for eachi, 1 ≤ i ≤ k. Using Lemma D.4, item 3,P.2P ′

defines the same language asf?(P ′′
1 , . . . , P ′′

k ). Moreover,fh(f?(P ′′
1 , . . . , P ′′

k )) =
⋃k

i=1 fh(P ′′
i ) ⊆⋃k

i=1 fh(Pi.2P ′) = fh(P.2P ′).
Finally, if P = (

∑n
i=1 Ci)

∗,2′
.2′P0, whereP0 is a tree product, first, we may assume that2′

is fresh, i.e., that2′ 6= 2 and2′ 6∈ fh(P ′), by α-renaming. We use the fact that:(∗) if C is a
product iterator over2′, then there is a product iteratorC ′′ over2′ such thatfh(C ′′) ⊆ fh(C), and
which defines the same language asC.2P ′. We defer the proof of this for a moment. Knowing
(∗), we can conclude that there is a product iteratorC ′′

i over2′ for eachi, 1 ≤ i ≤ n, such that
fh(C ′′

i ) ⊆ fh(Ci), and defining the same language asCi.
′
P . Also, by induction hypothesis there

is a productP ′′
0 that defines the same language asP0.2P ′, and with fh(P ′′

0 ) ⊆ (P0.2P ′). By
Lemma D.4, item 4,(

∑n
i=1 C ′′

i )∗,2
′
.2′P ′′

0 is then a tree product that defines the same language as
P.2P ′. Moreover, it is easy to check that its set of free holes is contained infh(P.2P ′).

We now come to prove(∗). Let C = f(P1, . . . , Pk) be a product iterator over2′, 2′ 6= 2,
2′ 6∈ fh(P ′). We construct tree productsP ′′

1 , . . . , P ′′
k defining the same languages asP1.2P ′, . . . ,

Pk.2P ′ respectively, and withfh(P ′′
i ) ⊆ fh(Pi.2P ′) for everyi, 1 ≤ i ≤ k. For eachi, if Pi = 2′,

then we may takeP ′′
i = 2′ again, using Lemma D.4, item 1, since2′ 6= 2; otherwise, we use

the induction hypothesis. Observe that in the first caseP ′′
i = 2′, while in the second case2′ is

not in fh(P ′′
i ) ⊆ fh(Pi.2P ′) = (fh(Pi) \ {2}) ⊆ fh(P ′). Indeed,2′ 6∈ fh(Pi) becausePi 6= 2′,

using property 1 of product iterators, and2′ 6∈ fh(P ′) by assumption. SoC ′′ = f(P ′′
1 , . . . , P ′′

k )
satisfies property 1 of product iterators. It also satisfies property 2: there is ani, 1 ≤ i ≤ k, such
thatPi = 2′, whenceP ′′

i = 2′ again.
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Lemma D.6. Let L, L′ be two STREs. Then there is an STREL′′ defining the same language as
L.2L′. Moreover,fh(L′′) ⊆ fh(L.2L′).

Proof. Because.2 distributes over sums, using Lemma D.5.

Lemma D.7. LetL be a tree regular expression,2 be a hole, andP be regular tree expression.

(1) If 2 is not in the language ofP , then(P + L)∗,2 defines the same language asL∗,2.2P +
L∗,2.

(2) (2 + L)∗,2 defines the same language asL∗,2.
(3) If P = f?(P1, . . . , Pk) whereP1, . . . , Pk are tree products, then let1 ≤ i1 < . . . < iℓ ≤ k

be the sequence of indicesi such that2 is in the language ofPi. Then(P + L)∗,2 defines
the same language as(P ′ + P1 + . . . + Pk + L)∗,2, whereP ′ is obtained fromP by
replacingf? by f and eachPij by 2. Formally, P ′ = f(P1, . . . , Pi1−1, 2, Pi1+1, . . . ,
Pi2−1, 2, Pi2+1, . . . , Piℓ−1, 2, Piℓ+1, . . . , Pk).

(4) If P = (
∑n

i=1 Ci)
∗,2′

.2′P0, with 2′ 6= 2, and2 is in the language ofP0, then(P + L)∗,2

defines the same language as(
∑n

i=1 Ci[2
′ := 2] + P0 + L)∗,2.

(5) If P = f(P1, . . . , Pk), whereP1, . . . , Pk are tree products, then let1 ≤ i1 < . . . < iℓ ≤ k
be the sequence of indicesi such that2 is in the language ofPi. Then(P + L)∗,2 defines
the same language as(P ′ +Pi1 + . . .+Piℓ +L)∗,2, whereP ′ is obtained fromP by repla-
cing eachPij by 2. Formally,P ′ = f(P1, . . . , Pi1−1, 2, Pi1+1, . . . , Pi2−1, 2, Pi2+1, . . . ,
Piℓ−1, 2, Piℓ+1, . . . , Pk).

Proof. The only technical point is item 4. Recall that we definedCi[2
′ := 2] after Definition 4.3;

this was used to defineα-renaming. Note in particular that we do not assume that2 6∈ fh(Ci),
so this is not a case ofα-renaming here. For example, it might be thatCi = f(2, 2′), then
Ci[2

′ := 2] = f(2, 2).
Assumet is a term inL0 = (P + L)∗,2. Sot is in (P + L).2(P + L).2 . . . .2(P + L).22,

with n timesP + L, for somep ∈ N. We show thatt is in L1 = (
∑n

i=1 Ci[2
′ := 2] + P0 + L)∗,2

by induction onp. If p = 0, thent = 2, and the claim is clear. Otherwise, there is a termt0 in the
language ofP + L, with, say,k occurrences of the hole2, and termst1, . . . , tk in the language of
(P + L).2(P + L).2 . . . .2(P + L) (p − 1 times) such thatt is obtained fromt0 by replacing the
jth occurrence of2 by tj , j ≤ j ≤ k. We shall use the convention to write this ast = t0[2 :=
t1, . . . , tk]. By induction hypothesis, eachtj is in the language ofL1. If t0 is in the language ofL,
then clearlyt is again in the language ofL1. The interesting case is whent0 is in the language of
P = (

∑n
i=1 Ci)

∗,2′
.2′P0. Thent0 is in (

∑n
i=1 Ci).2′(

∑n
i=1 Ci).2′ . . . .2′(

∑n
i=1 Ci).2′P0 (q times,

for someq ∈ N). We show thatt0[2 := t1, . . . , tk] is in L1 by a second induction onq. If q = 0,
thent0 is in P0, so thatt0[2 := t1, . . . , tk] is in P0.2′L1, hence inL1. Otherwise, we can writet0 as
u0[2

′ := u1, . . . , uℓ] for some termu0 in the language of some product iteratorCi, 1 ≤ i ≤ n, with
ℓ occurrences of2′, and whereu1, . . . , uℓ are in(

∑n
i=1 Ci).2′(

∑n
i=1 Ci).2′ . . . .2′(

∑n
i=1 Ci).2′P0

(q − 1 times). By induction hypothesis, eachuj is in L1. Assumeu0 hasℓ′ (other) occurrences
of 2. Let u′

0 beu0 where each occurrence of2′ is replaced by2. Thenu′
0 is in the language of

Ci[Box′ := 2]. Moreover,u0[2
′ := u1, . . . , uℓ] is obtained fromu′

0 by replacingℓ occurrences
of 2 by u1, . . . , uℓ, and not replacing the others, i.e., replacing them by2 itself. However, it is
easy to see that2 is in the language ofL1. Since eachuj is also inL1, u0[2

′ := u1, . . . , uℓ] is in
Ci[2

′ := 2].2L1, hence inL1.
Now assumet is in L1 = (

∑n
i=1 Ci[2

′ := 2] + P0 + L)∗,2. So t is in (
∑n

i=1 Ci[2
′ :=

2] + P0 + L).2 . . . .2(
∑n

i=1 Ci[2
′ := 2] + P0 + L).22 (p times, for somep ∈ N). We show

that t is in L0 = (P + L)∗,2 by induction onp. If p = 0, thent = 2, so t ∈ L0. Otherwise,
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t = t0[2 := t1, . . . , tm] for some termt0 in
∑n

i=1 Ci[2
′ := 2] + P0 + L with m occurrences of

2, and termst1, . . . , tm in L1. By induction hypothesis,t1, . . . , tm are inL0. If t0 is in L, then
t is in L.2L0, hence inL0. If t0 is in P0, then it is inP = (

∑n
i=1 Ci)

∗,2′
.2′P0, sot is in P.2L0,

hence inL0. The interesting case is whent0 is in someCi[2
′ := 2] for somei, 1 ≤ i ≤ n. One

checks thatt0 is then of the formu0[2
′ := 2] for some termu0 in the language ofCi. (Write Ci

asf(P1, . . . , Pk). Up to inessential permutation of the arguments, we may assume thatP1 = . . . =
Pℓ−1 = 2, Pℓ = . . . = Pℓ+ℓ′−1 = 2′, and2′ is not free inPℓ+ℓ′ , . . . , Pk. Thent0 is of the form
f(2, . . . , 2︸ ︷︷ ︸

ℓ+ℓ′

, uℓ+ℓ′+1, . . . , uk), and we letu0 = f(2, . . . , 2︸ ︷︷ ︸
ℓ

, 2′, . . . , 2′

︸ ︷︷ ︸
ℓ′

, uℓ+ℓ′+1, . . . , uk).) Now

t0 = u0[2
′ := 2] is in Ci.2′P0, because by assumption2 is in P0. Sot0 is in the language ofP .

Thent = t0[2 := t1, . . . , tm] is in P.2L0, hence inL0.

Lemma D.8. LetL be an STRE, and2 be a hole. Then there is an STREL′′ that defines the same
language asL∗,2. Moreover,fh(L′′) ⊆ fh(L∗,2).

Proof. Call aquasi-iteratorC0 over2 any tree regular expression of the formf(P1, . . . , Pk), f ∈
Σk, that satisfies property 2 of product iterators, but not necessarily property 1. Thedefectof C0 is
the sum of the sizes of those productsPk that are different from2 yet contain2 in their language.
The sizeof a tree product is defined as follows. the size of2 is 1, that off ?(P1, . . . , Pk) and of
f(P1, . . . , Pk) is one plus the sum of the sizes ofP1, . . . , Pk, and the size of(

∑m
j=1 C0

j )∗,2
′
.2′P0

is one plus the sum of the sizes ofC0
1 , . . . ,C0

m, P0. The size of an STRE is the sum of the sizes of
its tree products.

We prove the more general statement that(
∑m

j=1 C0
j + L)∗,2 is definable by an STRE, for any

STREL, and for any quasi-iteratorsC0
1 , . . . ,C0

m over2. We prove this by induction on the sum of
the defects ofC0, . . . ,Cm and of the size ofL.

If this sum is zero, then(
∑m

j=1 C0
j + L)∗,2 is definable by the tree product(

∑m
j=1 C0

j +

L)∗,2.22, sinceL is the empty sum.
If someC0

j is not a product iterator, sayj = 1, thenC0
1 = f(P1, . . . , Pk), and we apply

Lemma D.7, item 5. Using the notations used there,(
∑m

j=1 C0
j + L)∗,2 defines the same language

as(
∑m

j=2 C0
j +P ′ +Pi1 + . . .+Piℓ +L)∗,2. LetC0

m+1 = P ′, and note that this is a product iterator

over2. So(
∑m

j=1 C0
j + L)∗,2 defines the same language as(

∑m+1
j=2 C0

j + Pi1 + . . . + Piℓ + L)∗,2.
SincePi = 2 for somei, 1 ≤ i ≤ k, ℓ < k, so the measure of the latter expression is less than
the measure of(

∑m
j=1 C0

j + L)∗,2 by at least the size ofPi. We can therefore apply the induction
hypothesis.

Otherwise, everyC0
j is a product iterator over2, andL is not the empty sum.L can be written

as a tree productP , or as a sumP + L′. Without loss of generality, we may assumeL is P + L′,
sinceP defines the same language and has the same size asP + ∅.

If 2 is not in the language ofP , then by Lemma D.7, item 1,(
∑m

j=1 C0
j + L)∗,2 defines the

same language as(
∑m

j=1 C0
j + L′)∗,2.2P + (

∑m
j=1 C0

j + L′)∗,2. By induction hypothesis, there is
an SLREL′′ defining the same language as(

∑m
j=1 C0

j + L′)∗,2. By Lemma D.6, there is an SLRE
L′′′ defining the same language asL′′.2P . ThenL′′′ + L′′ fits the bill.

Otherwise,2 is in the language ofP , and we distinguish three cases.
If P = 2, then (

∑m
j=1 C0

j + L)∗,2 defines the same language as(
∑m

j=1 C0
j + L′)∗,2 by

Lemma D.7, item 2, and we conclude by the induction hypothesis.
If P is of the formf?(P1, . . . , Pk), then (

∑m
j=1 C0

j + L)∗,2 defines the same language as
(
∑m

j=1 C0
j +P ′+P1+. . .+Pk+L′)∗,2 by Lemma D.7, item 3, using the notations introduced there.
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Note thatP ′ is a product iterator over2: property 1 is by construction, and property 2 is because2 is
in the language ofP , so it must be in the language of somePi, whenceℓ 6= 0. Writing C0

m+1 for P ′,
it follows that(

∑m
j=1 C0

j +L)∗,2 defines the same language as(
∑m+1

j=1 C0
j +P1+ . . .+Pk +L′)∗,2.

Since the size ofP1 + . . . + Pk + L′ is smaller than that ofL, we conclude using the induction
hypothesis.

Finally, if P is of the form (
∑m

i=1 Ci)
∗,2′

.2′P0, we may first assume that2′ 6= 2 by α-
renaming. Also, since2 is in the language ofP , 2 must also be in the language ofP0. So we
may apply Lemma D.7, item 4:(

∑m
j=1 C0

j + L)∗,2 defines the same language as(
∑m

j=1 C0
j +∑n

i=1 Ci[2
′ := 2] +P0 +L′)∗,2. Note thatCi[2

′ := 2] is not in general a product iterator over2:
for example, ifCi = f(2′, g(2)), thenCi[2

′ := 2] = f(2, g(2)). This is the reason why we are
using quasi-iterators. LetC0

m+1 = C1[2
′ := 2], . . . , C0

m+n = Cn[2′ := 2]. One may check that
the measure of(

∑m
j=1 C0

j +
∑n

i=1 Ci[2
′ := 2] + P0 + L′)∗,2, i.e., of(

∑m+n
j=1 C0

j + P0 + L′)∗,2 is
stricly less than that of(

∑m
j=1 C0

j +P +L′)∗,2. We therefore conclude by the induction hypothesis.

Proposition D.9. Any STRE (resp., closed STRE) defines a downward closed subset of T (F ∪ K)
(resp., ofT (F)). Conversely, any downward closed subset ofT (F ∪ K) (resp., ofT (F)) is the
language of some (closed) STRE.

Proof. The first claim is clear. Conversely, any downward closed setof T (F ∪ K) (resp.,T (F))
is the language of some (closed) regular expressionL as given in Lemma D.3. We now induct on
L to show that this is also the language of some STREL′′ with fh(L′′) ⊆ fh(L). First, we use the
following trick, to simplify the presentation. We can always assume that any subexpression ofL′′

of the formf?(L1, . . . , Lp) is in fact such thatL1, . . . ,Lp are holes. Indeed, we can always replace
f?(L1, . . . , Lp) by the tree regular expressionf?(21, . . . , 2p).21

L1 . . . .2pLp, where21, . . . , 2p

are fresh disjoint holes. This defines the same language.
So let us induct onL, under this simplification. WhenL is of the formf ?(21, . . . , 2p) or 2,

L is already a tree product. WhenL is ∅, L is an STRE. WhenL is a sumL1 + L2, we appeal
to the induction hypothesis. WhenL = L1.2L2, we conclude by Lemma D.6 and the induction
hypothesis. WhenL = L∗,2, we conclude by Lemma D.8 instead.

In other words,H(T (F)a) is the space of languages defined by STREs, ordered by inclusion.

Theorem D.10. S(T (F)a) is the set of languages defined by closed tree products, ordered by
inclusion.

Proof. Take any irreducible closed subsetF of T (F). By Proposition D.9,F can be expressed
as an STREP1 + . . . + Pk. SinceF is irreducible,k ≤ 1; since every irreducible closed set is
non-empty by definition,k 6= 0. SoF is definable by a tree product. Note that the language of a
tree product is never empty.

Conversely, we must show that the language of any tree product P is irreducible closed. It
is clearly downward closed, i.e., closed. We shall show thatit is in fact a directed set. Because
S(Σ∗

a) = Idl(Σ∗), and since the language ofP is clearly (downward) closed, directedness ofP
is equivalent to it being irreducible closed. However, the fact that any downward closed directed
subset is irreducible closed is elementary, so we prove it here. LetF be downward closed, directed.
AssumeF ⊆ F1 ∪ F2, whereF1, F2 are closed. we must show thatF ⊆ F1 or F ⊆ F2. If on
the contrary there werex1 ∈ F \ F1 andx2 ∈ F \ F2, there would bex ∈ F with x1, x2 ≤ x by
directedness. Nowx is either inF1 or in F2. Sayx ∈ F1. SinceF1 is downward closed,x1 is in
F1, too, contradiction. Similarly ifx ∈ F2. SoF is irreducible.
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So we show thatP is directed, by induction onP .
Clearly the language of2 is directed. IfP = f?(P1, . . . , Pk), and t, t′ are two terms in

the language ofP , we must consider several cases. Ift and t′ are in the language of the same
Pi, then by induction there is another termt′′ such thatt, t′ � t′′, in the language ofPi, hence
in that of P . If t is in the language ofPi and t′ is in the language ofPj with j 6= i, then
f(t1, . . . , ti−1, t, ti+1, . . . , tj−1, t

′, tj+1, . . . , tk) is in the language ofP , where the only occurrence
of t is at positioni, the only occurrence oft′ is at positionj, and the termstℓ (ℓ 6= i, j) are taken
from the languages ofPℓ respectively. (Recall these languages are non-empty.) Clearly this is a
term t′′ such thatt, t′ � t′′. If t is in the language ofPi andt′ is in the language off(P1, . . . , Pk),
i.e., t′ = f(t1, . . . , tk) where eachtj is in the language ofPj , 1 ≤ j ≤ k, then sincePi is directed,
there is a termt′i with t, ti � t′i in the language ofPi. Thent′′ = f(t1, . . . , ti−1, t

′
i, ti+1, . . . , tk) is

in f(P1, . . . , Pk), hence inP , andt, t′ � t′′. The case wheret is in the language off(P1, . . . , Pk)
andt′ is in somePi is symmetrical. Finally, ift andt′ both are inf(P1, . . . , Pk), then we can write
t = f(t1, . . . , tk), t′ = f(t′1, . . . , t

′
k), with ti, t

′
i in Pi for eachi. Since eachPi is directed, there are

termst′′i in Pi such thatti, t′i � t′′i . Then taket′′ = f(t′′1, . . . , t
′′
k): this is inP , andt, t′ � t′′.

Finally, if P = (
∑n

i=1 Ci)
∗,2.2P0, whereP is a tree product andC1, . . . , Cn are product

iterators over2, andt is in the language ofP , then there is a termu in the language of
∑n

i=1 Ci,
with m occurrences of the hole2, and termsu1, . . . , um in the language ofP0 such thatt = u[2 :=
u1, . . . , um]. (We reuse a notation introduced in the proof of Lemma D.7.) For any other termt′

in the language ofP , we construct similarlyu′ andu′
1, . . . , u

′
m′ so thatt′ = u′[2 := u′

1, . . . , u
′
m′ ].

Note thatm andm′ are both non-zero. This rests on property 2 of product iterators. Let nowu′′

equalu[2 := u′, . . . , u′]. This is a term withmm′ occurrences of2. Each can be described as the
kth occurrence of2 in thejth occurrence ofu′, 1 ≤ j ≤ m, 1 ≤ j ≤ m′. For eachj andk, there
is a termu′′

jk in the language ofP0 such thatuj , u
′
k � u′′

jk. Then definet′′ as obtained fromu′′ by
replacing thej, k occurrence of2 by u′′

jk. Sincem 6= 0 andm′ 6= 0, we obtaint, t′ � t′′. Also, by
constructiont′′ is in the language ofP = (

∑n
i=1 Ci)

∗,2.2P0.

Testing the inclusion of closed tree products is more complex than testing the inclusion of
products over words. This is computed by way of the followinglemmas. WriteP ⊆ P ′, by abuse
of language, for “the language ofP is contained in that ofP ′”.

Lemma D.11. The language of the tree productf?(P1, . . . , Pm) is included in that of the tree
productg?(P ′

1, . . . , P
′
n) if and only if:

• eitherf 6= g, andf?(P1, . . . , Pm) ⊆ P ′
j for somej, 1 ≤ j 6= n;

• or f = g, m = n, and then eitherf?(P1, . . . , Pm) ⊆ P ′
j for somej, 1 ≤ j 6= n, or Pi ⊆ P ′

i

for all i, 1 ≤ i ≤ m.

Proof. The if direction is clear. For example, iff?(P1, . . . , Pm) ⊆ P ′
j , then alsof?(P1, . . . , Pm) ⊆

g?(P ′
1, . . . , P

′
n), sinceg?(P ′

1, . . . , P
′
n) = g(P ′

1, . . . , P
′
n) + P ′

1 + . . . + P ′
n.

Conversely, assumef?(P1, . . . , Pm) ⊆ g?(P ′
1, . . . , P

′
n), i.e., thatf(P1, . . . , Pm) ⊆ g?(P ′

1, . . . , P
′
n),

since the latter language is downward closed. Assume also that f?(P1, . . . , Pm) is not contained
in anyP ′

j , for anyj. Again, this is equivalent to assuming thatf(P1, . . . , Pm) is not contained in
anyP ′

j , for anyj. So there is a termtj in f(P1, . . . , Pm) which is not inP ′
j , for all j, 1 ≤ j ≤ n.

Note thatf(P1, . . . , Pm) is directed, so there is a termt in f(P1, . . . , Pm) such thatt1, . . . , tn � t.
(If n = 0, we takeany term inf(P1, . . . , Pm).) For eachj, sincetj � t, tj is not inP ′

j , andP ′
j is

downward closed,t cannot be inP ′
j either.

Now if f 6= g, sincet is in f(P1, . . . , Pm) ⊆ g?(P ′
1, . . . , P

′
n), it must be the case thatt is in

someP ′
j , contradiction. This proves the first case.
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If f = g, write t asf(u1, . . . , um), with u1 in P1, . . . , um in Pm. Assume by contradiction
that for somei, Pi is not contained inP ′

i . Then there is a termv in Pi that is not inP ′
i . SincePi

is directed, there is a termwi in Pi with ui, v � wi. For all j 6= i, definewj asuj , and consider
w = f(w1, . . . , wm). This is a term inf(P1, . . . , Pm), hence inf?(P ′

1, . . . , P
′
m). If w were in some

P ′
j , thent, which satisfiest � w, would be inP ′

j , too, butt was constructed not to be in anyP ′
j . So

w is in f(P ′
1, . . . , P

′
m). That is, eachwj is in P ′

j, 1 ≤ j ≤ m. However, forj = i, this entails that
wi is in P ′

i , hence thatv is in P ′
i since the latter is downward closed: contradiction.

Lemma D.12. The language of the tree productf?(P1, . . . , Pm) is included in that of the tree
product(

∑n
j=1 Cj)

∗,2.2P ′ if and only if:

• eitherf?(P1, . . . , Pm) ⊆ P ′;
• or for somej, 1 ≤ j ≤ n, Cj can be writtenf(P ′

1, . . . , P
′
m), so that for alli, 1 ≤ i ≤ m:

– P ′
i = 2 andPi ⊆ (

∑n
j=1 Cj)

∗,2.2P ′;
– or P ′

i 6= 2 andPi ⊆ P ′
i .

Proof. As in the previous lemma, the if direction is easy. This is left as an exercise, and uses prop-
erty 1 of product iterators. Conversely, assume by contradiction thatf?(P1, . . . , Pm) is not included
in P ′, equivalently thatf(P1, . . . , Pm) is not included inP ′. Let t be a term inf(P1, . . . , Pm) that
is not inP ′.

Again for the sake of contradiction, assume that for allj, 1 ≤ j ≤ n, such thatCj has head
symbolf , sayCj = f(P ′

j1, . . . , P
′
jm), then there is a subscripti = ij, 1 ≤ ij ≤ m such that either

P ′
i = 2 andPi is not contained in(

∑n
j=1 Cj)

∗,2.2P ′, or P ′
i 6= 2 andPi is not contained inP ′

i .
We observe that the first case (whenP ′

i = 2) cannot happen: otherwise there would be a term
wi in Pi not in (

∑n
j=1 Cj)

∗,2.2P ′; letting, for eachi′ 6= i, wi′ be an arbitrary term inPi′ , the
term f(w1, . . . , wm) would be inf(P1, . . . , Pm), hence in(

∑n
j=1 Cj)

∗,2.2P ′; since the latter is
downward closed andwi � f(w1, . . . , wm), wi would also be in(

∑n
j=1 Cj)

∗,2.2P ′, contradiction.
So, for eachj, 1 ≤ j ≤ n, such thatCj has head symbolf , P ′

ij
6= 2, andPij is not contained

in P ′
ij

. Let thereforewj be a term inPij but not inP ′
ij

. Now, for eachi, 1 ≤ i ≤ m, since
Pi is directed, we may build a termui in Pi such thatwj � ui wheneverj is such thatij = i.
(In case no suchwj exists, we take an arbitraryui from Pi.) Let u = f(u1, . . . , un), a term in
f(P1, . . . , Pm). Sincet is also inf(P1, . . . , Pm) andf(P1, . . . , Pm) is directed, we may find a
term v in f(P1, . . . , Pm) with t, u � v. Sincet is notP ′ andP ′ is downward closed,v is not in
P ′ either. But sincev is in f(P1, . . . , Pm), v is in (

∑n
j=1 Cj)

∗,2.2P ′. So there is aj, 1 ≤ j ≤ n,
whereCj has head symbolf , such thatv is in Cj .2(

∑n
j=1 Cj)

∗,2.2P ′. Sinceu � v, u is also in
the latter language. Howeveru = f(u1, . . . , un), souij must be inP ′

ij
(rememberij is a position

i such thatP ′
i 6= 2, henceuij is in P ′

ij
.2(

∑n
j=1 Cj)

∗,2.2P ′, which defines the same language as
P ′

ij
by property 1 of product iterators). By construction,wj � uij , sowj is also inP ′

ij
, sinceP ′

ij
is

downward-closed: contradiction.

Lemma D.13. The language of the tree product(
∑m

i=1 Ci)
∗,2.2P is included in that of the tree

productg?(P ′
1, . . . , P

′
n) if and only if it is included in the language ofP ′

j for somej, 1 ≤ j ≤ n.

Proof. Otherwise, lettj be a term in(
∑m

i=1 Ci)
∗,2.2P that is not inP ′

j , for eachj, 1 ≤ j ≤ n.
Since(

∑m
i=1 Ci)

∗,2.2P is directed, there is a termt in (
∑m

i=1 Ci)
∗,2.2P such thatt1, . . . , tn � t.

(If n = 0, taket arbitrary in (
∑m

i=1 Ci)
∗,2.2P .) Since eachP ′

j is downward closed,t is not in
P ′

j either. Recall thatm ≥ 1, so C1 exists. By property 2 of product iterators, we may write
C1 asf(P1, . . . , Pk) wherePi0 = 2 for somei0, 1 ≤ i0 ≤ k. Build the termf(u1, . . . , uk),
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where: if Pi = 2 (in particular fori = i0), ui = t; otherwise, letui be an arbitrary term ofPi.
Using property 1 of product iterators,u = f(u1, . . . , uk) is in C1.2(

∑m
i=1 Ci)

∗,2.2P ), hence in∑m
i=1 Ci)

∗,2.2P . Also, u cannot be in anyP ′
j, 1 ≤ j ≤ n, otherwiset = ui0 would also be in

P ′
j . By assumption,u must be ing?(P ′

1, . . . , P
′
n), and since it is in noP ′

j , u must be of the form
g(u′

1, . . . , u
′
n) with u′

j in P ′
j for eachj. This not only forcesg = f , but also thatu′

j = uj for all j;
howeveru′

i0
is in P ′

i0
, is equal toui0 = t, which is in noP ′

j , contradiction.

Lemma D.14. The language of the tree product(
∑m

i=1 Ci)
∗,2.2P is included in that of the tree

product(
∑n

j=1 C ′
j)

∗,2′
.2′P ′ if and only if, for everyi, 1 ≤ i ≤ m, writing Ci asf(P1, . . . , Pk):

• either f?(P ′′
1 , . . . , P ′′

k ) ⊆ P ′, where for eachp, 1 ≤ p ≤ k, P ′′
p =

∑m
i=1 Ci)

∗,2.2P if
Pp = 2, andP ′′

p = Pp otherwise;
• or for every there is aj, 1 ≤ j ≤ n, such thatC ′

j is of the formf(P ′
1, . . . , P

′
k) and for every

p, 1 ≤ p ≤ k:
– if P ′

p = 2′, thenP ′′
p ⊆ (

∑n
j=1 C ′

j)
∗,2′

.2′P ′;
– if P ′

p 6= 2′, thenP ′′
p ⊆ P ′

p.

Proof. Note thatf(P ′′
1 , . . . , P ′′

k ) defines the same language asCi.2(
∑n

j=1 C ′
j)

∗,2′
.2′P ′. This uses

properties 1 and 2 of product iterators. The only difficult direction is the only if direction.
Assume by contradiction that there is ani, 1 ≤ i ≤ m, with Ci written asf(P1, . . . , Pk), such

that, first,f?(P ′′
1 , . . . , P ′′

k ) is not contained inP ′; in particular,f(P ′′
1 , . . . , P ′′

k ) is not contained in
P ′, so there is a termt = f(t1, . . . , tk) in f(P ′′

1 , . . . , P ′′
k ) but not inP ′. Second, we assume that for

everyj, 1 ≤ j ≤ n, with C ′
j of the formf(P ′

1, . . . , P
′
k), there is an indexp = pj , 1 ≤ p ≤ k, with:

• eitherP ′
p 6= 2, and there is a termt′pj

in P ′′
p but not in(

∑n
j=1 C ′

j)
∗,2′

.2′P ′;
• or P ′

p = 2′, and there is a termt′pj
in P ′′

p but not inP ′
p.

For eachp, 1 ≤ p ≤ k, tp and everyt′pj
with pj = p is in P ′′

p . Let up be a term inP ′′
p such that

tp � up, andt′pj
� up for everyj such thatpj = p. This is possible sinceP ′′

p is directed. Then
let u = f(u1, . . . , uk), so thatu is in f(P ′′

1 , . . . , P ′′
k ); in particular,u is in Ci.2(

∑m
i=1 Ci)

∗,2.2P ,
hence in(

∑m
i=1 Ci)

∗,2.2P . By assumptionu is also in(
∑n

j=1 C ′
j)

∗,2′
.2′P ′. Now t � u since

tp � up for eachp; sincet is not inP ′, andP ′ is downward closed,u is not inP ′ either. Sou is in
C ′

j .2′(
∑n

j=1 C ′
j)

∗,2′
.2′P ′ for somej, 1 ≤ j ≤ n.

Considerp = pj . If P ′
p = 2′, thenup is in (

∑n
j=1 C ′

j)
∗,2′

.2′P ′. Sincet′pj
� up, t′pj

is also in

(
∑n

j=1 C ′
j)

∗,2′
.2′P ′: contradiction. IfP ′

p 6= 2′, thenup is in P ′
p. Sincet′pj

� up, t′pj
is also inP ′

p:
contradiction again.

These four lemmas allow us to decide the inclusion of tree products. We represent tree products
in a tree-automata-like notation, where transitions between vertices are labeled by symbolsf?,
wheref is a function symbol, or by boxes2. If f has arityk, then the corresponding transition
takesk vertices as input, and has one vertex as output. Boxes are thought of as having arity0. We
also allow forǫ-transitions from vertices to vertices. We equate verticeswith specific tree products.
The set of tree products used as vertices of the hypergraph for the tree productP is not the set of
subexpressions ofP , rather it is a larger set, reminiscent of the notion of Fisher-Ladner closure from
modal logic. Explicitly,

Definition D.15. For every tree productP , we build a hypergraphGP as follows:

• If P = 2, thenGP has one vertex,2, and one0-ary transition labeled2 reaching it;
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• If P = f?(P1, . . . , Pk), thenGP is obtained fromGP1
, . . . , GPk

by adding a transition
labeledf? from the tuple of verticesP1, . . . ,Pk to the stateP ;

• If P = (
∑n

i=1 Ci)
∗,2.2P0, whereCi = fi(Pi1, . . . , Piki

) for eachi, 1 ≤ i ≤ n, thenGP

is obtained fromGP0
, as well as from the hypergraphsGPij

for all i, j with Pij 6= 2, as
follows. First, add anǫ-transition fromP0 to P . Then, for each pairi, j let P ′

ij be the vertex
Pij if Pij 6= 2, otherwiseP ′

ij = P . Then, for eachi, 1 ≤ i ≤ n, add transitionsfi? from
the ki-tuple of verticesP ′

i1, . . . , P ′
iki

to the vertexfi?(P
′
i1, . . . , P

′
iki

), and anǫ-transition
from the latter toP .

For example, the hypergraph of(f(2, g?(a?)) + f(g?(b?), 2))∗,2.2f?(a?, b?) would be:

f?

a?

b?

a?

b?

f?

f?

ǫ

ǫ
ǫ

f?(a?, b?)

g?

g?

g?(b?)

g?(a?)

f?(g?(b?), )

f?( , g?(a?))

whose root is shown as the big circle, and is the vertex(f(2, g?(a?)) + f(g?(b?), 2))∗,2.2f?

(a?, b?) itself.

Proposition D.16. For any tree productsP and P ′, we can check whether the language ofP is
contained in that ofP ′ in timeO(m2m′2), wherem is the size ofGP , m′ is the size ofGP ′ .

Proof. By dynamic programming. Letn be the number of vertices inGP , n′ the number of vertices
in GP ′ . We allocate a Boolean array ofnn′ entries, wherea[ℓ, ℓ′] will denote whether the tree
product at vertexℓ of GP is contained in that at vertexℓ′ of GP ′ . We order these vertices by a
topological ordering, i.e., such that for any vertexℓ of GP , any subformula of this vertex occurs at
indices at mostℓ, and similarly forGP ′ . Then we fill in thea array in increasing order ofℓ′, and for
fixedℓ′, in increasing order ofℓ, using Lemma D.11, Lemma D.12, Lemma D.13, and Lemma D.14.
We deal with just one case that requires the latter lemma, to show one subtlety. Assume vertexℓ
of GP is of the form(

∑m
i=1 Ci)

∗,2.2P0, and vertexℓ′ of GP ′ is of the form(
∑n

j=1 C ′
j)

∗,2′
.2′P ′

0.

Then, for eachi, 1 ≤ j ≤ n, we need to test the inclusions off ?(P ′′
1 , . . . , P ′′

k ) insideP ′
0 first, where

for eachp, 1 ≤ p ≤ k, P ′′
p =

∑m
i=1 Ci)

∗,2.2P if Pp = 2, andP ′′
p = Pp otherwise. Note that

f?(P ′′
1 , . . . , P ′′

k ) occurs as a vertex, sayℓ1, in the graphGP , howeverℓ1 is not necessarily smaller
than or equal toℓ. But P ′

0 does occur with an indexℓ′1, strictly less thanℓ′, so the entrya[ℓ1, ℓ
′
1] has

already been filled in. We must then test whether there is aj such that certain conditions hold (see
second item of Lemma D.14), all involving entriesa[ℓ1, ℓ

′
1] with ℓ′1 strictly less thanℓ′.

Thea array containsnn′ ≤ mm′ entries, and each can be filled using at mostmm′ operations,
whence theO(m2m′2) complexity.

Appendix E. Words, and a Topological Variant of Higman’s Lemma

We show that, whenX is Noetherian, then the setX∗ of finite words overX, with a suitable
topology, is Noetherian again, and that its sobrification consists of natural analogues of the notion
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of products used in SREs, built on an alphabet of points inS(X). Note this is only interesting when
the alphabetX is infinite, and suitably topologized. For example, we may take X to be the set of
all vectors inNk.

For any topological spaceX, let X∗ be the set of all finite words overX. We write ǫ for
the empty word,ww′ the concatenation of the wordsw andw′; we also use ambiguouslya for a
letter (inX) and for the corresponding one-letter word. Whether we meana letter or a word will
be disambiguated by context, and by the convention thata, b, . . . , denote letters, whilew, w′, . . . ,
denote words. WheneverA andB are subsets ofX, we also writeAB the set{ww′ | w ∈ A, w′ ∈
B} of all concatenations of a word inA with a word inB.

The right topology onX∗ is defined as follows. We call it thesubword topology:

Definition E.1 (Subword Topology). Thesubword topologyon X∗ is the least one containing the
subsetsX∗U1X

∗U2X
∗ . . . X∗UnX∗ as opens, wheren ∈ N, andU1, U2, . . . ,Un are open subsets

of X.

We shall see later that, if≤ is the specialization quasi-ordering ofX, then the embedding quasi-
ordering≤∗ is the specialization quasi-ordering ofX∗ with the subword topology. Remember that
≤∗ is defined by:w ≤∗ w′ iff, writing w as the sequence ofm lettersa1a2 . . . am, one can writew′

asw0a
′
1w1a

′
2w2 . . . wm−1a

′
mw′

m with a1 ≤ a′1, a2 ≤ a′2, . . . , am ≤ a′m. Higman’s Lemma states
that if X is well-quasi-ordered by≤, thenX∗ is well-quasi-ordered by≤∗.

Any open is, by definition a union of finite intersections of opens of the formX∗U1X
∗U2X

∗ . . .
X∗UnX∗. One may simplify this statement:

Lemma E.2. The subsetsX∗U1X
∗U2X

∗ . . .X∗UnX∗ as defined in Definition E.1 form abasisof
the subword topology: any open is a union of such opens. We call them thebasic opens.

Proof. Let w a word in the intersection ofX∗U1X
∗U2X

∗ . . .X∗UmX∗ and X∗V1X
∗V2X

∗ . . .
X∗VnX∗. That is,w contains a subworda1a2 . . . am ≤∗ w, wherea1 ∈ U1, a2 ∈ U2, . . . ,
am ∈ Um. Let I = {ι1, ι2, . . . , ιm} be the set of positions where the lettersai can be found; i.e.,a1

is the letter at positionι1 in w, a2 is the letter at positionι2 > ι1 in w, and so on. Also,w contains
a subwordb1b2 . . . bn ≤∗ w whereb1 ∈ V1, b2 ∈ V2, . . . ,bn ∈ Vn. Let J = {η1, η2, . . . , ηn} be the
set of positions where the lettersbj can be found. Now letκ1 < κ2 < . . . < κp be the increasing se-
quence of positions inI∪J , and consider the open subsetX∗W1X

∗W2X
∗ . . . X∗WpX

∗, where for
eachk, Wk equalsUi∩Vj if k ∈ I∩J (wherei, j are defined byκk = ιi = ηj), Ui if k ∈ I\J (where
κk = ιi), andVj if k ∈ J \ I (whereκk = ηj). Clearlyw is in X∗W1X

∗W2X
∗ . . .X∗WpX

∗, and
the latter is contained in bothX∗U1X

∗U2X
∗ . . .X∗UmX∗ andX∗V1X

∗V2X
∗ . . . X∗VnX∗.

It follows that the intersection ofX∗U1X
∗U2X

∗ . . .X∗UmX∗ andX∗V1X
∗V2X

∗ . . .X∗VnX∗

if the union of the thus obtained setsX∗W1X
∗W2X

∗ . . .X∗WpX
∗, whenw varies over the inter-

section, and is therefore a union of basic open sets.
By induction onn, the same holds for the intersection ofn basic open sets. The intersection

of 0 basic open set is just the basic openX∗, the claim is clear forn = 1, and follows in the other
cases from the binary case, treated above.

We can show half of the statement that≤∗ is the specialization quasi-ordering of the subword
topology.

Lemma E.3. LetX be a topological space, with specialization quasi-ordering≤. Any open subset
of X∗ is upward closed with respect to≤∗. Any closed subset ofX∗ is downward closed with
respect to≤∗.
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Proof. We first show that sets of the formX∗U1X
∗U2X

∗ . . . X∗UnX∗, with U1, U2, . . . ,Un open
in X, are upward closed with respect to≤∗. The Lemma will follow, since every open ofX∗ is a
union of finite intersections of such sets.

Let thereforew be any word fromX∗U1X
∗U2X

∗ . . .X∗UnX∗. One may writew asw0x1w1x2

w2 . . . wn−1xnwn, with x1 ∈ U1, x2 ∈ U2, . . . ,xn ∈ Un. For anyw′ with w ≤∗ w′, one may write
w′ asw′

0x
′
1w

′
1x

′
2w

′
2 . . . w′

n−1x
′
nw′

n, with w0 ≤∗ w′
0, x1 ≤ x′

1, w1 ≤∗ w′
1, x2 ≤ x′

2, w2 ≤∗ w′
2, . . . ,

wn−1 ≤∗ w′
n−1, xn ≤ x′

n, wn ≤∗ w′
n. Since every open is upward closed,x′

1 ∈ U1, x′
2 ∈ U2, . . . ,

x′
n ∈ Un. Sow′ is in X∗U1X

∗U2X
∗ . . .X∗UnX∗.

The statement on closed sets follows by complementation.

In fact, whenX is just a quasi-ordered set, seen as a topological space through the Alexandroff
topology of its ordering,X∗ is just the space of finite words quasi-ordered by≤∗, again equipped
with its Alexandroff topology.

Lemma E.4(Coincidence Lemma). LetX be a set equipped with a quasi-ordering≤. We seeX as
equipped with the Alexandroff topology of≤. Then the subword topology onX∗ is the Alexandroff
topology of≤∗.

Proof. Any upward-closed subsetA of X∗ is a union of sets of the formX∗(↑ x1)X
∗(↑ x2)X

∗ . . .
X∗(↑ xn)X∗, namely all those obtained by taking the upward closures of wordsx1x2 . . . xn in A;
indeedX∗(↑ x1)X

∗(↑ x2)X
∗ . . .X∗(↑ xn)X∗ is just the upward closure ofx1x2 . . . xn in ≤∗.

Since these are basic opens of the subword topology, the subword topology onX∗ is contained in
the Alexandroff topology of≤∗. The converse direction is by Lemma E.3.

We start by examining the shape of closed subsets ofX∗. For any subsetA of X, letA∗ denote
the set of all wordsa1a2 . . . an with a1, a2, . . . , an ∈ A. Let A? beA ∪ {ǫ}.

Lemma E.5. Let X be a topological space. The complement ofX∗U1X
∗U2X

∗ . . .X∗UnX∗

(n ∈ N, U1, U2, . . . , Un open inX) in X∗ is ∅ whenn = 0, andF ∗
1 X?F ∗

2 X? . . .X?F ∗
n−1X

?F ∗
n

otherwise, whereF1 = X \ U1, . . . ,Fn = X \ Un.
If X is Noetherian, then this complement can be expressed as a finite union of sets of the form

F ∗
1 C?

1F ∗
2 C?

2 . . . C?
n−1F

∗
n , whereC1, C2, . . . ,Cn−1 range over irreducible closed subsets ofX.

Proof. Whenn = 0, this is clear: the complement ofX∗U1X
∗U2X

∗ . . .X∗UnX∗ is the empty set.
So letn ≥ 1.

We first claim that the complement ofX∗U1X
∗U2X

∗ . . .X∗UnX∗ isF ∗
1 X?F ∗

2 X? . . .X?F ∗
n−1

X?F ∗
n . We show this by induction onn. If n = 1, then the complement ofX∗U1X

∗ is the set of
words that contain no letter fromU1, i.e.,F ∗

1 . If n ≥ 1, letw be an arbitrary element of the comple-
ment ofX∗U1X

∗U2X
∗ . . . X∗UnX∗. Let w1 be the longest prefix ofw comprised of letters not in

U1. Note thatw1 is in F ∗
1 . If w1 = w, then certainlyw is in F ∗

1 ⊆ F ∗
1 X?F ∗

2 X? . . . X?F ∗
n−1X

?F ∗
n .

Otherwise,w is of the formw1xw′, wherex ∈ U1 andw′ is not inX∗U2X
∗ . . .X∗UnX∗. By induc-

tion hypothesisw′ is inF ∗
2 X? . . . X?F ∗

n−1X
?F ∗

n , hence againw is inF ∗
1 X?F ∗

2 X? . . . X?F ∗
n−1X

?F ∗
n .

Conversely, letw be any word inF ∗
1 X?F ∗

2 X? . . . X?F ∗
n−1X

?F ∗
n . Let w1 be the longest pre-

fix of w that lies inF ∗
1 . Then eitherw = w1, thenw ∈ F ∗

1 cannot be inX∗U1X
∗U2X

∗ . . .
X∗UnX∗, since all the words in the latter set must contain at least one letter inU1; or w =
w1xw′ for somex 6∈ F1, i.e. x ∈ U1, andw′ ∈ F ∗

2 X? . . .X?F ∗
n−1X

?F ∗
n . By induction hypo-

thesis,w′ cannot be inX∗U2X
∗ . . . X∗UnX∗. By construction,x would be the first occurrence

of an element ofU1 in w. If w were in X∗U1X
∗U2X

∗ . . .X∗UnX∗, then, some suffixw′′ of
w′ would be inX∗U2X

∗ . . .X∗UnX∗. Thenw′′ ≤∗ w′, hence by Lemma E.3,w′ would be in
X∗U2X

∗ . . .X∗UnX∗: contradiction.
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By Proposition 4.2,X, as a closed subset of itself, is a finite union of irreducibleclosed subsets.
I.e., there is a finite subsetE of S(X) such thatX =

⋃
C∈E C. Distributing across the _? operator

and concatenation in the expressionF ∗
1 X?F ∗

2 X? . . . X?F ∗
n−1X

?F ∗
n yields that the complement of

X∗U1X
∗U2X

∗ . . .X∗UnX∗ equals:
⋃

C1,...,Cn−1∈E

F ∗
1 C?

1F ∗
2 C?

2 . . . C?
n−2F

∗
n−1C

?
n−1

from which the desired result obtains.

This prompts for the following natural generalization of products and SREs to the topological
case. Note that, whenX is a finite alphabetΣ, with the discrete topology (hence its specialization
quasi-ordering is=), each closed subsetFi is just a finite subset, and each irreducible closed subset
Ci is just a singleton. So the following definition specializesto ordinary products and SREs in this
simple case.

Definition E.6 (Top-Product, Top-SRE). Let X be a topological space. Call atop-producton X
any expression of the formF ∗

1 C?
1F ∗

2 C?
2 . . . C?

n−1F
∗
n , wheren ∈ N, F1, . . . , Fn are non-empty

closed subsets, andC1, C2, . . . ,Cn−1 range over irreducible closed subsets ofX. Top-products are
interpreted as the obvious subsets ofX∗. Whenn = 0, this notation is abbreviated asǫ, and denotes
{ǫ}.

Call top-SREany finite sum of top-products, where sum is interpreted as union.

Lemma E.5 shows that any complement of a basic openX∗U1X
∗U2X

∗ . . .X∗UnX∗ is (the
denotation of) a top-SRE, of a special form. We shall show that any complement of a basic open is
(the denotation of) a top-SRE, i.e., top-SREs denote exactly the closed sets. But first, let us check
that indeed top-products and top-SREs define closed sets.

Lemma E.7. Let X be a topological space. For any openU of X∗, and any openU of X, define
U/U as follows. IfU = X∗, thenU/U = ∅; otherwise,U is a union of basic opens of the form
X∗Ui1X

∗Ui2X
∗ . . .X∗Uini

X∗, i ∈ I, whereni ≥ 1 for all i ∈ I, then we letU/U be the union of
all basic opensX∗(Ui1 ∩ U)X∗Ui2X

∗ . . . X∗Uini
X∗.

ThenU/U is open. The subsetX∗UU is also open for any open subsetU of X. For any closed
subsetF of X, for any closed subsetL of X∗, let U = X \ C, U = X∗ \ L, then:

• the complement ofF ?L is X∗XU ∪ U/U ;
• the complement ofF ∗L is X∗UU ∪ U/U .

In particular, F ?L andF ∗L are closed inX∗.

Proof. We must first check that, ifU 6= X∗, thenU is a union of basic opens of the formX∗Ui1

X∗Ui2X
∗ . . .X∗Uini

X∗, i ∈ I, whereni ≥ 1 for all i ∈ I. U is a union of basic opens by
Lemma E.2. Ifn1 were not at least1 for all i ∈ I, then the basic open numberi would beX∗ for
somei, soU would beX∗, contradiction.

U/U is open, as a union of basic opens. The subsetX∗UU is also open, as the union of all
basic opensX∗UX∗Ui1X

∗Ui2X
∗ . . . X∗Uini

X∗, i ∈ I.
To compute complements ofF ?L and ofF ∗L, we first make the following remark. LetL1

andL2 be two subsets ofX∗ that are downward closed with respect to≤∗. Note thatL1 = F ? or
L1 = F ∗, andL2 = L fit, by Lemma E.3. For any wordw not inL1L2, we can writew asw1w

′w2,
wherew1 is the longest prefix ofw in L1, w2 is the longest suffix ofw in L2, andw′ is not empty.
Indeed, any prefix of a word inL1 is again inL1, and any suffix of a word inL2 is in L2, since both
are downward closed with respect to≤∗.
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Note also that bothF ?L andF ∗L are downward closed with respect to≤∗.
Let F be closed inX, L be closed inX∗, U = X \ C, U = X∗ \ L. If L = X∗,

then the complements ofF ?L = X∗ and of F ∗L = X∗ are empty,U is empty, soX∗UU ,
X∗XU andU/U are empty, too, so the claim is proved. Otherwise, writeL as the union of
X∗Ui1X

∗Ui2X
∗ . . .X∗Uini

X∗, i ∈ I.
Let us compute the complement ofF ?L. Assumew is in the complement ofF ?L, and write

w asw1w
′w2, as above. Sincew′ is not empty, it starts with some letterx ∈ X. Then by the

maximality property ofw1, w1 is in F ?, but w1x is not. Again, by the maximality property of
w2, w′w2 is not in L, hence inU . If w1 6= ǫ, thenw is in XU ⊆ X∗XU . If w1 = ǫ, then
x is not in F (otherwisew1x would be inF ), hence is inU . Sow′w2 starts with a letter inU ;
sincew′w2 is in U , w′w2 is in X∗Ui1X

∗Ui2X
∗ . . .X∗Uini

X∗ for somei ∈ I. If the first letter in
w′w2 is in Ui1, thenw′w2 is in (U ∩ Ui1)X

∗Ui2X
∗ . . . X∗Uini

X∗, sow = w1w
′w2 is in X∗(U ∩

Ui1)X
∗Ui2X

∗ . . .X∗Uini
X∗ ⊆ U/U ; otherwise,w′w2 is in UX∗Ui1X

∗Ui2X
∗ . . .X∗Uini

X∗, so
w = w1w

′w2 is in X∗UX∗Ui1X
∗Ui2X

∗ . . .X∗Uini
X∗ ⊆ X∗UU .

Conversely, assumew is in X∗XU ∪ U/U . If w ∈ X∗XU , thenw contains a subword of the
form a0a1a2 . . . ani

, for somei ∈ I, wherea0 is arbitrary,a1 ∈ Ui1, a2 ∈ Ui2, . . . , ani
∈ Uini

.
Note thata1a2 . . . ani

is in Ui1Ui2 . . . Uini
⊆ X∗Ui1X

∗Ui2X
∗ . . . X∗Uini

X∗ ⊆ U . If w were in
F ?L, then sinceF ?L is downward closed with respect to≤∗, a0a1a2 . . . ani

would be inF ?L,
hencea1a2 . . . ani

would be inL: contradiction. Sow is in the complement ofF ?L. If, on the
other hand,w ∈ U/U , thenw contains a subword of the forma1a2 . . . ani

, for somei ∈ I, where
a1 ∈ U ∩ Ui1, a2 ∈ Ui2, . . . , ani

∈ Uini
. In particular,a1a2 . . . ani

is in Ui1Ui2 . . . Uini
⊆

X∗Ui1X
∗Ui2X

∗ . . .X∗Uini
X∗ ⊆ U . If w were inF ∗L, then sinceF ∗L is downward closed with

respect to≤∗, a1a2 . . . ani
would be inF ∗L. However,a1 is in U , so is not inF , and this implies

thata1a2 . . . ani
would be inL: contradiction. So, again,w is in w is in the complement ofF ?L.

The computation of the complement ofF ∗L follows similar lines. Assumew is in the comple-
ment ofF ∗L, and writew asw1w

′w2 wherew′ starts with some letterx ∈ X, w1 is inF ∗ butw1x is
not, andw′w2 is inU . In particular,x is in U , andw′w2 is in someX∗Ui1X

∗Ui2X
∗ . . .X∗Uini

X∗.
Depending on whether the first letter (x) of w′w2 is in Ui1 or not,w′w2 is in (U ∩Ui1)X

∗Ui2X
∗ . . .

X∗Uini
X∗ or in UX∗Ui1X

∗Ui2X
∗ . . . X∗Uini

X∗, so thatw is in X∗UU or in U/U .
Conversely, ifw ∈ X∗UU , thenw contains a subworda0a1a2 . . . ani

for somei ∈ I, a0 ∈ U ,
a1 ∈ Ui1, a2 ∈ Ui2, . . . ,ani

∈ Uini
. If w were inF ∗L, thena0a1a2 . . . ani

, too, by down-closure.
Sincea0 ∈ U , a0 is not inF , soa0a1a2 . . . ani

would be inL. Again by down-closure,a1a2 . . . ani

would be inL: contradiction. Sow is in the complement ofF ∗L. And if w ∈ U/U , thenw contains
a subword of the forma1a2 . . . ani

, for somei ∈ I, wherea1 ∈ U ∩Ui1, a2 ∈ Ui2, . . . ,ani
∈ Uini

.
In particular,a1a2 . . . ani

would be inUi1Ui2 . . . Uini
⊆ X∗Ui1X

∗Ui2X
∗ . . . X∗Uini

X∗ ⊆ U . If w
were inF ∗L, then so would be this subword, and asa1 ∈ U is not inF , a1a2 . . . ani

would be in
L: contradiction. Sow is in the complement ofF ∗L.

Corollary E.8. LetX be a topological space. Every top-product, every top-SRE isclosed inX∗.

Proof. Let P be any top-product. We show thatP is closed by induction on the lengthn of P . If
n = 0, i.e.,P = ǫ, then we must show that{ǫ} is closed: its complement is indeed the basic open
X∗XX∗. If n = 1, thenP = F ∗, whose complement isX∗UX∗, whereU = X \ F . Whenever
n ≥ 2, this follows from the induction hypothesis and Lemma E.7. Any top-SRE then denotes a
finite union of closed sets, and is therefore closed.

We can in fact say more: the top-products are irreducible. For this, we need to recall the
following lemma. We give a proof, as we have been unable to findone in standard references.
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Lemma E.9. LetX, Y be two topological spaces,F a closed subset ofX, F ′ a closed subset ofY .
If F andF ′ are irreducible, thenF × F ′ is an irreducible closed subset ofX × Y .

Proof. It is well known, and also easy to check, that a closed subsetF of X is irreducible if and
only if 3F = {U open inX | U ∩ F 6= ∅} is a completely irreducible filter of opens. Afilter (of
opens) is an upward closed family of opens such that any intersection of two elements of the filter is
again in the filter. It iscompletely primeif and only if, whenever a union of opens (possibly infinite)
lies in the filter, then one of the opens is already in it [5, Section 7.1].

Now consider3(F × F ′). This is clearly upward closed.
If W1 andW2 are two elements of3(F × F ′), then bothW1 andW2 intersectF × F ′. Now

a basis for the product topology is given by theopen rectangles, i.e., the product of two opens. So
W1 can be written as a union

⋃
i∈I U1i ×V1i SinceW1 intersectsF ×F ′, for somei ∈ I, U1i ×V1i

must intersectF × F ′. In particular,U1i intersectsF , andV1i intersectsF ′. Similary,W2 contains
an open rectangleU2j × V2j whereU2j intersectsF , andV2j intersectsF ′. In other words,U1i and
U2j are in3F , andV1i andV2j are in3F ′. SinceF andF ′ are irreducible,3F and3F ′ are filters,
soU1i ∩ U2j intersectsF , andV1i ∩ V2j intersectsF ′. It follows thatW1 ∩ W2, which contains
(U1i ∩ U2j) × (V1i ∩ V2j), intersectsF × F ′, i.e., is in3(F × F ′). So3(F × F ′) is a filter.

To show that3(F ×F ′) is completely prime, consider any union
⋃

i∈I Wi of opens ofF ×F ′

that intersectsF × F ′. Then someWi must intersectF × F ′, and we are done.

Lemma E.10. The concatenation functioncat : X∗ × X∗ → X∗ is continuous. The embedding
functioni : X → X∗ that maps the letterx to x as a word, is continuous. Every top-product is
irreducible closed inX∗. Every top-SRE is closed inX∗.

Proof. The inverse image ofX∗U1X
∗U2X

∗ . . .X∗UnX∗ by cat is clearly the union of all rect-
angles(X∗U1X

∗ . . . X∗Uj−1X
∗) × (X∗UjX

∗ . . .X∗UnX∗), 1 ≤ j ≤ n + 1. Since the latter
are open inX∗ × X∗, we easily check that the inverse image of any open ofX∗ by cat is open
in X∗ × X∗. Indeed any open ofX∗ is a union of finite intersections of such opens. Socat is
continuous.

Similarly, the inverse image ofX∗U1X
∗U2X

∗ . . .X∗UnX∗ by i is ∅ if n ≥ 2, U1 if n = 1,
andX itself if n = 0. In any case, it is open, soi is continuous.

We now claim thatF ∗ is irreducible closed inX∗, for any closed subsetF of X. Assume
F ∗ ⊆ F1 ∪ F2, whereF1 andF2 are closed inX∗. If F ∗ was not contained inF1 or in F2, then
there would be a wordw1 ∈ F ∗ \ F1 and a wordw2 ∈ F ∗ \ F2. Thenw1w2 would again be in
F ∗, hence either inF1 or in F2. Assume by symmetry thatw1w2 is inF1. Sincew1 ≤∗ w1w2, and
closed sets such asF1 are downward closed (w.r.t. the specialization quasi-ordering of X∗, hence
also w.r.t.≤∗ by Lemma E.3), we would havew1 ∈ F1: contradiction. SoF ∗ is irreducible.

Second, we claim thatC? is irreducible closed inX∗ wheneverC is irreducible closed inX.
Assume thatC? ⊆ F1 ∪F2, whereF1 andF2 are closed inX∗. In particular,i(C) ⊆ F1 ∪F2, that
is,C ⊆ i−1(F1∪F2) = i−1(F1)∪i−1(F2). Sincei is continuous,i−1(F1) andi−1(F2) are closed.
SinceC is irreducible,C ⊆ i−1(F1) or C ⊆ i−1(F2). AssumeC ⊆ i−1(F1), by symmetry. Then
i(C) ⊆ F1. SinceC is non-empty,F1 is non-empty;F1 is downward closed with respect to≤∗,
by Lemma E.3, soǫ is in F1. It follows thatC? = i(C) ∪ {ǫ} is contained inF1. HenceC? is
irreducible.

We now observe that wheneverC1 andC2 are irreducible closed inX∗, andC1C2 is closed, it is
irreducible. Assume thatC1C2 ⊆ F1 ∪ F2, whereF1 andF2 are closed inX∗. That is, the image
of C1 × C2 by cat is contained inF1 ∪F2, i.e.,C1 × C2 ⊆ cat−1(F1) ∪ cat−1(F2). Then the claim
follows from the fact thatcat−1(F1) andcat−1(F2) are closed, sincecat is continuous, and from
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the fact thatC1×C2 is irreducible closed by Lemma E.9. Indeed, we obtain thatC1×C2 is contained
in cat−1(F1) or in cat−1(F2), i.e., thatC1C2 ⊆ F1 or C1C2 ⊆ F2.

By induction on syntax, it follows that every top-product isirreducible closed. The base case
is ǫ, which, since it denotes a one-element set, is clearly irreducible. Then, any top-SRE is a finite
union of top-products, and hence closed.

Recall that the topological closure of a pointx ∈ X is also its downward closure↓ x, for the
specialization quasi-ordering ofX.

Lemma E.11. Let X be a topological space. The closure of the wordx1x2 . . . xn in X∗ is the
top-product(↓ x1)

?(↓ x2)
? . . . (↓ xn)?.

Proof. By Lemma E.10, this top-product is closed. The closure ofx1x2 . . . xn must contain this
top-product, because any wordw ≤∗ x1x2 . . . xn must be in this closure, by Lemma E.3. Whence
the equality.

Proposition E.12. Let X be a topological space. The specialization quasi-orderingof X∗ is the
embedding quasi-ordering≤∗, where≤ is the specialization quasi-ordering ofX.

Proof. Let � denote the specialization quasi-ordering ofX∗ for the time being. Ifw ≤∗ w′ then
w � w′: indeed, any openU containingw is upward closed with respect to≤∗, so containsw′ as
well, by Lemma E.3. Conversely, ifw � w′, thenw is in the topological closure ofw′. This is
an alternative definition of the specialization quasi-ordering, which is easily seen to be equivalent.
However, Lemma E.11 states precisely thatw must then be such thatw ≤∗ w′.

We can compare top-products for inclusion, algorithmically. This is analogous to the case of
products [1]. For short, writeC, C ′ for irreducible closed subsets ofX; F , F ′ for non-empty closed
subsets ofX; P , P ′ for top-products.

Lemma E.13. Let X be a topological space. Inclusion between top-products canbe checked in
quadratic time, modulo an oracle testing inclusion of closed subsets ofX. We have:ǫ ⊆ P for any
top-productP , P 6⊆ ǫ unlessP is syntactically the top-productǫ, and:

• C?P ⊆ C ′?P ′ if and only ifC ⊆ C ′ andP ⊆ P ′, or C 6⊆ C ′ andC?P ⊆ P ′.
• C?P ⊆ F ′∗P ′ if and only ifC ⊆ F ′ andP ⊆ F ′∗P ′, or C 6⊆ F ′ andC?P ⊆ P ′.
• F ∗P ⊆ C ′∗P ′ if and only ifF ∗P ⊆ P ′.
• F ∗P ⊆ F ′∗P ′ if and only ifF ⊆ F ′ andP ⊆ F ′∗P ′, or F 6⊆ F ′ andF ∗P ⊆ P ′.

Proof. The casesǫ ⊆ P andP 6⊆ ǫ are obvious.

• AssumeC?P ⊆ C ′?P ′. If C ⊆ C ′, then letx be an arbitrary element ofC. This is possible,
asC is irreducible, hence non-empty. For everyw ∈ P , xw is in C?P , hence inC ′?P ′. So
xw or w is in P ′, and sinceP ′ is downward closed under≤∗ by Lemma E.3, in any case
w ∈ P ′. SoP ⊆ P ′. If on the other handC is not contained inC ′, then there is an element
x of C which is not inC ′. SinceC?P ⊆ C ′?P ′, every word of the formxw with x ∈ C,
w ∈ P , is in C ′?P ′. However sincex is not inC ′, xw must be inP ′. SoCP ⊆ P ′. Since
P ′ is downward closed,C?P ⊆ P ′. The converse direction is easy.

• AssumeC?P ⊆ F ′∗P ′. If C ⊆ F ′, thenP ⊆ F ′∗P ′, sinceP ⊆ C?P . If C 6⊆ F ′, then let
x be inC but not inF ′. For everyxw ∈ CP , xw is in F ′∗P ′, hence inP ′ sincex 6∈ F ′. So
CP ⊆ P ′. SinceP ′ is downward closed,C?P ⊆ P ′. The converse direction is easy.

• AssumeF ∗P ⊆ C ′∗P ′. SinceF is non-empty, letx be some element inF . For any
w ∈ F ∗P , xw is also inF ∗P , so is inC ′∗P ′. This implies thatxw or w is in P ′. But, as
P ′ is downward closed,w ∈ P ′ in any case. SoF ∗P ⊆ P ′. The converse is again easy.
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• AssumeF ∗P ⊆ F ′∗P ′. If F ⊆ F ′, thenP ⊆ F ′∗P ′ sinceP ⊆ F ∗P . Otherwise, letx be
in F but not inF ′. For any wordw ∈ F ∗P , xw is again inF ∗P , hence inF ′∗P ′. Since
x 6∈ F ′, xw must be inP ′, hence alsow ∈ P ′. SoF ∗P ⊆ P ′.

We obtain the desired algorithm by dynamic programming.

Now, testing inclusion between closed subsets ofX is as easy as testing inclusion between
elements ofS(X). This is a general fact about Noetherian spaces

We may also compute intersections of top-products.

Lemma E.14. LetX be a Noetherian space. One may compute the intersection of two top-products,
modulo an oracle that computes intersections of closed subsets ofX, i.e., such that given two closed
subsetsF, F ′ of X, computes a finite setE(F, F ′) of irreducible closed subsets ofX whose union
is F ∩ F ′.

We have:ǫ ∩ P = ǫ for every productP , and:

• C?P ∩ C ′?P ′ =
⋃

C′′∈E(C,C′) C ′′?(P ∩ P ′) ∪ (C?P ∩ P ′) ∪ (P ∩ C ′?P ′).

• C?P ∩ F ′∗P ′ =
⋃

C′′∈E(C,F ′) C ′′?(P ∩ F ′∗P ′) ∪ (C?P ∩ P ′).

• F ∗P ∩ F ′∗P ′ = (
⋃

C′′∈E(F,F ′) C ′′)∗(F ∗P ∩ P ′) ∪ (
⋃

C′′∈E(F,F ′) C ′′)∗(P ∩ F ′∗P ′).

Proof. Note that the mapE(F, F ′) is well-defined, by Proposition 4.2. We require to be able to
compute it.

One may also note that the purpose of the Lemma is to show how todefine an oracle computing
this for irreducible closed subsets ofX∗, knowning one for closed subsets ofX. This much depends
on the fact that irreducible closed subsets ofX∗ are exactly the denotations of top-products, which
we shall prove later. Then, provided closed sets ofX∗ are represented as finite unions of irreducible
closed sets, i.e., as top-SREs, and distributing intersections over unions, we obtain a similar oracle
for X∗, knowing one forX.

• Any wordw in C?P∩C ′?P ′ is either inP∩P ′, or is inCP and inP ′, or inP and inC ′P ′, or
is of the formxw′, with x ∈ C∩C ′ andw′ ∈ P ∩P ′. SoC?P ∩C ′?P ′ ⊆ (P ∩P ′)∪(C?P ∩

P ′)∪ (P ∩C ′?P ′)∪ (C ∩C ′)?(P ∩P ′) = (C?P ∩P ′)∪ (P ∩C ′?P ′)∪ (C ∩C ′)?(P ∩P ′).
It is easy to see that conversely,(C?P ∩ P ′) ∪ (P ∩ C ′?P ′) ∪ (C ∩ C ′)?(P ∩ P ′) is
included inC?P ∩ C ′?P ′, so equality obtains. We conclude since(C ∩ C ′)?(P ∩ P ′) =⋃

C′′∈E(C,C′) C ′′?(P ∩ P ′).

• Any word w in C?P ∩ F ′∗P ′ is either inP ∩ F ′∗P ′, or is of the formxw′ with x ∈ C,
w′ ∈ P , andxw′ ∈ F ′∗P ′. In the latter case, eitherx ∈ C ∩ F ′ andw′ ∈ P ∩ F ′∗P ′, so
w ∈ (C ∩ F ′)?(P ∩ F ′∗P ′); or x ∈ C, x is notF ′ sow = xw′ is in P ′, hencew is in
C?P∩P ′. In any case,C?P∩F ′∗P ′ ⊆ (P∩F ′∗P ′)∪(C∩F ′)?(P∩F ′∗P ′)∪(C?P∩P ′) =
(C ∩ F ′)?(P ∩ F ′∗P ′) ∪ (C?P ∩ P ′). The converse inclusion is clear. We conclude since
(C ∩ F ′)?(P ∩ F ′∗P ′) =

⋃
C′′∈E(C,F ′) C ′′?(P ∩ F ′∗P ′).

• For every wordw in F ∗P ∩ F ′∗P ′, write w asw1w2 wherew1 is the longest prefix ofw in
F ∗, andw2 ∈ P ; also, asw′

1w
′
2 wherew′

1 is the longest prefix ofw in F ′∗, andw′
2 ∈ P ′. If

w1 is shorter thanw′
1, thenw2 is also inF ′∗P ′, sow ∈ (F ∩ F ′)∗(P ∩ F ′∗P ′), otherwise

w ∈ (F∩F ′)∗(F ∗P∩P ′). SoF ∗P∩F ′∗P ′ ⊆ (F∩F ′)∗(P∩F ′∗P ′)∪(F∩F ′)∗(F ∗P∩P ′).
The converse inclusion is obvious. We conclude becauseF ∩ F ′ =

⋃
C′′∈E(F,F ′) C ′′.

Rewriting left hand sides to right hand sides clearly definesa terminating procedure to compute
intersections of top-products.
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Lemma E.15. Let X be Noetherian. InX∗, the intersection of any two top-products is a finite
union of top-products.

Proof. The algorithm of Lemma E.14 rewrites any such intersection as a finite union of top-products,
recursively.

As in the case of SREs, any top-productP can be written ase1e2 . . . en, where eachei is an
atomic expressionof the formC? or F ∗, and additionallyeiei+1 is contained neither inei nor in
ei+1 for all i, 1 ≤ i < n. Indeed, ifeiei+1 is contained inei, then its denotation in fact equals that
of ei, and similarly forei+1. Call such a sequence areducedtop-product. Clearly, every top-product
denotes the same set of some reduced top-product.

Lemma E.16. Let X be a topological space. For every top-productP = e1e2 . . . en, let µ(P ) be
the multiset consisting ofe1, . . . , en. Define⊑ on atomic expressions by:C? ⊑ C ′? if and only if
C ⊆ C ′; F ∗ ⊑ F ′∗ if and only ifF ⊆ F ′; C? ⊑ F ′∗ if and only ifC ⊆ F ′; and F ∗ 6⊑ C ′?. Let
⊑mul be the multiset extension of⊑.

For every top-productsP , P ′, if P is reduced andP ⊆ P ′ thenµ(P ) ⊑mul µ(P ′).

Proof. We show this by induction on|P | + |P ′|, where|P | is the number of atomic expressions
in P . If |P ′| = 0, i.e., P ′ = ǫ, thenP = ǫ, and the claim is clear. In general, if|P | = 0, i.e.,
P = ǫ, thenµ(P ) is the empty multiset, soµ(P ) ⊑mul µ(P ′). Otherwise, there are four cases,
using Lemma E.13. Observe that Lemma E.13 can be stated equivalently as follows:P = e1P1 ⊆

e′1P
′
1 = P ′ if and only if: (1)e1 6⊆ e′1 andP ⊆ P ′

1, or (2)e1 = C?, e′1 = C ′?, C ⊆ C ′ andP1 ⊆ P ′
1,

or (3) e′1 = F ′∗, e1 ⊑ F ′∗ andP1 ⊆ P ′. Write < the strict part of⊑, i.e., e < e′ iff e ⊑ e′ and
e′ 6⊑ e.

• In case (1), we haveµ(P ) ⊑ µ(P ′
1) by induction hypothesis. Sinceµ(P ′

1) < µ(P ′),
µ(P ) < µ(P ′).

• In case (2),e1 ⊑ e′1 andµ(P1) ⊑mul µ(P ′
1), soµ(P ) = µ(e1P1) ⊑mul µ(e′1P

′
1) = µ(P ′).

• Case (3) is the trickiest. We havee1 ⊑ F ′∗, andP1 ⊆ P ′. Write P as e1e2 . . . ekP0,
wherek is the largest integer such thate1, e2, . . . , ek ⊑ F ′∗. For eachi, sinceei ⊑ F ′∗, in
particularei ⊆ F ′∗.

We first deal with the case where someei has the same denotation asF ′∗. If we had
k ≥ 2, then eitheri ≥ 2 and thenei−1 ⊆ ei, soei−1ei = ei, or i < k and thenei+1 ⊆ ei,
so eiei+1 = ei; in any case, this would contradict the fact thatP is reduced. Sok = 1,
P0 = P1, andP is of the formF ′∗P1. If |P0| = 0, i.e,P0 = ǫ, thenµ(P ) ⊑mul µ(F ′∗P ′

1) =
µ(P ′). Otherwise,P0 = P1 is of the formeP+, wheree 6⊑ F ′∗ by maximality ofk. Since
P1 ⊆ P ′, i.e., eP+ ⊆ F ′∗P ′

1, but e 6⊑ F ′∗, we must be in case (1), soP1 = eP+ ⊆ P ′
1.

SinceP = F ′∗P1, P ′ = F ′∗P ′
1, andP1 ⊆ P ′

1, it follows, using the induction hypothesis,
thatµ(P ) ⊑mul µ(P ′).

Otherwise,P = e1e2 . . . ekP0, where noei has the same denotation asF ′∗. It is easy
to check that, then,ei < F ′∗ for all i, 1 ≤ i ≤ k. It is then enough to show that:(∗)
µ(P0) ⊑mul µ(P ′

1). From(∗) it will follow that µ(P ) is obtained fromµ(P ′) by replacing
one copy ofF ′∗ by finitely many (k) copies of atomic expressionse1, e2, . . . , ek that are
strictly smaller thanF ′∗ in <; soµ(P ) will be (strictly) smaller thanµ(P ′) in ⊑mul.

To show(∗), we observe that, by induction onk− i, eiei+1 . . . ekP0 must be contained in
F ′∗P ′

1, for all i, 1 ≤ i ≤ k + 1: just use case (3) repetitively. SoP0 ⊆ F ′∗P ′
1. If |P0| = 0,

thenµ(P0) ⊑mul µ(P ′
1), as claimed. Otherwise, writeP0 aseP+. By the maximality of

k, e 6⊑ F ′∗, so case (1) applies, and thereforeP0 ⊆ P ′
1, whenceµ(P0) ⊑mul µ(P ′

1) by
induction hypothesis.
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Proposition E.17. Let X be Noetherian. The inclusion ordering on the set of (denotations of)
top-products is well-founded.

Proof. We observe that, sinceX is Noetherian,⊆ is well-founded on the set of closed sets. Indeed,
by Proposition 3.2 of [14],X is Noetherian if and only if no ascending chain of open sets isinfinite:
so there is no infinite descending chain of closed sets. It follows that⊑, and therefore also⊑mul, is
well-founded. The claim then follows from Lemma E.16.

Corollary E.18. Let X be Noetherian. The inclusion ordering on the set of (denotations of) SREs
is well-founded.

Proof. Let F = P1 ∪ . . . ∪ Pm andF ′ = P ′
1 ∪ . . . ∪ P ′

n be two SREs. Without loss of generality,
assume thePis are pairwise incomparable, and similarly that theP ′

js are pairwise incomparable.
Since every top-productPi, 1 ≤ i ≤ m, is irreducible closed by Lemma E.10,F ⊆ F ′ if and only
if for every i, 1 ≤ i ≤ m, there is aj, 1 ≤ j ≤ n with Pi ⊆ P ′

j . Since thePis are pairwise
incomparable, it follows that the multiset consisting ofP1, . . . ,Pm is smaller that the one consisting
of P ′

1, . . . ,P ′
n in the multiset extension of the inclusion ordering⊆ on (denotations of) top-products.

Since the latter is well-founded by Proposition E.17, so is inclusion between SREs.

Proposition E.19. Let X be a Noetherian space. The irreducible closed subsets ofX∗ are the
(denotations of) top-products. The closed subsets ofX∗ are the (denotations of) top-SREs.

Proof. Lemma E.10 states that Every top-product is irreducible closed, and every top-SRE is closed.
Conversely, letF be any closed subset ofX∗. F is the complement of a union of basic subsets,
of the formX∗U1X

∗U2X
∗ . . . X∗UnX∗, by Lemma E.2. SoF is an intersection of finite unions

of top-products, by Lemma E.5. It is well-known that any (possibly infinite) intersection
⋂

i∈I Fi

can also be written as the filtered intersection
⋂

J finite⊆I FJ , whereFJ is the finite intersection⋂
i∈J Fi. Filtered means that whateverJ andJ ′, there is aJ ′′ such thatFJ ′′ is contained in both

FJ andFJ ′ : namelyJ ′′ = J ∪ J ′.
Now eachFJ is a finite intersection of finite unions of top-products. By distributing unions

over intersections, one may therefore writeFJ as a top-SRE. Using Corollary E.18, it follows
thatF equals someFJ . Indeed, otherwise, we could build an infinite descending chain of SREs
F ′

0 ⊃ F ′
1 ⊃ . . ., all containingF , as follows: pickF ′

0 = FJ for some arbitraryJ ; if the chain has
been built up to indexk, sinceF ′

k (of the formFJ for someJ) does not coincide withF , there must
be a finite subsetJ ′ of I such thatFJ ∩FJ ′ is strictly contained inFJ : then chooseF ′

k+1 = FJ∪J ′ .
SoF is (the denotation of) a top-SRE, namelyFJ .
Let F be written as the sum of the top-productsP1, . . . , Pk. If additionallyF is irreducible,

thenk = 0 otherwiseF would be empty, andk ≥ 2 is impossible sinceF is irreducible. Sok = 1,
henceF is (the denotation of) a top-product.

Theorem E.20(Topological Higman Lemma). LetX be a topological space. ThenX is Noetherian
if and only ifX∗ is.

Proof. Theorem 6.11 of [14] states that a sober spaceY is Noetherian if and only if its topology is
the upper topology of a well-founded partial ordering� that obeys:

• property T: there is a finite subsetE such thatY =↓ E (↓ denotes downward closure with
respect to� here);

• and property W: for ally1, y2 ∈ Y , there is a finite subsetE such that↓ y1 ∩ ↓ y2 = ↓ E.

Any sobrification is equipped with the upper topology of the inclusion ordering⊆. AssumeX
Noetherian. Since (denotations of) top-products and irreducible closed subsets ofX coincide by
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Proposition E.19, Proposition E.17 states exactly that⊆ is well-founded onS(X∗); Lemma E.15
states property W forS(X∗); while property T forS(X∗) is obvious, sinceS(X∗) is the downward
closure of the top-productX∗. So S(X∗) is Noetherian. By [14, Proposition 6.2], a space is
Noetherian if and only if its sobrification is. SoX∗ is Noetherian.

Conversely, recall that a space is Noetherian if and only if it has no infinite ascending chain
of opens [14, Proposition 3.2]. IfX∗ is Noetherian, then any infinite ascending chainU0 ⊂ U1 ⊂
. . . ⊂ Uk ⊂ . . . of opens ofX induces an infinite ascending chainX∗U0X

∗ ⊂ X∗U1X
∗ ⊂ . . . ⊂

X∗UkX
∗ ⊂ . . . of opens inX∗: contradiction. SoX is Noetherian.

Theorem E.20 generalizes Higman’s Lemma, in the following sense. WhenX is a set equipped
with a quasi-ordering≤, we may seeX as a topological space, equipped with the Alexandroff
topology of≤. If X is well, then by Proposition 3.1 of [14],X is Noetherian (and conversely).
By Lemma E.4, the topology ofX∗ is the Alexandroff topology of≤∗. Theorem E.20 then states
thatX∗ is Noetherian, hence≤∗ is well, by Proposition 3.1 of [14] again. Such an argument would
probably be the most complicated proof of Higman’s Lemma in existence. We only aim to clarify
that Theorem E.20 indeed generalizes Higman’s Lemma to the topological case.

Corollary E.21. Let X be Noetherian. Any open subset ofX∗ is a finite union of basic opens, of
the formX∗U1X

∗U2X
∗ . . . X∗UnX∗.

Proof. Any openU is a union of basic opensUi, i ∈ I, by Lemma E.2. Note that(Ui)i∈I is a cover
of U . SinceX∗ is Noetherian by Theorem E.20,U is compact. So we may extract a finite subcover
of (Ui)i∈I .

We have announced thatS(X∗) would consist of natural analogues of the notion of products
used in SREs, built on an alphabet of points inS(X). These analogues are the top-products, as one
can expect. The following theorem is a syntactic rewriting of most of the results obtained above.

Theorem E.22. If X is Noetherian, then up to homeomorphism, the elements ofS(X) are (denota-
tions of)products, which are defined as finite sequencese1e2 . . . ek of atomic expressions, modulo
≡, where:

• an atomic expression is either of the formC? with C ∈ S(X), or A∗ with A a non-empty
finite subset ofS(X);

• the denotation of products isJe1e2 . . . ekK = Je1K Je2K . . . JekK, where
q
C?

y
= JCK? and

JA∗K = (
⋃

C∈A JCK)∗;
• P ≡ P ′ if and only ifJP K = JP ′K.

This is equipped with the upper topology of the ordering⊑ (and≡ is⊑ ∩ ⊒), where:

• C?P ⊑ C ′?P ′ if and only ifC ⊆ C ′ andP ⊑ P ′, or C?P ⊑ P ′.
• C?P ⊆ A′∗P ′ if and only ifC ⊆ C ′ for someC ′ ∈ A′ andP ⊑ A′∗P ′, or C ⊆ C ′ for no

C ′ ∈ A′ andC?P ⊑ P ′.
• A∗P ⊑ C ′∗P ′ if and only ifA∗P ⊑ P ′.
• A∗P ⊆ A′∗P ′ if and only if everyC ∈ A is contained in someC ′ ∈ A′ andP ⊑ A′∗P ′, or

someC ∈ A is contained in noC ′ ∈ A′ andA∗P ⊑ P ′.

The latter definition can then be simplified, to:eP ⊑ e′P ′ if and only if (1) e 6⊑ e′ and
eP ⊑ P ′, or (2)e = C?, e′ = C ′?, C ⊆ C ′ andP ⊑ P ′, or (3)e′ = A′∗, e ⊑ A′∗ andP ⊑ e′P ′.
This requires defining⊑ on atomic expressions, by:C? ⊑ C ′? if and only if C ⊆ C ′; C? ⊑ A′∗ if
and only ifC ⊆ C ′ for someC ′ ∈ A′; A∗ 6⊑ C ′?; A∗ ⊑ A′∗ if and only if for everyC ∈ A, there is
aC ′ ∈ A′ with C ⊆ C ′.
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Appendix F. Finite Multisets and the≤⊛ Quasi-Ordering

Given any topological space, letX⊛ be the set of all finite multisets onX. We shall write
{|x1, . . . , xn|} the multiset containing exacly the elementsx1, . . . , xn, ∅∅∅ the empty multiset, and
m⊎m′ the multiset union ofm andm′. For anyA ⊆ X, letA⊛ be the of those multisets consisting
of elements ofA only. LetA

g? be the set consisting of∅∅∅ and all multisets{|x|}, x ∈ A. Given two
subsetsA andB of X⊛, A⊙ B denotes{m ⊎ m′ | m ∈ A, m′ ∈ B}.

We quasi-orderX⊛, not with the multiset extension of the specialization quasi-ordering≤ of
X, rather with thesubmultisetquasi-ordering≤⊛ defined by:{|x1, x2, . . . , xm|} ≤⊛ {|y1, y2, . . . , yn|}
if and only if there is an injective mapr : {1, 2, . . . , m} → {1, 2, . . . , n} such thatxi ≤ yr(i) for
all i, 1 ≤ i ≤ m. When≤ is just equality, this quasi-ordering makesm ≤⊛ m′ if and only if every
element ofm occurs at least as many times inm′ as it occurs inm: this is the≤m quasi-ordering
considered, on finite setsX, by Abdullaet al. [3, Section 2]. The corresponding topology is:

Definition F.1 (Sub-Multiset Topology). Thesub-multiset topologyonX⊛ is the least one contain-
ing the subsetsX⊛ ⊙ U1 ⊙ U2 ⊙ . . . ⊙ Un, n ∈ N, whereU1, U2, . . . , Un are open subsets of
X.

We shall topologizeX⊛ with the sub-multiset topology. An important tool to studyX⊛ is the
Parikh mapping, extended here to the topological case, i.e., the case of an infinite alphabetX with
a topology.

Definition F.2 (Parikh). TheParikh mappingΨ : X∗ → X⊛ maps every finite wordx1x2 . . . xn

onX to {|x1, x2, . . . , xn|}.

We shall see thatΨ is not only continuous, it isquotient. A quotient mapf : A → B is by
definition a surjective map such that, for everyV ⊆ B, V is open inB if and only if f−1(B) is
open inA. A continuous map satisfies thatV open inB impliesf−1(V ) open inA, but f−1(V )
open does not necessarily entail thatV is open. Additionally, a quotient map must be surjective.
Whenever≡ is an equivalence relation on a spaceA, the map sending eacha ∈ A to its equivalence
class is a quotient map; conversely, iff : A → B is quotient, thenB is homeomorphic to the
quotient ofA by the relationa ≡ a′ defined asf(a) = f(a′), and, up to this homeomorphism,f
mapsa ∈ A to its equivalence class. The fact thatΨ is quotient therefore means thatX⊛ appears
as the quotient ofX∗ with respect to all reorderings of letters in words.

To show this, we make two comments. First, for any subsetB of X⊛, Ψ(Ψ−1(B)) = B.
This is becauseΨ is surjective, which is clear. Second, define≡ on X∗ by w ≡ w′ if and only if
Ψ(w) = Ψ(w′), i.e.,w andw′ contain the same letters, with the same multiplicities. A subsetA of
X∗ is ≡-saturated if and only if it is a union of equivalence classes. Equivalently,A is ≡-saturated
if and only if Ψ−1(Ψ(A)) = A. One notes indeed that the≡-saturation of any subsetA of X∗, i.e.,
the smallest≡-saturated subset ofX∗ containingA, is Ψ−1(Ψ(A)).

Proposition F.3. The Parikh mappingΨ is quotient.

Proof. We have already noted thatΨ was quotient. I.e., any multiset{|x1, x2, . . . , xn|} appears as
Ψ(x1x2 . . . xn).

The inverse image of the basic openX⊛ ⊙ U1 ⊙ U2 ⊙ . . . ⊙ Un by Ψ is the union over all
permutationsπ of {1, 2, . . . , n} of the basic opensX∗Uπ(1)X

∗Uπ(2)X
∗ . . . X∗Uπ(n)X

∗, and is
therefore open. This just means that the finite words whose multiset of letters contain one letter
from U1, one fromU2, . . . , one fromUn, are just the finite words containing a subword contain one
letter from each in some order. It follows that the inverse image of any open ofX⊛ is open inX∗,
soΨ is continuous.
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Finally, letV be any subset ofX⊛ such thatΨ−1(V ) is open inX∗. ThenΨ−1(V ) is a union
of basic opens of the formX∗Ui1X

∗ . . . X∗Uiki
X∗, i ∈ I. Observe thatV = Ψ(Ψ−1(V )) is then

the union of all subsets of the formX⊛ ⊙ Ui1 ⊙ . . . ⊙ Uiki
, i ∈ I, and is therefore open. SoΨ is

quotient.

Theorem F.4. LetX be a topological space. ThenX is Noetherian if and only ifX⊛ is.

Proof. If X is Noetherian, thenX∗ is, by Theorem E.20. SinceΨ is surjective and continuous by
Proposition F.3,X⊛ is the continuous image ofX∗. But the continuous image of any Noetherian
space is again Noetherian [14, Lemma 4.4].

Conversely, recall that a space is Noetherian if and only if it has no infinite ascending chain of
opens [14, Proposition 3.2]. IfX⊛ is Noetherian, then any infinite ascending chainU0 ⊂ U1 ⊂
. . . ⊂ Uk ⊂ . . . of opens ofX induces an infinite ascending chainX⊛ ⊙ U0 ⊂ X⊛ ⊙ U1 ⊂ . . . ⊂
X⊛ ⊙ Uk ⊂ . . . of opens inX⊛: contradiction. SoX is Noetherian.

Definition F.5 (M-Product, M-SRE). Let X be a topological space. Call anm-producton X any
expression of the formF⊛ ⊙ C

g?
1 ⊙ C

g?
2 ⊙ . . . ⊙ C

g?
n , wheren ∈ N, F is a closed subset ofX,

andC1, C2, . . . ,Cn−1 range over irreducible closed subsets ofX. This is interpreted as the obvious
subset ofX∗. WhenF is empty, we shall also write this as simplyC

g?
1 ⊙C

g?
2 ⊙ . . .⊙C

g?
n . When

n = 0, we just writeF⊛, and whenn = 0 andF = ∅, we write thisǫ. (Note that the denotation of
ǫ is then{∅∅∅}.)

An m-SREis any finite sum of m-products, where sum is interpreted as union.

Proposition F.6. LetX be a topological space. Then the denotations of m-SREs are closed inX⊛,
and those of m-products are irreducible closed.

If X is Noetherian, then the irreducible closed subsets ofX⊛ are the denotations of m-products,
and the closed subsets ofX⊛ are the denotations of m-SREs.

Proof. consider any m-productP = F⊛⊙C
g?

1 ⊙C
g?

2 ⊙ . . .⊙C
g?

n . We observe thatΨ−1(P ) is the
union over all permutationsπ of {1, 2, . . . , n} of the top-productsF ∗C?

π(1)F
∗C?

π(2)F
∗ . . . F ∗C?

π(n)F
∗.

This just means that the words whose multiset of letters can be split as at most one letter from each
of C1, C2, . . . , Cn, plus remaining letters fromF , are just the words that are comprised of letters
from F , except for zero or one letter fromCi, i ∈ {1, 2, . . . , n}, sprinkled here and there in some
order. SoΨ−1(P ) is closed inX∗. BecauseΨ is quotient (Proposition F.3), a subsetF of X⊛ is
closed if and only ifΨ−1(F) is closed inX∗. Therefore (the denotation of)P is closed inX⊛.

It also follows that any m-SRE denotes some closed subset ofX⊛.
It remains to show that the denotation of m-products are indeed irreducible. Note thatF⊛ ⊙

C
g?

1 ⊙ C
g?

2 ⊙ . . . ⊙ C
g?

n equalsΨ(F ∗C?
1C?

2 . . . C?
n), hence for any two closed subsetsF1 andF2

of X⊛, F⊛ ⊙ C
g?

1 ⊙ C
g?

2 ⊙ . . . ⊙ C
g?

n ⊆ F1 ∪ F2 if and only if F ∗C?
1C?

2 . . . C?
n ⊆ Ψ−1(F1 ∪

F2) = Ψ−1(F1) ∪ Ψ−1(F2). SinceF ∗C?
1C?

2 . . . C?
n is irreducible (Lemma E.10), andΨ−1(F1)

andΨ−1(F2) are closed (Ψ being continuous),F ∗C?
1C?

2 . . . C?
n must be contained inΨ−1(F1) or

in Ψ−1(F2). SoF⊛ ⊙ C
g?

1 ⊙ C
g?

2 ⊙ . . . ⊙ C
g?

n is contained inF1 or in F2.
Conversely, assumeX Noetherian. LetF be any closed subset ofX⊛. SinceΨ is continuous

(Proposition F.3),Ψ−1(F) is closed inX∗, hence a finite union of (denotations of) top-products,
by Proposition E.19. SinceΨ is surjective,F = Ψ(Ψ−1(F)) is therefore a finite union of subset
Ψ(Pi), i ∈ I, wherePi are (denotations of) top-products. However, for any top-producte1e2 . . . en,
Ψ(e1e2 . . . en) = {m1⊎m2⊎. . .⊎mn | m1 ∈ Ψ(e1), m2 ∈ Ψ(e2), . . . , mn ∈ Ψ(en)}, whereΨ(ej)

is computed by:Ψ(F ∗) = F⊛, Ψ(C?) = C
g? ; soΨ(e1e2 . . . en) = Ψ(e1)⊙Ψ(e2)⊙ . . .⊙Ψ(en)

can be written (using the fact that⊙ is associative and commutative) asF⊛

1 ⊙ F⊛

2 ⊙ . . . ⊙ F⊛

k ⊙
C

g?
1 ⊙ . . . ⊙ C

g?
ℓ , where theFis are non-empty closed and theCjs are irreducible closed. Noting



WSTS I: COMPLETIONS 37

the∅⊛ ⊙A = A, and thatF⊛

i ⊙ F⊛

i′ = (Fi ∪Fi′)
⊛, we conclude that the image of any top-product

by Ψ is (the denotation of) an m-product. Hence eachΨ(Pi) is the denotation of an m-product.
ThereforeF is a finite union of m-products, hence (the denotation of) an m-SRE.

If F is also irreducible, then this finite union must be the union of a single m-product, hence is
the denotation of some m-product.

We won’t need the following lemma. We mention it because it answers a natural question.

Lemma F.7. The mappingsj : X → X⊛ sendingx to {|x|} andunion : X⊛×X⊛ → X⊛ sending
m, m′ to m ⊎ m′, are continuous.

Proof. First,j = Ψ ◦ i, wherei is given in Lemma E.10. As a composition of continuous functions,
it is continuous. Second,union(Ψ(w), Ψ(w′)) = Ψ(cat(w, w′)). Sincecat is continuous by
Lemma E.10,union is, too, by general arguments on quotient maps.Ψ is indeed quotient by
Proposition F.3.

Proposition F.8. Let X be a topological space. The closure of the multiset{|x1, x2, . . . , xn|} in
X⊛ is the denotation of the m-product(↓ x1)

g? ⊙ (↓ x2)
g? ⊙ . . . ⊙ (↓ xn)

g? . The specialization
quasi-ordering ofX⊛ is the sub-multiset extension≤⊛ of the specialization quasi-ordering≤ of X.

Proof. We first note that any open subset ofX⊛ is upward closed with respect to≤⊛. This is an
easy consequence of the easy fact thatX⊛ ⊙ U1 ⊙ U2 ⊙ . . . ⊙ Un is upward closed with respect to
≤mul for any opensU1, U2, . . . , Un, which are upward closed with respect to≤ by definition. It
also follows that any closed subset ofX⊛ is downward closed with respect to≤⊛.

By Proposition F.6,(↓ x1)
g? ⊙(↓ x2)

g? ⊙. . .⊙(↓ xn)
g? is (irreducible) closed. This is also the

downward closure ofm = {|x1, x2, . . . , xn|} with respect to≤⊛, so this must be the smallest closed
set containing, i.e., the closure of{m}. It follows that, ifm is smaller thanm′ in the specialization
quasi-ordering ofX⊛, thenm ≤⊛ m′. So≤⊛ is the specialization quasi-ordering ofX⊛.

Lemma F.9. Let X be a topological space. Inclusion between m-products can bechecked in non-
deterministic polynomial time, modulo an oracle testing inclusion of closed subsets ofX. Explicitly,
let P = F⊛ ⊙ C

g?
1 ⊙ C

g?
2 ⊙ . . . ⊙ C

g?
m andP ′ = F ′⊛ ⊙ C ′

1

g? ⊙ C ′
2

g? ⊙ . . . ⊙ C ′
n

g? be two
m-products. ThenP ⊆ P ′ if and only ifF ⊆ F ′ and, lettingI = {i1, i2, . . . , ik} be the subset of
those indicesi, 1 ≤ i ≤ m, such thatCi 6⊆ F ′, there is an injective mapr : I → {1, 2, . . . , n} such
thatCi ⊆ C ′

r(i) for all i ∈ I—in other words,{|Ci1, Ci2 , . . . , Cij |} ⊆⊛ {|C ′
1, C

′
2, . . . , C

′
n|}.

Proof. AssumeP ⊆ P ′. If F 6⊆ F ′, then pickx ∈ F \ F ′: the multiset consisting ofn + 1 copies
of x is in P but not inP ′. SoF ⊆ F ′.

Let now I = {i1, i2, . . . , ik} be the set of indicesi, 1 ≤ i ≤ m, such thatCi 6⊆ F ′. Let
D1 = Ci1 , D2 = Ci2 , . . . , Dk = Cik . Let alsoE1, E2, . . . , Em−k be an enumeration of thoseCi,
1 ≤ i ≤ n, with i 6∈ I. Consider the top-productP1 defined asE?

1E
?
2 . . . E?

m−kF
∗D?

1D
?
2 . . . D?

k (if
F 6= ∅), or E?

1E
?
2 . . . E?

m−kD
?
1D

?
2 . . .D?

k (if F = ∅). Note thatP1 ⊆ Ψ−1(P ), soP1 ⊆ Ψ−1(P ′).

On the other hand,Ψ−1(P ′) is the union over all permutationsπ of {1, 2, . . . , n} of F ′∗C ′
π(1)

?F ′∗

C ′
π(2)

?F ′∗ . . . F ′∗C ′
π(n)

?F ′∗ (if F ′ 6= ∅), or of C ′
π(1)

?C ′
π(2)

? . . . C ′
π(n)

? (if F ′ = ∅). SinceP1 is

irreducible (Lemma E.10), there a permutationπ of {1, 2, . . . , n} such thatP1 ⊆ F ′∗C ′
π(1)

?F ′∗

C ′
π(2)

?F ′∗ . . . F ′∗C ′
π(n)

?F ′∗ (if F ′ 6= ∅), or P1 ⊆ C ′
π(1)

?C ′
π(2)

? . . . C ′
π(n)

? (if F ′ = ∅). Using
Lemma E.13, and the fact thatE1, E2, . . . ,Em−k are contained inF ′, andF ⊆ F ′, and recalling the
definition ofF1, we obtain thatD?

1D
?
2 . . .D?

k is included inF ′∗C ′
π(1)

?F ′∗C ′
π(2)

?F ′∗ . . . F ′∗C ′
π(n)

?F ′∗

(if F ′ 6= ∅), or in C ′
π(1)

?C ′
π(2)

? . . . C ′
π(n)

? (if F ′ = ∅).
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Let us deal with the caseF ′ 6= ∅, as the caseF ′ = ∅ is simpler. We show that there is an
injective mapr : I → {π(1), π(2), . . . , π(n)} such thatCi ⊆ C ′

r(i) for all i ∈ I, by induction on
k. If k = 0, the empty map fits. Otherwise, sinceD1 6⊆ F ′, using Lemma E.13, we must have
D?

1D
?
2 . . . D?

k ⊆ C ′
π(1)

?F ′∗C ′
π(2)

?F ′∗ . . . F ′∗C ′
π(n)

?F ′∗. Now we have two cases, again following

Lemma E.13. In the first caseD1 = Ci1 ⊆ C ′
π(1) andD?

2 . . .D?
k ⊆ F ′∗C ′

π(2)
?F ′∗ . . . F ′∗C ′

π(n)
?F ′∗,

so there is an injective mapr′ : {i2, . . . , ik} → {π(2), . . . , π(n)} such thatCi ⊆ C ′
r′(i) for all

i ∈ {i2, . . . , ik}. Then takingr(i1) = π(1) and r(i) = r′(i) for all i ∈ {i2, . . . , ik} fits. In
the second case,D?

1D
?
2 . . . D?

k ⊆ F ′∗C ′
π(2)

?F ′∗ . . . F ′∗C ′
π(n)

?F ′∗, and we conclude directly by the
induction hypothesis.

Conversely, if there is an injective mapr : I → {1, 2, . . . , n} such thatCi ⊆ C ′
r(i) for all i ∈ I,

it is clear thatP ⊆ P ′.

The complexity of the above algorithm can be improved whenX is finite, and its quasi-ordering
is equality. This is the case considered for the so-called multiset language generators of [3, Sec-
tion 5]: then irreducible closed subsetsC are reduced to single letters, andCi ⊆ C ′

r(i) is then
equivalent toCi = C ′

r(i). It therefore suffices to check that{|Ci1 , Ci2 , . . . , Cik |} is a sub-multiset
of {|C ′

1, C
′
2, . . . , C

′
n|}, which can be done in quadratic time.

Finally, here is an analogue of the Coincidence Lemma E.4.

Lemma F.10(Coincidence Lemma). LetX be a set equipped with a quasi-ordering≤. We seeX as
equipped with the Alexandroff topology of≤. Then the subword topology onX⊛ is the Alexandroff
topology of≤⊛.

Proof. Any upward-closed subsetA of X⊛ is a union of sets of the formX⊛ ⊙ (↑ x1) ⊙ (↑ x2) ⊙
. . .⊙(↑ xn), namely all those obtained by taking the upward closures of elements{|x1, x2, . . . , xn|}
in A; indeedX⊛ ⊙ (↑ x1) ⊙ (↑ x2) ⊙ . . . ⊙ (↑ xn) is just the upward closure of{|x1, x2, . . . , xn|}
in ≤⊛. Since these are basic opens of the sub-multiset topology, the sub-multiset topology onX⊛

is contained with the Alexandroff topology of≤⊛. The converse is by Proposition F.8.

Appendix G. Powersets

For any topological spaceX, let P3(X) denote the powersetP(X), with the lower Vietoris
topology, which is the least one containing all opens of the form3U = {A ∈ P(X) | A ∩ U 6= ∅},
whereU ranges over the open subsets ofX.

Lemma G.1. Let X be a topological space, with specialization quasi-ordering ≤. The specializ-
ation quasi-ordering ofP3(X) is the (topological)Hoare quasi-ordering≤♭, defined by:A ≤♭ B
if and only ifA ⊆ cl(B), if and only ifcl(A) ⊆ cl(B), wherecl : P(X) → H(X) is the closure
operator.

The closure of{A} in P3(X) is 2cl(A), where2F is defined as{B ∈ P(X) | B ⊆ F}.

Proof. This is well-known. Let≤♭ be the specialization quasi-ordering ofP3(X). We show that
A ≤♭ B if and only if cl(A) ⊆ cl(B).

If A ≤♭ B, then in particular, for every open subsetU of X, if A ∈ 3U thenB ∈ 3U . In
particular, takeU the complement ofcl(B). ClearlyB is not in3U . SoA is not in3U either, i.e.,
A ⊆ cl(B). Socl(A) ⊆ cl(B).

Conversely, ifcl(A) ⊆ cl(B), letU be any open ofP3(X) containingA. Note thatA ⊆ cl(B).
Write U =

⋃
i∈I

⋂ni

j=1 3Uij , whereUij is open inX. SinceA ∈ U , there is ani ∈ I such thatA
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intersects eachUij , 1 ≤ j ≤ ni. SinceA ⊆ cl(B), cl(B) intersects eachUij , 1 ≤ j ≤ ni. Since
eachUij is open,B itself intersects eachUij , 1 ≤ j ≤ ni, soB ∈ U . That is,A ≤♭ B.

Now the closure of{A} is the set of allB with B ≤♭ A, i.e., with B ⊆ cl(A). So this is
2cl(A).

Note thatP3(X) is far from beingT0, as there are many elements of this space which are
equivalent with respect to the equivalence relation generated by≤♭. Namely,A ≤♭ B andB ≤♭ A
if and only if A andB have the same closure.

Corollary G.2. The topology ofP3(X) is the upper topology of≤♭.

Proof. Any downward closure of an elementA of P3(X) is by definition of the form{B ∈ P(X) |
B ⊆ cl(A)} = 2cl(A), and is therefore closed inP3(X) by Lemma G.1. So the topology of
P3(X) is finer than the upper topology. Conversely, the complementof 3U , U open inX, is 2F ,
whereF is the complement ofU in X. But 2F is the downward closure ofF in P3(X), and is
therefore closed in the upper topology. Hence every3U is open in the upper topology, so the upper
topology is finer than the topology ofP3(X).

Theorem G.3. LetX be a topological space. ThenX is Noetherian if and only ifP3(X) is.

Proof. Proposition 7.3 of [14] states that, ifX is Noetherian, thenP(X) is Noetherian, when
equipped with the upper topology of≤♭. By Corollary G.2,P3(X) is then Noetherian. Con-
versely, any infinite increasing chain of opensU1 ⊂ U2 ⊂ . . . ⊂ Uk ⊂ . . . in X induces an infinte
increasing chain of opens3U1 ⊂ 3U2 ⊂ . . . ⊂ 3Uk ⊂ . . . in P3(X), so if P3(X) is Noetherian,
then so isX.

Proposition G.4. Let X be a Noetherian space. Then the sobrification ofP3(X) is the Hoare
powerdomainH(X) of X, up to homeomorphism. Precisely, the mapF 7→ 2F is a homeomorph-
ism ofH(X) ontoS(P3(X)).

Proof. The closed subsets ofP3(X) are the intersections of finite unions of closures of single
elements. The closure ofA ∈ P3(X) is 2cl(A) by Lemma G.1. Also,P3(X) is Noetherian by
Theorem G.3, so any intersection of closed sets is a finite intersection. Hence every closed subsets
F of P3(X) can be written as a finite intersection of finite unions of setsof the form2F , F closed
in X. Distributing unions over intersections,F is a finite union of finite intersections of sets of the
form 2F , F closed inX. Now it is easy to show that

⋂n
i=1 2Fi = 2

⋂n
i=1 Fi (this denoting2X

if n = 0), soF is a finite union of closed sets of the form2F , F closed inX. If F is irreducible,
then it must be of the form2F .

Conversely, if2F (F closed inX) is contained in the union of two closed subsets ofP3(X),
then these closed subsets can be written asF1 =

⋃m
i=1 2Fi andF ′ =

⋃n
j=1 F ′

j respectively, where
theFis and theF ′

js are closed inX. In particular,F , which is in2F , is contained in someFi or in
someF ′

j . If F ⊆ Fi, then2F ⊆ 2Fi, hence2F ⊆ F . If F ⊆ F ′
j , then similarly2F ⊆ F ′. So

2F is irreducible.
The mapF 7→ 2F therefore maps anyF ∈ H(X) to an element ofS(P3(X)).
This map is clearly surjective: we have shown above that any irreducible closed set ofP3(X)

was of the form2F for some closed subsetF of X. It is injective. Indeed,2F ⊆ 2F ′ implies
F ∈ 2F ′, henceF ⊆ F ′. In particular if2F = 2F ′ thenF ⊆ F ′ andF ′ ⊆ F , henceF = F ′.

The mapF 7→ 2F is continuous: it suffices to show that the inverse image of the open subset
3U is open inH(X) for any open subsetU of P3(X). Equivalently, to show that the inverse image
of the closed subset2F is closed inH(X) for any closed subsetF of P3(X). Now F can be
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written as a finite union
⋃m

i=1 2Fi, where eachFi is closed inX. The inverse image of2
⋃n

i=1 2Fi

is the set of closed subsetsF of X such that2F ∈ 2
⋃n

i=1 2Fi, i.e., such that2F ⊆
⋃n

i=1 2Fi,
i.e., such thatF ⊆ 2Fi for somei. In other words, this inverse image is

⋃n
i=1 2Fi, which is indeed

closed.
Finally, we must show that the inverse of this map is continuous, i.e., that the direct image of

a closed set is closed. It is enough to show that the direct image of 2F is closed inS(P3(X)).
This direct image is the set of all2F ′, whereF ′ ranges over the closet sets ofX with F ′ ⊆ F ;
equivalently, with2F ′ ⊆ 2F , i.e., with2F ′ ∈ 22F . So the direct image of2F is 22F : the set
of irreducible closed subsets2F ′ that are contained in2F .

Corollary G.5. For any Noetherian spaceX, H(X) is sober.

Proof. As an homeomorph ofS(P3(X)), which is sober by construction.

Note that we also know thatH(X) is then Noetherian [14, Theorem 7.2].
There is in general no coincidence Lemma as for words (Lemma E.4) or multisets (Lemma F.10),

otherwise powersets of wqos would be wqo, too.
But elements ofS(P3(X)), i.e., ofH(X) up to homeomorphism, can all be represented finitely,

as finite setsA of elements ofS(X). (AssumingX Noetherian.) These are interpreted as
⋃

C∈A C.
This follows from the fact that any closed subset ofX is a finite union of irreducible closed subsets
(Proposition 4.2.)
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