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1. I N T R O D U C T I O N  

Transition systems form a general model for specification and verification of usual properties of 
parallel system. When the reachability set (i.e. the set of reachable states) is finite we can, at least 
theoretically, verify the traditional properties such as deadlock freedom, quasi-liveness, liveness, mutual 
exclusion, existence of infinite sequence... 
But if the reachability set is infinite, verification of these properties with the study of the infmite reachability 
graph becomes impossible. 
Let us remark that there exist some transition systems, for example the ones associated with Petri  nets 
[Peterson 81] [Hack 75] or with certain Fifo nets [Memmi ...85],[Finkel 86],[Rosier... 85] for which an 
infinite set of states doesn't prevent from the analysis of usual properties. 
In these models the analysis is made by associating to the infinite set of reachable states a finite set of states 
and "limits of states"; this finite set allows the verification of usual properties. In the frame of Petri nets the 
lr~uucuuu o, m~ numocz oz states is achieved with the help of the eoverabiii ty tree [Karp...69]. 
The aim of this work is to draw the fundamental concepts used for the construction of the coverability tree of 
a Petri net. Then we shall define the general s t ruc tu re  allowing the analysis of a transition system by 
reducing the number of states thanks to a coverability tree. 
One of the main properties of Petri nets is the existence of an order ing  < on the reachability set. This 
ordering gives a property of monotonicity to the net: it means that if from a marking (state) M we can fire 
a transition t then from every marking M' larger than M, we can fire t [Brains 83]. 
A second property of Petri nets is that the reachability tree has a f in i t e  degree (because there is a finite 
number of transitions in a Petri net). This enables us to apply Koenig's lemma. 
The fact that the ordering < is a well ordering [Dickson 13][Kruskal 72] is the third important property of 
Petri nets. Let us recall that a well ordering is an ordering such that from every infinite sequence one can 
extract an infinite increasing subsequence. At last, the ordering < and the equality are decidable  for 
markings. It means that for two vectors M,M' one can decide M<M' and M=M'. 
These four properties allow to decide, for example, the finiteness of the Petri net language. The algorithm 
[Karp...69] consists in developing the construction of the reachability tree till we meet two comparable 
states M,M' on a same branch so that M' is reachable from M and M~¢I'. As the reachability tree has a finite 
degree and the ordering < is a decidable well ordering, there are only two possibilities: either the reachability 
tree is finite then the Petfi net is equivalent to a finite automaton and the finiteness of a regular language is 
decidable; or the reachability tree is infinite, then we eventually reach two states M,M' such that M' is 
reachable from M and M~¢I'. As Petri nets are monotonous, we can conclude that there exists an infinite 
sequence of transitions and that the language is infinite. In conclusion, in those two cases, we can decide the 
finiteness of a Petri net language. 
The proof that the finiteness of the reachability set is a decidable problem for Petri nets is based on the 
following property (the strong monotonicity): if we can fire a transition t from a marking M and reach a 
marking M 1 then from any marking M'>M we can fire the transition t and reach a marking MI'>M 1. 
To prove the decidability of the finiteness of the reachability set, we apply the same reasoning as previously; 
we obtain either a finite teachability tree or an inf'mite strictly increasing sequence of accessibles states. The 
second case implies that the reachability set is infinite. 
Let us consider now any transition system S. We say that S is s t ruc tu red  when there exists a quasi- 
ordering < (reflexive and transitive) on the reachability set so that (S,<) is monotonous, < and = are 
decidable, < is a well quasi-ordering and the reachability tree has a finite degree. We define a few types of 
structured transition systems according to the monotonicity induced by the quasi-ordering. 
We show that for the most general structured transition systems, the finiteness of the language is a decidable 
problem. Finiteness of the reachability set is also a decidable problem but for less general type of structured 
transition systems. 
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Problems like quasi-liveness and deadlock freedom arise naturally in the framework of structured transition 
systems. The method to solve these problems in the framework of Petri nets, is the use of the coverability 
tree. This tree (finite) "covers" (for the quasi-ordering) all the states of the reachability set. 
Now what allows us to construct a finite coverability tree ? 
At first, Petri nets are strongly monotonous (and not only monotonous) for the usual ordering. Secondly, 
this ordering, naturally extended on limits of sequences of states is still a well quasi-ordering. Thirdly, we 
know how to compute the limit of an infinite increasing sequence of states. At last there exists an integer k 
(which is the number of places of the Petri net) such that the k th "limit" of the reachability set is finite 
We extend the definition of a coverability tree to a class of structured transition systems, called well 
s t r u c t u r e d  t r a n s i t i o n  systems.  For these systems we show that the quasi-liveness problem is 
decidable. 

2. PRELIMINARIES 

We give a definition of a transition system which is equivalent to those in [Keller 72] [Keller 76] 
using the notion of partial function instead of the notion of binary relation. Our definition is then to compare 
with those of"  a computation system" [Kasai...82]. 

Definit ion 1: A t rans i t ion  system S is a quadruplet S = <E, T, h, Eo> where E is the set of states, T 

is a finite set of  transitions, h is a partial function from Ex(T u{~,}) into the power set of  E and E o is a 
subset of E which elements are called initial states. 

In the following we'll put three hypotheses about transitions systems: 
1) the partial function h is defined from Ex(Tu{~,}) into E. This restriction allows to apply Koenig's lemma 
(every inf'mite tree with a finite degree contains an infinite branch). 
2) E 0 has an unique element. 
3) E is a countable set. 

As in [Kasal...82], the partial function h is changed into a total function h 0 ; we add a new element to E, 

denoted by 3-, which is the least element of E.We suppose now that E contains l .  We define h 0 : 

Ex(Tu{~}) - ->E in the following way: h0(e,t) = if h(e,t) is defined then h(e,t) else 1. 
We abuse the notation by denoting h 0 by h. We extend in a natural way the function h to a morphism h: 

ExT* - - > E  such that: X/e~ E Vxe T* Vt¢ T h(e,xt) = h(h(e,x),t). 
X * 

e . . . .  >e' or e . . . .  >e' means that there exists xe T* such that h(e,x)=e'. 
We say that a transition t of a transition system S = <E, T, h, e> is f i reable  from the state e when h(e,t) # 

3_. The state e' = h(e,t) is said to be reachable from e by firing t .  The reaehabi l i ty  set, R(S), from the 

initial state e o, is defined by R(S) = {eeE / 3x~T* h(eo,X) = e} u {eo}.We associate to the system S a 
reachability tree RT(S) and a reachabi l i ty  graph RG(S). The l anguage  of a transition system S is 
defined by L(S) = {xe T* /h(eo,x ) #3_ }. L(S) is the set of words labelling a branch in the tree of states of 

S. We denote by L(S,e) the language {x~ T* /h(e,x) #3_ }. We have L(S) = L(S,eo). 
The analysis of a transition system consists in verifying some properties on this system. The following 
properties are well known and can be found in [Peterson 81][Brams 83]. A reachable state e of S is a 
deadlock state if in this state no transition is ftreable, i.e., Vte T h(e,0 = 1 .  A transition t is quasi-  

live if it is fireable at least once, i-e, 3ee Acc(S) h(e,t) 41.  A transition t is live if it is quasi-live for 

every reachable state, i -e ,Vee Acc(S) ~e 'e  Acc((S,e)) h(e',t) 4 1 .  The system S is quas i - l ive ,  
respectively live, if all transitions are quasi-live, respectively live. 

Definit ion 2: [Birkoff 67] A q u a s i - o r d e r i n g  < on a set E is a reflexive and transitive relation. An 
ordered set is directed when it contains a least element and every increasing sequence has a upper bound. 
A function f : A - - > B  where A and B are two directed ordered sets is con t inuous  when it commutes with 
the upper bounds of increasing sequences. 
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Petri nets allow to give a finite representation of certain infinite transition systems. Petri nets realize a good 
compromise between the expression power and the possibility of analysis. 

Definition 3: [Peterson 81] A Petri nel is a triple R = (P, T, V) where P is a finite set of places, T is a 
finite set of transitions (P n T=¢),V is a function from (P x T) u (T x P) to N. We call a m a r k i n g  of R 
every function M from P to N. A marking is often represented as a vector with cardinal(P) components. A 
marked Petri net is a couple (R, Mo) where M o is the initial marking. A marked Petri net defines a 

transition system S = <E, T, h, Mo> where h is defined if and only if for every place pc  P we have M(p) > 
V(p, t). When h(M,t) is defined, we compute h(M,t) with the following equation: h(M, t) = M + V(t, .) - 
V(., t) where V(t, .) and V(., t) are vectors whose the i-th component are equal to V(t, Pi) and V(pi, t). 
We often denote, for Petri nets and their extensions (Fifo nets, finite automata communicating by Fifo 
channels ...), h(M,x)=M' by M(x>M'. 

3. R E D U C T I O N  O F  T R A N S I T I O N  SYSTEMS 

In the general case (when the set of  reachable states is infinite) no algorithm does exist verifying 
traditional properties and using the (infinite) graph of states. But some of these algorithms exist in the 
framework of particular transition systems with an infinite set of reachable states. For example: 
- Petri nets [Peterson 81],[Brams 83],[Hack 75],[Valk...85] 
- monogeneous Fifo nets [Finkel 86],[Memmi...85] 
- free choice Fifo nets [Finkel 86] 
- linear fifo nets [Choquet...87] 
- some finite automata communicating by Fifo channels [Rosier...85],[Gouda...86] 
We remark that the analysis of the inf'mite case is often done by reducing the problem to another t'mite case; 
then we contract the set of states modulo an equivalence relation. First we are going to illuswate this idea 
with finite automata; we present two possible reductions of the set of  states. In both cases we show that 
there is a quasi-ordering which induces the two equivalence relations. Let A be the following automaton: 

Figure 1 
What can we do to reduce the number of states of this automaton and preserve its language ? We remark 
that: L(A,0) ~ L(A,4) ; L(A,0) = L(A,6) ; L(A,3) = L(A,7) = L(A,8) where L(A,0) is the set of 

fireable sequences from the state 0. Let us def'me <1 by: e <-1 e' ¢:, L(A,e) ~ L(A,e'). 

We verify that <1 is a quasi-ordering on the set E of states. In defining the equivalence relation ___-: naturally 

associated to <1 by: e -=1 e' ¢~ e <1 e' -<l e, We get an equivalence relation such that E/-= 1 is the set E 1 

of states of the reduced finite automaton A 1, We have E/=I = {0,1,2,3,4,5}; the automaton A 1 is the 
following: Lj 

I 

Eigure 2 
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We verify that L(A) = L(At). Can we reduce the set of states anymore ? It depends on the properties we 
want to preserve. Let us suppose we wish to test whether the automaton A 1 is live. Let -<2 be the quasi- 

ordering defined by: e -<2 e' ¢:, every word of L(AI,e) is a subword of a word in L(AI,e'). 
Let us recall that ala2...ap is a subword of any word in A*a 1A*a2A*...A*apA*. We associate to this quasi- 

ordering an equivalence relation such that: e -=2 e' ¢* e -<2 e' <-2 e. We obtain a new finite automaton 

A 2 (Figure 3) such that E 2 = El/_= 2 = {0,1,3,4}. 

' 2 
Fieure 3 

These two finite automata satisfy the following equation: L(A1) ~ L(A 2) I L(A1) where LIU means that 
every word x in L is a subword of a word x' in L'.Then A 1 is live if and only if A 2 is live. A I is an 
automaton with nine states and A 2 is an automaton with four states. Let us remark that -<1 and -<2 are 

decidable, so we may compute the two equivalence relations -=1 and -=2. In the general case this is 
impossible. Now let us consider an infinite transition system. The Petri net (Figure 4) has an infinite 
reachability. 

Figure 
Let us begin the reachability graph (Figure 5) of this Petri net: 

(o,o~ 

t'~,o) 
I::4 " E~. 

I.l,01 ~ (o, ~1 

c.- ,o)" . .  
. ° 

Figure 5 
One of the nice properties of Petri nets is that the usual ordering _< on vectors of integers is included into the 
relation -<t we have defined; we can show that the converse is false by the following couterexample :(0,1) 
-<1 (0,0) is verified in the Petri net (Figure 4) but it is not true that (0,1) _< (0,0). The inclusion of-< into -<1 
is a nice property because -<1 is undecidable [Hack 76], [Peterson 81], [Vidal-Naquet 81] but -< is 
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decidable. What kind of information is given by the relation < ? Since we can fire t I from (0,0) and reach 

(1,0) the infinite sequence t] °~ is fireable. If we carry on the reachability tree a little bit more, we obtain that 

(ht2) ¢~ is also an infinite fireable sequence because we reach a state (0,1) larger than (0,0) by firing tit2, We 
are going to formalize this notion of monotonicity. 

4. S T R U C T U R E D  T R A N S I T I O N  SYSTEMS 

One of the reasons which allows to decide the deadlock freedom, quasi-liveness and liveness of a 
Petri net is the existence of an ordering on vectors of integers; this relation gives a monotonous net in the 
following sense: from a marking M'~VI one can fire at least all the sequences of transitions fireable from M. 
This notion of monotonicity has never been given in general, but only in the particular case of Petri nets 
[Brams 83]. We propose to distinguish three classes of monotonous transition systems. 

Definit ion 4: An ordered  t rans i t ion  syslem (S, -<) is a transition system S = < E, T, h, eo>, such 

that the quasi-ordering < on E, admits 2- as the least element of E. 

We define six kind of rnonotonicities which generalize the (unique) notion of monotonicity existing from 
Petri nets. 

Definition 5 : Let (S, <) = (< E, T, h, e o >, _<) be an ordered transition system. We say that (S, <) is 

1 -monotonous  if and only ff Ve,e 'aE V t a T  e -< e' => h(e,t) ~ h(e',t). 

l ' - m o n o t o n o u s  if and only if  Ve,e 'eE V t e T  h(e,t) a.l_ et e < e' => h(e,t) < h(e',t). 

2 -monotonous  if and only if  Ve,e'a E Vte T e -< e' => 3x,ye T* b(e,t) < h(e',xty). 

2 ' -mono tonous  if  and only if  Ve,e'~ E Vta T (h(e,t) ~ 1 et e < e') => 3x,ya T* h(e,0 <h(e',xty). 

3 -monotonous  if and only i fVe , e ' aE  V t a T  e_< e '=> 3 x ~ T  + h(e,t)_< h(e',x) 

3 ' -monotonous  if and only if Ve,e'~ E Vta T h(e,t) ~ 2_ et e < e' => 3xa T* h(e,t) < h(e',x). 

l'-monotonicity is the used notion of monotonicity defined for Petri nets. 1-monotonicity is a little bit more 
general. 2 and 2'-monotonicities mean that a transition t is fireable from a large marking but only after a 
finite delay. 3 and 3'-monotonicities are the most general definitions that allow to obtain algorithms for 
testing usual properties. We have the following implications: 

1 ~ 2 ~ 3 

1' ~ 2 '  ~ 3 '  

Example I : Let N be the marked Petri net (Figure 6). 

J< -q @ i 

Figure 6 
Its associated transition system S(N) is defined by the finite teachability graph (Figure 7) 
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Figure 7 
We have S(N) = <E, T, h, co> with E = {(3, 0), (2, 1), (1, 2), (2, 0) . . . .  (0, 0)}; T = {t l, t2}; h(e, t) = e' 

¢:~ e(t > e' ; e o = (3, 0). We verify that (S,_<) is F-monotonous for the usual ordering on N 2. In fact, 
every Petri net is l '-monotonous for this ordering. 

We shall need to be able to decide if a state e' is larger than a state e or  if  they are equal. We remark that 
equality is decidable when the quasi-ordering is decidable and when it is an ordering (antisymetric). 

R e m a r k  : the usual ordering on N P, p _< 1, is a decidable well-ordering [Dickson 13] . The subword 
relation is a well-ordering on the set A* of finite words [Higman 52]. However the left factor relation is not 
a well-ordering on A* (if IAI > 2). As a matter of  fact, for example, the sequence (anb)n~ does not contain 
any increasing subsequence for the left factor ordering. We can now define a structure on ordered transition 
systems. 

Definition 6: An i - s t ruc tu red  t rans i t ion  system (S,~) ,  ie  {1,1',2, 2',3,3'}, is an ordered system 
(S,_<) such that (S, -  <) is i-monotonous, _< is a well quasi-ordering, < and .--- are decidable. 

When a transition system is i-structured for an ie  { I,I ' ,2, 2', 3, 3'}, we say that it is s t ructured.  

Proposition 1: The transition system S(N), associated to the Petri net N with the usual ordering on N P (p 
is the number of places of  N), is l'-structured. 

We introduce a new tree, called reduced tree, associated to a structured transition system. This reduced tree 
allows to decide the finiteness of  the teachability set of a 3'-structured transition system and also the 
finiteness of  the language of  a 3-structured transition system. 

Defini t ion 7: Let (S,<) be an ordered transition system. We call r educed  t ree  of  (S,<), denoted by 
RT(S,_<) or RT(S), the tree defined in the following way. 
1) The root r is labelled by the initial state %. 

2) A node s, labelled by e, ee  E, has no successor if  and only if  either for every transition t, h(e,t) =J. , or 
there exists a node s I different from s on the branch from r to s ,  labelled by e 1 with el_<e. 

3) If s is a node labelled by e e E ,  which does not satisfy condition 2) then for every transition t such that 
h(e,t) = e', there exists a node s', successor of  s, labelled by e'. The arc (s,s') is labelled by t. 
The reduced graph RG(S) is obtained from the reduced tree by identifying nodes which have the same 
label 

Proposit ion 2: The reduced tree of  an ordered transition system (S,_<) such that < is a well quasi-ordering 
on E is finite. 

Proof: Let us suppose the contrary and suppose the reduced tree to be infinite. As the reachability tree of S 
has a finite degree, it is the same thing for the reduced tree.Then we can apply Koenig's lemma. Let r, s 1, 
s 2 . . . .  , s n . . . .  the nodes of  this infinite branch and e 0, e l, e 2 . . . .  , e n . . . .  the sequence of  corresponding 
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labels. By hypothesis < is a well quasi-ordering on E so it exists an infinite increasing subsequence {enp} 
such that: for each i >o eni < eni+l. But there is a contradiction with the definition of  the reduced tree of 
S; so the reduced tree is finite. 

Theorem 1: The finiteness of  the language of a 3-structured transition system (S,_<) is a decidable problem. 

Proof :  

L(S) infinite ¢:~ Be, e 'e  E e - - > e '  et e < e'. 
That the right implies the left one is a consequence of 3-monotonicity.For the converse, let us suppose that 
L(S) is infinite. If E is infinite then there exists a state e such that: 

e - - > e  in RG(S). 
Let us consider the case where E is infinite; since the teachability tree of  S has a finite degree, there is an 
infinite branch issued from the root r, by Koenig's lemma. By hypothesis, < is a well quasi-ordering, hence 
there exists two dements  e n and ep such that: % - - >  en----->e p and e n < ep. By definition of the reduced 
graph we have: 

which is equivalent to 

3 e, e 'e  E e - ->e '  and e < e' 

qe, e'~ RG(S) e - ->e '  and e ~ e'. 
Then the finiteness of  L(S) is a decidable problem.. 

Theorem 2: The finiteness of  the reachability set of  a 3'-structured transition system is a decidable 
problem. 

Proof: we make the same reasonnement than for Theorem 1 [Finkd 86]. 

The problem of the quasi-liveness of  a structured transition system arises naturally. The reduced tree of a 
structured transition system doesn't allow to decide the quasi-liveness: intuitively speaking, this tree is too 
small and doesn't contain enough informations about the system. To decide this property we need another 
tree, a coverability tree. 

5. A C O V E R A B I L I T Y  G R A P H  O F  A W E L L  S T R U C T U R E D  T R A N S I T I O N  S Y S T E M  

Definit ion 8: Let (S,<) be a structured transition system. A coverabil ity tree, CT(S), of  (S,_<) is a tree 
such that: 
1) for every state e such that the word x labels a path from the root e 0 to e, there exists a node s, in the 
coverability tree, labelled by e', such that e_<e' and x labels a path from the root of  CT(S) to s. 
2) for each node in the coverability tree, labelled by e, there exists an increasing sequence of  reachable states 
which converge to e. 

We define, in an ordered set, the limit of  an infinite increasing sequence as the equivalence class of this 
sequence for the following equivalence relation: 

Definition 9: Let (E,<) be an ordered set and E -> the set of infinite increasing sequences of elements of E. 

A sequence {Xn}, xa~ E, is in fe r io r  to a sequence {Yn} if  and only if for every n>0 there exists pc N 
such that x n < yp. We also denote this relation by <. Two sequences {Xn} and {yn}are equivalent  when 

{xn} = {Yn} ¢~ {xn} < {Yn} et {Yn} < {xn}- 
The relation < on E >- is a quasi-ordering. 
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Notation: For every infinite increasing sequence{xn} we denote by lim x n the equivalent class of {xn} for 

the equivalent relation ~-. We denote by lim E the quotient E~/~. There is a canonical injection from E into 

lim E: to an element ee  E, we associate the equivalent class of  the stationary sequence {en} defined by : for 
every n>0, ea---e. 

Remark  : The quasi-ordering < defined on E can be extended on lim E in the following way: 
1) For every n > 0 x n < lira x,. 
2) If  {xn} -< {Ya} then Iim x n < lim yn.  

3) If  {3- } is the stationary sequence always equal to _1_ one has, for each element ee  lim E, .J_ < e .  

The following result is well known. 

Proposition 3: [Birkhoff 67] The set l im E with the quasi-ordering < is a directed ordered set. 

We put the notation lim E = E u limsc E where limse E is the set of  limits of  strictly increasing sequences 
of  elements of E. 

This will allow us to generalize the procedure for constructing a coverability tree first defined by Karp and 
Miller in the framework of  parallel program schemata [Karp...69], to a general class of  structured transition 
systems. To generalize the procedure of  Karp and Miller, we need four conditions about the transition 
system: 
1) (S,<) is l '-structured 
2) the well quasi-ordering < on E is still a well quasi-ordering on limsc E; hence also on lim E. 

3) there exists an integer k such that lims~ E is f'mite (lirr~cn+l E = limsc(limse n E) and limsc 1 E = limsc E) 
4) the limit of a strictly increasing sequence is computable ; it means that for all n, the n-th term of this 
sequence is computable from its two f'n'st elements. 

Definition 10: A structured transition system (S,<) is well s t ruc tu red  if and only if the four following 
conditions are satisfied: 
1) (S,<) is l'-structured; 2) < is a well ordering on lin~¢ E; 3) there exists an integer k such that limse k E is 
finite; 4) the limit of a strictly increasing sequence is computable. 

We have to use the continuous extension of a function h of  a l'-structured transition system (S,_<) = (E, 

T, h, e o, <). We still denote this extension by h. h:(lim E)x(Tu{k})  - - >  lim E with h(lim en,t ) = lira 
h(en,t). 

Definition 11: The Karp  and Mil ler ' s  tree, KMT(S), of  a well structured transition system is built by 
the following procedure: 
1) The root is labelled by the initial state %. 

2) A node s, labelled by e, ee  E, has no successor if  and only if  either for every transition t, h(e,t)=_t_ or 

there exists a node Sl~:S also labelled by e, on the path from r to s. 

3) I f  s is a node labelled by e, ee  E, which does not satisfy condition 2) then for every transition te T such 

that h(e,t)~_l_ there exists a node s', successor of  s and labelled by e' such that the arc (s,s') is labelled by t. 
I f  there exists a node s 1, on the path from r to s, labelled by e ! such that e 1 < h(e,t), let us caI1 s 1 the first 

node from the root satisfying this condition, then e' = lim u a with u 1 = e 1, u 2 = h(e, x), un+ 1 = h(un,X ) 

Vne  N else e' = h(e,t). 
The Karp  and Mil ler ' s  graph ,GKM(S), is obtained by identifying nodes with the same label. 

Let us show that the Karp and Miller's tree is a coverability tree. 

Theorem 3: Let (S,<) be a well structured transition system. Then KMT(S) is a coverability tree of (S,<_). 
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Proof: The complete proof is technical and will be done in the full paper. 

We abuse the definition in calling coverability tree, the Karp and Miller's tree. 

Example 2: consider the net of Figure 8, which is "almost" a Petfi net except that f is a Fifo queue. 

~ _ _  ~4t', ~ , N  ~ 3 

Fieure 8 
A state of this net is here a triple e--(integer,integer,word), Let << be the ordering def'med by 
(nl,n2,m) = e << e' = (n'l,n'~,m') if and only if nt=n' 1, n2--n' 2 and Vx~ L(S,e) mq~f(x) -< m'q~l~x) 

where cpf(t)=V(t,f). 
One can then verify that (S,<<) is well structured. Let us draw its coverability tree (Figure 9). 

(o, ~, ,.) 

Ca, o, k,~a}') (o,  , ,  x) 

¢.o, ,t, e~,) ~') C-,x, o,t.~,,.)') C'~, ,,, ~,) 

% I 

1 

1 

Co,~, ,o ,  , [ 
J 

Figure 9 
Proposition 4: The coverability tree and then the coverability graph of  a well structured transition system 
are finite. 

Let us formulate the two results about slructured transition systems by using the coverability graph. 
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Theorem 1': Let (S,<) be a well structured transition system. The reachability set E of S is infinite if and 
only if there exists at least an element of limse E in CG(S). 

Theorem 2': The language L(S) of a well structured transition system is infinite if and only if there exists a 
circuit in CG(S). 

Theorem 4: The quasi-liveness of a well structured transition system is a decidable problem. 

Proof: We show that a transition t ~ T is ftreable at least once if and only if it appears in the coverability 

graph of the system. If there exists a state e such that h(e, t) s _1_ then part 1) of theorem 3 provids with 

f~ lim E such that h(f, t) m 2_. Let us now consider an element e~ limE such that h(e, t) *J_. If ee E, then 

h(e, t) ,_L. If e~ limse E ,  part 2) of theorem 3 shows that there is a strictly increasing infinite sequence 

{en} such that lim e n = e then h(e, 0 ,.1_ ¢~ h(lim e n, t) s3_ 

¢~ lim h(e n, t) s_t_ 

3k~ N h(ek, 0 s_l_. 
and t is fireable from the reachable state ek. 
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