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Abstract—Dickson’s Lemma is a simple yet powerful tool
widely used in decidability proofs, especially when dealing with
counters or related data structures in algorithmics, verification
and model-checking, constraint solving, logic, etc. While Dick-
son’s Lemma is well-known, most computer scientists are not
aware of the complexity upper bounds that are entailed by its
use. This is mainly because, on this issue, the existing literature
is not very accessible.

We propose a new analysis of the length of bad sequences
over (Nk, ≤), improving on earlier results and providing upper
bounds that are essentially tight. This analysis is complemented
by a “user guide” explaining through practical examples how to
easily derive complexity upper bounds from Dickson’s Lemma.

I. INTRODUCTION

For some dimension k, let (Nk,≤) be the set of k-tuples of
natural numbers ordered with the natural product ordering

x = 〈x[1], . . . , x[k]〉 ≤ y = 〈y[1], . . . , y[k]〉
def⇔ x[1] ≤ y[1] ∧ · · · ∧ x[k] ≤ y[k] .

Dickson’s Lemma is the statement that (Nk,≤) is a well-quasi-
ordering (a “wqo”). This means that there exist no infinite
strictly decreasing sequences x0 > x1 > x2 > · · · of k-
tuples, and that there are no infinite antichains, i.e., sequences
of pairwise incomparable k-tuples [19, 25]. Equivalently, every
infinite sequence x = x0, x1, x2, . . . over Nk contains an
increasing pair xi1 ≤ xi2 for some i1 < i2. We say
that sequences with an increasing pair xi1 ≤ xi2 are good
sequences. We say that a sequence that is not good is bad.
Dickson’s Lemma states that every infinite sequence over Nk
is good, i.e., that bad sequences are finite.

a) Using Dickson’s Lemma: “The most frequently re-
discovered mathematical theorem” according to [1, p. 184],
Dickson’s Lemma plays a fundamental role in several areas
of computer science, where it is used to prove that some
algorithmic constructions terminate, that some sets are finite,
or semilinear, etc. In Section VII, we give examples dealing
with counter machines and Petri nets because we are more
familiar with this area, but many others exist.

Example I.1. The following simple program is shown in [26]
to terminate for every input 〈a, b〉 ∈ N2:

CHOICE (a, b)
while a > 0 ∧ b > 1
〈a, b〉 ←− 〈a− 1, a〉

or
〈a, b〉 ←− 〈b− 2, a + 1〉

end

We leave it to the reader to check that, in fact, any sequence
of successive configurations x0 = 〈a, b〉, x1, x2, . . . of this
program is a bad sequence over N2, and is thus finite by
Dickson’s Lemma. Let TIME(a, b) be the maximal number of
times the while loop of CHOICE can be executed—a natural
complexity measure. If we could bound the length of bad
sequences over N2 that start with 〈a, b〉, then we would have
an upper-bound on TIME(a, b).

In order to bound the running time of algorithms that rely
on Dickson’s Lemma, it is usually necessary to know (or
to bound) the value of the index i2 in the first increasing
pair xi1 ≤ xi2 . It is widely felt, at least in the field of
verification and model-checking, that relying on Dickson’s
Lemma when proving decidability or finiteness does not give
any useful information regarding complexity, or that it gives
upper bounds that are not explicit and/or not meaningful.
Indeed, bad sequences can be arbitrarily long.

b) The Length of Bad Sequences: It is easy to construct
arbitrarily long bad sequences, even when starting from a
fixed first element. Consider N2 and fix x0 = 〈0, 1〉. Then
the following

〈0, 1〉, 〈L, 0〉, 〈L− 1, 0〉, 〈L− 2, 0〉, · · · 〈2, 0〉, 〈1, 0〉

is a bad sequence of length L+1. What makes such examples
possible is the “uncontrolled” jump from an element like x0 to
an arbitrarily large next element like here x1 = 〈L, 0〉. Indeed,
when one only considers bad sequences displaying some
controlled behaviour (in essence, bad sequences of bounded
complexity), upper bounds on their lengths certainly exist.

Let us fix a control function f : N → N. We say that a
sequence x = x0, x1, . . . over Nk is t-controlled for some t
in N if the infinity norm of the xi verifies |xi|∞ < f(i+t) for
all indexes i = 0, 1, . . . Then, for fixed k, t, and f , there are
only finitely many t-controlled bad sequences (by Dickson’s
Lemma cum Kőnig’s Lemma) and a maximum length exists.



This maximum length can even be computed if f is recursive.
In this paper, we write Lk,f (t) for the maximal length of

a t-controlled bad sequence (given f , and a dimension k)
and bound it from above via a new decomposition approach.
These results are especially useful when we study Lk,f (t) as
a function of t, i.e. when we prove that the function Lk,f is
majorized by a function in a given complexity class. The litera-
ture already contains upper bounds on Lk,f (see Section VIII)
but these results are not widely known. Most prominently,
McAloon [24] shows that for linear f , Lk,f is primitive-
recursive for each fixed k, but is not primitive-recursive when
k is not fixed. More precisely, for every k, Lk,f is at level
Fk+1 of the Fast Growing Hierarchy.1To quote Clote [5], “This
suggests the question whether Fk+1 is the best possible.”

c) Our Contribution: We present a self-contained and
elementary proof, markedly simpler and more general than
McAloon’s, but yielding an improved upper bound: for linear
control functions, Lk,f is at level Fk, and more generally, for
a control function f in Fγ , Lk,f is at level Fγ+k−1.

Example I.1 (continuing from p. 1). Setting f(x) = x + 1
makes every sequence of configurations of CHOICE (a, b) a
(max(a, b))-controlled bad sequence, for which our results in-
cur an elementary length in F2 as a function of max(a, b).

That “TIME(a, b) is in F2” is a very coarse bound, but as
we will see in Section VI, allowing larger dimensions or more
complex operations quickly yield huge complexities on very
simple programs similar to CHOICE. In fact, we also answer
Clote’s question, and show that our upper bounds are optimal.

More precisely, our main technical contributions are
• We substantially simplify the problem by considering

a richer setting for our analysis: all disjoint unions of
powers of N. This lets us provide finer and simpler de-
compositions of bad sequences (Section III), from which
one extracts upper bounds on their lengths (Section V-A).

• We completely separate the decomposition issue (from
complex to simple wqo’s, where f is mostly irrelevant)
from the question of locating the bounding function in
the Fast Growing Hierarchy (where f becomes relevant);
see Section V-B.

• We obtain new bounds that are essentially tight in terms
of the Fast Growing Hierarchy; see Section VI. Further-
more, these bounds are tight even when considering the
coarser lexicographic ordering.

• We describe another benefit of our setting: it accommo-
dates in a smooth and easy way an extended notion of bad
sequences where the length of the forbidden increasing
subsequences is a parameter (Section IV).

In addition we provide (in Section VII) a few examples
showing how to use bounds on Lk,f in practice. This section
is intended as a short “user guide” showing via concrete
examples how to apply our main result and derive upper

1In truth, McAloon is not that explicit. The Fk+1 upper bound is extracted
from his construction by Clote [5], who also proposed a simple derivation for
an upper bound at level Fk+6.

bounds from one’s use of Dickson’s Lemma. We do not claim
that we show new results for these examples, although the
existence of the bounds we obtain is hardly known at all. The
examples we picked are some of our favorites (many others
exist, see Section VIII for a few references). In particular, they
involve algorithms or proofs that do not directly deal with bad
sequences over (Nk,≤):
• programs shown to terminate using disjunctive termina-

tion arguments (Section VII-A),
• emptiness for increasing counter automata with applica-

tions to questions for XPATH fragments on data words
(Section VII-B), and

• Karp and Miller coverability trees and their applications,
(Section VII-C).

The missing proofs can be found in the full version of this
article at http://arxiv.org/abs/1007.2989.

II. WQO’S BASED ON NATURAL NUMBERS

The disjoint union, or “sum” for short, of two sets A and
B is denoted A+B, the sum of an I-indexed family (Ai)i∈I
of sets is denoted

∑
i∈I Ai. While A+B and

∑
iAi can be

seen as, respectively, A × {1} ∪ B × {2} and
⋃
iAi × {i},

we abuse notation and write x when speaking of an element
(x, i) of

∑
iAi.

Assume (A1,≤1) and (A2,≤2) are ordered sets. The prod-
uct A1 × A2 is equipped with the usual product ordering:
(x, y) ≤ (x′, y′) def⇔ x ≤1 x

′ ∧ y ≤2 y
′. The sum A1 + A2 is

equipped with the usual sum ordering given by

x ≤ x′ def⇔
(
x, x′ ∈ A1 ∧ x ≤1 x

′) ∨ (x, x′ ∈ A2 ∧ x ≤2 x
′) .

It is easy to see that (A1×A2,≤) and (A1 +A2,≤) are wqo’s
when (A1,≤1) and (A2,≤2) are. This immediately extends to∏
i∈I Ai and

∑
i∈I Ai when the index set I is finite. Note that

this allows inferring that (Nk,≤) is a wqo (Dickson’s Lemma)
from the fact that (N,≤) is.

A key ingredient of this paper is that we consider finite
sums of finite powers of N, i.e., sets like, e.g., 2 × N3 + N
(or equivalently N3 + N3 + N1, and more generally of the
form

∑
i∈I Nki ). With S =

∑
i∈I Nki , we associate its type

τ , defined as the multiset {ki | i ∈ I}, and let Nτ denote S
(hence N{k} is Nk and N∅ is ∅).

Types such as τ can be seen from different angles. The
multiset point of view has its uses, e.g., when we observe
that Nτ1 + Nτ2 = Nτ1+τ2 . But types can also be seen as
functions τ : N→ N that associate with each power k ∈ N its
multiplicity τ(k) in τ . We define the sum τ1 +τ2 of two types
with (τ1 + τ2)(k) def= τ1(k) + τ2(k) and its multiple p× τ , for
p ∈ N, by (p× τ)(k) def= p.τ(k). As expected, τ − τ1 is only
defined when τ can be written as some τ1 + τ2, and then one
has τ − τ1 = τ2.

There are two natural ways of comparing types: the inclu-
sion ordering

τ1 ⊆ τ2
def⇔ ∃τ ′ : τ2 = τ1 + τ ′ (1)



and the multiset ordering defined by transitivity and

τ <m {k}
def⇔ k > l for all l ∈ τ , (2)

τ1 + τ <m τ2 + τ
def⇔ τ1 <m τ2 . (3)

Note how Eq. (2) entails ∅ <m {k}. Then Eq. (3) further yields
∅ ≤m τ for any τ (using transitivity). In fact, the multiset
ordering is a well-founded linear extension of the inclusion
ordering [see 9]. This is the ordering we use when we reason
“by induction over types”.

III. LONG BAD SEQUENCES OVER Nτ

Assume a fixed, increasing, control function f : N → N
with f(0) > 0; we keep f implicit to simplify notations, until
Section V-B where the choice of control function will become
important. For t ∈ N, we say that a sequence x0, x1, . . . , xl
over Nτ is t-controlled if |xi|∞ < f(i + t) for all i =
0, 1, . . . , l, where |xi|∞

def= max{xi[j] | j = 1, . . . , dim(xi)}
is the usual infinity norm. Let Lτ (t) be the length of the
longest t-controlled bad sequence over Nτ .

In simple cases, Lτ (t) can be evaluated exactly. For example
consider τ = {0}. Here Nτ , i.e., N0, only contains one
element, the empty tuple 〈〉, whose norm is 0, so that every
sequence over Nτ is t-controlled because f(0) > 0, and is
good as soon as its length is greater than or equal to 2. Hence

L{0}(t) = 1 , (4)

and more generally for all r ≥ 1

Lr×{0}(t) = r . (5)

Note that this entails L∅(t) = L0×{0}(t) = 0 as expected: the
only sequence over N∅ is the empty sequence.

The case τ = {1} is a little bit more interesting. A bad
sequence x0, x1, . . . , xl over N{1}, i.e., over N, is a decreasing
sequence x0 > x1 > · · · > xl of natural numbers. Assuming
that the sequence is t-controlled means that x0 < f(t). (It is
further required that xi < f(t + i) for every i = 1, . . . , l
but here this brings no additional constraints since f is
increasing and the sequence must be decreasing.) It is plain
that L{1}(t) ≤ f(t), and in fact

L{1}(t) = f(t) (6)

since the longest t-controlled bad sequence is exactly

f(t)− 1, f(t)− 2, . . . , 1, 0 .

d) Decomposing Bad Sequences over Nτ : After these
initial considerations, we turn to the general case. It is harder
to find exact formulae for Lτ (t) that work generally. In this
section, we develop inequations providing upper bounds for
Lτ (t) by induction over the structure of τ . These inequations
are enough to prove our main theorem.

Assume τ = {k} and consider a t-controlled bad sequence
x = x0, x1, . . . , xl over Nk. Since x is t-controlled, x0 is
bounded and x0 ≤ 〈f(t) − 1, . . . , f(t) − 1〉. Now, since x is
bad, every xi for i > 0 must have xi[j] < x0[j] for at least

one j in 1, . . . , k. In other words, every element of the suffix
sequence x1, . . . , xl belongs to at least one region

Rj,s = {x ∈ Nk | x[j] = s}

for some 1 ≤ j ≤ k and 0 ≤ s < f(t) − 1. The number of
regions is

Nk(t) def= k · (f(t)− 1) . (7)

By putting every xi in one of the regions, we decompose the
suffix sequence into Nk(t) subsequences, some of which may
be empty.

We illustrate this with an example. Let k = 2 and consider
the following bad sequence over N2

x = 〈2, 2〉, 〈1, 5〉, 〈4, 0〉, 〈1, 1〉, 〈0, 100〉, 〈0, 99〉, 〈3, 0〉 .

The relevant regions are R1,0, R1,1, R2,0, and R2,1. We
can put x3 = 〈1, 1〉 in either R1,1 or R2,1, but we have no
choice for the other xj’s. Let us put x3 in R1,1; we obtain the
following decomposition:

〈2, 2〉,

264 . . . 〈0, 100〉,〈0, 99〉, . (R1,0 : x[1] = 0)
〈1, 5〉, . 〈1, 1〉, . . . (R1,1 : x[1] = 1)

. 〈4, 0〉, . . . 〈3, 0〉 (R2,0 : x[2] = 0)

. . . . . . (R2,1 : x[2] = 1)

375
We have 4 subsequences, one per line. Each subsequence is

bad (one is even empty). They are not (t + 1)-controlled if
we see them as independent sequences. For instance, the first
subsequence, “〈0, 100〉, 〈0, 99〉”, is only controlled if 100 <
f(t+ 1), while in the original sequence it was only required
that 100 < f(t+ 4). But they are (t+ 1)-controlled if we see
them as a sequence over the sum type 4× N2.

For the next step, we observe that every subsequence has
all its elements sharing a same x[j] = s. By disregarding
this fixed component, every subsequence can be seen as a bad
sequence over Nk−1. In our example, we get the following
decomposition

〈2, 2〉,

264 . . . 〈∗, 100〉,〈∗, 99〉, . (R1,0 : x[1] = 0)
〈∗, 5〉, . 〈∗, 1〉, . . . (R1,1 : x[1] = 1)

. 〈4, ∗〉, . . . 〈3, ∗〉 (R2,0 : x[2] = 0)

. . . . . . (R2,1 : x[2] = 1)

375
This way, the suffix sequence x1, . . . , xl is seen as a bad

sequence over Nτ ′ for τ ′ def= Nk(t) × {k − 1}. Note that the
decomposition of the suffix sequence always produces a bad,
(t+ 1)-controlled sequence over Nτ ′ . Hence we conclude that

L{k}(t) ≤ 1 + LNk(t)×{k−1}(t+ 1) . (8)

Observe that Eq. (8) applies even when k = 1, giving

L{1}(t) ≤ 1 + L(f(t)−1)×{0}(t+ 1)
= 1 + f(t)− 1 = f(t) . (by Eq. (5))

Eq. (8) still applies in the degenerate “k = 0” case: here
Nk(t) = 0 and the meaningless type “{−1}” is made irrele-
vant.
Remark III.1. When k ≥ 2, the inequality in Eq. (8) cannot
be turned into an equality. Indeed, a bad sequence over
Nk(t)× Nk−1 cannot always be merged into a bad sequence
over Nk. As a generic example, take a bad sequence x of
maximal length over Nk. This sequence ends with 〈0, ..., 0〉 (or



is not maximal). If we now append another copy of 〈0, ..., 0〉
at the end of x, the sequence is not bad anymore. However,
when k ≥ 2 we can decompose its suffix as a bad sequence
over Nk(t)×Nk−1 by putting the two final 〈0, ..., 0〉’s in the
different regions R1,0 and R2,0.

The above reasoning, decomposing a sequence over Nk
into a first element and a suffix sequence over Nτ ′ for
τ ′ = Nk(t)×{k−1}, applies more generally for decomposing
a sequence over an arbitrary Nτ . Assume τ 6= ∅, and let
x = x0, x1, . . . , xl be a bad sequence over Nτ . The initial
element x0 of x belongs to Nk for some k ∈ τ and as above
x can be seen as x0 followed by a bad subsequence over
τ ′ = Nk(t) × {k − 1}, hence the suffix of x can be seen as
a bad subsequence over τ ′ + (τ − {k}). This calls for special
notations: for k in τ and t in N, we let

τ〈k,t〉
def= τ − {k}+Nk(t)× {k − 1} , (9)

where, for k = 0, τ〈0,t〉 is simply τ − {0} since N0(t) = 0.
We can now write down the main consequence of our

decomposition:

Theorem III.2. For any τ

Lτ (t) ≤ max
k∈τ

{
1 + Lτ〈k,t〉(t+ 1)

}
.

The “max” in Theorem III.2 accounts for allowing a se-
quence over Nτ to begin with a tuple x0 from any Nk for
k ∈ τ . As usual, we let max ∅ def= 0. Note that this entails
L∅(t) = 0, agreeing with Equation 5.

IV. LONG r-BAD SEQUENCES

We say that sequences with an increasing subsequence
xi1 ≤ xi2 ≤ · · · ≤ xir+1 of length r + 1 are r-good (hence
“good” is short for “1-good”). A sequence that is not r-
good is r-bad. By Dickson’s Lemma, every infinite sequence
over Nk is r-good (for any finite r), i.e., r-bad sequences
are finite. Bounding the length of r-bad sequences is helpful
in applications where an algorithm does not stop at the first
increasing pair.

Finding a bound on the length of controlled r-bad se-
quences can elegantly be reduced to the analysis of plain
bad sequences, another benefit of our “sum of powers of N”
approach.

Write Lr,τ (t) for the maximum length of t-controlled r-
bad sequences over Nτ . In this section we prove the following
equality:

Lr,τ (t) = Lr×τ (t) . (10)

For a sequence x = x0, x1, . . . , xl over some Nτ , an index
i = 0, 1, . . . , l and some p = 1, . . . , r, we say that i is p-good
if there is an increasing subsequence of length p+1 that starts
with xi, i.e., some increasing subsequence xi1 ≤ xi2 ≤ · · · ≤
xip+1 with i1 = i. The goodness of index i is the largest p
such that i is p-good.

For example, consider the following sequence over N2

x = 〈3, 1〉, 〈5, 0〉, 〈3, 5〉, 〈2, 4〉, 〈2, 6〉, 〈3, 1〉, 〈4, 5〉, 〈2, 8〉 .

x can be arranged in layers according to goodness, as in
2-good indices: 〈3, 1〉, . . 〈2, 4〉, . . . .
1-good indices: . . 〈3, 5〉, . 〈2, 6〉,〈3, 1〉, . .
0-good indices: . 〈5, 0〉, . . . . 〈4, 5〉,〈2, 8〉
This transformation applies to sequences over any wqo. It has

two properties:
Badness of layers: Assume that xi ≤ xj is an increasing

pair in x. If xj is p-good then, by definition, xi is
at least (p + 1)-good. Hence xi and xj cannot be
in the same goodness layer and every layer is a bad
subsequence of x.

Number of layers: If x is r-bad, every index i is at most
(r−1)-good and the decomposition requires at most
r non-empty layers.

If we now see the decomposition as transforming a t-controlled
r-bad sequence x over Nτ into a sequence x′ over Nr×τ , then
x′ is t-controlled and, as we observed above, bad. Thus

Lr,τ (t) ≤ Lr×τ (t) (11)

holds in general, proving one half of (10).

For the other half, let x = x0, . . . , xl be some t-controlled
sequence over Nr×τ . By collapsing Nr×τ to Nτ in the obvious
way, x can be transformed into a sequence y over Nτ . The
two sequences have same length and same control. Regarding
badness, we can show that y is r-bad when x is bad, entailing
l + 1 ≤ Lr,τ (t) and hence

Lr×τ (t) ≤ Lr,τ (t) . (12)

For the proof, assume, by way of contradiction, that y is not r-
bad, i.e., is r-good. Then it contains an increasing subsequence
with r+1 elements. By the pigeonhole principle, two of these
come from the same summand in r × τ , hence x contains an
increasing pair and is good, contradicting our assumption.

V. UPPER BOUND

Theorem III.2 gives a bounding function for L. Define

Mτ (t) def= max
k∈τ

{
1 +Mτ〈k,t〉(t+ 1)} . (13)

This inductive definition is well-formed since τ〈k,t〉 <m τ and
the multiset ordering is well-founded. Note that M∅(t) = 0
since max ∅ = 0. For all τ and t, it holds that Lτ (t) ≤Mτ (t).

We first show that the maximum in Eq. (13) is reached
by always choosing the smallest element of τ (Section V-A),
and then use this characterization to classify M in the Fast
Growing Hierarchy (Section V-B).

A. A Maximizing Strategy for M
The next Lemma shows that the maximum of all 1 +

Mτ〈k,t〉(t + 1) used in Eq. (13) can always be obtained by
taking k = min τ . This useful fact leads to a simplified
definition of M .

Lemma V.1. Let k = min τ and l ∈ τ . Then Mτ〈l,t〉(t+ 1) ≤
Mτ〈k,t〉(t+ 1) and, hence,

M∅(t) = 0
Mτ (t) = 1 +Mτ〈min τ,t〉(t+ 1) for τ 6= ∅ .



B. Classifying M in the Fast Growing Hierarchy

The bounding function Mτ grows very fast with the dimen-
sion k: M{3} is already non-elementary for f(x) = 2x + 1.
Clote [5] classified the upper bounds derived from both his
construction and that of McAloon using the Fast Growing
Hierarchy (Fα)α [21] for finite ordinals α: for a linear control
function, he claimed his bounding function to reside at the
Fk+6 level, and McAloon’s at the Fk+1 level. We show in
this section a bounding function in Fk; the results of the next
section entail that this is optimal, since we can find a lower
bound for Lr×{k} which resides in Fk\Fk−1 if k ≥ 2.

e) The Fast Growing Hierarchy: The class Fk of the
Fast Growing Hierarchy is the closure under substitution and
limited recursion of the constant, sum, projections, and Fn
functions for n ≤ k, where Fn is defined recursively by2

F0(x) def= x+ 1 (14)

Fn+1(x) def= F x+1
n (x) , (15)

where gp denotes the p-fold application of a function g. The
hierarchy is strict for k ≥ 1, i.e. Fk ( Fk+1, because Fk+1 /∈
Fk. For small values of k, the hierarchy characterizes some
well-known classes of functions:

• F0 = F1 contains all the linear functions, like λx.x + 3
or λx.2x,

• F2 contains all the elementary functions, like λx.22x ,

• F3 contains all the tetration functions, like λx. 22
. .
.2︸ ︷︷ ︸

x times

, etc.

The union
⋃
k Fk is the set of primitive-recursive functions,

while Fω defined by Fω(x) = Fx(x) is an Ackermann-like
non primitive-recursive function; we call Ackermannian such
functions that lie in Fω\

⋃
k Fk. Some further intuition on the

relationship between the functions f in Fk and Fk for k ≥ 1
can be gained from the following fact: for each such f , there
exists a finite p s.t. F pk majorizes f , i.e. for all x1, . . . , xn,
f(x1, . . . , xn) < F pk (max(x1, . . . , xn)) [21, Theorem 2.10].

Readers might be more accustomed to a variant (Ak)k of
the (Fk)k called the Ackermann Hierarchy [see e.g. 13], and
defined by

A1(x) def= 2x

Ak+1(x) def= Axk(1) for k ≥ 1 .

These versions of the Ackermann functions correspond exactly
to exponentiation of 2 and tetration of 2 for k = 2 and
k = 3 respectively. One can check that for all k, p ≥ 1, there
exists xk,p ≥ 0 s.t., for all x ≥ xk,p, Ak(x) > F pk−1(x),
which contradicts Ak being in Fk−1 by [21, Theorem 2.10].
Conversely, Ak(x) ≤ Fk(x) for all k ≥ 1 and x ≥ 0, which
shows that Ak belongs to Fk\Fk−1 for k ≥ 2.

2For simplicity’s sake, we present here a version more customary in the
recent literature, including McAloon [24] and Clote [5]. Note however that it
introduces a corner case at level 1: in Löb and Wainer [21], F0 ( F1, the
latter being the set of polynomial functions, generated by F1(x)

def
= (x+1)2.

f) Main Result: In this section and in the following one,
we focus on classifying in the Fast Growing Hierarchy the
function Mr×{k} for some fixed r, k, and (implicit) f . Here
the choice for the control function f becomes critical, and we
prefer therefore the explicit notation Mr×{k},f .

The main result of this section is then

Proposition V.2. Let k, r ≥ 1 be natural numbers and γ ≥ 1
an ordinal. If f is a monotone unary function of Fγ with
f(x) ≥ max(1, x) for all x, then Mr×{k},f is in Fγ+k−1.

One can be more general in the comparison with McAloon’s
proof: his Main Lemma provides an upper bound of the form
G′k,f (d · f(x)2) for some constant d, where in turn his G′k,f
function can be shown to be bounded above by a function in
Fγ+k+1 when f is in Fγ . The Fk+1 bound for linear functions
reported by Clote [5] is the result of a specific analysis in
McAloon’s Main Corollary.

VI. LOWER BOUND

We prove in this section that the upper bound of Fγ+k−1

for a control function f in Fγ is tight if f grows fast enough.
Let ≤lex denote the lexicographic ordering over Nk, defined

by

x = 〈x[1], . . . , x[k]〉 <lex y = 〈y[1], . . . , y[k]〉 def⇔ x[1] < y[1]
∨ (x[1] = y[1] ∧ 〈x[2], . . . , x[k]〉 <lex 〈y[2], . . . , y[k]〉) .

This is a well linear ordering for finite k values, and is coarser
than the natural product ordering. Let us fix a control function
f ; we denote by `r,k,f (t) the length of the longest t-controlled
r-bad sequence for ≤lex on Nk: this implies that for all t

`r,k,f (t) ≤ Lr×{k},f (t) . (16)

We derive in this section an exact inductive definition for `
in the case r = 1, and show that it yields large enough lower
bounds for L in the case of f = Fγ .

g) An Inductive Definition for `: We define our strategy
for generating the longest bad controlled sequence for ≤lex in
Nk by induction on k. Assume as usual f(0) > 0; for k = 1,
the longest t-controlled sequence is

f(t)− 1, f(t)− 2, . . . , 1, 0

of length f(t), and we define

`1,f (t) = f(t) . (17)

In dimension k + 1, we consider the bad sequence where
the projection on the first coordinate is segmented into f(t)
constant sections, such that the projection on the k remaining
coordinates of each section is itself a bad sequence of dimen-
sion k following the same strategy.

Example VI.1. The sequence built by our strategy for k = 2,
t = 3, and f(x) = x+ 1 is

i 0 1 2 3 4 5 · · · 10 11 12 13 · · · 26 27 28 29 · · · 58 59
xi[1] 3 3 3 3 2 2 · · · 2 2 1 1 · · · 1 1 0 0 · · · 0 0
xi[2] 3 2 1 0 7 6 · · · 1 0 15 14 · · · 1 0 31 30 · · · 1 0

f(i + t) 4 5 6 7 8 9 · · · 14 15 16 17 · · · 30 31 32 33 · · · 62 63



f(t)− 1 f(t)− 1 · · · f(t)− 1︸ ︷︷ ︸ f(t)− 2, f(t)− 2, · · · , f(t)− 2︸ ︷︷ ︸ · · · 0, 0, · · · , 0︸ ︷︷ ︸
`k,f (t) times `k,f (ok,f (t)) times `k,f

(
o
f(t)−1
k,f (t)

)
times

Fig. 1. The decomposition of bad sequences for the lexicographic ordering.

It is composed of four sections, one for each value of the
first coordinate. The first section starts at i = 0 and is of
length `1,f (3) = 4, the second starts at i = 4 and is of length
`1,f (7) = 8, the third at i = 12 with length `1,f (15) = 16, and
the last at i = 28 with length `1,f (31) = 32. The successive
arguments of `1,f can be decomposed as sums t+ `1,f (t) for
the previously computed argument t:

7 = 3 + 4 = 3 + `1,f (3)
15 = 7 + 8 = 7 + `1,f (7)
31 = 15 + 16 = 15 + `1,f (15)

simply because at each step the starting index is increased by
the length of the previous section.

We define accordingly an offset function o by

ok,f (t) def= t+ `k,f (t) ; (18)

the strategy results in general in a sequence of the form
displayed in Figure 1 on the first coordinate. The obtained
sequence is clearly bad for ≤lex; that it is the longest such
sequence is also rather straightforward by induction: each
segment of our decomposition is maximal by induction hy-
pothesis, and we combine them using the maximal possible
offsets. Hence

`k+1,f (t) =
f(t)∑
j=1

`k,f

(
oj−1
k,f (t)

)
. (19)

Remark VI.2. The lexicographic ordering really yields shorter
bad sequences than the product ordering, i.e. we can have
`k,f (t) < L{k},f (t), as can be witnessed by the two following
sequences for f(x) = 2x and t = 1, which are bad for ≤lex

and ≤ respectively:

〈1, 1〉,〈1, 0〉,〈0, 5〉,〈0, 4〉,〈0, 3〉,〈0, 2〉,〈0, 1〉, 〈0, 0〉
〈1, 1〉,〈0, 3〉,〈0, 2〉,〈0, 1〉,〈9, 0〉,〈8, 0〉,〈7, 0〉,〈6, 0〉,〈5, 0〉, . . . ,〈0, 0〉

The first sequence, of length 8 = `2,f (1), is maximal for ≤lex,
and shorter than the second, of length 14 ≤ L{2},f (1).

h) Lower Bound for r-Bad Sequences: One can further
extend this strategy to give a lower bound on the length of in-
terleavings of r-bad sequences in Nk, by simply concatenating
r sequences, each starting with a higher offset. For instance,
for r = 2, start with the sequence of length `k,f (t); arrived at
this point, the next sequence reaches length `k,f (t+ `k,f (t)).
In general

`r,k,f (t) ≥
r∑
j=1

`k,f

(
oj−1
k,f (t)

)
. (20)

Proposition VI.3. Let γ ≥ 0 be an ordinal and k, r ≥ 1
natural numbers. Then, for all t ≥ 0, `r,k,Fγ (t) ≥ F rγ+k−1(t).

Remark VI.4. Note that, since

`r,k,Fγ (t) ≤ Lr×{k},Fγ (t) ≤Mr×{k},Fγ (t) ,

Proposition V.2 and Proposition VI.3 together show that
Mr×{k},Fγ belongs to Fγ+k−1\Fγ+k−2 if γ ≥ 1 and γ+k ≥
3. One can see that the same holds for `k,Fγ , since it is defined
by limited primitive recursion.

Remark VI.5. In the case of the successor control function
f = F0, the Fk−1 lower bound provided by Proposition VI.3
does not match the Fk upper bound of Proposition V.2 (indeed
the statement of the latter does not allow γ = 0 and forces γ =
1). Tightness holds nevertheless, since Friedman [13] proved
in his Theorem 2.6 an Ak lower bound for this particular case
of f = F0.

i) Concrete Example: It is easy to derive a concrete
program illustrating the intuition behind Proposition VI.3:

Example VI.6. Consider the following program with control
λx.2x + 1 in F2 for t = dlog2 max1≤j≤k aje:

LEX (a1, . . . , ak)
c←− 1
while

V
1≤j≤k aj > 0

〈a1, a2, . . . , ak−1, ak, c〉 ←− 〈a1 − 1, 2c, . . . , 2c, 2c, 2c〉
or
〈a1, a2, . . . , ak−1, ak, c〉 ←− 〈a1, a2 − 1, . . . , 2c, 2c, 2c〉

or
...

or
〈a1, a2, . . . , ak−1, ak, c〉 ←− 〈a1, a2, . . . , ak−1, ak − 1, 2c〉

end
An analysis similar to that of `k,f shows that, for k ≥ 2 and

m = min1≤j≤k aj > 0, LEX might run through its while loop
more than Ak+1(m) times, which is a function in Fk+1\Fk. It
matches the Fk+1 upper bound provided by Proposition V.2 for
this program, since the projection of any sequence of program
configurations 〈a1, . . . , ak, c〉 on the k first components is bad
(c increases continuously and thus does not contribute to the
sequence being bad).

VII. USER GUIDE

Results on the length of bad sequences are rarely used in the
verification literature. We claim that Proposition V.2 is very
easy to use when one seeks complexity upper bounds, at least
if one is content with the somewhat coarse bounds provided
by the Fast Growing Hierarchy.

One might want to modify the choices of parametrization
we made out of technical convenience: for instance

• controlling the sum of the vector components instead of
their infinity norm, i.e. asking that

∑
j xi[j] < f(i + t):



since |xi|∞ ≤
∑
j xi[j], Proposition V.2 also works for

this definition of control,
• controlling the bitsize of the successive vectors in a bad

sequence similarly only induces a jump in the classifi-
cation of f from F1 to F2 and leaves the other cases
unchanged,

• using an “internal” view of the control, constraining how
much the vector components can grow in the course of a
single step of the algorithm, i.e. such that |xi|∞ < f i(t),
leads to upper bounds one level higher in the Fast Grow-
ing Hierarchy, since λi.f i+1(t) controls the sequence in
our sense and belongs to Fγ+1 whenever f belongs to Fγ .

A. Disjunctive Termination Arguments

Program termination proofs essentially establish that the
program’s transition relation R is well-founded. The classical,
“monolithic” way of proving well-foundedness is to exhibit
a ranking function ρ from the set of program configurations
x0, x1, . . . into a well-order such that R ⊆ {(xi, xj) | ρ(xi) 6≤
ρ(xj)}, like λa1 · · · akc.(

∑
1≤j≤k ω

k−j+1·aj), mapping Nk+1

to ωk for Example VI.6. That same ranking function could
also be seen as mapping to (Nk,≤lex), a linear extension
of the product ordering. Our techniques easily apply to such
termination proofs based on lexicographic orderings: one only
needs to identify a control function. This is usually obtained
by combining the computational complexities of the program
operations and of the ranking function.

A different termination argument was proposed by Podelski
and Rybalchenko [26] (see also [2] for further details and
an overview of earlier work on the subject): in order to
prove R to be well-founded, they rather exhibit a finite set
of well-founded relations T1, . . . , Tk and prove that R+ ⊆
T1 ∪ · · · ∪ Tk. In practice, each of the Tj , 1 ≤ j ≤ k, is
proved well-founded through a ranking function ρj , but these
functions might be considerably simpler than a monolithic
ranking function. In the case of Example VI.6, choosing Tj =
{(〈a1, . . . , aj , . . . , ak, c〉, 〈a′1, . . . , a′j , . . . , a′k, c′〉) | aj > 0 ∧
a′j < aj}, yields such a disjunctive termination argument.

Although Podelski and Rybalchenko resort to Ramsey’s
Theorem in their termination proof, we can easily de-
rive an alternative proof from Dickson’s Lemma, which
allows us to apply our results: if each of the Tj is
proven well-founded thanks to a mapping ρj into some
wqo (Xj ,≤j), then with a sequence x0, x1, . . . of pro-
gram configurations one can associate the sequence of tuples
〈ρ1(x0), . . . , ρk(x0)〉, 〈ρ1(x1), . . . , ρk(x1)〉, . . . in X1 × · · · ×
Xk, the latter being a wqo for the product ordering by Dick-
son’s Lemma. Since for any indices i1 < i2, (xi1 , xi2) ∈ R+

is in some Tj for some 1 ≤ j ≤ k, we have ρj(xi1) 6≤j ρj(xi2)
by definition of a ranking function. Therefore the sequence of
tuples is bad for the product ordering and thus finite, and the
program terminates.

If the range of the ranking functions is N, one merely
needs to provide a control on the ranks ρj(xi), i.e. on the
composition of Ri with ρj , in order to apply Proposition V.2.
For instance, for all programs consisting of a loop with

variables ranging over Z and updates of linear complexity (like
CHOICE or LEX), Bradley et al. [3] synthesize linear ranking
functions into N:

Question VII.1. What is the complexity of loop programs
with linear operations proved terminating thanks to a k-ary
disjunctive termination argument that uses linear ranking func-
tions into N?

The control on the ranks in such programs is at most ex-
ponential (due to the iteration of the loop) in F2. With
Proposition V.2 one obtains an upper bound in Fk+1 on the
maximal number of loop iterations (i.e., the running time of
the program), where k is the number of transition invariants
T1, . . . , Tk used in the termination proof—in fact we could
replace “linear” by “polynomial” in Question VII.1 and still
provide the same answer. Example VI.6 shows this upper
bound to be tight. Unsurprisingly, our bounds directly relate
the complexity of programs with the number of disjunctive
termination arguments required to prove their termination.

B. Reachability for Incrementing Counter Automata

Incrementing Counter Automata, or ICA’s, are Minsky
counter machines with a modified operational semantics [see
7, 8]. ICA’s have proved useful for deciding logics on data
words and data trees, like XPATH fragments [10]. The funda-
mental result in this area is that, for ICA’s, the set of reachable
configurations is a computable set [23, 30].

Here we only introduce a few definitions and notations
that are essential to our development (and refer to [23, 30]
for more details). The configuration of a k-counter machine
M = (Q,∆) is some tuple v = 〈q, a1, . . . , ak〉 where q is a
control-state from the finite set Q, and a1, . . . , ak ∈ N are the
current values of the k counters. Hence ConfM

def= Q×Nk. The
transitions between the configurations of M are obtained from
its rules (in ∆). Now, whenever M seen as a Minsky machine
has a transition 〈q, a1, . . . , ak〉 →M 〈p, b1, . . . , bk〉, the same
M seen as an ICA has all transitions 〈q, a1, . . . , ak〉 →I
〈p, b′1, . . . , b′k〉 for b′1 ≥ b1 ∧ · · · ∧ b′k ≥ bk: Informally,
an ICA behaves as its underlying Minsky machine, except
that counters may increment spuriously after each step. The
consequence is that, if we order ConfM with the standard
partial ordering (by seeing ConfM as the wqo

∑
q∈QNk),

then the reachability set of an ICA is upward-closed.

We now describe the forward-saturation algorithm that
computes the reachability set from an initial configuration v0.

Let X0, X1, X2, ... and Y0, Y1, Y2, ... be the sequences of
subsets of ConfM defined by

X0
def= {v0}, Xi+1

def= Post(Xi),

Y0
def= X0, Yi+1

def= Yi ∪Xi+1,

where Post(X) def= {v′ ∈ ConfM | ∃v ∈ X : v →I v
′}.

The reachability set is Reach(M, v0) def=
⋃
i=1,2,...Xi, i.e.,

limi→ω Yi. However, since every Xi+1 is upward-closed, the
sequence (Yi)i∈N stabilizes after finitely many steps, i.e., there
is some l such that Yl = Yl+1 = · · · = Reach(M, v0), as we



prove below. This method is effective once we represent
(infinite) upward-closed sets by their finitely many minimal
elements: it is easy to compute the minimal elements of Xi+1

from the minimal elements of Xi, hence one can build the
sequence Y0, Y1, . . . (again represented by minimal elements)
until stabilization is detected.

Question VII.2. What is the computational complexity of the
above forward-saturation algorithm for ICA’s?

For this question, we start with the length of the sequence
Y0  Y1  Y2  · · ·  Yl = Yl+1. For each i = 1, . . . , l, let
vi be a minimal element in Yi \ Yi−1 (a nonempty subset of
ConfM ). Note that vi ∈ Xi, an upward-closed set, so that Yi
contains all configurations above vi. Hence vj 6≥ vi for j > i
(since vj 6∈ Yi) and the sequence v = v1, v2, . . . is bad—this
also proves the termination of the (Yi)i sequence.

We now need to know how v is controlled. Consider a
minimal element v of Yi. Then |v|∞ ≤ i + |v0|∞, which
means that v is |v0|∞-controlled for f = F0 the successor
function. Here f is independent of the ICA M at hand! Using
Proposition V.2 we conclude that, for fixed k, l is bounded by a
function in Fk with |v0|∞ as argument. Now, computing Xi+1

and Yi+1 (assuming representation by minimal elements) can
be done in time linear in |Xi| and |Yi| (and |M | and |v0|∞),
so that the running time of the algorithm is in O(|M | · l), i.e.,
also in Fk [see 29, for Fk−2 lower bounds for the reachability
problem in k-dimensional ICA’s].

Here the main parameter in the complexity is the number
k of counters, not the size of Q or the number of rules in
M . For fixed k the complexity is primitive-recursive, and it is
Ackermannian when k is part of the input—which is the case
in the encoding of logical formulæ of Demri and Lazić [8].

C. Coverings for Vector Addition Systems

Vector addition systems (VAS’s) are systems where k coun-
ters evolve by non-deterministically applying k-dimensional
translations from a fixed set. They can be seen as an abstract
presentation of Petri nets, and are thus widely used to model
concurrent systems, reactive systems with resources, etc.

Formally, a k-dimensional VAS is some S = (∆, v0) where
v0 ∈ Nk is an initial configuration and ∆ ⊆ Zk is a finite set of
translations. Unlike translations, configurations only contain
non-negative values. A VAS S has a step v

δ−→ v′ whenever
δ ∈ ∆ and v + δ ∈ Nk: we then have v′ = v + δ. Hence the
negative values in δ are used to decrement the corresponding
counters on the condition that they do not become negative,
and the positive values are used to increment the other coun-
ters. A configuration v is reachable, denoted v ∈ Reach(S),
if there exists a sequence v0

δ1−→ v1
δ2−→ v2 · · ·

δn−→ vn = v .
That reachability is decidable for VAS’s is a major result of
computer science but we are concerned here with computing
a covering of the reachability set.

In order to define what is a “covering”, we consider the
completion Nω

def= N∪{ω} of N and equip it with the obvious
ordering. Tuples w ∈ Nkω , called ω-markings, are ordered
with the product ordering. While ω-markings are not proper

configurations, it is convenient to extend the notion of steps
and write w δ−→ w′ when w′ = w + δ (assuming n + ω = ω
for all n).

Let C ⊆ Nkω be a set of ω-markings. We say that C is a
covering for S if for any v ∈ Reach(S), C contains some
w with v ≤ w, while any w ∈ C is in the adherence of the
reachability set, i.e., w = limi=1,2,... vi for some markings
v1, v2, . . . in Reach(S). Hence a covering is a rather precise
approximation of the reachability set (precisely, the adherence
of its downward-closure). A fundamental result is that finite
coverings always exist and are computable. This entails several
decidability results, e.g. whether a counter value remains
bounded throughout all the possible runs.

A particular covering of S can be obtained from the KM
tree,3 introduced by Karp and Miller [17]. Formally, this tree
has nodes labeled with ω-markings and edges labeled with
translations. The root s0 is labeled with v0 and the tree is
grown in the following way: Assume a node s of the tree is
labeled with some w and let (v0 =)w0, w1, ..., wn = w be
the labels on the path from the root to s. For any translation
δ ∈ ∆ such that there is a step w δ−→ w′, we consider whether
to grow the tree by adding a child node s′ to s with a δ-labeled
edge from s to s′.

1) If w′ ≤ wi for one of the wi’s on the path from s0 to
s, we do not add s′ (the branch ends).

2) Otherwise, if w′ > wi for some i = 0, . . . , n, we build
w′′ from w′ by setting, for all j = 1, . . . , k, w′′[j] def= ω
whenever w′[j] > wi[j], otherwise w′′[j] is just w′[j].
Formally, w′′ can be thought as “wi + ω × (w′ − wi)”.
We add s′, the edge from s to s′, and we label s′ with
w′′.

3) Otherwise, w′ is not comparable with any wi: we simply
add the edge and label s′ with w′.

Theorem VII.3 ([17]). The above algorithm terminates and
the set of labels in the KM tree is a covering for S.

Question VII.4. What is the complexity of the KM algorithm?
What is the size of the KM tree? And the size of C?

Answering the above question requires understanding why the
KM algorithm terminates. First observe that the KM tree is
finitely branching (a node has at most |∆| children), thus the
tree can only be infinite by having an infinite branch (Kőnig’s
Lemma). Assume, for the sake of contradiction, that there is
an infinite branch labeled by some w0, w1, . . . The sequence
may be a good sequence, but any increasing pair wi1 ≤ wi2
requires wi2 to be inserted at step 2 of the KM algorithm.
Hence wi2 has more ω’s than wi1 . Finally, since an ω-marking
has at most k ω’s, the sequence is (k+ 1)-bad and cannot be
infinite since Nkω is a wqo.

Now, how is the sequence controlled? If we say that the
ω’s do not count in the size of an ω-marking, a branch

3 The computation of the KM tree has other uses, e.g., with the finite
containment problem [22]. Results from Mayr and Meyer [22] show Acker-
mannian lower bounds, and provided the initial motivation for the work of
McAloon [24] and Clote [5].



w0, w1, . . . of the KM tree has |wi+1|∞ ≤ |wi|∞ + |∆|∞ ≤
|v0|∞ + i · |∆|∞. Hence the sequence is |v0|∞-controlled
for f(x) = x · |∆|∞ + 1, a control at level F1 for fixed
∆. More coarsely, the sequence is |S|-controlled for a fixed
f(x) = x2, this time at level F2. By Proposition V.2 and
Eq. (10), we deduce that the length of any branch is less
than lmax = L(k+1)×{k}(|S|). The size of the KM tree, and
of the resulting C, is bounded by |∆|lmax . Finally, the time
complexity of the KM algorithm on k-dimensional VAS’s
is in Fk+1: the complexity is primitive-recursive for fixed
dimensions, but Ackermannian when k is part of the input.

The above result on the size of KM trees can be compared
with the tight bounds that Howell et al. show for VAS’s [16,
Theorem 2.8]. Their Fk−1 bound is two levels better than
ours. It only applies to KM trees and is obtained via a rather
complex analysis of the behaviour of VAS’s, not a generic
analysis of Dickson’s Lemma. In particular it does not apply
to VAS extensions, while our complexity analysis carries over
to many classes of well-structured counter systems, like the
strongly increasing affine nets of [12], for which both the KM
tree algorithm and a F2 control keep applying, and thus so
does the Fk+1 bound.

VIII. RELATED WORK

j) Bounds for Nk: We are not the first ones to study
the length of controlled bad sequences. Regarding Dickson’s
Lemma, both McAloon [24] and Clote [5] employ large
intervals in a sequence and their associated Ramsey theory,
showing that large enough intervals would result in good
sequences. Unlike our elementary argument based on disjoint
sums, we feel that the combinatorial aspects of McAloon’s
approach are rather complex, whereas the arguments of Clote
rely on a long analysis performed by Ketonen and Solovay [18]
and is not parametrized by the control function f . Furthermore,
as already mentioned on several occasions, both proofs result
in coarser upper bounds. Friedman [13], Theorem 6.2 also
shows that bad sequences over Nk are primitive-recursive
but the proof is given for the specific case of the successor
function as control, and does not distinguish the dimension
k as a parameter. One could also see the results of Howell
et al. [16] or Hofbauer [15] as implicitly providing bounds
on the bad sequences that can be generated resp. by VAS’s
and certain terminating rewrite systems; using these bounds
for different problems can be cumbersome, since not only the
control complexity is fixed, but it also needs to be expressed
in the formal system at hand.

k) Beyond Nk: Bounds on bad sequences for other wqo’s
have also been considered; notably Cichoń and Tahhan Bittar
[4] provide bounds for finite sequences with the embedding
order (Higman’s Lemma). Their bounds use a rather complex
ordinal-indexed hierarchy. If we only consider tuples of natural
numbers, their decomposition also reduces inductively from
Nk to Nk−1, but it uses the “badness” parameter (r, see Sec-
tion IV) as a useful tool, as witnessed by their exact analysis of
Lr,1,f . For arbitrary k ∈ N, Cichoń and Tahhan Bittar have an
elegant decomposition, somewhat similar to the large interval

approach, that bounds Lr,k,f by some Lr′,k−1,f ′ for some r′

and f ′ obtained from r, f and k. However, r′ and f ′, r′′ and
f ′′, . . . , quickly grow very complex, and how to classify the
resulting bounds in the Fast Growing Hierarchy is not very
clear to us. By contrast, our approach lets us keep the same
fixed control function f at all steps in our decomposition, and
it can handle Higman’s Lemma as demonstrated in [28].

Weiermann proves another bound for Higman’s Lemma [32,
Corollary 6.3], but his main focus is actually to obtain bounds
for Kruskal’s Theorem [32, Corollary 6.4], i.e. for finite trees
with the embedding ordering. The bounds are, as expected,
very high, and only consider polynomial ranking functions.

l) Further Pointers: The question of extracting complex-
ity upper bounds from the use of Dickson’s Lemma can be
seen as an instance of a more general concern stated by
Kreisel: “What more than its truth do we know if we have a
proof of a theorem in a given formal system?” Our work fits in
the field of implicit computational complexity in a broad sense,
which employs techniques from linear logic, lambda calculus
and typing, invariant synthesis, term rewriting, etc. that entail
complexity properties. In most cases however, the scope of
these techniques is very different, as the complexity classes
under study are quite low like, e.g., PTIME. By contrast, our
technique is of limited interest for such low complexities, as
the Fast Growing Hierarchy only provides very coarse bounds.
But it is well suited for the very large complexities of many
algorithmic issues, for well-structured transition systems [11]
working on tuples of naturals, Petri nets equivalences [22],
Datalog with constraints [27], Gröbner’s bases [14], relevance
logics [31], LTL with Presburger constraints [7], data log-
ics [8, 10], etc.

A related concept is the order type of a well partial order [6],
which corresponds to the maximal transfinite length of an
uncontrolled bad sequence. Although order types do not trans-
late into bounds on controlled sequences,4 they are sometimes
good indicators, a rule of thumb being that an upper bound
in Fα is often associated with an order type of ωα, which
actually holds in our case. Such questions have been mostly
investigated for the complexity of term rewriting systems [see
20, and the references therein], where for instance the maximal
derivation length of a term rewriting system compatible with
multiset termination ordering (of order ωk for some finite k)
was shown primitive-recursive by Hofbauer [15] (however no
precise bounds in terms of k were given).

IX. CONCLUSION

In spite of the prevalent use of Dickson’s Lemma in various
areas of computer science, the upper bounds it offers are
seldom capitalized on. Beyond the optimality of our bounds
in terms of the Fast Growing Hierarchy, our first and foremost
hope is for our results to improve this situation, and reckon
for this on

4For instance, ωk is the order type of both (Nk,≤) and (M(Σk),⊆),
where M(Σk) is the set of multisets over a finite set Σk with k elements,
but one needs to be careful on how a control on one structure translates into
a control for the other.



• an arguably simpler main proof argument, that relies on
a simple decomposition using disjoint sums,

• a fully worked out classification for our upper bounds—a
somewhat tedious task—, which is reusable because we
leave the control function as an explicit parameter,

• three template applications where our upper bounds on
bad sequences translate into algorithmic upper bounds.
These are varied enough not to be a mere repetition of
the exact same argument, and provide good illustrations
of how to employ our results.
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