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ALAIN FINKEL ! AND JEAN GOUBAULT-LARRECQ" 2

L'LSV, ENS Cachan, CNRS; 61 avenue du président Wilson, F®&28han

2 INRIA Saclay lle-de-France
E-mail address{ f i nkel , goubaul t} @ sv. ens- cachan. fr

ABSTRACT. Well-structured transition systems provide the rightfdation to compute a finite basis

of the set of predecessors of the upward closure of a state.d@ial problem, to compute a finite

representation of the set of successors of the downwardread a state, is harder: Until now, the

theoretical framework for manipulating downward-closetssvas missing. We answer this problem,
using insights from domain theory (dcpos and ideal comptes), from topology (sobrifications), and

shed new light on the notion of adequate domains of limits.

1. Introduction

The theory of well-structured transition systems (WSTS)0syears old [9, 10, 2]. The most
often used result of this theory [10] is the backward aldponitfor computing a finite basis of the
set] Pre*(1 s) of predecessors of the upward closdre of a states. The starting point of this
paper is our desire to computePost* (| s) in a similar way. We then need a theory to finitely (and
effectively) represent downward-closed sets, much as upelased subsets can be represented by
their finite sets of minimal elements. This will serve as ad® constructing forward procedures.

Thecover, | Post*(| s), contains more information than the set of predeceskdrse*(1 s)
because it characterizes a good approximation of the rédithaet, while the set of predecessors
describes the states from which the system may fail; theraoeg also allow the computation of a
finite-state abstraction of the system as a symbolic graprebVer, the backward algorithm needs a
finite basis of the upward closed set of bad states, and itemgntation is, in general, less efficient
than a forward procedure: e.g., for lossy channel systelttgugh the backward procedure always
terminates, only the non-terminating forward procedurieniglemented in the tool TREX [1].

Except for some patrtial results [9, 7, 12], a general thediosvnward-closed sets is missing.
This may explain the scarcity of forward algorithms for WSTgioting Abdulleet al. [3]: “Finally,
we aim at developing generic methods for building downwéoded languages, in a similar manner
to the methods we have developed for building upward closeddages in [2]. This would give a
general theory for forward analysis of infinite state systeim the same way the work in [2] is for
backward analysis.” Our contribution is to provide sucheotly of downward-closed sets.

Key words and phrasesWSTS, forward analysis, completion, Karp-Miller procegludomain theory, sober spaces,
Noetherian spaces.
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2 A. FINKEL AND J. GOUBAULT-LARRECQ

Related WorkKarp and Miller [15] proposed an algorithm that computes #edirepresentation of
the downward closure of the reachability set of a Petri natkeé [9] introduced the WSTS frame-
work and generalized the Karp-Miller procedure to a clas#/&TS. This is done by constructing
the completion of the set of states (by ideals, see Secti@n®)in replacing thes-acceleration
of an increasing sequence of states (in Petri nets) by it lggper bound (lub). However, there
are no effective finite representations of downward clossd ® [9]. Emerson and Namjoshi [7]
considered a variant of WSTS (using cpos, but still withotheory of effective finite representa-
tions of downward-closed subsets) for defining a Karp-Mitieocedure to broadcast protocols—
termination is then not guaranteed [8]. Abdudiaal. [1] proposed a forward procedure for lossy
channel systems using downward-closed languages, codeREs. Ganty, Geeraerts, and others
[12, 11] proposed a forward procedure for solving the cobiityt problem for WSTS equipped
with an effective adequate domain of limits. This domainuges that every downward closed set
has a finite representation; but no insight is given how tlieseains can be found or constructed.
They applied this to Petri nets and lossy channel systemsluliebet al. [3] proposed another
symbolic framework for dealing with downward closed setstimed Petri nets.

We shall see that these constructions are special cases ofmpletions (Section 3). We shall
illustrate this in Section 4, and generalize to a comprelerigerarchy of data types in Section 5.
We briefly touch the question of computing approximationthefcover in Section 6, although we
shall postpone most of it to future work. We conclude in SetH.

2. Preliminaries

We shall borrow from theories of order, both from the theofywell quasi-orderings, as used
classically in well-structured transition systems [2,,20jd from domain theory [5, 13]. We should
warn the reader that this is one bulky section on prelimagriVe invite her to skip technical points
first, returning to them on demand.

A quasi-ordering< is a reflexive and transitive relation on a gét It is a (partial)orderingiff
it is antisymmetric. A seX equipped with a partial ordering ispmset

We write > the converse quasi-ordering,the equivalence relatiod N >, < associated strict
ordering € \ =), and> the converseX* \ =) of <. Theupward closure] FE of a setF is
{y e X |3z € E-z <y} Thedownward closurd Fis{y € X |3z € E-y < z}. A subset
E of X is upward closedf and only if £ = T E, i.e., any element greater than or equal to some
element inE is again inE. Downward closedets are defined similarly. When the ambient space
X is not clear from context, we shall writey F, |x E instead of| E, | E.

A quasi-ordering isvell-foundedff it has no infinite strictly descending chain, i.eq > 21 >
...>x; > .... An antichainis a set of pairwise incomparable elements. A quasi-ordesmwell
if and only it is well-founded and has no infinite antichain.

There are a number of equivalent definitions for well quasiedngs (wgo). One is that, from
any infinite sequencey, z1, ..., z;, ..., one can extract an infinite ascending chain < z;, <
o<y, <o, withidg < i < ... < i < .... Another one is that any upward closed subset
can be written] FE, with E finite. Yet another, topological definition [14, Proposition 3id]to
say thatX, with its Alexandroff topology, is Noetherian. Thexandroff topologyn X is that
whose opens are exactly the upward closed subsets. A sldhisetompact if it satisfies the Heine-
Borel property, i.e., every one may extract a finite subcéran any open cover of{. A topology
is Noetherianiff every open subset is compact, iff any increasing chaimpéns stabilizes [14,
Proposition 3.2]. We shall cite results from the latter pageethe need evolves.
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We shall be interested in rather particular topologicatssawhose topology arises from order.
A directed familyof X is any non-empty familyz;),.; such that, for ali, j € I, thereis & < I
with z;,2; < x;. The Scott topologyon X has as opens all upward closed subgétsuch that
every directed family(z;),.; that has a least upper bounrdn X intersects/, i.e.,z; € U for
somei € I. The Scott topology is coarser than the Alexandroff topglog., every Scott-open is
Alexandroff-open (upward closed); the converse fails inggal. The Scott topology is particularly
interesting ordcpos i.e., posetsX in which every directed familyz;)._, has a least upper bound
SUp; 1 i

The way belowrelation < on a posetX is defined byr < y iff, for every directed family
(2i);c; that has a least upper bound> y, thenz; > x for somei < I already. Note that < y
impliesz < y, and that’ < 2 < y < ¢ impliesz’ < 3. However,< is not reflexive or
irreflexive in general. Writd E = {y € X |z € E-2 <y, lE={ye X |Tr c E -y < z}.

X is continuousff, for every z € X, |« is a directed family, and hasas least upper bound. One
may be more precise: Rasisis a subsef3 of X such that any element € X is the least upper
bound of a directed family of elements way belawn B. Then X is continuous if and only if it
has a basis, and in this ca&eitself is the largest basis. In a continuous dchojs Scott-open for
all z, and every Scott-open sktis a union of such sets, vizl = Tz [5).

X is algebraiciff every element is the least upper bound of the set of finite elements below
x—an elemeny, is finite if and only if y < y. Every algebraic poset is continuous, and has a least
basis, namely its set of finite elements.

N, with its natural ordering, is a wgo and an algebraic posdt.ité elements are finite, so
x < yiff x < y. Nisnotadcpo, sinc itself is a directed family without a least upper bound.
Any finite product of continuous posets (resp., continuaymod) is again continuous, and the Scott-
topology on the product coincides with the product topolofyyy finite product of wqgos is a wqo.
In particular,N*, for any integet, is a wgqo and a continuous poset: this is the set of configunsti
of Petri nets.

It is clear how to complet® to make it a cpo: leN, be N with a new elemeny such that
n < wforalln € N. ThenN,, is still a wgo, and a continuous cpo, with« y if and only if x € N
andz < y. In general, completing a wqo is necessary to extend coilityabee techniques [9, 12].
Geeraertst al. (op. cit.) axiomatize the kind of completions they need ia tbrm of so-called
adequate domains of limitsWe discuss them in Section 3. For now, let us note that thensec
author also proposed to use another notion of completionatieer context, known asobrification
[14]. We need to recap what this is about.

A topological spaceX is always equipped with gpecialization quasi-orderingvhich we shall
write < again:x < y if and only if any open subset containingalso containg. X is Ty if and
only if <is a partial ordering. Given any quasi-orderidgon a setX, both the Alexandroff and the
Scott topologies admK as specialization quasi-ordering. In fact, the Alexanidi@bology is the
finest (the one with the most opens) having this property. cdasest is called thepper topology
its opens are arbitrary unions of complements of sets ofdha { F, F finite. The latter set$ F,
with F finite, will play an important role, and we call them thigitary closedsubsets. Note that
finitary closed subsets are closed in the upper, Scott, angafdroff topologies, recalling that a
subset iclosediff its complement is open. Thelosurecl(A) of a subsetd of X is the smallest
closed subset containing. A closed subsef’ is irreducibleif and only if ' is non-empty, and
wheneverF' C Fy U Fy with Fy, F; closed, then?” C Fy or F C Fy. The finitary closed subset
| 2 =cl({z}) (x € X)is always irreducible. A spac¥ is soberiff every irreducible closed subset
F' is the closure of a unique point, i.éf, = | x for some uniquer. Any sober space %, and
any continuous cpo is sober in its Scott topology. Convgrglen aTj spaceX, the space(X)

el
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of all irreducible closed subsets &f, equipped with upper topology of the inclusion orderingis
always sober, and the mag : = — | z is a topological embedding of insideS(X). S(X) is
the sobrificationof X, and can be thought as together with all missing limits fronX. Note in
particular that a sober space is always a cpo in its speatadiz ordering [5, Proposition 7.2.13].

It is an enlightening exercise to check ti4iN) is N,,. Also, the topology o5 (N) (the upper
topology) coincides with that df,, (the Scott topology). In generak is Noetherian if and only
if S(X) is Noetherian [14, Proposition 6.2], however the upper acatt3opologies do not always
coincide [14, Section 7]. In case of ambiguity, given anygids, we write X, the spaceX with
its Alexandroff topology.

Another important construction is théoare powerdomairt(X) of X, whose elements are
the closed subsets &f, ordered by inclusion. (We do allow the empty set.) We aggunigit with
the corresponding upper topology.

3. Completions of Wqos

One of the central problems of our study is the definition obenpletionof a wgo X', with all
missing limits added. Typically, the Karp-Miller consttion [15] works not withN*, but with N,
We examine several ways to achieve this, and argue that teeli@same, up to some details.

ADLs, WADLsWe start with Geeraertst al's axiomatization of so-calleddequate domain of
limits for well-quasi-ordered set&¥ [12]. No explicit constructions for such adequate domaihs o
limits is given, and they have to be found by trial and errour @ain result, below, is that there is
a unique least adequate domain of limits: sierificationS(X,) of X,. (Recall thatX, is X with

its Alexandroff topology.) This not only gives a concretexstsuction of such an adequate domain
of limits, but also shows that we do not have much freedom fimohgy one.

An adequate domain of limifd.2] (ADL) for a well-ordered sefX is a triple(L, <,~) where
L is a set disjoint fromX (the set oflimits); (I.;) the mapy : L U X — P(X) is such thaty(z) is
downward closed for alt € L U X, and~(x) = | x = for all non-limit pointsz € X; (Lg) there
is a limit point T € L such thaty(T) = X; (L3) z < 2’ ifand only if v(z) C ~(2’); and (L4) for
any downward closed subsbtof X, there is a finite subséf C L U X such thaf(E) = D. Here
V(E) = U.ep(2).

Requirementl(s) in [12] only serves to ensure that all closed subsets of X can be repres-
ented ag ,ux E for some finite subsef: the closed subsdtU X itself is then exactly ,ux {T}.
However, {.2) is unnecessary for this, sindeu X already equald;,x F by (L3), whereE is
the finite subset of. U X such thaty(E) = L U X as ensured byl(). Accordingly, we drop
requirementis):

Definition 3.1 (WADL). Let X be a poset. Aveak adequate domain of imif&/ADL) on X is any
triple (L, <, 7) satisfying €1), (Ls), and ().

Proposition 3.2. Let X be a poset. Given a WADIL, <, v) on X, v defines an order-isomorphism
from (L U X, <) to some subset ¢{(X,) containingS(X,).

Conversely, assum& wqo, and lefY” be any subset df{(X,) containingS(X,). Then(Y \
ns(Xa), =, 7) is a weak adequate domain of limits, wherenaps each: € X to | x = and each
F € Y\ ns(X,) toitself; < is defined by requirement.).

Proof. The Alexandroff-closed subsets &f are just its downward-closed subsets. §0) is in
H(X,) forall z, by (L;). LetY be the image ofy. By (Ls), v defines an order-isomorphism of
LU X ontoY. It remains to show that” must containS(X,). Let ' be any irreducible closed
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subset ofX,. By (L), there is a finite subséf C L U X such that’ = J, . v(x). SinceF is
irreducible, there must be a singlec E such thatF' = y(z). SoFisinY.

Conversely, letX be wqo,L = Y \ ns(X,), and~, < be as in the Lemma. Propertids; ]
and (3) hold by definition. For I.4), note thatX, is a Noetherian space, henS¢X,) is, too
[14, Proposition 6.2]. However, by [14, Corollary 6.5], eyelosed subset of a sober Noetherian
space is finitary. In particular, take any downward closelosstiD of X. This is closed inX,,
hence its images(D) by the topological embeddings is closed inns(X,), i.e., is of the form
ns(X,) N F for some closed subsét of S(X,). Also, D = ng'(F). SinceS(X,) is both sober
and Noetherianf” is finitary, hence is the downward-closuyg x) E’ of some finite subset’ in
S(X). Let E be the set consisting of the (limit) elementsihn L, and of the (non-limit) elements
z € X suchtha y = € E'. We obtairy(E) = (J,z 2. Onthe other hand) = ng'(F) = {z €
Xlleelsx) Py={reX|3zecFE |xCz} =U,cpz=7(FE). So L4) holds. ]

l.e., up to the coding function, there is a uniqueninimal WADL on any given wqoX:
its sobrificationS(X,). There is also a unique largest one: its Hoare powerdodik,). An
adequate domain of limits in the sense of Geerastrtd. [12], i.e., one that additionally satisfies
(L) is, up to isomorphism, any subset®f X,) containingS(X,) plus the special closed sat
itself as top element. We contend tli4tX ) is, in general, the sole WADL worth considering.

Ideal completionsWe have already argued th&t X ), for any Noetherian spack, was in a sense
of completion of X, adding missing limits. Another classical constructiorati limits to some
posetX is itsideal completion/di(X). The elements of the ideal completion &fare itsideals
i.e., its downward-closed directed families, ordered hglugion. Idi(X) can be visualized as a
form of Cauchy completion ofX: we add all missing limits of directed familigs:;),.; from
X, by declaring these families to be their limits, equating ti@milies when they have the same
downward-closure. 1ddi(X), the finite elements are the elementsXafformally, the mapy;4; :

X — Idi(X) that sends to | = is an embedding, and the finite elementd @f(X') are those of
the formmn; 4 (x). It turns out that sobrification and ideal completion coilgiin a strong sense:

Proposition 3.3([16]). For any posetX, S(X,) = Idi(X).

This is not just an isomorphism: the irreducible closed stdbsf X, are exactlythe ideals.
Note also thaf dI(X) is always an algebraic dcpo [5, Proposition 2.2.22, Iltem 4].

When X is wgo, any downward-closed subsetXfis afinite union of ideals. SqIdi(X) \
X, C,id) isa WADL on X. Proposition 3.2 and Proposition 3.3 entail this, and a loitam

Theorem 3.4. For any wgoX, S(X,) = Idl(X) is the smallest WADL oX'.

Well-based continuous cpoBhere is a natural notion of limit in dcpos: whenevet), ; is a
directed family, considesup,; ;. Starting from a wqa¥, it is then natural to look at some dcpo
Y that would containX as a basis. In particulaY; would be continuous. This prompts us to define
awell-based continuous dc@s one that has a well-ordered basis—namely the origin&tpos
This has several advantages. First, in general there asgadewtions of “sets of limits” of
a given subsefl C Y, but we shall see that they all coincide in continuous posstgh sets of
limits are important, because these are what we would likgH#diller-like procedures to compute,
through acceleration techniques. Here are the possiblensot First, defind.uby (A) as the set
of all least upper bounds ilr" of directed families inA. Second]ndy (A), theinductive hullof
AinY, is the smallest sub-dcpo &f containingA. Finally, the (Scott-topological) closuré(A)
of A. Itis well-known thatcl(A) is the smallestownward closedub-dcpo ofY” containing A.



6 A. FINKEL AND J. GOUBAULT-LARRECQ

(Recall that any open is upward closed, so that any closecshgst be downward closed.) In any
dcpoY’, one hasd C Luby (A) C Indy(A4) C cl(A), and all inclusions are strict in general. E.g.,
inY = N,, take A to be the set of even numbers. Thieaby (A) = Indy (A) = AU {w} while
cl(A) = N,. While Luby (A) = Indy (A) in this case, there are cases wheréy (A) is itself not
closed under least upper bounds of directed families, ardhais to iterate thEuby operator to
computelndy (A). On continuous posets however, all these notions coinsiele Appendix A).

Proposition 3.5. Let Y be a continuous poset. Then, for every downward-closecesubsf Y,
Indy (A) = Luby (A) = cl(A).
We shall use thisin Section 6. The key point now is that, ggeéti-based continuous dcpos co-

incide with completions of the forr§(X,) or Idl(X ), and are therefore WADLSs (see Appendix B).
This even holds for continuous dcpos having a well-founaed Well-ordered) basis:

Proposition 3.6. Any continuous dcp®” with a well-founded basis is order-isomorphicital (X))
for some well-ordered seX. One may take the subset of finite element¥ dbr Y. If Y is well-
based, therX is well-ordered.

4. Some Concrete WADLs

We now build WADLSs for several concrete poséfs Following Proposition 3.2, it suffices to
characterizeS(X,). AlthoughS(X,) = Idl(X) (Proposition 3.3), the mathematics 8tX,) is
easier to deal with thahdl(X).

N*. We start withX = N*, with the pointwise ordering. We have already recalled friim]
that S(N¥) was, up to isomorphism(N,,)*, ordered with the pointwise ordering, wheteis a
new element above any natural number. This is the structsed in the standard Karp-Miller
construction for Petri nets [15].

¥*. Let ¥ be a finite alphabet. Thdivisibility ordering | on ¥*, a.k.a. the subsequence (non-
continuous subword) ordering, is defined byas . ..a, | woaiwias...ay,w,, for any letters
ai,as,...,a, € X and wordswg, w1,...,w, € X*. There is a more general definition, where
letters themselves are quasi-well-ordered. Our definisahe special case where the wqo on let-
ters is=, and is the one required in verifying lossy channel systethsHligman’s Lemma states
that| is wgo onX*.

Any upward closed subséf of >* is then of the form| F, with FE finite. For any element
w = aiaz...a, Of B, T w is the regular languagE*a;>*as>* ... ¥*a,X*. Forward analysis
of lossy channel systems is instead based on simple regipagssions (SREs). Recall from [1]
that anatomic expressiois any regular expression of the for, with a € 3, or A*, whereA is
a non-empty subset of. WhenA = {ai,...,a,}, we takeA* to denote(a; + ... + a,,)"; a
denoted{a, e}. A productis any regular expression of the fornes . .. e,, (n € N), where eacle;
is an atomic expression. simple regular expressigor SRE is a sum, eithef or P; + ... + P,
where Py, ..., P, are products. Sum is interpreted as union. That SREs andigt®dre relevant
here is no accident, as the following proposition shows.

Proposition 4.1. The elements of(X}) are exactly the denotations of products. The downward
closed subsets &f* are exactly the denotations of SREs.

Proof. The second part is well-known. K = P; + ... + P, is irreducible closed, then by irre-
ducibility & must equall, hencef' is denoted by a product. Conversely, it is easy to show that an
product denotes an ideal, hence an elemedtitfX ) = S(X,) (Proposition 3.3). [
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Inclusion between products can then be checked in quadragdl]. Inclusion between SREs
can be checked in polynomial time, too, because of the resthéglproperty that; + ... + P, C
P[ +...+ P, ifand only if, for everyi (1 < i < m), thereis g (1 < j < n) with P, C P} [1,
Lemma 1].Similar lemmas are given by Abdu#&al. [3, Lemma 3, Lemma 4] for more general
notions of SREs on words on infinite alphabets, and for a aimmibtion for finite multisets of
elements from a finite set (both will be special cases of omstractions of Section 5). This is
again no accident, and is a general fact about Noetheriarespa

Proposition 4.2. Let X be a Noetherian space, e.g., a wgo with its Alexandroff wgol Every
closed subseF’ of X is a finite union of irreducible closed subséts, ..., C,,. If C{,...,C! are

also irreducible closed, Thefi; U...UC,, C CjU...UC), if and only if for everyi (1 < i < m),

thereis aj (1 < j < n)withC; C C7.

Proof. For the first part, see Appendix C. The second part is an easecoience of irreducibilit

Proposition 4.2 suggests to represent closed subsetsas finite subsetsl of S(X), inter-
preted as the closed g} , C. WhenX = X7, Ais a finite set of products, i.e., an SRE. When

X = NE, Ais afinite subset oR”, interpreted ag A N N*.

Finite TreesAll the examples given above are well-known. Here is one ihaew, and also more
involved than the previous ones. LEtbe a finite signature of function symbols with their arities.
We let ;. the set of function symbols of aritly; 7 is the set oftonstantsand is assumed to be
non-empty. The sef (F) is the set of ground terms built frodd. Kruskal’s Tree Theorem states
that this is well-quasi-ordered by ti®meomorphic embeddimgdering<, defined as the smallest
relation such that, whenever= f(u1,...,uy)andv = g(vi,...,v,), u Jvifand only if u < v,
forsomej, 1 < j <mn,orf=g,m=n,andu; <vy, us v, ..., un Jv,. (As for X*, we take
a special case, where each function has fixed arity.)

The structure o5 (7 (F),) is described using an extension of SRESs to the tree caseu3éss
regular tree expressions as defined in [6, Section 2.2]KLe¢ a countably infinite set of additional
constants, calletiolesO. Most tree regular expressions are self-explanatory, pxééeene star
L*" and concatenatioh.o L’. The latter denotes the set of all terms obtained from a teirmL
by replacing all occurrences af by (possibly different) terms froni’. The language of a holg
is just{O}. L*" is the infinite union of the languages©f L, L.oL, L.c L.nL, etc.

Definition 4.3 (STRE) Tree product@ndproduct iteratorsare defined inductively by:

e Every holeO is a tree product.

o f'(Py,...,P)isatree product, for any € ¥, and any tree product®;, . . ., P,. We take
fY(P,..., P;) as an abbreviation fof (P, ..., Py) + Py + ...+ Px.

o (>, C)"".oP is a tree product, for any tree produt anyn > 1, and any product
iteratorsC; overd, 1 < i <n. Wewrite) " | C; for C1 + Cy + ... + Cp.

e f(Py,...,Py)isaproductiterator over for any f € X, where: 1. eact?;, 1 <i < kis
eitherd itself or a tree product such thatis not in the language af;; and 2. P; = O for
somei, 1 <1 <k.

A simple tree regular expressi@8TRE) is a finite sum of tree products.

A tree regular expression @osediff it has no free hole, where a hole is freefiiL1, ..., L),
Li+ ...+ Lg,orin f7(L1, ..., L) iffitis free in someL;, 1 < i < k; the only free hole inJ is
O itself; the free holes of.*" are those of_, plusT; the free holes of..o L’ are those of/, plus
those ofLL exceptd. E.g., 7 (a’,b") and(f(0, ¢"(a”)) + f(g"(®"),0))*P.0f(a’,b") are closed
tree products. We prove the following in Appendix D.
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Theorem 4.4. The elements &8 (7 (F),) are exactly the denotations of closed tree products. The
downward closed subsetsdfF) are exactly the denotations of closed STRESs. Inclusiond&lde
able in polynomial time for tree products and for STREs.

5. A Hierarchy of Data Types

The sobrification WADL can be computed in a compositional veaywe now show. Consider

the following grammar of data types of interest in verifioati
D == N natural numbers

| Ac finite setA, quasi-ordered by

|  D;ix...x Dy finite product

| Di+...+ Dy finite, disjoint sum

| D* finite words

|  D® finite multisets
By compositionglwe mean that the sobrification of any data types computed in terms of the
sobrifications of its arguments. E.&(D?) will be expressed as some extended form of products
overS(D,). The semantics of data types is the intuitive one. Finitelpets are quasi-ordered
by the pointwise quasi-ordering, finite disjoint sums by paming elements in each summand—
elements from different summands are incomparable. FopasgtX (even infinite), X * is the set
of finite words overX ordered by thembeddingjuasi-ordering<*: w <* w’ iff, writing w as the
sequence ofn lettersa;as . . . a,,, ONe can writev’ aswoa)wiabws . .. wy,—1al,w), with a; < af,

az < aby, ...,a;m < al,. X®is the set of finite multiset§z, ..., z,[} of elements ofX, and is
quasi-ordered by<®, defined asq|z1,z2, ..., zm[} <® {y1,99,. .., yn|} iff there is an injective
mapr : {1,...,m} — {1,...,n} such thatr; < y,; foralli, 1 < i < m. When< is just

equality,m <® m/ iff every element ofn occurs at least as many timesiifd as inm: this is the
<™ quasi-ordering considered, on finite s&tsby Abdullaet al. [3, Section 2].

The analogue of products and SREs 1of is given by the following definition, which gen-
eralizes thex* case of Section 4. Note th@ is in general arinfinite alphabet, as in [3]. The
following definition should be compared with [1]. The only amengful difference is the replace-
ment of (a + €), wherea is a letter, withC”, whereC' € S(X,,). It should also be compared with
theword language generatorsf [3, Section 6]. Indeed, the latter are exactly our progustA®,
whereA is a finite alphabet (in our notatiod,<, with < given as equality).

Definition 5.1 (Product, SRE) Let X be a topological space. Lé&* be the set of finite words
on X. ForanyA,B C X*, let AB be{ww' | w € A,w' € B}, A* be the set of words od,
A? = AU {e}.

Atomic expressionare either of the fornC”, with C € S(X), or A*, with A a non-empty
finite subset of5(X). Productsare finite sequenceses . . . ex, k € N, andSREsare finite sums of
products. The denotation of atomic expressions is givefi®y] = C*, [A*] = (Ugea [C])*; of
products byerez . .. ex] = [e1] [ea] - - - [ex]; of SRES by[ Py + ... + B.] = U, [Pi].

Atomic expressions are ordered By C c'iff ¢ C ¢ Ot © A iff C C C' for some
C'e A, A* L C'" A* © A ff for every C' € A, thereis a0’ € A’ with C C C’. Products are
quasi-ordered by P C ¢/P'iff (1) ¢ Z ¢’ andeP T P, or (2)e = C*, ¢/ = ¢"*, C € ¢’ and
PC P or(3)e =A",eC A" andP C ¢/P'. We let=beC N Z.

Definition 5.2 (®-Product,®-SRE) Let X be a topological space. Foramy B C X, let A ®

B={mwm' | me Am € B}, A® be the set of multisets comprised of elements frdm
AD = {{zf} | # € A} U {0}, wheref) is the empty multiset.
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The®-productsP are the expressions of the ford® © (P ©...© (D , whereA is a finite
subset ofS(X), n € N, andC4, ..., C, € S(X). Their denotatioff P] is (o4 C)® © [[Cl]FD ©
... [Cn]¥ . They are quasi-ordered By C P’, whereP = A® & C@ ® ®...0C and
P=4%00cP 0c® o...0cQ iff (1)foreveryC € A, thereis &’ € A’ with C' C ¢,
and (2) lettingl be the subset of those indicgsl < ¢ < m, such thatC; C C’ fornoC’ € A’,
there is an injective map: I — {1,...,n} such thatC; C C;( ) forall: € I. Let=beC N J.

Theorem 5.3. For every data type), S(D,,) is Noetherian, and is computed bg(N,) = N,;
S(ASUL) = AS; S((Dl X ... X Dk)a) = S(Dla) X ... X S(Dka), S((Dl + ...+ Dk)a) =
S(D1g)+...+S(Dxg); S(D*) is the set of products o modulo=, ordered byC (Definition 5.1);
S(D®) is the set ofp-products onD modulo=, ordered by (Definition 5.2).

For any data typeD, equality and ordering (inclusion) i§(D,) is decidable in the polynomial
hierarchy.

Proof. We show thatS(D,,) is Noetherian and is computed as given above, by inductiothen
construction ofD. We in fact prove the following two facts separately: 8l)D) is Noetherian D,
not D,), whereD is topologized in a suitable way, and (2)= D,.

To show (1), we topologiz&l and A< with their Alexandroff topologies, sums and products
with the sum and product topologies respectivety; with the subword topologyviz. the smallest
containing the open subseXs*U; X*Us X*... X*U,X*, n € N, Uy, Us, ..., U, open inX; and
X ® with the sub-multiset topologynamely the smallest containing the subsg8 © U; © U ®
... Uy, n € N, whereUy, Us, ..., U, are open subsets df. The case oN has already been
discussed above. Whetx is finite, it is both Noetherian and sober. The case of finitelpcts is by
[14, Section 6], that of finite sums by [14, Section 4]. TheecakX * is dealt with in Appendix E,
while the case o ® is dealt with in Appendix F. We also need to show that the goed@rings—
on products inX *, resp.®-products inX ®, denote inclusion i (X*), resp.S(X ®). This is also
done in the appendices.

To show (2), we appeal to a series of coincidence lemmas,isbahat( X *), = X (LemmaE.4)
and that X®) , = X® (Lemma F.10) notably. The other cases are obvious.

Finally, we show that inclusion and equality are decidahl¢hie polynomial hierarchy. For
this, we show in the appendices that inclusion&(D*) is C on products, and is decidable by a
polynomial time algorithm modulo calls to an oracle decigdimclusion inS(D). This is by dynamic
programming. Inclusion i§(D®) is C on ®-products, and is decidable by a non-deterministic
polynomial time algorithm modulo a similar oracle. We card# since the orderings &, and on
A< are polynomial-time decidable, while inclusion$iD; x ... x Dy) = S(Dq) x ... x S(Dyg)
and inS(Dy + ...+ Dg) = S(Dy1) + ... + S(Dy) are polynomial time modulo oracles deciding
inclusion inS(D;), 1 < i < k. ]

Look at some special cases of this construction. Fifstis the data typ& x ... x N, and we
retrieve thatS(N¥) = N¥. Second, when is a finite alphabetd* is given by products, as given in
the X* paragraph of Section 4; i.e., we retrieve the products (dREs3 of Abdullaet al. [1]. The
more complicated cased®)* was dealt with by Abdullat al. [3]. We note that the elements of
S((A®)*) are exactly theiword language generatorsvhich we retrieve here in a principled way.
Additionally, we can deal with more complex data structumesh as, e.g(((N x A<)* x N)®)®,

Finally, note that (1) and (2) are two separate concernsenptioof of Theorem 5.3. If we
are ready to relinquish orderings for the more general togiokl route, as advocated in [14], we
could also enrich our grammar of data types with infinite ¢ardions such a®(D), whereP (D)
is interpreted as the powerset bf with the so-called lower Vietoris topology. See Appendix G,
where we show tha$(P(X)) = H(X) is Noetherian wheneveX is, and that its elements can be
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represented d#ite subsetsd of S(X), interpreted ag )., C. Inasense, whil&(X,) = Idl(X)
for all ordered space&’, the sobrification construction is more robust than thelidempletion.

6. Completing WSTS, or: Towards Forward Procedures Computng the Cover

We show how one may use our completions on wqos to deal withidiar analysis of well-
structured systems. We shall describe this in more detahither paper. First note that any data
type D of Section 5 is suited to applying the expand, enlarge andichkgorithm [12] out of the
box to this end, since thefi(D,) is (the least) WADL forD. We instead explore extensions of
the Karp-Miller procedure [15], in the spirit of Finkel [9F @merson and Namjoshi [7]. While the
latter assumes an already built completion, we construéli$o, we make explicit how this kind of
acceleration-based procedure really computes the cogel, iPost*(| x), in Proposition 6.1.

Recall that avell-structured transition systeWSTS) is a tripleS = (X, <, (6;)1~,), where
X is well-quasi-ordered by, and each; : X — X is a partial monotonic transition function.
(By “partial monotonic” we mean that the domain &fis upward closed, and is monotonic on
its domain.) LettingPre(A) = U, 6; '(A), Pre®(A) = A, andPre*(A) = ey Pre®(A),
it is well-known that any upward closed subsetXfis of the formT E for some finiteE C X,
and thatPre*(1 E) is an upward-closed subset=’, E’ finite, that arises as);~, Pre®(1 E) for
somem € N. Hence, provided is decidable and; (1 E) is computable for each finit&, it is
decidable whether € Pre*(1 E), i.e., whether one may read¢hE from z in finitely many steps.
Itis equivalent to check whethgre | Post*(| x) for somey € E, wherePost(A) = ", d;(A),
Post®(A) = A, andPost*(A) = ;e Post™(A).

All the existing symbolic procedures that attempt to coreputPost*(| x), even with a fi-
nite number of accelerations (e.g., Fast, Trex, Lash), cdy compute subsets of the larger set
Lub(| Post*(| x)). In general,Lub(| Post*(| x)) does not admit a finite representation. On
the other hand, we know that the Scott-clostieost™(| x)), as a closed subset &fll(X) (in-
tersected withX itself), is always finitary. Indeed, it is also a closed sulufeS(X,) (Proposi-
tion 3.3), which is represented as the downward closure @&€fjnmany elements of (X, ). Since
Y = IdI(X) is continuous, Proposition 3.5 allows us to conclude thaby (| Post*(] z)) =
cl(Post*(] x)) is finitary—hence representable provid&ds one of the data types of Section 5.

This leads to the following construction. Any partial momoic mapf : X — Y between
quasi-ordered sets lifts to @ntinuouspartial mapSf : S(X,) — S(Y,): for each irreducible
closed subset (a.k.a., ided@l)of S(X,), eitherC Ndom f # P andSf(C) =] f(C)={yeY |
dr e CNdom f-y < f(x)},orCNdom f = 0 andSf(C) is undefined. Theompletionof a
WSTSS = (X, <, (6;)1,) is then the transition systef = (S(Xa), S, (S6:)11)-

For example, whetX = N¥, and.$ is a Petri net with transitions defined ag;(z) = 7 + d;
(whered_; € Z¥; this is defined whenevet + d € N, thens is the transition system whose set of
states isS(X) = N* and whose transition functions a4, () = & + d;, whenever this has only
non-negative coordinates, taking the conventionthatd = w for anyd € Z.

We may emulate lossy channel systems through the follofuingtional-lossyehannel systems
(FLCS). For simplicity, we assume just one channel and nal lstate; the general case would only
make the presentation more obscure. An FLCS differs from @8 In that it loses only the least
amount of messages needed to enable transitions. Xake ¥* for some finite alphabet of
messages; the transitions are either of the foffw) = wa; for some fixed lettet; (sendingz; onto
the channel), or of the formy, (w) = we whenevenw is of the formw; a;w,, with w; not containing
a; (expecting to receive;). Any LCS is cover-equivalent to the FLCS with the same seari$
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receives, where two systems a@ver-equivalenif and only if they have the same setdost*(F')
for any downward-closed’. EquatingS(X*) with the set of products, as advocated in Section 4,
we find that transition functions of the first kind lift t85;(P) = Pa’ , while transition functions
of the second kind lift t0:S3;(e) is undefinedSd;(a’P) = So;(P) if a; # a, Séi(a;P) = P,
S0;(A*P) = §6;(P) if a; € A, S0;(A*P) = A*P otherwise. This is exactly how Trex computes
successors [1, Lemma 6].

In general, the results of Section 5 allow us to use any doofadatatyped) for the state space
X of S. The constructiord then generalizes all previous constructions, which usdibtdefined
specifically for each datatype.

The Karp-Miller algorithm in Petri nets, or the Trex proceeldor lossy channel systems, gives
information about the cover Post*(| z). This is true ofanycompletion§ as constructed above:

Proposition 6.1. Let S be a WSTS. LeRost be thePost map of the completioﬁ. For any closed
subsetr’ of S(X,), Post(F) = cl(Post(FNX)),andPost (F') = cl(Post*(FNX)). Hence, for

any downward closed subsgtof X, | Post(F) =X N fo;t(F), | Post*(F)=Xn fo\st*(F).

Proof. Let F be closed inS(X,). Post(F) = U, cl(6:(F)) = (U, 6:(F)) = cl(Post(F)),
_——k

since closure commutes with (arbitrary) unions. We theimcthat Post (F) = cl(Post*(F)) for

eachk € N. This is by induction ork. The caseg = 0,1 are obvious. Whe& > 2, we use

the fact that, for any continuous partial mgp () cl(f(cl(A))) = cl(f(A)). Thenfé\stk(F) =
— k-1

Uiz cl(é(Post (F))) = Ui, cl(@i(cl(Post* ™ (F)))) = Ui, cl(8i(Post* 1 (F))) (by (+))

)

% —k
= cl(Post*(F)). Finally, Post (F) = Jyey Post (F) = Upen c(Post®(F)) = cl(Post*(F)).
We conclude, since for anyg C X, | A is the closure ofd in X,; the topology ofX, is the
subspace topology of that 8% X, ); so, writingcl for closure inS(X,), | A= X Ncl(A). [

Writing F as the finite unio;, U. . .UCy, whereCy, ..., Cr € S(X,), fo\st(F) is computable
asUy <y i, <k S01(Ciy)U. . .US6,(C;, ), assumingss; computable for each (We takeS6;(C;)
to mean( if undefined, for notational convenience.) Although; may be uncomputable even
whend; is, it is computable on most WSTS in use. This holds, for eXanipr Petri nets and lossy
channel systems, as exemplified above.

So it is easy to computg Post(] ), as (the intersection oX with) fozf(l x). Computing

| Post*(| x) (our goal) is also easily computed ﬁst*(l x) (intersected withX again), using
acceleration techniques for loops. This is what the Karfig¥iconstruction does for Petri nets, what
Trex does for lossy channel systems [1]. (We examine tertioimégssues below.) Our framework
generalizes all these procedures, using a weak accelegsumption, whereby we assume that
we can compute the least upper bound of the values of loopetk times, k € N. For any
continuous partial mag : Y — Y (with open domain) on a dcpb, let theiterationg be the
map of domainlom g such thatj(y) is the least upper bound Ojfzk(y))keN if y < g(y), andg(y)
otherwise. LetA = {Sd1,...,S80,}, A* be the set of all composites of finitely many maps from
A. Ouracceleration assumptiois that one can compuiy) for anyg € A*, y € S(X,). The
following procedure then computgsPost*(] x), as (the intersection of with) fo\st*(l x), itself
represented as a finite union of elementsS0K, ): initially, let A be{z}; then, whilefé\st(A) Z

| A, choose fairly(g,a) € A* x A such thats € dom g and addg(a) to A. If this terminates A

is a finite set whose downward closure is exagtlyost*(| x). Despite its simplicity, this is the
essence of the Karp-Miller procedure, generalized to a&lalgss of spacek.
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Termination is ensured for flat systems, i.e., systems wbosgol graph has no nested loop, as
one only has to compute the effect of a finite number of loopgielneral, the procedure terminates
on cover-flattablesystems, that is systems that are cover-equivalent to setngy8tem. Petri nets
are cover-flattable, while, e.g., not all LCS are: recallttha an LCS,| Post*(| x) is always
representable as an SRE, however not effectively so.

7. Conclusion and Perspectives

We have developed the first comprehensive theory of downsiaskd subsets, as required for
a general understanding of forward analysis techniques®T®/ This generalizes previous domain
proposals on tuples of natural numbers, on words, on mtgtisiowing for nested datatypes, and
infinite alphabets. Each of these domains is effective, imsbnse that each has finite presenta-
tions with a decidable ordering. We have also shown how thimmaf sobrificationS(X,) was
in a sense inevitable (Section 3), and described how thiseapm compute downward closures
of reachable sets of configurations in WSTS (Section 6). Véa pb describe such new forward
analysis algorithms, in more detalil, in papers to come.
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Appendix A. All Sets of Limits Coincide on Continuous Posets

Continuous posets are nice spaces, in that one can computedinctive closure in just one
Luby step, provided we start from a downward-closed set. Thisrapdsition 3.5, which also
states that we get the Scott-topological closure this way.

Lemma A.1l. Let Y be a poset, andd a downward closed subset &f. ThenLuby (A) C
| Luby (A4), and equality holds whenevéft is a continuous poset.

Proof. Inclusion is obvious. Let us show equality, assumifnigs continuous. Let € | Luby (A):
for somez > =z, z is the least upper bound of some directed fantily),.; in A. SinceY is
continuous = sup,., y, S0 by definition of<, everyy < z is less than or equal to somg
i € 1. In particular, every suchisin | A. Sox € Luby (| A). [

Equality may fail without the continuity assumption. Elet,Y beN,, union a fresh element
with 0 < % < w, but incomparable with all other elements. ThHeéms a downward closed subset of
Y, howeverLuby (A) = N,, and| Luby (4) =Y = N, U {x}.

We use the following technical lemma. This is folklore.

Lemma A.2. LetY be a continuous posety;),.; a directed family of elements &f, with least
upper boundz, and assume that each is the least upper bound of a directed family;;)

i € I. Then(z;;) ,c; is a directed family, and has as least upper bound.
Jje€J;

JEJi’

Proof. Givenz;; andxz; j,, one can find” € I such thate;, zy < x;n; sincex;, xyjr < i =
supjne,,, i, there arek, k' € Jy suchthat;; <z, andx; o < x;n; by directedness again,
there is anj” € J;» such thatx, g, xm < T i Whencexij,xi/j/ < Ty g So (‘TU) 'i€§ is
. . J€Ji
directed. It is clear thatup il Tjj = SUD;es SUD,e, Tij = SUD;ef Ti = T. (]
J€Ji

We recall the statement of Proposition 3.5: LBétbe a continuous poset, then, for every
downward-closed subsétof Y, Indy (A) = Luby (A4) = cl(A).

Proof. Clearly, Luby (A) C Indy(A4) C cl(A). It remains to show thatl(A) C Luby (A), i.e.,
thatLuby (A) is downward-closed and closed under directed least upperds This is downward-
closed by Lemma A.1.

We note that{(x) every element of Luby (A) is the least upper bound of some directed family
of elements of4 way-belowz. Indeed, we just takéz, using the fact thal” is continuous, and
check that it is contained id. Because: € Luby (A), z is the least upper bound of some directed
family (z;),; in A. For anyy € Lz, we obtainy < z = sup;cr i, SOy < z; for somei € I.
Sincex; € A andA is downward closed; € A. Sincey is arbitrary,lz C A.

Now letz € Luby (Luby(A)). There is a directed familyz;) ., of elements ofLuby (A)
that hasz as least upper bound. Usirig), write z; is the least upper bound of a famidyji)ielj
of elements ofd such that;; < z; for all j,i. Then the family(zji)jek,,ielj is again directed, and
hasz as least upper bound by Lemma A.2. S& Luby (A). It follows thatLuby (Luby (A)) C
Luby (A), i.e., thatLuby (A) is closed under directed least upper bounds. [
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Appendix B. Well-Based Continuous Dcpos and Ideal Completins

Lemma B.1. Any continuous poset with a well-founded basis is algebraith a well-ordered set
of finite elements.

Proof. AssumeY is a continuous poset, has a well-founded basibut is not algebraic. There is
an element: € Y that is not the least upper bound of a directed family of fielements belov.
We first claim that we can assumec B.

SinceY is continuous with basiB, x is the least upper bound of a directed family of elements
(w4),c7 In B that are way-belowt. If every z; were the least upper bound of a directed family
(%) s, Of finite elements, Lemma A.2 would entail thatvould be the least upper bound of the
dlrected family(z;;) ze} , consisting of finite elements, contradiction.

So there is an: € B that is not the least upper bound of a directed family of fielements
belowz. SinceB is well-founded, we may chooseminimal. SinceB is a basis oft’, write x
as the least upper bound of some directed farfiily,; of elements of5 way belowz. Sincex
was chosen minimal, eveny; were the least upper bound of a directed fan@ityj)jeJi of finite
elements. As above, Lemma A.2 entails thais the least upper bound of the directed family
(x4j) Z€§ , consisting of finite elements, contradiction.
€

SoY is algebraic. Since every finite element is in every basis, st of finite elements is
contained inB, and is therefore well-ordered, sinéxis. ]

Recall the statement of Proposition 3.6:

Any continuous dcpd” with a well-founded basis is order-isomorphic adl(X)
for some well-ordered seX. One may take the subset of finite elementd’dior
X. If Y is well-based, thelX is well-ordered.

Proof. Let X be the set of finite elements af. By Lemma B.1,X is well-ordered, and” is
algebraic. Now” is order-isomorphic tddi( X)), using the well-known fact that any two continuous
dcpos with isomorphic bases are isomorphic. Concretelg, ke map; : Y — Idi(X) that sends
eachy € Y to {z € X | 2 < y} is monotonic and continuous: for each directed fangily),;
in' Y with least upper bound, n(y) = {z € X | x <supjcryi} ={x € X |Jiel x <y}
(becauser is finite, i.e.,x < ) = [U;c; n(y:). Conversely, the map: Idi(X) — Y that sends
each idealF’ to sup .z is also continuous: for every directed family;),., of ideals of X,
(Ujer F5) = SUDye|J,_, F; & = SUP3icryer, T = SUDjc SUDyep, T = SUDje] e(F;). Itis easy
to check that) ande are inverse of each othet(n(y)) = sup,czexio<yy © = ¥, N(e(F)) =
{r € X | 2 <suppcpad'} ={x € X |32 € F-z < 2’} (since eache € X is finite)
={x € X | x € F} (sinceF is downward closed) F. ]

In other words, well-based continuous posetssarecial casesf the notion of weak adequate

domains of limits. These are the minimal cases where onestakeqo X, and adds all limits in
IdI(X) = S(X,).

Appendix C. Proof of Proposition 4.2

Let X be a Noetherian space. We show that every closed subsEtisfa finite union of
irreducible closed subsets.

By [14, Proposition 6.2])S(X) is Noetherian, too. The key to this result is the fact tHak)
has exactly the same opens_&sin the sense described in op.cit.: the map that sends eaxsh op
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U of X to the open®U = {F € S(X) | FNU # 0} is an isomorphism. This extends to an
isomorphism between the lattices of closed subsets, mgmsch closed subsét’ of X to the
closed subseflF’ = S(X)\ O(X \ F)={FeS(X)| FC F'}.

Now, by [14, Corollary 6.5], sinc&(X) is both sober and Noetherian, every closed subset
of S(X) is finitary, i.e., of the form| E for some finite subsel’ of S(X). In particular, every
closed subset af(X) is a finite union of irreducible closed subsets, namely, € E. Using
the isomorphisnm¥’ — OF’, every closed subset of must also be a finite union of irreducible
closed subsets. Concretely, for any closed subsef X, OF" is a finite union of irreducible closed
subsety F; = {F" € S(X) | F” C F;} = OF;, whereF;, 1 < i < n, ranges over some finite set
of irreducible closed subsets. Now note thdt’ = OF;U...UOF, equalsJ(F1U...UF,). Indeed,
for every F” € S(X) that is contained in somg;, F” is contained infy U ... U F),; conversely, if
F" € §(X) is contained inf}y U ... U F,, then it must be contained in sonig, 1 < i < n, since
F" isirreducible. FronOF’ = O(Fy U... U F,), we conclude that” = F U... U F,,. m

Appendix D. Finite Trees, with Homeomorphic Embedding

The situation for finite trees is very similar to finite word&et F be a finite signature of
function symbols with their arities. We |6, the set of function symbols of arity, 7 is the set of
constantsand is assumed to be non-empty. TheBgF) is the set of ground terms built frorf.

We rest on a version of Kleene's Theorem for trees [6, Se@i@h Let K be a countably
infinite set of constants, disjoint froth. The set of regular tree expressionsBrand/C is defined
by the grammar:

L == f(Li,...,L,) |0
| O|L+L|LpL|L*"

wheref € F,,p € N, O € K. The new thing, compared to word regular expressions, iathien
of holeO € K. This is used to give meaning to concatenatign; L, and to Kleene stat*".

Each tree regular expression defines a language of terrdi§ U K) by: the language of
f(L1,...,Ly) is the set of termg (¢4, ...,t,) with ¢; is in the language of,, ...; ¢, is in the
language of_,,; the language off is the empty set; the language@fec K is {O}; the language of
L1+ Ly is the union of those aof; andL,; the language of.*" is the union of the languages of
L=Lp0,LpLp0,...,L.oLg....oLp0(ntimes),...The subtle pointis the definition of the
language of_1.o Ly. For any termt € F(7 U K) and any languagé, definet.o L as the language
defined by induction om as follows: O0.oL = L, O'.pL = {0’} if O/ # O, f(t1,...,t,).0l =
{f(u1,...,up) | w1 inthe language of;.cL, ..., u, in the language of,.o L}. Then the language
of L1.0Ls is the union of the languages o L, over all termg; in the language of.;. The subtlety
is that this isnot the set of terms; [0 := ¢»] with ¢; in the language of.; andt; in the language of
L, (where substitution of terms for holes is defined in the obsiway). The difference arises when
O occurs several times ih;. For example, ifL; = f(0,0) and Ly, = a + b, for two constants
a, b, the set of terms; [0 := ¢5] would be{ f(a,a), f(b,b)}. However, the language df;,.q L2
is{f(a,a), f(a,b), f(b,a), f(b,b)}. In other words, we may replace different occurrences of the
same holed by different terms fromis.

Kleene’s Theorem for trees [6, Theorem 19, Section 2.2¢stHtat a tree language is regular
if and only if it is the language of some tree expression. €hersubtlety here, related to the set
of function symbols we allow ourselves: we wish to define laages of terms ¥ (F), while
tree regular expressions give languages of terniB(if U ). So we need to restrict tree regular
expressions so that they recognize termg@rr).
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Definition D.1. The set ofree holesh(L) of a tree regular expressidhis defined by:

fh(f(Ly, ..., Ln)) = Uiy h(Li) fh(0) =0 (D) ={0} fh(L"")=fh(L)U{O}
th(L; + Lg) = th(L1) Uth(L2) fh(Ly.0L2) = (th(L1) \ {O}) U th(Ls)
A regular tree expression is closedif and only if it has no free hole.

It is easy to see that any term in the languagé & in 7 (F U th(L)), i.e., contains only holes
that are free in..

Proposition D.2. Let F contain at least one constant. A language of term$ {&F) is regular if
and only if it is the language of some closed regular tree esgion.

Proof. By the above remark, the language of any closed regular kgegsion is not only regular,
but also in7 (F). Conversely, any regular language of termgifF) is definable as the language
of some regular tree expressi@n Leta be a constant igF. LettingOy, ..., O, be the free holes
in L, let L’ be L.g,a.0,a. .. .o,a. Since the language df only contains terms without holes, the
language of.’ is the same as that @f. Moreover, it is easy to check thaf is closed. [

Thehomeomorphic embeddigdering< on7 (F) (oron7 (FUK)) is defined as the smallest
relation such that, whenever= f(u1,...,uy)andv = g(vi,...,v,), u Jvifand only if u < v,
forsomej, 1 < j < nm,orf =g, m =mn, andu; <wvy, us <v9, ..., Uy Jv,. (IN general,
the homeomorphic embedding ordering is defined relativewelkquasi-ordering< on function
symbols, and, instead ¢f = ¢ in the second case, we would require tlfak g and there is an
increasing subsequente< j; < jo < ... < jy, < nsuchthaty v, us vy, ..ty Jvj,,.)
Kruskal’s Theorem states thatis a well ordering orv (F).

We elucidate the structure of the adequate domain of lig\B(F),).

Lemma D.3. Any downward closed subsetDf F) is the language of a closed tree regular expres-
sion of the form:

L == f(Ly,...,Ly) | 0
| O|L+L|LoL|L*"
where the language of’ (L1, ..., L,) is by convention the one ¢{ Ly, ..., L,) + L1 + ... + Ly.

Accordingly, we extend Definition D.1 so tht(f(Ly, ..., L)) = UL, fh(L;).

Recall from Definition 4.3 thatee productandproduct iteratorsare defined inductively by:

e Every holeO is a tree product.

e f'(Py,...,P,)is atree product, for any € ¥, and any tree produciB, .. ., P.

o (30, Cy)"".oP is a tree product, for any tree prodult any integem > 1, and any
product iterators>; overd, 1 < i < n. We write) " , C;forCy + Ca + ... + C,,.

e f(P1,...,Py)isaproduct iterator over for any f € ¥, where: 1. eact?;, 1 <i < kis
eitherO itself or a tree product such thatis not in the language af;; and 2. P; = O for
somei, 1 <1 < k.

A simple tree regular expressi@STRE) is a finite sum of tree products (possibly empty, inclhi
case) is meant).

In the case of >_"" , C;)*".oP, note that we may renanie to any other hole, in a way
reminiscent tax-renaming in the\-calculus. Formally, we may defin@[0 := O], for any product
iteratorC' = f(P,...,P;) overOd, asf(P,..., P,), where for each, 1 < i < k, eitherP; = O
and thenP! = O, or P/ = P;. WhenO' is not free inC' (or O’ = O), C'[O := '] is a product
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iterator over’. WhenC' is not free in anyC;, moreover(Y 7", C;[0 := O'])*"" ., P defines the
same language 45", C;)*".g P, and has the same free holes.

For example f*(a’,b") and (f(0,g"(a")) + f(g’(b"),0))* .af"(a’,b") are tree products.
They are also closed tree products.

Lemma D.4. Let P, P’ be two tree products, and be a hole.

(1) If O & th(P), thenP.o P’ defines the same language Bs
(2) If P = 0O, thenP.o P’ defines the same language /a5
@) If P = f'(P,...,P), wherePy,..., P, are tree products, thef.o P’ defines the same
language asf’(Py.oP’, ..., Py.oP’).
@) If P = (3", C)"" .o PRy, whereP, is a tree product, and’ # O, O’ ¢ fh(P’), then
P.o P’ defines the same language@s?_, C;.o P')*" ./ (Py.o P').
Finally, if C'is a product iteratorf (P, ..., P;) overd’, P’ is a tree product, andl’ # O, O’ ¢
fh(P’), thenf(P1.oP’, ..., P;,.oP’) defines the same language@s

Lemma D.5. Let P, P’ be two tree products, and be a hole. Then there is a tree produef that
defines the same language s, P’. Moreoverfh(P”) C th(P.oP’).

Proof. By induction onP. If O ¢ fh(P), then takeP” = P. By Lemma D.4, item 1, this defines
the same language @35 P’. Moreover,th(P.oP’) = th(P) U th(P’), sinced ¢ th(P), hence
containgth(P”) = th(P).

If O € th(P), then we consider three cases, corresponding to the diffpassible forms for
P. If Pisabox, then? = O, and P.o P’ defines the same languagesby Lemma D.4, item 2.
So takeP” = P’. We check thath(P.o P") D th(P’) = th(P”).

If P = f'(P,...,P), wherePy, ..., P, are tree products, then by induction hypothesis
there are tree producfd/, ..., P that define the same languagesfas- P, ..., P,.o P’ respect-
ively. Moreoverth(P/") C th(P;.oP’) for eachi, 1 < i < k. Using Lemma D.4, item 3P.o P’
defines the same language gy, ..., P}). Moreover,th(f’(P/,...,P!)) = U, fh(P/) C
U, th(P.oP') = fh(P.o P').

Finally, if P = (3°1 Ci)*vD'.D/PO, whereP, is a tree product, first, we may assume tijat
is fresh, i.e., that?’ # O andd’ ¢ fh(P’), by a-renaming. We use the fact thatx) if C' is a
product iterator over?’, then there is a product iterat6f’ over 0’ such thath(C”) C th(C), and
which defines the same language(as P’. We defer the proof of this for a moment. Knowing
(%), we can conclude that there is a product iter&igrover O’ for eachi, 1 < ¢ < n, such that
fh(CY) C th(C;), and defining the same language@s,. Also, by induction hypothesis there
is a productP/' that defines the same languagefas- P’, and withfh(P)) C (Py.oP’). By
Lemma D.4, item 4(>"" | %90 P} is then a tree product that defines the same language as
P.oP’. Moreover, it is easy to check that its set of free holes ida@ioed infh(P.o P’).

We now come to provéx). LetC' = f(P,..., P;) be a product iterator over’, 0’ = O,
0" ¢ th(P'). We construct tree producf?’, ..., P/ defining the same languages@sxc F’, ...,
Py.o P’ respectively, and witlh(P/”) C th(P;.oP’) for everyi, 1 <i < k. For each;, if P, = O,
then we may take’’ = O’ again, using Lemma D.4, item 1, sinC8 # O, otherwise, we use
the induction hypothesis. Observe that in the first cB8e= O’, while in the second case’ is
notinfh(P) C th(P;.oP’) = (fh(F;) \ {O}) C th(P’). Indeed,0’ ¢ fh(FP;) because’; # IV,
using property 1 of product iterators, and ¢ fh(P’) by assumption. S6"” = f(P/,...,P)
satisfies property 1 of product iterators. It also satisfieperty 2: there is am, 1 < i < k, such
that P, = O’, whenceP!” = O’ again. m
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Lemma D.6. Let L, L' be two STREs. Then there is an STREdefining the same language as
L.oL'. Moreoverfh(L") C th(L.oL').

Proof. Becauseq distributes over sums, using Lemma D.5. [

Lemma D.7. Let L be a tree regular expression, be a hole, and® be regular tree expression.

(1) If Ois notin the language aP, then(P + L)*" defines the same language&s™.o P +
L0,

(2) (O + L)*" defines the same language &s"-.

@) IfP= f7(P1, ..., Py)wherePy, ..., P are tree products, then lét<i; < ... < iy <k
be the sequence of indicésuch thatd is in the language of;. Then(P + L)*’D defines
the same language a&”’ + P + ... + P, + L)*", where P’ is obtained fromP by
replacing f* by f and eachp;; by O. Formally, P’ = f(P1,...,P;y—1,0,Pi41,. ..,
PZ-2_1, O, Pi2+1, . 7Pig—17 O, Pizz-f-lv . ,Pk).

@) If P= (31", Ci)*" .o Py, with D' # O, andO is in the language oF, then(P + L)*~
defines the same language(@s’_, C;[0' := O] + Py + L)*".

(5) If P= f(P,...,Py),wherePy, ..., Py are tree products, thenlat<i; < ... <iy <k
be the sequence of indicesuch thatd is in the language of;. Then(P + L)*" defines
the same language 4$”’ + P;, + ...+ P, + L)*", whereP”’ is obtained fromP by repla-
cing eachP;, by O. Formally, P’ = f(P1,..., P, -1,0,P41,..., Py 1,0, Piyy1, . . -,
Piy—1,0,Pi1, .., Pr).

Proof. The only technical point is item 4. Recall that we defitg¢D’ := O] after Definition 4.3;
this was used to define-renaming. Note in particular that we do not assume that th(C;),
so this is not a case af-renaming here. For example, it might be th@t = f(0O,0’), then
G0 .= 0] = f(O,0).

Assumet is a term inLy = (P + L)*". Sotisin (P + L).o(P+ L).o....o0(P + L).00,
with n timesP + L, for somep € N. We show thatisin L, = (3., C;[0' := O] + P, + L)*"
by induction omp. If p = 0, thent = O, and the claim is clear. Otherwise, there is a teégrn the
language ofP + L, with, say,k occurrences of the holg, and termg, ..., t; in the language of
(P+L)o(P+L)o....o(P+ L) (p— 1times) such that is obtained from, by replacing the
jth occurrence ofd by ¢;, j < j < k. We shall use the convention to write thistas: ¢y[0 :=
t1,...,t;]. By induction hypothesis, eachis in the language ok . If ¢y is in the language of,
then clearlyt is again in the language df;. The interesting case is whegnis in the language of
P = (Z?:l Ci)*7D/.D/P[). Thenty isin (Z:‘L:l Ci)-D’(Zznzl Ci).ml C ‘D’(Z:‘L:l Ci)-D’PO (q times,
for someq € N). We show thaty[O := ¢;,...,t] isin L; by a second induction op If ¢ = 0,
thenty isin Py, so thaty[O :=t4,...,tx] isin Py.or L1, hence inL;. Otherwise, we can writg as
wo[@’ := uyq, . .., uy] for some termug in the language of some product itera€gr 1 < i < n, with
¢ occurrences ofV’, and whereu,,...,usarein(>.; , Ci) .o (3, Ci) o oo (i, Ci) oo Py
(¢ — 1 times). By induction hypothesis, eaah is in L;. Assumeu, has¢’ (other) occurrences
of O. Letw;, bewu, where each occurrence af is replaced byJ. Thenuy is in the language of
Ci[Box' := 0O]. Moreover,uo[0' := uq,...,u,] is obtained fromy by replacing/ occurrences
of O by w4, ..., ug, and not replacing the others, i.e., replacing thenibigself. However, it is
easy to see that is in the language of;. Since eachu; is also inLy, ug[0' := uy, ..., u] isin
C;[0" :=0].0Ly, hence inL;.

Now assume is in Ly = (>, C;[0" := O] + Py + L)*". Sotisin (3, Ci[D =
O +P +L)o...oX;, G0 := 0+ Py + L).oO (p times, for some € N). We show
thatt is in Ly = (P + L)*" by induction onp. If p = 0, thent = O, sot € L,. Otherwise,
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t = to[0 := t1,...,ty) for some termyp in Y_" | C;[0' := O] + Py + L with m occurrences of
g, and termg, ..., t,n, in Ly. By induction hypothesis;, ..., t,, are inLg. If ¢y isin L, then
tisin L.oLg, henceinLy. If ¢y isin Py, thenitisinP = (>°7 Ci)*vD'.D/PO, sot is in P.oLy,
hence inLy. The interesting case is whepis in someC; [0’ := O] for somei, 1 < i < n. One
checks thaty is then of the formuy[D’ := O] for some termuy in the language of’;. (Write C;
asf(P,...,P;). Up toinessential permutation of the arguments, we maynasshatP;, = ... =
P 1=0P=...= P,y =0, and0 is not free inPy 4, ..., Py. Thenty is of the form
O, 0 uppan, ... u), and we letuy = f(O,...,0, D/7 ce, D/, U g1y ---5Uk).) NOw
e ¢ v
to = uo[D’ := O] is in C;.cr Py, because by assumptiahis in Py. Soty is in the language of.
Thent = to[0 :=ty,...,tn] isin P.oLg, hence inLy. m

Lemma D.8. Let L be an STRE, and be a hole. Then there is an STRE that defines the same
language ad.*". Moreoverfh(L") C th(L*").

Proof. Call aquasi-iteratorC” over O any tree regular expression of the forftPy, ..., P.), f €

¥, that satisfies property 2 of product iterators, but not ssagly property 1. Theefectof C? is

the sum of the sizes of those produéisthat are different frond yet containd in their language.
The sizeof a tree product is defined as follows. the sizeofs 1, that of f*(Py,. .., P,) and of
f(Py,..., P)is one plus the sum of the sizes B, ..., P, and the size O(Z?”;l C?)*vD'.D/PO

is one plus the sum of the sizes@f, e ,C,QL, P,. The size of an STRE is the sum of the sizes of
its tree products.

We prove the more general statement t(t@;”:l C}) + L)*" is definable by an STRE, for any
STREL, and for any quasi-iteratois?, ..., CY overd. We prove this by induction on the sum of
the defects o€", ...,C™ and of the size of..

If this sum is zero, ther{}"7", C? + L)*" is definable by the tree produ¢} 7, CY9 +
L) .50, sinceL is the empty sum.

If some C]Q is not a product iterator, say = 1, thenC? = f(P,..., ), and we apply
Lemma D.7, item 5. Using the notations used theye,” | C? + L)*" defines the same language
as(Y|L, C)+P'+ Py +...+ P, +L)"". LetC} ., = P', and note that this is a product iterator
overt. So(}_7%, C9 4 L)*" defines the same Ianguage(is;@;l C)+Py+...+ P, +L)"".
SinceP; = O for somei, 1 < i < k, £ < k, so the measure of the latter expression is less than
the measure 0622”:1 C]Q + L)*" by at least the size aP;,. We can therefore apply the induction
hypothesis.

Otherwise, ever)CjQ is a product iterator oven, andL is not the empty sumL can be written
as a tree producP, or as a sunP + L’. Without loss of generality, we may assurhes P + L/,
sinceP defines the same language and has the same size-db

If O'is not in the language aP, then by Lemma D.7, item 17", C]Q + L)*" defines the
same language 457", C7 + L')*".o P + (3L, CJ + L')*". By induction hypothesis, there is
an SLREL” defining the same Ianguage(@;":1 C]Q + L")*". By Lemma D.6, there is an SLRE
L' defining the same language BS.o P. ThenL” + L” fits the bill.

Otherwised is in the language oP, and we distinguish three cases.

If P = 0O, then(3_7, CY + L)~ defines the same language @§7" | C9 + L) by
Lemma D.7, item 2, and we conclude by the induction hypothesi

If P is of the form f*(Py,..., ), then (3°72, CJQ + L)*" defines the same language as
(Z;”Zl CJQ+P’+P1+. ..+ Py+L")*" by LemmaD.7, item 3, using the notations introduced there.
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Note thatP’ is a product iterator ove®: property 1 is by construction, and property 2 is becdlise
in the language oP, so it must be in the language of sofig whencel # 0. Writing CTOn+1 for P/,

it follows that(3°7", C7 +-L)* defines the same Ianguage@@;?ljl1 CO+Pi+...+P+L)"".
Since the size of?; + ... + P, + L' is smaller than that of.,, we conclude using the induction
hypothesis.

Finally, if P is of the form (3 ", C;)*" .o Py, we may first assume that’ # O by o-
renaming. Also, sinc& is in the language of, O must also be in the language 6§. So we
may apply Lemma D.7, item 437", C;? + L)*" defines the same language @S, CJQ +
St GO = 0]+ Py + L')*". Note thatC;[0’ := O] is notin general a product iterator over.
for example, ifC; = f(O', g(0)), thenC;[0' := O] = f(O, g(O)). This is the reason why we are
using quasi-iterators. L&t , = C1[0' := O], ...,C}, ., = C,[0" := O]. One may check that

m
the measure ofy7" | C9 + 371, [0/ := O] + Ry + L')*", i.e, of (37" CF + Py + L')* " is
stricly less than that o(fZ}”:1 CJQ + P+ L")*". We therefore conclude by the induction hypothesis.
u

Proposition D.9. Any STRE (resp., closed STRE) defines a downward closed stilfger U K)
(resp., of7(F)). Conversely, any downward closed subsef ¢f U K) (resp., of7 (F)) is the
language of some (closed) STRE.

Proof. The first claim is clear. Conversely, any downward closed$&t(F U K) (resp.,7 (F))
is the language of some (closed) regular expressi@s given in Lemma D.3. We now induct on
L to show that this is also the language of some STREwith th(L”) C fh(L). First, we use the
following trick, to simplify the presentation. We can alvgagssume that any subexpressior.6f
of the formf*(Ly, ..., L,) isin fact such thaL, ..., L, are holes. Indeed, we can always replace
f*(L1,..., L) by the tree regular expressigii(0y,...,0,).0, L1 ....o, Ly, whereOy, ..., 0,
are fresh disjoint holes. This defines the same language.

So let us induct ord., under this simplification. Whe# is of the form f* (0, .. ., 0,) or O,
L is already a tree product. Whdnis (), L is an STRE. Wherl. is a sumL; + Lo, we appeal
to the induction hypothesis. Whdah = L,.nL>, we conclude by Lemma D.6 and the induction
hypothesis. Whet, = L*", we conclude by Lemma D.8 instead. [

In other wordsH (7 (F),) is the space of languages defined by STREs, ordered by ionlusi

Theorem D.10. S(7 (F),) is the set of languages defined by closed tree products, exndey
inclusion.

Proof. Take any irreducible closed subsgtof 7 (F). By Proposition D.9,F' can be expressed
as an STREP, + ... + P,. SinceF is irreducible,k < 1; since every irreducible closed set is
non-empty by definitionk # 0. So F' is definable by a tree product. Note that the language of a
tree product is never empty.

Conversely, we must show that the language of any tree ptadus irreducible closed. It
is clearly downward closed, i.e., closed. We shall show ihestin fact a directed set. Because
S(X}) = Idi(¥X*), and since the language éf is clearly (downward) closed, directednessiof
is equivalent to it being irreducible closed. However, thetfthat any downward closed directed
subset is irreducible closed is elementary, so we proveré.Heet ' be downward closed, directed.
Assumel’ C I} U Iy, wherel}, I5 are closed. we must show thAt C F; or F' C F;. If on
the contrary there were; € F'\ F} andxy € F'\ F;, there would ber € F with 21,29 < z by
directedness. Now is either inFy or in F,. Sayr € Fy. SinceF is downward closedy; is in
Iy, too, contradiction. Similarly ifc € F,. SoF' is irreducible.
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So we show thaP is directed, by induction or®.

Clearly the language of! is directed. IfP = f*(P,...,P), andt, t' are two terms in
the language of”, we must consider several cases.t indt’ are in the language of the same
P;, then by induction there is another terth such thatt, ¢ < t”, in the language of?;, hence
in that of P. If ¢ is in the language of’; and ¢ is in the language of; with j # i, then
f(te, .o ticn, ttig, .., tj—1, U, tj41, . . ., tg) is in the language aoP, where the only occurrence
of ¢ is at position:, the only occurrence of is at positionj, and the termg, (¢ # 1, j) are taken
from the languages of, respectively. (Recall these languages are non-empty.ari@léhis is a
termt” such that, ¢ <¢". If ¢ is in the language of’; andt’ is in the language of (P, ..., Py),
i.e.,t’ = f(t1,...,ty) where eaclt; is in the language aP;, 1 < j < k, then sinceP; is directed,
there is a ternt, with ¢, ¢, <t/ in the language of;,. Thent” = f(t1,... ti—1,t), tit1,. .., tg) IS
in f(Py,...,P), henceinP, andt,t" <t”. The case whereis in the language of (P, ..., P;)
andt’ is in someP; is symmetrical. Finally, it and¢’ both are inf (P, ..., P;), then we can write
t=f(tr,....tg), t' = f(t],..., 1)), with¢;, t; in P; for eachi. Since eaclP; is directed, there are
termst! in P; such that;, t; <t¢/. Then take” = f(t/,...,t]): thisisinP, andt, ¢ <t".

Finally, if P = (3°1" C;)*".aPy, whereP is a tree product and’, ..., C,, are product
iterators overd, andt is in the language of, then there is a term in the language op " , C;,
with m occurrences of the hole, and terms.y, . . . , u,, in the language of, such that = [0 :=
ui,...,un]. (We reuse a notation introduced in the proof of Lemma D.%) d&hy other ternt’
in the language of?, we construct similarly,” andu/, ..., u/ , so thatt’ = «/[0 == u},...,u} .
Note thatm andm’ are both non-zero. This rests on property 2 of product itesatLet nowu”
equalu[0 := 4/, ..., u/]. Thisis a term withmm' occurrences ofl. Each can be described as the
kth occurrence ofd in the jth occurrence of/, 1 < 5 < m, 1 < j < m/. For eachy andk, there
is a termu’, in the language of such thatu;, uj < u’,. Then defing” as obtained from.” by
replacing thej, & occurrence ofl by u;-’k. Sincem # 0 andm’ # 0, we obtaint, ¢’ <t”. Also, by

construction” is in the language of = (3>-""_, C;)*" .0 P. ]
Testing the inclusion of closed tree products is more comfhan testing the inclusion of

products over words. This is computed by way of the followiegmas. WriteP? C P’, by abuse
of language, for “the language &f is contained in that of’”.

Lemma D.11. The language of the tree produg¢t(Py, ..., P,,) is included in that of the tree
productg’ (P}, ..., P)) if and only if:
e eitherf # g, and f*(P1,..., P,,) C Pj for somej, 1 < j # n;
e or f = g, m = n, and then eithef”(Py, ..., P,,) C ijforsomej, 1<j#mn,orPCP
forallz,1 <i<m.
Proof. The if direction is clear. For example,ff?(Pl, oo, Py) C PJ’ then alsof7(P1, oo, Py) C
g'(P,...,P), sinceg’(P|,...,P))=g(P|,...,P.)+ P/ +... + P..

Conversely, assumg (P, ..., Py,) C g*(P], ..., P.),i.e, thatf(Pi,..., Py,) C ¢*(P],...,P),
since the latter language is downward closed. Assume adq TP, ..., P,,) is not contained
inany P/, for anyj. Again, this is equivalent to assuming thydtPs, .. ., ;) is not contained in
any P/, for anyj. So there is a termy in f(Pi, ..., P,,) which is not inPJf, forall j,1 <j <n.
Note thatf (P, ..., P,) is directed, so there is a tertin f (P, ..., P,;,) such thaty,... ¢, <t.
(If n = 0, we takeanytermin f(Pi, ..., Py,).) For eachy, sincet; <t, ¢; is not inP]f, andef is
downward closed; cannot be irP]’. either.

Now if f # g, sincetisin f(Py,...,Py) C ¢*(P},..., P.), it must be the case thats in
somerf , contradiction. This proves the first case.
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If f =g, writetasf(ui,...,uy), Withu; in Py, ..., u, in P,. Assume by contradiction
that for somei, P; is not contained inP/. Then there is a term in P; that is not inP]. SinceP;
is directed, there is a terma; in P; with u;,v < w;. For allj # ¢, definew; asu;, and consider
w = f(wi,...,wy,). Thisisaterminf(Py,..., Py), henceinf’(P},..., P.). If wwere in some
P]f, thent, which satisfies < w, would be inP]f, too, butt was constructed not to be in arﬁy. So
wisin f(P},...,P),). Thatis, eachy; is in P]’ 1 < j5 < m. However, forj = i, this entails that
w; isin P/, hence that is in P/ since the latter is downward closed: contradiction. ]

Lemma D.12. The language of the tree produg¢t(Py, ..., P,,) is included in that of the tree
product(3_7_, C;)*".oP" if and only if:
e eitherf*(Py,...,P,) C P/,
e or for somej, 1 < j < n, C; can be writtenf (P, ..., P},), so that for alli, 1 < i < m:
- P/=0andP; C (2?21 Cj)*".oP;
—orP/#0andP; C P,

Proof. As in the previous lemma, the if direction is easy. This i$ &&fan exercise, and uses prop-
erty 1 of product iterators. Conversely, assume by conttami thatf’ (P, ..., P,,) is notincluded

in P’, equivalently thaff (Py, ..., P,,) is notincluded inP’. Lett be aterminf (P, ..., Py) that

is notinP’.

Again for the sake of contradiction, assume that forjall < j < n, such thaiC; has head
symbolf, sayC; = f(P} (ITREE ,P]fm), then there is a subscript=i;, 1 < i; < m such that either
P} = DandP; is not contained irfy ", C;)*“.0P', or P # O andP; is not contained irP;.

We observe that the first case (whBh= 0O) cannot happen: otherwise there would be a term
w; in P; not in (Z;‘Zl C;)*".oP'; letting, for eachi’ # i, wy be an arbitrary term inP;, the
term f(w, ..., wy) would be inf(P,..., Py), hence in(3_7_, C;)*".oP’; since the latter is
downward closed and; < f(w, ..., wy,), w; would also be in(3_%_, C;)*".oP’, contradiction.

So, for eacly, 1 < j < n, such thatC; has head symbdf, P{j # 0, andP;; is not contained
in P’ Let thereforew; be a term inF;; but not |nP’ Now, for eachi, 1 < ¢ < m, since
P is "directed, we may build a terny; in P; such thatwj < u; wheneverj is such that; = .

(In case no suchy; exists, we take an arbitrany; from P;.) Letu = f(u1,...,u,), atermin
f(Py,...,Py). Sincet isalso inf(Py,...,Py)and f(Py,...,Py) is directed, we may find a
termv in f(Py,..., Py,) with t,u < v. Sincet is not P’ and P’ is downward closedy is not in

P’ either. But sincevisin f(Py,...,Py), visin (2?21 C;)*".oP'. Sothereisg,1 < j <n,
whereC; has head symbdf, such thaw is in C;.o (37, Cj)*".oP'. Sinceu J v, uis also in
the latter language. However= f(us, ..., uy), SOu;; must be inPZ.’j (remembeti; is a position

i such thatP/ # O, henceu,; is in P’ 05— Cy)® 9.0 P’, which defines the same language as
P’ by property 1 of product |terators) By constructiany, < u;, SOw; is also mP’ smceP’ is
downward closed: contradiction. [

Lemma D.13. The language of the tree produc} ;" , C;)*".o P is included in that of the tree
productg’ (P, ..., P!)if and only if it is included in the language &, for somej, 1 < j <n.

Proof. Otherwise, let; be a term in(}_;" C;)*".oP that is not inPJf, foreachj, 1 < 57 < n.
Since(}.", C;)*".oP is directed, there is a termin (>, C;)*”.o P such that, ..., ¢, <t.
(If n = 0, taket arbitrary in (31", C;)"".oP.) Since eachP] is downward closed; is not in
P; either. Recall thain > 1, so (' exists. By property 2 of product iterators, we may write
Cy asf(Py,...,P;) whereP,, = O for someig, 1 < ig < k. Build the termf(u1,...,ux),



WSTS I: COMPLETIONS 23

where: if P, = O (in particular fori = ig), u; = t; otherwise, letu; be an arbitrary term of,.
Using property 1 of product iterators, = f(u1,...,ug) isin Cy.o(> i, Ci)*".oP), hence in
>y Ci)*".0P. Also, u cannot be in any?!, 1 < j < n, otherwiset = u;, would also be in

Pl. By assumptiony must be ing’(Py,...,P.), and since it is in nd>;, u must be of the form
g(uy,. .., u,) with u; in P! for eachj. This not only forceg = £, but also that/; = u; for all j;
howeverugo isin P{O, is equal tou;, = t, which is in noP](, contradiction. =

Lemma D.14. The language of the tree product ", C;)*".o P is included in that of the tree
product(3_7_, C;)*vD/.D/P’ if and only if, for everyi, 1 < i < m, writing C; as f(Px, ..., Py):
e either f7(Py,..., P!') C P, where for eactp, 1 < p < k, Py =" G opif
P,=10, andPI;’ = P, otherwise;
o orforeverythereis g, 1 < j < n, suchthat’ is of the formf (7, ..., ;) and for every
pl<p<k:
- ?f Pé = D:, thenPI:,: C (Z/j};l Ci o P
—if P, # 0 ,thean C P,

Proof. Note thatf(P/’, ..., P}/) defines the same language@sa(3_7_, C;)*vD/.D/P’. This uses
properties 1 and 2 of product iterators. The only difficutedtion is the only if direction.

Assume by contradiction that there isan < i < m, with C; written asf (P, ..., Py), such
that, first, f*(P/, ..., P{') is not contained in?’; in particular, f(Py, ..., P}') is not contained in
P’ sothereisaterm= f(ti,...,t;)in f(P{,..., P}) butnotinP’. Second, we assume that for

everyj, 1 < j <mn, with C]’- of the formf(Pj, ..., P}), thereis an index = p;, 1 < p < k, with:

e either P, # O, and there is a ternf, in P, but notin(37_, C))*" .o/ P';

° orPI’) = ', and there is aterrtjgj in P;’ but not inP};.
For eachp, 1 < p < k, t, and everyt;j with p; = pisin PJ. Letu, be a term inP) such that
tp Jup, andt, <, for every j such thatp; = p. This is possible sincé’ is directed. Then
letu = f(u1,...,ux), sothatuisin f(P/,..., P}); in particular,u is in C;.o (>}, Ci)* .0 P,
hence in(3_1%, C;)"".cP. By assumption: is also in(3_7_, Cg)*vD'.D/P’. Now ¢ < u since
t, <, for eachp; sincet is not in P/, and P’ is downward closedy is not in P’ either. Sou is in
Cho(X), C})*’D'.D/P’ for somej, 1 < j < n.

Considerp = p;. If B, = O, thenu,, is in (3_7_; C})*ym'.D/P’. Sincet;, Juy, t, is alsoin
(Z?:l Cg)*vD'.D/P’: contradiction. IfP]; # O, thenu, is in P];. Sincet;j < uy, t;j is also inP];:
contradiction again. [

These four lemmas allow us to decide the inclusion of tredyets. We represent tree products
in a tree-automata-like notation, where transitions betweertices are labeled by symbafs,
where f is a function symbol, or by boxes. If f has arityk, then the corresponding transition
takesk vertices as input, and has one vertex as output. Boxes anglhof as having arity). We
also allow fore-transitions from vertices to vertices. We equate vertigils specific tree products.
The set of tree products used as vertices of the hypergraghddree producP is not the set of
subexpressions d?, rather it is a larger set, reminiscent of the notion of Fisha&dner closure from
modal logic. Explicitly,

Definition D.15. For every tree produdP, we build a hypergrapli’» as follows:
e If P =0, thenGp has one vertex;, and oné)-ary transition labeled reaching it;
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o If P = f'(Py,...,P), thenGp is obtained fromGp,, ..., Gp_ by adding a transition
labeledf” from the tuple of vertice®, ..., P, to the stateP;

o If P = (31, Ci)*".aP, whereC; = f;(Py,...,Py,) foreachi, 1 <i < n, thenGp
is obtained fromG p,, as well as from the hypergrapligg,; for all 4, j with P;; # O, as
follows. First, add ar-transition fromFP, to P. Then, for each paif, j let Pi’j be the vertex
P if P # O, otherwisePi’j = P. Then, for eachi, 1 < i < n, add transitiong;? from
the k;-tuple of verticesP;,, ..., P, to the vertexf;?(P}}, ..., P} ), and ane-transition
from the latter toP.

For example, the hypergraph of (O, ¢*(a”)) + f(g*(b7),0))*".0f"(a’,b") would be:

g?(b?)
\f?% 29767, Q)

€

€

‘g
/f' 7200, 97(a?))
g?(a?)

whose root is shown as the big cird, and is the vertexf (0, ¢°(a*)) + f(g°(b7),0))*C.0f?
(a”,b7) itself.

Proposition D.16. For any tree products”® and P’, we can check whether the languagelbfs
contained in that of”’ in time O (m2m’?), wherem is the size of5p, m/’ is the size of¥p:.

Proof. By dynamic programming. Let be the number of vertices i p, n’ the number of vertices

in Gp,. We allocate a Boolean array efi’ entries, wherexz[/, ¢'] will denote whether the tree
product at verteX of Gp is contained in that at verte¥ of Gp,. We order these vertices by a
topological ordering, i.e., such that for any verteaf G'p, any subformula of this vertex occurs at
indices at most, and similarly forG p.. Then we fill in thea array in increasing order d@f, and for
fixed /', in increasing order of, using Lemma D.11, Lemma D.12, Lemma D.13, and Lemma D.14.
We deal with just one case that requires the latter lemmahda one subtlety. Assume vertéx

of G is of the form(3_1", C;)*“.o P, and vertex of G p: is of the form (3>, C})*™".o P,

Then, for each, 1 < 5 < n, we need to test the inclusionsﬁ?(P{’, ..., P}) inside P first, where
for eachp, 1 < p < k, PZ’,’ =YY" c)*PoPif P, =0, andPZ’,’ = P, otherwise. Note that
APy, ..., P!') occurs as a vertex, sdy, in the graphG'p, however/; is not necessarily smaller

than or equal td. But P does occur with an inde, strictly less tharf’, so the entry:[¢;, ¢}] has
already been filled in. We must then test whether therejisiach that certain conditions hold (see
second item of Lemma D.14), all involving entriel, ¢}] with ¢; strictly less thart’.

Thea array containgin’ < mm/ entries, and each can be filled using at mast’ operations,

whence the)(m2m’?) complexity. =

Appendix E. Words, and a Topological Variant of Higman’s Lemma

We show that, whetX is Noetherian, then the sé&f* of finite words overX, with a suitable
topology, is Noetherian again, and that its sobrificationsists of natural analogues of the notion
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of products used in SRES, built on an alphabet of point$(i ). Note this is only interesting when
the alphabefX is infinite, and suitably topologized. For example, we mdetd to be the set of
all vectors inN*,

For any topological spac&’, let X* be the set of all finite words oveX. We write ¢ for
the empty wordww’ the concatenation of the words andw’; we also use ambiguoustyfor a
letter (in X') and for the corresponding one-letter word. Whether we neebatter or a word will
be disambiguated by context, and by the conventiondhat. .., denote letters, while, v/, ...,
denote words. Whenevet and B are subsets ok, we also writeA B the sef{ww’ | w € A,w' €
B} of all concatenations of a word i with a word inB.

The right topology onX* is defined as follows. We call it treubword topology

Definition E.1 (Subword Topology) The subword topologyn X * is the least one containing the
subsetsX*U; X*Us X* ... X*U,X™* as opens, where € N, andUy, U, ..., U, are open subsets
of X.

We shall see later that, #f is the specialization quasi-ordering &f, then the embedding quasi-
ordering<* is the specialization quasi-ordering & with the subword topology. Remember that
<* is defined byw <* ' iff, writing w as the sequence of lettersayas . . . a,,, One can writey’
aswoajwiabws . .. wm_1a,,wh, With a; < af, as < db, ..., a, < al,. Higman's Lemma states
that if X is well-quasi-ordered by, thenX* is well-quasi-ordered by *.

Any open is, by definition a union of finite intersections oo of the formX*U; X*Us X* . ..
X*U, X*. One may simplify this statement:

Lemma E.2. The subsetX*U; X*Us X™* ... X*U, X™* as defined in Definition E.1 formlzasisof
the subword topology: any open is a union of such opens. Weheah thebasic opens

Proof. Let w a word in the intersection oK *U; X*Us X* ... X*U,, X* and X*V; X* 1L X* ...
X*V,X*. That is,w contains a subwordas . ..a,, <* w, wherea; € U, ao € Us, ...,
am, € Upy. LetI = {u1,19,...,u,} be the set of positions where the letteysan be found; i.eq;
is the letter at position; in w, as is the letter at positiom, > ¢1 in w, and so on. Alsow contains
a subword by . .. b, <* wwhereb; € Vi,by € Vi, ...,b, € V,,. LetJ = {n1,n2,...,n,} be the
set of positions where the letterscan be found. Now let; < k2 < ... < &, be the increasing se-
quence of positions inU.J, and consider the open subsetiv; X*Wo X* ... X*W, X*, where for
eachk, W, equald/;NVj if k € INJ (wherei, j are defined by, = v; = n;), U; if k € I\ J (where
ki = ), andVj if k € J\ I (wherex;, = n;). Clearlyw is in X*W; X*Wo X* ... X*W,X*, and
the latter is contained in botk* U1 X *Us X* ... X*U,,, X" and X*V; X*Vo X* ... X*V,, X*.

It follows that the intersection oX * U X *Us X* ... X*U,, X  and X * V1 X* Vo X* ... X*V, X*
if the union of the thus obtained seXs"W; X*W, X" ... X*W,X*, whenw varies over the inter-
section, and is therefore a union of basic open sets.

By induction onn, the same holds for the intersectionobasic open sets. The intersection
of 0 basic open set is just the basic opEf, the claim is clear forn, = 1, and follows in the other
cases from the binary case, treated above. m

We can show half of the statement thét is the specialization quasi-ordering of the subword
topology.
Lemma E.3. Let X be a topological space, with specialization quasi-ordgrifi Any open subset

of X* is upward closed with respect t6*. Any closed subset of * is downward closed with
respect to<*.
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Proof. We first show that sets of the fordi*U; X*Us X* ... X*U, X*, with Uy, Us, ..., U, open
in X, are upward closed with respect4d. The Lemma will follow, since every open &* is a
union of finite intersections of such sets.

Let thereforav be any word fromX*Uy X*Us X* ... X*U,, X*. One may writav aswyxwi 2
Wo ... Wy 1TpWn, Withzy € Uy, 29 € Us, ..., x, € Uy,. For anyw’ with w <* w’, one may write
w' asw(xjwiahwy . . wl_qalwl, with wy <* w(, x1 < 2, w1 < wl, xo < @b, wy <F W, ..,
Wp—1 < wl_, z, < 2, w, <* wl,. Since every open is upward closed, € Uy, 2}, € Uy, ...,
x, € Up. Sow' isin X*Uy X*Us X* ... X*U, X*.

The statement on closed sets follows by complementation. =

In fact, whenX is just a quasi-ordered set, seen as a topological spaagjtintbhe Alexandroff
topology of its ordering X * is just the space of finite words quasi-ordered<y again equipped
with its Alexandroff topology.

Lemma E.4(Coincidence Lemma)Let X be a set equipped with a quasi-orderigg We seeX as
equipped with the Alexandroff topology©f Then the subword topology chi* is the Alexandroff
topology of<*.

Proof. Any upward-closed subset of X* is a union of sets of the fortY*(1 x1) X* (T zo) X*. ..
X*(1 z,)X™*, namely all those obtained by taking the upward closuresavfigs x5 . . . 2, In A;
indeed X* (1 1) X*(] z2)X*... X*(T x,)X™ is just the upward closure af;xs ...z, in <*.
Since these are basic opens of the subword topology, thessdhbapology onX* is contained in
the Alexandroff topology oK*. The converse direction is by Lemma E.3. m

We start by examining the shape of closed subsef§'ofFor any subsefl of X, let A* denote
the set of all wordsi as . . . a, With ay, as, ..., a, € A. Let A" be A U {e}.

Lemma E.5. Let X be a topological space. The complement’ofUy X*Us X* ... X*U, X*
(n € N, Up,Us,...,U, openinX)in X*is ) whenn = 0, and F; X' F; X* ... X'F* [ X'F>
otherwise, wherd’, = X \ Uy, ..., F, = X \ U,.

If X is Noetherian, then this complement can be expressed ageirion of sets of the form
FyClFsCs ... C"_ F*, whereCy, Cs, ..., C,_1 range over irreducible closed subsetsXf

Proof. Whenn = 0, this is clear: the complement &f*U; X*Us X* ... X*U, X ™ is the empty set.
So letn > 1.

We first claim that the complement &7 Uy X*Us X* ... X*U, X*is Fy X Fy X' ... X F*_,
X"F*. We show this by induction on. If n = 1, then the complement of *U; X * is the set of
words that contain no letter froify, i.e., Fy. If n > 1, letw be an arbitrary element of the comple-
ment of X*U1 X*Us X™* ... X*U, X*. Letw; be the longest prefix ab comprised of letters not in
Uy. Note thatw, is in Fy. If w; = w, then certainlyw is in Fy C Fy X 'F3X* ... X'Ff [ X'F}.
Otherwisew is of the formw, zw’, wherer € Uy andw’ isnotinX*Us X* ... X*U,, X*. By induc-
tion hypothesiss’ isin Fy X7 ... X" F*  X"F’, henceagaiwisin Fy X' Fy X7 .. . X"F* | X'F.
Conversely, letw be any word inFy X FyX* ... X"F* | X'F*. Letw; be the longest pre-
fix of w that lies inF}". Then eitherw = w;, thenw € Fy cannot be inX*U; X*Us X* . ..
X*U, X*, since all the words in the latter set must contain at least letter inU;; or w =
wirw' for somez ¢ Fy, ie. z € Uy, andw’ € FyX'... X F:_,X'F}. By induction hypo-
thesis,w’ cannot be inNX*U, X* ... X*U, X*. By constructionz would be the first occurrence
of an element ofJ/; in w. If w were in X*U1 X*U X* ... X*U,, X*, then, some suffixw” of
w’ would be inX*Up, X* ... X*U,X*. Thenw” <* w’, hence by Lemma E.3y’ would be in
X*Us X* ... X*U,X*: contradiction.
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By Proposition 4.2X, as a closed subset of itself, is a finite union of irreducitidsed subsets.
l.e., there is a finite subsét of S(X) such thatX = J,. C. Distributing across the” operator
and concatenation in the expressiBhX "’ X* ... X' F* | X7 F* yields that the complement of
XU X*Us X* ... X*U,X* equals:

* 7 1k 7 ? * ?
U FOEG.. .C,F_
C1,...,Ch_1€EE
from which the desired result obtains. ]

This prompts for the following natural generalization obgucts and SREs to the topological
case. Note that, wheX is a finite alphabek, with the discrete topology (hence its specialization
quasi-ordering is=), each closed subsét is just a finite subset, and each irreducible closed subset
C; is just a singleton. So the following definition specialite®rdinary products and SREs in this
simple case.

Definition E.6 (Top-Product, Top-SRE)Let X be a topological space. Calltap-producton X
any expression of the fornt;yC{ F5C3...C!_|F, wheren € N, Fy, ..., F, are non-empty
closed subsets, artd,, C-, ..., C,,_1 range over irreducible closed subsetsXaf Top-products are
interpreted as the obvious subsets\of. Whenn = 0, this notation is abbreviated asand denotes
{e}.

Call top-SREany finite sum of top-products, where sum is interpreted &sun

Lemma E.5 shows that any complement of a basic agét’; X*Us X* ... X*U, X* is (the
denotation of) a top-SRE, of a special form. We shall showdhg complement of a basic open is
(the denotation of) a top-SRE, i.e., top-SREs denote gxtuwd! closed sets. But first, let us check
that indeed top-products and top-SREs define closed sets.

Lemma E.7. Let X be a topological space. For any opéhof X*, and any oper/ of X, define
U/U as follows. Iftd = X*, thenld /U = (; otherwise{ is a union of basic opens of the form
X UnX*UpX* ... XU, X*,i € I, wheren; > 1forall i € I, then we let//U be the union of
all basic opensX*(U;; NU) X*Up X* ... X*Ujp, X*.

Thenl{ /U is open. The subsef*Ul is also open for any open subdgébof X . For any closed
subsetF' of X, for any closed subsét of X*, letU = X \ C,U = X*\ L, then:

e the complement af’ L is X* X1 UU /U,
e the complement df* L is X*UU UU/U.

In particular, F’L and F* L are closed inX *.

Proof. We must first check that, it # X*, theni/ is a union of basic opens of the forx*U;;
X*UpX*... XUy, X*, i € I, wheren; > 1foralli € I. U is a union of basic opens by
Lemma E.2. Ifn; were not at least for all ¢« € I, then the basic open numbewould be X ™ for
somez, sold would beX™, contradiction.

U /U is open, as a union of basic opens. The sub&dt!/ is also open, as the union of all
basic opens{*UX*Un X*Ujpp X* ... X*Ujp, X*, i € I.

To compute complements @&’ L and of F'*L, we first make the following remark. Lekt;
and L, be two subsets ok * that are downward closed with respectté. Note thatL; = F” or
L, = F*,andLsy = L fit, by Lemma E.3. For any word not in L, Ly, we can writew asw;w'ws,
wherew is the longest prefix ofv in L1, ws is the longest suffix ofv in Ly, andw’ is not empty.
Indeed, any prefix of a word ifi; is again inL;, and any suffix of a word i, is in Lo, since both
are downward closed with respect4d.
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Note also that botti”’ L and F* L are downward closed with respect4d.

Let F' be closed inX, L be closed inX*, U = X\ C, U = X*\ L. If L = X*,
then the complements of’L = X* and of F*L = X* are empty,l{ is empty, soX*Ul,
X*XU andU/ /U are empty, too, so the claim is proved. Otherwise, wiitas the union of

Let us compute the complement Bf L. Assumew is in the complement of” L, and write
w aswiw’'wsy, as above. Since’ is not empty, it starts with some letter € X. Then by the
maximality property ofw;, w; is in F’, butw,z is not. Again, by the maximality property of
we, w'wsy is Not in L, hence ind. If w; # ¢ thenw is in XU C X*XU. If w; = ¢, then
z is not in F' (otherwisew,x would be inF), hence is inU. Sow'w, starts with a letter irlU;
sincew'ws is INU, w'ws is in X* Uy X*UpX* ... X Uy, X* for somei € I. If the first letter in
w'wy is in U1, thenw'ws is in (U N Uz‘l)X*UiQX* L. X*UmiX*, Sow = wiw'wsy IS in X*(U N
Uz‘l)X*UZ'QX* . X*UmiX* - U/U; otherwise,w’wg isin UX*UﬂX*UiQX* . X*UmiX*, SO
w = w1w’w2 isin X*UX*UilX*UiQX* . X*UmiX* C X*UU.

Conversely, assume is in X* XU UU/U. If w € X* XU, thenw contains a subword of the
form apaias . .. ay,,, for some: € I, whereaqy is arbitrary,a; € Uy, a2 € Usg, ..., an; € Usp,.
Note thatajas . .. A, is in UilUiQ . Umi C X*Upn X UpX* ... )(*Umi)()‘< C U. If wwerein
F'L, then sinceF”’ L is downward closed with respect to*, agajas . .. a,, would be inF’L,
henceajas .. .a,, would be inL: contradiction. Sawv is in the complement of’L. If, on the
other handw € U /U, thenw contains a subword of the formas . . . a,,, for somei € I, where
ar € UNUjy, az € U, ..., an, € Up,. In particular,aiay...ay, is in Uy U, ... Uy, C
X Un X UpX* ... X U, X* CU. If wwere inF*L, then sincel™ L is downward closed with
respect to<*, ajas . .. a,, would be inF* L. However,a; is in U, so is not inF’, and this implies
thata;as . . . a,, would be inL: contradiction. So, againy is in w is in the complement of " L.

The computation of the complement Bf L follows similar lines. Assume is in the comple-
ment of 7* L, and writew asw;w’w, Wherew' starts with some letter € X, wy is in F'* butw, x is
not, andw’ws is inY. In particular,z is in U, andw’ws is in someX*U;y X*U;p X* ... X*U;p, X*.
Depending on whether the first lettar) (of w’ws is in U;; or not,wws isin (UNU;7) X U X*. ..
X Uin, X*orinUX Uy X*Uipp X* ... X*U;p, X*, so thatw is in X*UU orinU/U.

Conversely, ifw € X*UU, thenw contains a subwordya;as . . . a,, for somei € I, ap € U,
a1 € Ui, a2 € Uja, ..., ap,; € Usy,. If wwereinF*L, thenapaias ... a,,, too, by down-closure.
Sinceagy € U, ag is notinF, soapajas . . . ay, Would be inL. Again by down-closuregias . . . ap,
would be inL: contradiction. Sav is in the complement of™* L. And if w € U /U, thenw contains
a subword of the forna;as . . . a,,, for somei € I, wherea; € U NU;y, az € Uja, ... an, € Usp,.
In particular,a1a2 < Qpy, would be iﬂUilUiQ . Uznl C X' Upn X UpX™*... X*UZMX* CU. Ifw
were inF* L, then so would be this subword, andase U is notinF', ajas . . . a,, would be in
L: contradiction. Sav is in the complement of ™ L. [

Corollary E.8. Let X be a topological space. Every top-product, every top-SRib&ed inX*.

Proof. Let P be any top-product. We show th&tis closed by induction on the lengthof P. If

n =0, i.e., P = ¢, then we must show thdk} is closed: its complement is indeed the basic open
X*XX*. If n =1, thenP = F*, whose complement i¥*U X*, whereU = X \ F. Whenever

n > 2, this follows from the induction hypothesis and Lemma E.hyAop-SRE then denotes a
finite union of closed sets, and is therefore closed. =

We can in fact say more: the top-products are irreducibler tRis, we need to recall the
following lemma. We give a proof, as we have been unable todiralin standard references.
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Lemma E.9. Let X, Y be two topological space$, a closed subset of, /" a closed subset &f.
If £ andF’ are irreducible, then?” x F’ is an irreducible closed subset &f x Y.

Proof. It is well known, and also easy to check, that a closed subsaft X is irreducible if and
only if OF = {U openinX | U N F # (} is a completely irreducible filter of opens. fiter (of
opens) is an upward closed family of opens such that anysiettion of two elements of the filter is
again in the filter. It isompletely primé& and only if, whenever a union of opens (possibly infinite)
lies in the filter, then one of the opens is already in it [5, t&ec7.1].

Now consider>(F x F'). This is clearly upward closed.

If W1 andWs are two elements of (F' x F), then bothi/; andWs intersectF’ x F’'. Now
a basis for the product topology is given by thygen rectangled.e., the product of two opens. So
W1 can be written as a unidy,; Uy; x Vi; SincelVy intersectst” x F’, forsomei € I, Uy; X Vi
must intersect” x F”. In particular,Uy; intersects”, andVy; intersectsl”. Similary, W5 contains
an open rectangléy; x Va; whereUs; intersectd”, andVy; intersectsF”. In other words[/;; and
Usy; are inOF, andVy; andVs; are inOF’. SinceF andF” are irreducible® F and<O F” are filters,
soUy; N Usj intersectsF, andVy; N Va; intersectsF”. It follows thatW; N Ws, which contains
(U1i NUz;) x (Vi; N Vi), intersectsd” x F',i.e., isinO(F x F'). SoO(F x F') is afilter.

To show that>(F' x F') is completely prime, consider any unigiy.; W; of opens ofF’ x F’
that intersectd” x F’. Then somé¥V; must intersecF' x F’, and we are done. m

Lemma E.10. The concatenation functiofut : X* x X* — X* is continuous. The embedding
functioni : X — X* that maps the letter: to = as a word, is continuous. Every top-product is
irreducible closed inX*. Every top-SRE is closed iXi*.

Proof. The inverse image oK*Uy X*Us X* ... X*U, X™ by cat is clearly the union of all rect-
angles(X*U 1 X* ... X*'U; 1 X*) x (X*U; X*... X*U,X"), 1 < j < n+ 1. Since the latter
are open inX* x X*, we easily check that the inverse image of any opeXbdfby cat is open
in X* x X*. Indeed any open oK * is a union of finite intersections of such opens. &ois
continuous.

Similarly, the inverse image ok *U X*Us X* ... X*U,X* byiis(Qif n > 2, Uy if n = 1,
andX itself if n = 0. In any case, it is open, $as continuous.

We now claim thatF™ is irreducible closed inX™, for any closed subsedt of X. Assume
F* C F; U Fy, whereF; andF; are closed inX*. If I* was not contained itF; or in Fs, then
there would be a wordy; € F* \ F; and a wordws € F* \ Fa. Thenw;ws would again be in
F*, hence either i} or in 7. Assume by symmetry that; w- is in ;. Sincew; <* wyws, and
closed sets such &5, are downward closed (w.r.t. the specialization quasi+angeof X *, hence
also w.r.t.<* by Lemma E.3), we would havwe,; € F;: contradiction. S@™ is irreducible.

Second, we claim that” is irreducible closed inX* wheneverC is irreducible closed irnX.
Assume thaC”’ C F; U F», whereF; andF; are closed inX *. In particular;i(C) C F; U F,, that
is,C Ci Y (FUFR) =i Y(F)Ui~(F). Sinceiis continuousi ! (F;) andi~!(F,) are closed.
SinceC is irreducible,C C i~ Y(F) orC C i~ 1(F). AssumeC C i~ !(Fy), by symmetry. Then
i(C) C Fy. SinceC is non-empty,F; is non-empty;F; is downward closed with respect to",
by Lemma E.3, se is in F;. It follows thatC” = i(C) U {¢} is contained inF;. HenceC” is
irreducible.

We now observe that whenew@r andC, are irreducible closed iX*, andC;C» is closed, it is
irreducible. Assume thatl,C, C F; U F», whereF; andF; are closed inX*. That is, the image
of C1 x Cqy by cat is contained inF; U Fo, i.e.,C1 x Cy C Catfl(j:l) U Catfl(fg). Then the claim
follows from the fact thatat ~!(F;) andcat—!(F,) are closed, sinceat is continuous, and from
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the fact that’; x C, is irreducible closed by Lemma E.9. Indeed, we obtainhat Cs is contained
in cat~!(Fy) orin cat=(F), i.e., thatC;Cy C Fy or C1Cy C Fo.

By induction on syntax, it follows that every top-producirieducible closed. The base case
is €, which, since it denotes a one-element set, is clearlyucdadle. Then, any top-SRE is a finite
union of top-products, and hence closed. [

Recall that the topological closure of a pointe X is also its downward closurg z, for the
specialization quasi-ordering of .

Lemma E.11. Let X be a topological space. The closure of the wekds . ..z, in X* is the
top-product(| )" (] z2)" ... (] x,)".

Proof. By Lemma E.10, this top-product is closed. The closurefs ...z, must contain this
top-product, because any word <* x5 . ..x, must be in this closure, by Lemma E.3. Whence
the equality. [

Proposition E.12. Let X be a topological space. The specialization quasi-ordeohg ™ is the
embedding quasi-ordering™*, where< is the specialization quasi-ordering &f.

Proof. Let < denote the specialization quasi-orderingXf for the time being. Ifw <* w’ then
w =< w': indeed, any opet¥ containingw is upward closed with respect t0*, so containgy’ as
well, by Lemma E.3. Conversely, it < w’, thenw is in the topological closure af’. This is
an alternative definition of the specialization quasi-oirtg which is easily seen to be equivalent.
However, Lemma E.11 states precisely thanust then be such that <* w'. [

We can compare top-products for inclusion, algorithmicallhis is analogous to the case of
products [1]. For short, writ€’, C’ for irreducible closed subsets &f; F', F’ for non-empty closed
subsets ofX; P, P’ for top-products.

Lemma E.13. Let X be a topological space. Inclusion between top-productstmarchecked in
guadratic time, modulo an oracle testing inclusion of cibsebsets oX. We havee C P for any
top-productP, P ¢ e unlessP is syntactically the top-produet and:

c'Pc C”PlifandonlyifC C ¢’ andP C P',orC ¢ C' andC’P C P'.

C’P C F”*P'ifandonly ifC C F'andP C F"*P',orC ¢ F' andC’P C P'.

F*pP CC”Pifandonlyif F*P C P'.

F*P C F"P'ifandonlyif F C F'andP C F"*P',or F € F' and F*P C P’

Proof. The cases C P andP ¢ ¢ are obvious.

e AssumeC’P C P IfC C (', then letr be an arbitrary element @f. This is possible,
asC is irreducible, hence non-empty. For everye P, zw is in C* P, hence inC’”’P'. So
zw orw is in P’, and sinceP’ is downward closed undet* by Lemma E.3, in any case
w € P'. SoP C P'. If on the other hand’ is not contained ir©’, then there is an element
z of C which is not inC’. SinceC’P C C'" P/, every word of the formrw with z € C,

w € P,isinC” P'. However since: is not inC’, zw must be inP’. SoCP C P'. Since
P’ is downward closed.? P C P’. The converse direction is easy.

e AssumeC’P C F”*P'. If C C F’,thenP C F'*P’, sinceP C C'P. If C ¢ F', then let
x be inC but notinF’. For everyxw € CP, zwisin F'*P’, hence inP’ sincex ¢ F'. So
CP C P'. SinceP’ is downward closed;”’ P C P’. The converse direction is easy.

e AssumeF*P C C"P'. SinceF is non-empty, letz be some element i#. For any
w € F*P, zw is also inF*P, so is inC"* P'. This implies thatrw or w is in P’. But, as
P’ is downward closedy € P’ in any case. S&*P C P’. The converse is again easy.
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e AssumeF*P C F'*P'. If F C F’/, thenP C F'*P’ sinceP C F*P. Otherwise, let: be
in ' but not inF’. For any wordw € F*P, zw is again inF* P, hence inF’* P’. Since
x & F', zw must be inP’, hence alsaw € P’. SOF*P C P’.

We obtain the desired algorithm by dynamic programming. =

Now, testing inclusion between closed subsetsYofs as easy as testing inclusion between
elements of5(X). This is a general fact about Noetherian spaces
We may also compute intersections of top-products.

LemmaE.14. Let X be a Noetherian space. One may compute the intersectiomabpaproducts,
modulo an oracle that computes intersections of closedetalo$X, i.e., such that given two closed
subsets, F’ of X, computes a finite s&t(F, F) of irreducible closed subsets &f whose union
isEFNF.
We havee N P = ¢ for every product?, and:

L] C?P N C/?P/ - UC”GS(C,C/) C//?(P N P/) U (C?P M P/) U (P M C/?P/).

o C'PNF"P' =Ugnegicp C" (POF*P)U(CTPOP).

[ F*P ﬂ F/*P/ — (UC”ES(F,F/) C”)*(F*P ﬂ Pl) U (UC"ES(F,F/) C”)*(P ﬂ F/*P/).

Proof. Note that the mag (F, F’) is well-defined, by Proposition 4.2. We require to be able to
compute it.

One may also note that the purpose of the Lemma is to show hdefite an oracle computing
this for irreducible closed subsets &f*, knowning one for closed subsetsX¥f This much depends
on the fact that irreducible closed subsetskof are exactly the denotations of top-products, which
we shall prove later. Then, provided closed setX6fare represented as finite unions of irreducible
closed sets, i.e., as top-SREs, and distributing intemecbver unions, we obtain a similar oracle
for X*, knowing one forX.

e Anywordw in C?’PNC”’ P'is eitherinPNP’, orisinC'P and inP’, orin P and inC’P’, or
is of the formaw’, withz € CNC’ andw’ € PNP'. SoC’PNC"' P’ C (PNP)U(CTPN
PHYU(PNC"PYu(CnC) (PNP) = (C"PNP)YU(PNC" PYU(CNC) (PNP).
It is easy to see that conversely;”P N P') U (PN C"P)u (CnC)'(PNP)is
included inC” P N " P/, so equality obtains. We conclude singg N ¢’)’(P N P') =
Ucnesicon C" (PO P).
e Any word w in C*P N F"* P’ is either inP N F'*P’, or is of the formzw’ with z € C,
w' € P,andzw’ € F'*P’. In the latter case, eithare C N F" andw’ € PN F'*P’, so
w e (CNFY(PNF*P);orz € C, zisnotEF sow = xw' isin P, hencew is in
C?'PNP'. Inany caseC’ PNF'*P' C (PNF""P)U(CNE') (PNF""PU(C*PNP') =
(CNFY (PN F*P)uU(C*Pn P). The converse inclusion is clear. We conclude since
(CNF)(POF*P") = Ugnegopn C" (PO F™P').
e For every wordw in F*P N F'* P!, write w asw;wo Wherew; is the longest prefix ofy in
F*, andws € P; also, asv|w) wherew/ is the longest prefix ofy in F'*, andw}, € P'. If
wy is shorter thanv}, thenws is also inF"* P’, sow € (F N F')*(P N F'*P’), otherwise
w € (FNF*(F*PNP'). SOF*PNF""P' C (FNF)*(PNF"PU(FNF")*(F*PNP’).
The converse inclusion is obvious. We conclude becdusef” = o cg(p ) C”-
Rewriting left hand sides to right hand sides clearly defiagsrminating procedure to compute
intersections of top-products. [
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Lemma E.15. Let X be Noetherian. InX*, the intersection of any two top-products is a finite
union of top-products.

Proof. The algorithm of Lemma E.14 rewrites any such intersectgoa #nite union of top-products,
recursively. -

As in the case of SREs, any top-produtican be written ag;es .. . e,, Where eacle; is an
atomic expressioof the formC” or F*, and additionallye;e;; is contained neither im; nor in
e;r1 foralli, 1 < i < n. Indeed, ife;e; 11 is contained ire;, then its denotation in fact equals that
of e;, and similarly fore;, 1. Call such a sequenceeducedop-product. Clearly, every top-product
denotes the same set of some reduced top-product.

Lemma E.16. Let X be a topological space. For every top-produet= ejes . .. e,, let u(P) be
the multiset consisting efi, ..., e,. DefineC on atomic expressions by’ T ' if and only if
CCC;F*C FfifandonlyifF C F'; C* C F""ifand only ifC C F’; and F* I Cc"”. Let
C ... be the multiset extension of.

For every top-product®, P’, if P is reduced and® C P’ thenu(P) T, p(P').

Proof. We show this by induction ohP| + | P’|, where|P| is the number of atomic expressions
in P. If |P'| =0,ie., P = ¢ thenP = ¢, and the claim is clear. In general,|iP| = 0, i.e.,
P = ¢, thenpu(P) is the empty multiset, sp(P) C,,. p(P'). Otherwise, there are four cases,
using Lemma E.13. Observe that Lemma E.13 can be statedadentiy as follows:P = e; P} C
¢\ P] = P'ifand onlyif: (1)e; Z ¢}, andP C P/, or (2)e; = C*, ¢} = c"”,Cc ' andP;, C Py,
or(3)ef = F'*, ey C F'" andP, C P'. Write C the strict part ofZ, i.e.,e C ¢ iff e C ¢’ and
e Ze.

e In case (1), we havg(P) T u(P)) by induction hypothesis. Since(P;) T u(P'),
1(P) & p(P).

e Incase (2)¢; C ey andpu(Pr) Epur p(Py), SOu(P) = ple1Pr) Epu p(€1P)) = p(F').

e Case (3) is the trickiest. We have T F'*, andP; C P’. Write P asejes...e,P,
wherek is the largest integer such that es, ..., e, = F'*. For each, sincee; C F'*, in
particulare; C F'*.

We first deal with the case where somehas the same denotation &". If we had
k > 2, then eitheri > 2 and there;_; C e;, SOe;_1e; = ¢e;, 0ri < k and there; 1 C e,
SO0e;e;+1 = €;; In any case, this would contradict the fact tifais reduced. Sa& = 1,
Py = Py, andP is of the formF"* P,. If | Py| = 0, i.e, Py = ¢, thenu(P) T, u(F™P]) =
u(P"). Otherwise,Py = Py is of the formeP,, wheree Z F'* by maximality ofk. Since
P, C Plie.,eP, C F'"P[, bute Z F'*, we must be in case (1), 9 = eP, C P|.
SinceP = F'* P, P' = F’*P|, and P, C P}, it follows, using the induction hypothesis,
that,u(P) Cmul M(Pl)'

Otherwise,P = ejes. .. e, Py, where noe; has the same denotation BS". It is easy
to check that, theng; — F'* forall 4, 1 < i < k. Itis then enough to show thafx)
1(Po) T p(Pf). From(x) it will follow that x(P) is obtained fromu(P’) by replacing
one copy ofF’* by finitely many ) copies of atomic expressiors, eo, ..., e that are
strictly smaller than?”* in ; sou(P) will be (strictly) smaller thanu(P’) in ..

To show(x), we observe that, by induction én-i, e;e; 11 . . . e Pp must be contained in
F™ P, foralli, 1 <i < k+ 1: just use case (3) repetitively. 3§ C F'*P;. If |Py| = 0,
thenu(Py) T 1(Pf), as claimed. Otherwise, writB, asePy. By the maximality of
k, e Z F'*, so case (1) applies, and therefdfe C P|, whenceu(Py) T, 1(P]) by
induction hypothesis. =
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Proposition E.17. Let X be Noetherian. The inclusion ordering on the set of (demnmtatof)
top-products is well-founded.

Proof. We observe that, sincE is NoetherianC is well-founded on the set of closed sets. Indeed,
by Proposition 3.2 of [14]X is Noetherian if and only if no ascending chain of open seitHisite:
so there is no infinite descending chain of closed sets. ltiMal that", and therefore alsg, ., is
well-founded. The claim then follows from Lemma E.16. [

Corollary E.18. Let X be Noetherian. The inclusion ordering on the set of (deimtatof) SREs
is well-founded.

Proof. Let F = P, U...U P, andF" = P{U...U P, be two SREs. Without loss of generality,
assume the’;s are pairwise incomparable, and similarly that s are pairwise incomparable.
Since every top-produd®;, 1 < ¢ < m, is irreducible closed by Lemma E.18, C F' if and only

if forevery i, 1 < i < m, thereis aj, 1 < j < n with P, C P!. Since theP;s are pairwise
incomparable, it follows that the multiset consisting/gf . . ., P, is smaller that the one consisting
of P{, ..., P} inthe multiset extension of the inclusion orderingn (denotations of) top-products.
Since the latter is well-founded by Proposition E.17, smdusion between SRESs. =

Proposition E.19. Let X be a Noetherian space. The irreducible closed subsefsoére the
(denotations of) top-products. The closed subsefs‘oére the (denotations of) top-SREs.

Proof. Lemma E.10 states that Every top-product is irreducibleat and every top-SRE is closed.
Conversely, letF be any closed subset 6f*. F is the complement of a union of basic subsets,
of the form X*U; X*U, X* ... X*U, X*, by Lemma E.2. S¢F is an intersection of finite unions
of top-products, by Lemma E.5. It is well-known that any (§bdy infinite) intersectiorf ), ; 7;
can also be written as the filtered intersectjon i - ; .7, WhereF; is the finite intersection
N, Fi- Filtered means that whatevérand.J’, there is aJ” such thatF;~ is contained in both
FyandFy: namelyJ” = Ju.J'.

Now eachF; is a finite intersection of finite unions of top-products. Bgtdbuting unions
over intersections, one may therefore writg as a top-SRE. Using Corollary E.18, it follows
that F equals someF;. Indeed, otherwise, we could build an infinite descendingjrciof SRESs
Fo D Fi D ..., all containingF, as follows: pickF = F; for some arbitrary/; if the chain has
been built up to index, sinceF;, (of the formF; for some.J) does not coincide wittF, there must
be a finite subsetl’ of I such thatF; N F . is strictly contained irfF;: then chooséﬁ‘,’€+1 = Fyuy-

SoF is (the denotation of) a top-SRE, naméfy.

Let F be written as the sum of the top-produéts ..., P.. If additionally F is irreducible,
thenk = 0 otherwiseF would be empty, and > 2 is impossible sincéF is irreducible. Sot = 1,
henceF is (the denotation of) a top-product. [

Theorem E.20(Topological Higman Lemma)Let X be a topological space. Thet is Noetherian
if and only if X* is.

Proof. Theorem 6.11 of [14] states that a sober spgds Noetherian if and only if its topology is
the upper topology of a well-founded partial orderigghat obeys:
e property T: there is a finite subsétsuch thaty” =| E (| denotes downward closure with
respect to< here);
e and property W: for ally;, yo € Y, there is a finite subséf such that 1 N | yo = | E.
Any sobrification is equipped with the upper topology of thelusion orderingC. AssumeX
Noetherian. Since (denotations of) top-products and ircdde closed subsets df coincide by
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Proposition E.19, Proposition E.17 states exactly thas well-founded onS(X*); Lemma E.15
states property W fof (X *); while property T forS(X™*) is obvious, sinc& (X*) is the downward
closure of the top-produck™*. So S(X*) is Noetherian. By [14, Proposition 6.2], a space is
Noetherian if and only if its sobrification is. S¥* is Noetherian.

Conversely, recall that a space is Noetherian if and only filgis no infinite ascending chain
of opens [14, Proposition 3.2]. X* is Noetherian, then any infinite ascending chidinc U; C
... C U, C ...of opens ofX induces an infinite ascending chaliif Uy X* ¢ X*U1 X* C ... C
X*UpX* C ...of opens inX*: contradiction. SoX is Noetherian. [

Theorem E.20 generalizes Higman’s Lemma, in the followengse. WherX is a set equipped
with a quasi-ordering<, we may seeX as a topological space, equipped with the Alexandroff
topology of <. If X is well, then by Proposition 3.1 of [14]X is Noetherian (and conversely).
By Lemma E.4, the topology ok * is the Alexandroff topology oK*. Theorem E.20 then states
that X* is Noetherian, hence* is well, by Proposition 3.1 of [14] again. Such an argumentigdo
probably be the most complicated proof of Higman’s Lemmaxistence. We only aim to clarify
that Theorem E.20 indeed generalizes Higman’s Lemma tiwdgical case.

Corollary E.21. Let X be Noetherian. Any open subset)f is a finite union of basic opens, of
the formX*U; X*Us X* ... X*U, X*.

Proof. Any openU is a union of basic operis;, i € I, by Lemma E.2. Note thdl;),; is a cover
of U. SinceX ™ is Noetherian by Theorem E.20, is compact. So we may extract a finite subcover
of (Ui)ief' ]

We have announced th&( X *) would consist of natural analogues of the notion of products
used in SREs, built on an alphabet of pointsSiX). These analogues are the top-products, as one
can expect. The following theorem is a syntactic rewritifigost of the results obtained above.

Theorem E.22.If X is Noetherian, then up to homeomorphism, the elemeriiéX5) are (denota-
tions of) products which are defined as finite sequenegs, . . . ¢;, of atomic expressions, modulo
=, where:
e an atomic expression is either of the fofifi with C' € S(X), or A* with A a non-empty
finite subset of (X);
o the denotation of products f&1ez . ..e;] = [e1] [e2] . . . [ex], where[C?] = [C]’ and
[A«] = (UcealCD);
e P = P’ifand only if[P] = [P'].
This is equipped with the upper topology of the ordefih¢and= is C N 1), where:
e C'PC C”PifandonlyifC C C'andP C P/, orC'PC P
e C'P C A*P'ifand only ifC C ¢’ for someC’ € A’ andP T A”*P’, or C C ' for no
C'e A'andC’P C P
o A*PLC C"P'ifandonlyifA*P C P'.
o A*P C A P'ifand only if everyC' € A is contained in somé&’ € A’ andP C A" P/, or
someC € Ais contained inna’ € A’ andA*P C P'.

The latter definition can then be simplified, teP? T ¢'P’ if and only if (1) e Z ¢ and
ePCP,or(Qe=0C" ¢ =0C",CCC andPC P,or(3)e = A", eC A andP C ¢'P'.
This requires definin@C on atomic expressions, bg:’ T " ifand onlyifC C C:C” C A" if
and only ifC' C C’ forsomeC’ € A’; A* £ C'" A* T A if and only if for everyC' € A, there is
aC’ e A withC C C'.



WSTS I: COMPLETIONS 35

Appendix F. Finite Multisets and the <® Quasi-Ordering

Given any topological space, 16f® be the set of all finite multisets 0. We shall write
{z1,...,z,[} the multiset containing exacly the elements ..., x,, @ the empty multiset, and
m¥m’ the multiset union ofn andm’. For anyA C X, let A® be the of those multisets consisting
of elements ofd only. Let A2 be the set consisting @fand all multisets|z[}, = € A. Given two
subsets4 andB of X®, A ® B denotem wWm' | m € A,m’ € B}.

We quasi-ordefX ®, not with the multiset extension of the specialization dneaidering < of
X, rather with thesubmultisetuasi-ordering<® defined by{|z1, 2, . . ., 2} <® {ly1,v2,- -, ynl}
if and only if there is an injective map: {1,2,...,m} — {1,2,...,n} such that; < y,; for
all i, 1 < i < m. When< is just equality, this quasi-ordering makes<® m/’ if and only if every
element ofm occurs at least as many timesritf as it occurs inn: this is the<™ quasi-ordering
considered, on finite sefs, by Abdullaet al. [3, Section 2]. The corresponding topology is:

Definition F.1 (Sub-Multiset Topology) The sub-multiset topologgn X ® is the least one contain-
ing the subsetX® © U; ® Uy ® ... ® U,, n € N, whereUy, Us, ..., U, are open subsets of
X.

We shall topologizeX ® with the sub-multiset topology. An important tool to studly® is the
Parikh mappingextended here to the topological case, i.e., the case oifiaite alphabetfX with
a topology.

Definition F.2 (Parikh) The Parikh mapping? : X* — X® maps every finite word 5 ...z,
on X to {z1,xa,...,x,[}

We shall see tha¥ is not only continuous, it igjuotient A quotient mapf : A — B is by
definition a surjective map such that, for evéfyC B, V is open inB if and only if f~1(B) is
open inA. A continuous map satisfies thitopen inB implies f~(V) open inA4, but f~1(V)
open does not necessarily entail thais open. Additionally, a quotient map must be surjective.
WheneveEk= is an equivalence relation on a spategthe map sending eaehe A to its equivalence
class is a quotient map; conversely,fif: A — B is quotient, thenB is homeomorphic to the
quotient of A by the relatioru = o’ defined asf(a) = f(a’), and, up to this homeomorphisr,
mapsa € A to its equivalence class. The fact thiaiis quotient therefore means th&t® appears
as the quotient ok * with respect to all reorderings of letters in words.

To show this, we make two comments. First, for any sulietf X®, ¥(¥~1(B)) = B.
This is becaus& is surjective, which is clear. Second, defiaeon X* by w = ' if and only if
U(w) = ¥(w'), i.e.,w andw’ contain the same letters, with the same multiplicities. BssiA of
X*is =-saturated if and only if it is a union of equivalence classeguivalently,A is =-saturated
if and only if U =1(¥(A)) = A. One notes indeed that teesaturation of any subset of X*, i.e.,
the smallest=-saturated subset df * containing4, is U—1(¥(A)).

Proposition F.3. The Parikh mapping’ is quotient.

Proof. We have already noted thét was quotient. l.e., any multisétc,, o, . .., z,[} appears as
U(z122. .. Tp).

The inverse image of the basic op&i® © U; ©® Uy ® ... ® U, by ¥ is the union over all
permutationsr of {1,2,...,n} of the basic opensX* U)X Uy X™ ... X* Uy, X*, and is
therefore open. This just means that the finite words whosiisauof letters contain one letter
from Uy, one fromUs, ..., one fromU,, are just the finite words containing a subword contain one
letter from each in some order. It follows that the inversagm of any open ok ® is open inX*,
so WV is continuous.
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Finally, letV be any subset ak® such thatt —! (V') is open inX*. Then¥ (V) is a union
of basic opens of the forlX*U;; X* ... X*Uy, X*, i € I. Observe that’ = U(¥~1(V)) is then
the union of all subsets of the fordi® © U;; © ... ® Uy, i € I, and is therefore open. Sbis
guotient. m

Theorem F.4. Let X be a topological space. TheX is Noetherian if and only if{ ® is.

Proof. If X is Noetherian, thetX ™ is, by Theorem E.20. Sincé is surjective and continuous by
Proposition F.3X® is the continuous image of *. But the continuous image of any Noetherian
space is again Noetherian [14, Lemma 4.4].

Conversely, recall that a space is Noetherian if and onlytibis no infinite ascending chain of
opens [14, Proposition 3.2]. IX® is Noetherian, then any infinite ascending ch&linc U; C
... C U, C ...of opens ofX induces an infinite ascending chaii®* © Uy ¢ X® o U; C ... C
X® o U, C...of opensinX®: contradiction. SoX is Noetherian. =

Definition F.5 (M-Product, M-SRE) Let X be a topological space. Call amproducton X any
expression of the forni® © (@ & ©...o D , wheren € N, F is a closed subset of,
andC1, (s, ...,C,_1 range over irreducible closed subsetskof This is interpreted as the obvious
subset ofX*. WhenF is empty, we shall also write this as simglp © (9 ©...© D . When
n = 0, we just write'®, and whem = 0 and F’ = (), we write thise. (Note that the denotation of
e is then{0}.)

An m-SREs any finite sum of m-products, where sum is interpreted &sun

Proposition F.6. Let X be a topological space. Then the denotations of m-SREs@sedinX ®,
and those of m-products are irreducible closed.

If X is Noetherian, then the irreducible closed subsetX fare the denotations of m-products,
and the closed subsets &f® are the denotations of m-SREs.

Proof. consider any m-produdt = F® 0 (P o) o...0dD . We observe that ! (P) is the
union over all permutationsof {1, 2, ..., n} of the top-product™ C; , F*C} , F* ... F*C ,  F*.
This just means that the words whose multiset of letters essphit as at most one letter from each
of C1, Oy, ..., C,, plus remaining letters froni’, are just the words that are comprised of letters
from F, except for zero or one letter frod;, i € {1,2,...,n}, sprinkled here and there in some
order. So¥~!(P) is closed inX*. Becausel is quotient (Proposition F.3), a subsEtof X® is
closed if and only ift —! (F) is closed inX *. Therefore (the denotation of} is closed inX ®.

It also follows that any m-SRE denotes some closed subsgtof

It remains to show that the denotation of m-products aregddeeducible. Note thafF'® ©

@ ol o...0 equalst(F*CIC]...C"), hence for any two closed subsgfs and 7,
Af X FOo @ o o...0 CFUFKifandonlyif F*C{C;...C) C oY (F U
Fo) = U F) UVYF). SinceF*CiC;...C" is irreducible (Lemma E.10), anéi—! (F))
and¥~!(F,) are closed ¥ being continuous)F*C{C3 ... C" must be contained i~ (F;) or
iNnU1(75). SoF 0@ od@ o...0 D iscontained inF; orin F.

Conversely, assum& Noetherian. LetF be any closed subset &f®. SinceV is continuous
(Proposition F.3) ¥ ~!(/F) is closed inX*, hence a finite union of (denotations of) top-products,
by Proposition E.19. Sinc# is surjective,F = ¥(¥~!(F)) is therefore a finite union of subset
U (F;),i € I, whereP; are (denotations of) top-products. However, for any topdpcte;es . . . e,
Uleres...en) = {mimat. . .Wmy, | my € ¥(e1),me € ¥(e2),...,my € V(ey,)}, where¥(e;)
is computed by ¥ (F*) = F®, B(C7) = (D ;s0U(erer...en) = U(e1) @ Uley) O ... 0 Uley)
can be written (using the fact thatis associative and commutative) B8 © Fy © ... F® ©
C@ ®...0 C@ , Where thel’;s are non-empty closed and tbgs are irreducible closed. Noting
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the()® ® A = A, and thatF}® © Fi@ = (F; U Fy)®, we conclude that the image of any top-product
by U is (the denotation of) an m-product. Hence eddlP;) is the denotation of an m-product.
ThereforeF is a finite union of m-products, hence (the denotation of) aBRiE.

If F is also irreducible, then this finite union must be the uniba single m-product, hence is
the denotation of some m-product. [

We won't need the following lemma. We mention it because svears a natural question.

Lemma F.7. The mappingg : X — X® sendingr to {|z[} andunion : X® x X® — X® sending
m, m’ tom W m/, are continuous.

Proof. First,j = ¥ o4, wherei is given in Lemma E.10. As a composition of continuous fuorcdi
it is continuous. Secondynion(¥(w), ¥(w')) = ¥(cat(w,w’)). Sincecat is continuous by
Lemma E.10union is, too, by general arguments on quotient mags.is indeed quotient by
Proposition F.3. [

Proposition F.8. Let X be a topological space. The closure of the multi$et, zo, ..., z,[} in
X® is the denotation of the m-produgt ;12 ® (| 222 ®...® (| ,f2 . The specialization
quasi-ordering ofX ® is the sub-multiset extensiai® of the specialization quasi-ordering of X.

Proof. We first note that any open subsetX®f is upward closed with respect t6®. This is an
easy consequence of the easy fact & U; © Us ® ... ® U, is upward closed with respect to
<, for any opend/y, Us, ..., U,, which are upward closed with respect<oby definition. It
also follows that any closed subsetX®f is downward closed with respect t¢®.

By Proposition F.6(] 212 ©(] 222 ®...0(] z,f2 is (irreducible) closed. This is also the
downward closure ofn = {|x1, 2, . .., z,[} with respect to<®, so this must be the smallest closed
set containing, i.e., the closure pf:}. It follows that, ifm is smaller thann’ in the specialization
quasi-ordering ofX ®, thenm <® m’. So<® is the specialization quasi-ordering &f®.

Lemma F.9. Let X be a topological space. Inclusion between m-products cacthkbeked in non-
deterministic polynomial time, modulo an oracle testingjuision of closed subsets &f. Explicitly,
letP =Fo0 @ 0@ o...0@ andP' = F®0c® 0c® o...0c@ betwo
m-products. The® C P’ if and only if F C F’ and, lettingl = {iy, s, ..., } be the subset of
those indices, 1 < i < m, such thatC; Z F’, there is an injective map: I — {1,2,...,n} such
thatC; C C’;(i) for all i € I—in other words{|C;,, Ci,, ..., Cy.[} Ce {C1,Cy, ..., O [}

Proof. AssumeP C P'. If F € F’, then pickz € F'\ F’: the multiset consisting of + 1 copies
of zisin P but notinP’. SoF C F'.

Let now I = {iy,i9,...,i;} be the set of indices 1 < i < m, such that®;  F’. Let
Dy =04, Dy =Cy,, ...,Di = C;,. LetalsoEy, By, ..., E,,_j be an enumeration of thosg,
1 <4 < n,withi ¢ I. Consider the top-produd?, defined asz{ £ ... E, , F*DiD}... D} (if
F#0),orE{ES...E' _,DiD}...D (if I =0). Note that’, C W~1(P),soP, C U~1(P).
On the other handl —!(P’) is the union over all permutationsof {1,2,...,n} of F’*C;(1)7F/*

Cligy F FFCL, ™ (i B 0), orof CL POy Cn T (G BT = 0). SincePy s
irreducible (Lemma E.10), there a permutatiorof {1,2,...,n} such thatP; C F’*C;(l)?F’*
Cligy F FFCL 7 (if FY £ 0), or P C CLy 'CLyt o CL T (if FY = 0). Using
Lemma E.13, and the factthat, F», ..., E,,_, are contained if”, andF’ C F’, and recalling the

definition of F, we obtain thaD Dj . .. D} isincluded inF’*C;(l)?F’*C;@)?F’* . F’*C;(n)?F/*

(if ' #0),0rinCL i, CLy’ .. CL " (if ' =0).

(1) ~m(2)
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Let us deal with the case’ # (), as the casé” = () is simpler. We show that there is an
injective mapr : I — {m(1),7(2),...,m(n)} such that”; C C;(Z.) forall « € I, by induction on
k. If k = 0, the empty map fits. Otherwise, sinég ¢ F’, using Lemma E.13, we must have
DiDi...Df C CLy  FCLo TP FCL U F'. Now we have two cases, again following
Lemma E.13. In the firstcage; = C;, C C;(l) andD}...D} C F’*C;(z)?F’* . .F’*C;(n)r"F’*,
so there is an injective mag : {is,... it} — {7(2),...,m(n)} such thatC; C C;_,(Z.) for all
i € {i2,...,ix}. Then takingr(i;) = =(1) andr(i) = /(i) for all i € {ia,..., i} fits. In
the second cas&); D5 ... D; C F’*C;T(Q)?F”k .. F’*C;(n)?F’*, and we conclude directly by the
induction hypothesis.

Conversely, if there is an injective map I — {1,2,...,n} suchthat; C C;(Z.) foralli € I,
it is clear thatP C P’. =

The complexity of the above algorithm can be improved whieis finite, and its quasi-ordering
is equality. This is the case considered for the so-calletliseti language generators of [3, Sec-
tion 5]: then irreducible closed subsetsare reduced to single letters, aoy C C’, ;) is then
equivalent toC; = C’, ;). It therefore suffices to check thdC;,, C;,, ..., C; [} is a sub-multiset
of {C1,C%, ..., Cl[}, which can be done in quadratic time.

Finally, here is an analogue of the Coincidence Lemma E.4.

Lemma F.10(Coincidence Lemma)Let X be a set equipped with a quasi-orderidg We seeX as
equipped with the Alexandroff topology<f Then the subword topology on® is the Alexandroff
topology of<®.

Proof. Any upward-closed subset of X ® is a union of sets of the forlX® © (1T z1) ® (T 22) ®
...®(T z,), namely all those obtained by taking the upward closureteofients{|x1, z2, . . ., z, |}
in 4;indeedX® © (T 1) ® (1 22) ® ... ® (T x,) is just the upward closure dfzry, o, . .., T, [}
in <®. Since these are basic opens of the sub-multiset topolbgysith-multiset topology oX ®
is contained with the Alexandroff topology ef®. The converse is by Proposition F.8. m

Appendix G. Powersets

For any topological spac&’, let P, (X) denote the powers@&(X), with thelower Vietoris
topology, which is the least one containing all opens of trenffCU = {A € P(X) | ANU # 0},
whereU ranges over the open subsetsof

Lemma G.1. Let X be a topological space, with specialization quasi-ordgrit. The specializ-
ation quasi-ordering o, (X) is the (topologicalHoare quasi-ordering”, defined by:4 <* B
if and only if A C ¢l(B), if and only ifcl(A) C cl(B), wherecl : P(X) — H(X) is the closure
operator.

The closure of A} in Po.(X) isOcl(A), whereOF' is defined a§ B € P(X) | B C F'}.

Proof. This is well-known. Let<” be the specialization quasi-orderingld§(X). We show that
A<’ Bifandonlyifcl(A) C cl(B).

If A <" B,thenin particular, for every open subdétof X, if A € OU thenB € OU. In
particular, takd/ the complement ofi(B). Clearly B is not in®OU. SoA is notinOU either, i.e.,
A C cl(B). Socl(A) C cl(B).

Conversely, ifcl(A) C cl(B), letU be any open oP (X) containingA. Note thatd C cl(B).
Write U = U, N, OUij, whereU;; is open inX. SinceA € U, there is an € I such thatA
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intersects eacl;;, 1 < j < n,. SinceA C cl(B), cl(B) intersects eacl;;, 1 < j < n;. Since
eachU;; is open,B itself intersects eaci;;, 1 < j < n;, SOB € U. Thatis,A < B.
Now the closure off A} is the set of allB with B <” A, i.e., with B C cl(A). So this is
Ocl(A). [
Note thatP(X) is far from beingTy, as there are many elements of this space which are

equivalent with respect to the equivalence relation geadray<”. Namely,4 <” B andB <” A
if and only if A and B have the same closure.

Corollary G.2. The topology oP«(X) is the upper topology of”.

Proof. Any downward closure of an elementof P, (X ) is by definition of the form{ B € P(X) |

B C c(A)} = Ocl(A), and is therefore closed A (X ) by Lemma G.1. So the topology of
P (X) is finer than the upper topology. Conversely, the compler&gitU, U open inX, is OF,
where F' is the complement of/ in X. But OF is the downward closure af' in P (X), and is
therefore closed in the upper topology. Hence evetyis open in the upper topology, so the upper
topology is finer than the topology @, (.X). [

Theorem G.3. Let X be a topological space. ThexXi is Noetherian if and only P (X) is.

Proof. Proposition 7.3 of [14] states that, X is Noetherian, ther®(X) is Noetherian, when
equipped with the upper topology &f’. By Corollary G.2,P(X) is then Noetherian. Con-
versely, any infinite increasing chain of opaiis C U, C ... C Uy C ... in X induces an infinte
increasing chain of opensU; C CU; C ... C QUi C ... InPo(X), so if Pe(X) is Noetherian,
then so isX. m

Proposition G.4. Let X be a Noetherian space. Then the sobrificatioriPe{ X) is the Hoare
powerdomairt{(X) of X, up to homeomorphism. Precisely, the nfap- OF is a homeomorph-
ism of H(X) ontoS(Po (X)).

Proof. The closed subsets @ (X) are the intersections of finite unions of closures of single
elements. The closure of € P (X) is Ocl(A) by Lemma G.1. AlsoPs(X) is Noetherian by
Theorem G.3, so any intersection of closed sets is a finigggattion. Hence every closed subsets
F of P (X) can be written as a finite intersection of finite unions of séthe formOF, F closed

in X. Distributing unions over intersection, is a finite union of finite intersections of sets of the
form OF, F closed inX. Now it is easy to show thdf) , OF; = O(, F; (this denotingd X

if n = 0), SoF is a finite union of closed sets of the fof¥, F' closed inX. If F is irreducible,
then it must be of the formi F.

Conversely, ifOF (F closed inX) is contained in the union of two closed subset®ef X),
then these closed subsets can be writteffias: |J;2, OF; andF’ = (Jj_, F] respectively, where
the F;s and theF]{s are closed irX . In particular,F’, which is inOF, is contained in somé; or in
someFJf. If F C F;, thenOF C OF;, henceDOF C F. If F C FJ’ then similarlyd F C 7. So
OF isirreducible.

The maplF’ — OF therefore maps any' € H(X) to an element of (P (X)).

This map is clearly surjective: we have shown above that aeglcible closed set df« (X)
was of the formOF for some closed subsét of X. It is injective. IndeedJF C OF’ implies
F € OF', henceF C F'. Inparticular ifOF = OF' thenF C F’ andF’ C F, hencel’ = F’.

The mapF' — OF is continuous: it suffices to show that the inverse image efabpen subset
OU is open inH (X)) for any open subsét of P (X ). Equivalently, to show that the inverse image
of the closed subsetF is closed inH(X) for any closed subsef of P, (X). Now F can be
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written as a finite uniof J;" ; OF;, where eaclF; is closed inX. The inverse image afl | J;_; OF;

is the set of closed subselsof X such thatOF € OJ | OF;, i.e., such thaOF C (J;' , OF;,
i.e., such that’ C OF; for somei. In other words, this inverse imagelig. , OF;, which is indeed
closed.

Finally, we must show that the inverse of this map is contirgja.e., that the direct image of

a closed set is closed. It is enough to show that the direagénud O F is closed inS(Po(X)).
This direct image is the set of allF’, whereF’ ranges over the closet sets &fwith F/ C F;
equivalently, withOF’ C OF, i.e., withOF’ € OOF'. So the directimage ¢fi ' is OOF: the set
of irreducible closed subsefsF” that are contained iR F'. m

Corollary G.5. For any Noetherian spac¥, H(X) is sober.

Proof. As an homeomorph af (P (X)), which is sober by construction. ]

Note that we also know th&{ (X ) is then Noetherian [14, Theorem 7.2].

There is in general no coincidence Lemma as for words (Lemmhede multisets (Lemma F.10),
otherwise powersets of wgos would be wqo, too.

But elements of (P (X)), i.e., of H(X') up to homeomorphism, can all be represented finitely,
as finite setsl of elements of5(X). (AssumingX Noetherian.) These are interpreted gs. 4, C.
This follows from the fact that any closed subset'ofs a finite union of irreducible closed subsets
(Proposition 4.2.)
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