
Abstraction Refinement with Craig Interpolation and

Symbolic Pushdown Systems∗

Javier Esparza esparza@in.tum.de

Stefan Kiefer kiefer@in.tum.de

Stefan Schwoon schwoon@in.tum.de

Institut für Informatik, Technische Universität München, Germany

Abstract

Counterexample-guided abstraction refinement (CEGAR) has proven to be a power-
ful method for software model checking. In this paper, we investigate this concept in the
context of sequential (possibly recursive) programs whose statements are given as Binary
Decision Diagrams (BDDs). We examine how Craig interpolants can be computed effi-
ciently in this case and propose a new special type of interpolants. Moreover, we show
how to treat multiple counterexamples in one refinement cycle. We have implemented this
approach within the model checker Moped and report on experiments.

1. Introduction

CEGAR is a powerful tool for automated abstraction of hardware and software systems.
Originally designed for the verification of hardware designs, this technique has been success-
fully utilized for software verification as well. Particularly, the SLAM project [BR01] has
gained attention and has demonstrated the effectiveness of software verification for device
drivers. The BLAST tool [HJMS02] and the MAGIC tool [CCG+03] have been applied
successfully in the domains of security protocols and real-time operating-system kernels.

The CEGAR paradigm was introduced in [CGJ+00]. The goal is to check if a given
concrete program can reach a certain error label. Since the data space of the concrete
program is too large, its size is reduced with a predicate abstraction method. Initially, there
are no predicates, therefore the initial abstraction is very coarse (no data, only control flow).
This abstract program is then model checked.

Since the abstract program is, by construction, an overapproximation of the concrete
one, model checking it can have two possible outcomes: In the first case the error label is
not reachable; then we know that it is not reachable in the concrete program either and the
CEGAR process terminates. In the second case the error label is reachable in the abstract
program, as illustrated by a counterexample, i.e., a path leading to the error label. Due
to the overapproximation, this path may be spurious, i.e., not realizable in the concrete
system. If it is spurious, then suitable new predicates need to be introduced to refine the
abstraction such that this counterexample is excluded in future predicate abstractions. If it
is not spurious (real counterexample), then it can be reported to the user, and the process
terminates.

∗ This work was partially supported by the DFG project Algorithms for Software Model Checking. Parts
of this work appeared in a TACAS’06 paper [EKS06] and a Master’s thesis [Kie05]. Most of this work
was done at the Universität Stuttgart.

1

This process continues in cycles, until the abstraction is fine enough to either conclude
that the error label is unreachable or that a real counterexample exists.

1.1 Our Work and Related Work

We develop a CEGAR scheme for symbolic pushdown systems (SPDS), i.e. systems where
the control flow is described by a pushdown system and where BDDs describe how variables
are changed by the program statements. We integrate our approach into Moped [Sch02], a
model checker that works with the SPDS model.

From a high-level perspective, our approach can be characterized as follows: We first
translate a program with integer variables to a program with finitely many variable bits
(e.g. 8 or 16 bits per variable). A similar translation is done by compilers for most program-
ming languages, including C and Java, where the language specification requires a fixed-bit
representation of integer variables. If we use fewer bits than the programming language
specification, we might lose some bugs that occur only with large numbers.1. Then we use
CEGAR to reduce the state space. No precision is lost by CEGAR, because the abstraction
is appropriately refined during the process. This is the main advantage of the CEGAR
approach over the use of shorter bit vectors. Notice that recursion may induce an infinite
state space.

The input for our CEGAR scheme is essentially a sequential program with procedures
(potentially recursive) whose variables are represented by a finite number of bits. BDDs
capture the modification of the variables through the program statements. The problem is
whether this program can reach a specific error label or not.

Moped could be directly used for this problem, but we use a CEGAR scheme to reduce
its resource consumption. Our abstract programs are Boolean programs whose variables
are previously introduced predicates. The statements of the abstract programs modify the
truth values of the predicates. This is again captured by BDDs. Those abstract programs
are checked using Moped.

The consequent use of BDDs throughout the CEGAR process distinguishes our work
from related work about CEGAR in software. For instance, in the SLAM project [BR01],
a BDD-based model checker is employed on the abstract level, but symbolic expression
representations together with theorem provers are applied on the concrete level. MAGIC
[CCG+03] does not use BDDs at all, but relies on SAT solvers and theorem provers. Also
[HJMS02, HJMM04] make use of theorem provers, whereas we use BDD technology for
the concrete program, the abstract programs, and for the predicates in our abstraction
mechanism. We therefore avoid theorem provers, which assume infinite ranges of integer
variables and often form bottlenecks in related projects, e.g. in [BR01]. Another argument
for the use of BDDs as opposed to theorem provers is the fact that BDDs could be directly
used for modeling computer arithmetic modulo 232, although, unfortunately, this is not
yet supported by our current implementation. Using bit vectors instead of infinite-range
integers has also been successfully used for the verification of hardware, see e.g. [JKSC05].

Another feature of our work is the use of multiple counterexamples in a single refinement
step. Moped constructs a “witness graph” (see [RSJM05]) which, in the model checking
phase, records information about which program states can be reached via which previously

1. Our current implementation does not model overflows etc. faithfully, so some overflow bugs may be lost.

2

reached program states. When viewed from the perspective of the error label, this graph
is a DAG containing possible (abstract) error traces. We use not only a single counterex-
ample for abstraction refinement, but this DAG. If the counterexample DAG contains a
real (non-spurious) counterexample, it is reported. Otherwise we compute predicates en-
suring that none of the counterexamples in the DAG will occur again in future abstractions.
In [GKMH+03], multiple counterexamples are also used in a CEGAR scheme, but not for
software and not in a DAG structure. A particular example illustrating the usefulness of
the DAG approach is given in Section 6.4.

For the predicate generation, we use Craig interpolation (see [HJMM04, McM05]). In
contrast to [HJMM04], we consider Craig interpolation for pure propositional logics. We
show that the computation of Craig interpolants works well with BDDs and that their
use gives us the flexibility for choosing heuristics about which interpolants to use, since
Craig interpolants are, in general, not unique. In particular, our heuristics for choosing
interpolants do not depend on the internal strategies of a SAT solver or a theorem prover.

Organization of the paper. This paper proceeds as follows. In Section 2 we investigate
Craig interpolation for propositional logics and derive computation schemes that are suitable
for BDDs. In Section 3, symbolic pushdown systems, a model for sequential programs,
are reviewed. In Section 4, the techniques of Section 2 are applied to the computation of
predicates that rule out DAGs of abstract counterexamples. Section 5 sketches our predicate
abstraction scheme. We give evidence for the usefulness of our concepts in Section 6 and
conclude in Section 7.

2. Craig Interpolation

In [McM03, HJMM04], Craig interpolation was used to automatize abstraction refinement.
As in [McM03] (and in contrast to [HJMM04], where a specialized arithmetic proof system is
used) we are interested in Craig interpolants for pure propositional logic. We write Occ(F)
for the set of variables that occur (syntactically) in a formula F .

Definition 2.1 Let (F,G) be a pair of formulas with F ∧ G unsatisfiable. A (syntactic)
interpolant for (F,G) is a formula I s.t. F implies I (written: F |= I), I∧G is unsatisfiable
and Occ(I) ⊆ Occ(F) ∩ Occ(G).

Example 2.2 The formula I = x is an interpolant for (x ∧ y,¬x ∧ z).

Craig’s Interpolation Theorem [Cra57] states that interpolants always exist, but they are not
unique. In [McM03], interpolants are obtained from a resolution proof of the unsatisfiability
of F ∧G, which is, in turn, constructed by a SAT solver. However, in our BDD-based setting
this result is no longer useful, because we do not prove unsatisfiability of F ∧ G by means
of a SAT solver. We show that there exist interpolants that do not depend on the internal
strategies of a SAT solver or a theorem prover, and can be naturally computed by standard
BDD operations.

3

2.1 Strongest and Weakest Interpolants

It is easy to see that if I and I ′ are interpolants for (F,G), then so are I ∧ I ′ and I ∨ I ′.
It follows that “the strongest interpolant” and “the weakest interpolant”, as defined below,
exist and are unique.

Definition 2.3 Let F ∧ G be unsatisfiable. The strongest interpolant for (F,G), denoted
SI (F,G), is the unique interpolant for (F,G) that implies any other interpolant. The weak-
est interpolant for (F,G), denoted WI (F,G), is the unique interpolant that is implied by
any other interpolant.

Clearly, SI (F,G) |= WI (F,G) holds. Proposition 2.4 below shows that SI (F,G) and
WI (F,G) can be obtained by standard BDD operations (quantification over variables).
If F and G are formulas, we define the notation F ↑ G := ∃(Occ(F) \ Occ(G)).F and
F ↓ G := ∀(Occ(F) \ Occ(G)).F . Notice that F ↓ G |= F |= F ↑ G always holds. Intu-
itively, the formula F ↑ G is a weakened version of F , such that it contains only variables
that also occur in G. Similarly, the formula F ↓ G is a strengthened version of F , such that
it contains only variables that also occur in G.

Proposition 2.4 (Strongest and Weakest Interpolants) Let F ∧ G be unsatisfiable.
Then SI (F,G) ≡ F ↑ G and WI (F,G) ≡ (¬G) ↓ F .

The proof uses the following lemma.

Lemma 1 F ↑ G is the strongest formula among those formulas that are implied by F and
contain only variables in Occ(G). Analogously, (¬G) ↓ F is the weakest formula among
those formulas that imply ¬G and contain only variables in Occ(F).

Proof of the lemma. Let I = F ↑ G. Let J be any formula that is implied by F and
contains only variables in G. We show I |= J : Let A be any assignment s.t. A(I) = true.
Then, A can be extended to an assignment A+ s.t. A+(F) = true. Since F |= J , we have
A+(J) = true and A(J) = true.

The statement about (¬G) ↓ F is proved analogously. �

Proof of Proposition 2.4. Let I = F ↑ G. As SI (F,G) is, by definition, implied by F
and contains only variables in Occ(G), we have I |= SI (F,G) by the lemma. But, as
F |= I |= SI (F,G) |= ¬G, the formula I is an interpolant for (F,G). Hence, SI (F,G) |= I,
so SI (F,G) ≡ I.

Analogously, one shows WI (F,G) ≡ (¬G) ↓ F . �

Example 2.5

SI (w ∧ x ∧ y,¬x ∧ ¬y ∧ ¬z) ≡ (w ∧ x ∧ y) ↑ (¬x ∧ ¬y ∧ ¬z)
≡ ∃w.(w ∧ x ∧ y)
≡ x ∧ y

WI (w ∧ x ∧ y,¬x ∧ ¬y ∧ ¬z) ≡ (x ∨ y ∨ z) ↓ (w ∧ x ∧ y)
≡ ∀z.(x ∨ y ∨ z)
≡ x ∨ y

4

2.2 Iterative Computation of Interpolants

In this section, we consider the following problem: Given a formula F = F1 ∧ . . . ∧ Fn,
determine whether F is unsatisfiable, and if so, find interpolants for the pairs (F ..i, F i+1..),
i ∈ {1, . . . , n}, where F ..i := F1 ∧ . . . ∧ Fi and F i+1.. := Fi+1 ∧ . . . ∧ Fn.

We sketch the motivation here, cf. [HJMM04]. Each formula Fi models a program
instruction. A formula F = F1 ∧ . . . ∧ Fn models a trace through a program. In order to
check if the trace is feasible or spurious, one can check if F is satisfiable or unsatisfiable.
If the trace is spurious (unsatisfiable F), then we would like to find an explanation for
the spuriousness. Suitable interpolants give such an explanation and are used for a refined
predicate abstraction that no longer allows for the spurious trace. More details are given
in Section 4, where we will apply the results of this section.

In the following we show that strongest and weakest interpolants for (F ..i, F i+1..) can be
computed iteratively. In the program model, strongest and weakest interpolants correspond
to strongest postconditions (of true) and weakest preconditions (of false).

Proposition 2.6 Let F = F1 ∧F2 ∧ . . .∧Fn be a formula and let F ..i and F i+1.. be defined
as above. Let {Ii} and {Ji} be families of predicates defined according to the following
procedures:
I0 := true, Ii+1 := (Ii ∧ Fi+1) ↑ F i+2.. for i = 0, . . . , n − 1, and
Jn := false, Ji−1 := (Fi → Ji) ↓ F ..i−1 for i = n, . . . , 1.

(i) F is unsatisfiable iff In ≡ false iff J0 ≡ true.

(ii) If F is unsatisfiable, then Ii ≡ SI (F ..i, F i+1..) and Ji ≡ WI (F ..i, F i+1..).

Proof. We first show by induction that Ii ≡ F ..i ↑ F i+1... In the base case we have
I0 ≡ true ≡ true ↑ F 1... For the induction step, let i + 1 > 0. Then we have

Ii+1 ≡ (Ii ∧ Fi+1) ↑ F i+2.. (definition Ii+1)
≡ ((F ..i ↑ F i+1..) ∧ Fi+1) ↑ F i+2.. (induction hypothesis)
≡ ((F ..i ∧ Fi+1) ↑ F i+1..) ↑ F i+2.. (the variables not occurring in F i+1..

do not occur in Fi+1)
≡ (F ..i ∧ Fi+1) ↑ F i+2.. (Occ(F i+2 ..) ⊆ Occ(F i+1 ..))
≡ F ..i+1 ↑ F i+2.. (definition F ..i+1) .

Now, (i) follows immediately and (ii) is a consequence of Proposition 2.4. The statements
about Ji are proved analogously. �

Given F = F1 ∧ . . . ∧ Fn, we can iteratively compute BDDs for the sequence Ii or Ji with
the above procedure. We can decide if F is satisfiable using (i). If F is unsatisfiable, then,
by (ii), we have computed SI (F ..i, F i+1..) or WI (F ..i, F i+1..).

For our CEGAR purposes, we will need the following property:

Definition 2.7 (Tracking Property) Let F1 ∧ . . . ∧ Fn be unsatisfiable, and let Ki be
interpolants for (F ..i, F i+1..). We say that the family {Ki} satisfies the tracking property
if Ki ∧ Fi+1 |= Ki+1.

5

Proposition 2.8 Let F1 ∧ F2 ∧ . . . ∧ Fn be unsatisfiable. Let {Ii} and {Ji} be families of
predicates defined according to the following procedures:
I0 := true, Ii+1 := any interpolant for (Ii ∧ Fi+1, F

i+2..), where i = 0, . . . , n − 1,
Jn := false, Ji−1 := any interpolant for (F ..i−1,¬(Fi → Ji)), where i = n, . . . , 1.
Then {Ii} and {Ji} are interpolants for (F ..i, F i+1..) and satisfy the tracking property.

Proof. We prove the statement about {Ii} by induction over i. In the base case we have I0 ≡
true, which is an interpolant for (true, F 1..), because F 1.. is unsatisfiable. For the induction
step, let i + 1 > 0. By the induction hypothesis, Ii is an interpolant for (F ..i, F i+1..), so
Ii ∧ Fi+1 ∧ F i+2.. is unsatisfiable. Therefore, Ii+1 is well-defined. By definition of Ii+1, the
tracking property (Ii ∧ Fi+1 |= Ii+1) holds. Furthermore, we have

F ..i+1 ≡ F ..i ∧ Fi+1

|= Ii ∧ Fi+1 (by induction hypothesis: F ..i |= Ii)
|= Ii+1 (by definition of Ii+1)
|= ¬F i+2.. (by definition of Ii+1) .

Hence, Ii+1 is an interpolant for (F ..i+1, F i+2..). The statement about {Ji} is proved anal-
ogously. �

Corollary 2.9 {SI (F ..i, F i+1..)} and {WI (F ..i, F i+1..)} satisfy the tracking property.

Finally, Proposition 2.10 shows the interplay between interpolants and disjunction:

Proposition 2.10

(i) If (F ∨ G) ∧ H is unsatisfiable, then SI (F ∨ G,H) ≡ SI (F,H) ∨ SI (G,H).

(ii) If F ∧ (G ∨ H) is unsatisfiable, then WI (F,G ∨ H) ≡ WI (F,G) ∧ WI (F,H).

Proof.

(i) Let Z be the variables not occurring in H.
Then SI (F ∨ G,H) ≡ ∃Z.(F ∨ G) ≡ ∃Z.F ∨ ∃Z.G ≡ SI (F,H) ∨ SI (G,H).

(ii) Analogously. �

2.3 Conciliated Interpolants

Interpolants can be seen as explanations indicating why counterexamples are spurious. It
makes sense to look for “simple” explanations. It seems reasonable to consider an interpolant
“simple” if few variables occur in it. Since we work with BDD libraries, it is natural to
strengthen the notion of occurrence semantically:

Definition 2.11 A variable v occurs semantically in F if ∃v.F 6≡ F . The set of variables
that occur semantically in F is denoted by Supp(F).

6

One could strengthen the notion of interpolants accordingly (by replacing Occ by Supp
in Def. 2.1). Such semantic interpolants are also syntactic interpolants. We now show
that one can find simpler interpolants than the weakest and strongest ones, still using only
quantifications. If I and J are strongest and weakest (syntactic or semantic) interpolants
for (F,G), respectively, then we have F |= I |= J |= ¬G, but not necessarily Supp(I) =
Supp(J). Now we can compute the strongest and weakest semantic interpolants I1, J1

for the pair (I,¬J). Since F |= I |= I1 |= J1 |= J |= ¬G, we have that I1 and J1 are
also interpolants for (F,G). If Supp(I) 6= Supp(J), then at least one of I1 and J1 will
be simpler than I and J , since the variables in the symmetric difference are quantified
out. This simplification procedure can be iterated until a pair In, Jn is reached such that
Supp(In) = Supp(Jn).

Definition 2.12 Let (F,G) be formulas over a set V of variables s.t. F ∧G is unsatisfiable,
and let Z ⊆ V s.t. ∃Z.F and ∀Z.¬G are interpolants for (F,G). We say that ∃Z.F,∀Z.¬G
are conciliated interpolants if Supp(∃Z .F) = Supp(∀Z .¬G). We call Supp(∃Z .F) a con-
ciliating set in this case.

Example 2.13 Strongest and weakest interpolants are not necessarily conciliated:
For F = x∧(y∨z) and G = ¬(x∨y∨(z∧w)), we have SI (F,G) ≡ F and WI (F,G) ≡ x∨y,
which are not conciliated. The formula x is a conciliated interpolant for (F,G), and {x} is
a conciliating set.

The algorithm in Figure 1 computes a pair of conciliated interpolants.

function conciliate(formulas F,G) returns (Z,∃(V \ Z).F,∀(V \ Z).¬G)
/* F ∧ G unsatisfiable is an input requirement */
/* Z is the maximal conciliating set */

I := F ; J := ¬G; Z := Supp(F) ∪ Supp(G)
repeat X := Supp(I) \ Supp(J); I := ∃X.I; Z := Z \ X

Y := Supp(J) \ Supp(I); J := ∀Y.J ; Z := Z \ Y
until Y = ∅
return (Z, I, J)

Figure 1. Computation of conciliated interpolants for the maximal conciliating set

Given a pair of formulas, the pair of conciliated interpolants is not unique. Proposi-
tion 2.14 characterizes the pair computed by the algorithm.

Proposition 2.14

(i) Let (I1, J1) and (I2, J2) be two pairs of conciliated interpolants, and let C1, C2 be the
corresponding conciliating sets. Then C1 = C2 if and only if I1 ≡ I2 and J1 ≡ J2.

(ii) Conciliating sets are closed under union, but not under intersection.

(iii) There is a unique maximal conciliating set.

7

(iv) The algorithm of Figure 1 computes the unique maximal conciliating set.

Proof.

(i) “⇐”: Clearly, by Def. 2.12, a pair of conciliated interpolants (I, J) determines their
unique conciliating set Supp(I) = Supp(J).
“⇒”: Let V = Supp(F) ∪ Supp(G). Let C ⊆ V be a conciliating set for (F,G), i.e.,
let C = Supp(I) = Supp(J) with I = ∃Z.F and J = ∀Z.¬G for some set Z ⊆ V . We
show I ≡ ∃(V \ C).F . (Showing J ≡ ∀(V \ C).¬G is analogous.)
By definition of I, the sets Z and C must be disjoint, i.e., Z ⊆ V \ C. By definition
of C, no variable in V \ C occurs (semantically) in I. Combining these facts yields
I ≡ ∃(V \ C).I ≡ ∃((V \ C) ∪ Z).F ≡ ∃(V \ C).F .

(ii) We first show the closure under union. Let F |= ¬G and V ≡ Supp(F) ∪ Supp(G).
Let X and Y be conciliating sets and Z = X ∪ Y . With X conciliating and (i), we
have

F |= ∃(V \ Z).F |= ∃(V \ X).F |= ∀(V \ X).¬G |= ∀(V \ Z).¬G |= ¬G .

So, ∃(V \ Z).F and ∀(V \ Z).¬G are interpolants for (F,G). Thus, for Z to be
conciliating, it remains to show:

Supp(∃(V \ Z).F) = Supp(∀(V \ Z).¬G).

Let v ∈ V.

Case 1: v ∈ Z. Then w.l.o.g. v ∈ X. Since X is conciliating, we have v ∈ Supp(∃(V \
X).F) = Supp(∀(V \ X).¬G),
thus v ∈ Supp(∃(V \ Z).F) and v ∈ Supp(∀(V \ Z).¬G).

Case 2: v 6∈ Z.
Then v 6∈ Supp(∃(V \ Z).F) and v 6∈ Supp(∀(V \ Z).¬G).

Hence, in both cases we have

v ∈ Supp(∃(V \ Z).F) ⇐⇒ v ∈ Supp(∀(V \ Z).¬G).

Thus, Z is conciliating.

Conciliating sets are not closed under intersection. Consider F ≡ (x ∧ y) ∨ z and
¬G ≡ x∨y∨z. The sets {x, z} and {y, z} are conciliating, but {z} is not conciliating,
because ∃{x, y}.F ≡ true and ∀{x, y}.¬G ≡ z.

(iii) Follows directly from (ii).

(iv) The algorithm removes, in each iteration, only variables from Z that clearly cannot
occur in any conciliating set. In addition, whenever a variable is quantified out s.t.
it no longer occurs in I or J , then it is also removed from Z. It follows that upon
termination of the algorithm, Z is the maximal conciliating set. Because we have
finitely many variables, the algorithm indeed terminates. �

8

One may argue that, since we are interested in simple interpolants, we would like to compute
a minimal conciliating set. Unfortunately, in general there is no unique minimal set, as
can be seen by the example at the end of above proof, part (ii). We can still compute
conciliated interpolants for a minimal conciliating set by a greedy algorithm as shown in
Figure 2. Even though the resulting conciliating set is minimal in the sense that no proper
subset is conciliating, we do not claim that we find the “best” conciliated interpolants by
that algorithm: The algorithm is nondeterministic in the selection of the variables z, and
we do not have a strategy that selects “the best” next variable to be quantified out.

function conciliateMinimal(formulas F,G) returns (Z,∃(V \ Z).F,∀(V \ Z).¬G)
/* F ∧ G unsatisfiable is an input requirement */
/* Z is a minimal conciliating set */

I := F ; J := ¬G
while exists z ∈ Z such that ∃{z}.I |= ∀{z}.J do

(Z, I, J) := conciliate(∃{z}.I,¬∀{z}.J)
end while
return (Z, I, J)

Figure 2. Computation of conciliated interpolants for a minimal conciliating set

In the context of abstraction refinement, we use the algorithm from Figure 1 as inter-
polation (and simplification) method when computing a family of interpolants according to
Proposition 2.8. Recall that this proposition guarantees the tracking property, regardless
of the interpolation procedure.

3. Symbolic Pushdown Systems

As our program model, we use symbolic pushdown systems (SPDSs) [Sch02].

Definition 3.1 (SPDS) 2. An SPDS is a quadruple (G,Γ × L,∆, γ0), where

• G = {true, false}nG , nG ≥ 0, is the set of global variable valuations,

• Γ is a set of control points,

• L = {true, false}nL , nL ≥ 0, is the set of local variable valuations,

• ∆ is a set of symbolic transition rules, where each rule is of the form 〈γ〉 →֒
〈γ1, . . . , γn〉 (R) with 0 ≤ n ≤ 2, γ, γ1, . . . , γn ∈ Γ0 and R ⊆ (G × L) × (G × Ln),

• γ0 ∈ Γ is the start address.

SPDSs model programs with (possibly recursive) procedures and with finite data types. Γ
corresponds to the set of control points in a program, while G and L represent the possible
values of global and local variables, respectively. A configuration of an SPDS is a tuple

2. This definition is slightly more restrictive than in [Sch02], because it does not include explicit control
states. However, no expressive power is lost, because control states could be encoded in the relations R.

9

〈g, (γ1, ℓ1) · · · (γn, ℓn)〉 ∈ G × (Γ × L)∗, where γ1 is the current program counter, g is the
current global store, and ℓ1 are the current local variables. Thus, an SPDS can faithfully
model the control-flow of a program even in the presence of recursion, provided that the data
(global and local) accessible at any one point during execution is finite. Such an SPDS can
be obtained, for instance, by translation from Java bytecode using jMoped [SSE05, SBSE07].

The rules model statements in a programming language. The relation R of a rule
describes the relation between the variables before and after execution of the rule.3. In
our setting, they are given as BDDs. The right-hand side of the rules can consist of zero,
one or two control points. Whereas a rule with one control point on the right-hand side
describes an intraprocedural statement, a rule with two control points on the right-hand
side describes a procedure call, a push: γ1 is the start address of the callee and γ2 the return
address of the caller. Parameter passing can be encoded in the relation R by initializing
the local variables of the callee. A rule with zero control points on the right-hand side is
the termination of a procedure, a pop. Return values can be encoded in the relation R by
restricting the global variables. SPDSs are also discussed in greater detail in [Sch02].

Example 3.2 Consider the procedures in Figure 3. The procedure m calls the procedure f.
Procedure f returns a value using the global variable G. Procedure m has a local variable
L, procedure f has a local variable A. The transition rules of a corresponding SPDS are
shown on the right-hand side. The start address is m0. Non-primed variables refer to the
variable value before execution of the rule. Primed and double-primed variables refer to the
variable value after execution of the rule. Double-primed variables only occur at push rules
and belong to variables of the second control point on the right-hand side of a push rule (in
the example: L′′ belongs to m2).

procedure m

m0: L := L · (L + 1)
m1: call f(L)
m2: if G 6= 0 then goto error

〈m0〉 →֒ 〈m1〉 (L′ = L · (L + 1) ∧ G′ = G)
〈m1〉 →֒ 〈f0,m2〉 (L′′ = A′ = L ∧ G′ = G)
〈m2〉 →֒ 〈error〉 (L′ = L ∧ G 6= 0 ∧ G′ = G)

procedure f(A)

f0: if A even then

f1: A := 0
f2: else A := 561
f3: G := A

〈f0〉 →֒ 〈f1〉 (A even ∧ A′ = A ∧ G′ = G)
〈f1〉 →֒ 〈f3〉 (A′ = 0 ∧ G′ = G)
〈f0〉 →֒ 〈f2〉 (A odd ∧ A′ = A ∧ G′ = G)
〈f2〉 →֒ 〈f3〉 (A′ = 561 ∧ G′ = G)
〈f3〉 →֒ 〈〉 (G′ = A)

Figure 3. Two simple procedures along with an equivalent SPDS

Moped can model check such a concrete SPDS. However, in our CEGAR scheme we use
Moped only to model check Boolean SPDSs that have the same control flow structure, but
overapproximate the given concrete SPDS.

3. To avoid deadlocks in an SPDS, one should make sure that for all (g, l) there is a ((g, l), (g′, l1, . . . , ln)) ∈
R. This is guaranteed when real programs are translated into the SPDS model.

10

4. Computing Predicates for a DAG of Counterexamples

We use Moped to model check the (abstract) SPDSs generated in our refinement cycle.
If Moped finds that the error label is reachable in a given SPDS, it constructs a DAG
that illustrates the abstract paths leading to the error (see [RSJM05] for details on this
construction). In brief, the nodes of the DAG are the configurations of the SPDS, the arcs
are labeled by symbolic transition rules. There is a single “sink” node with no outgoing
arcs, the error configuration.

For instance, consider the program in Figure 4. In the initial abstraction, all data is
discarded, therefore Moped finds two counterexamples, one that does not enter the loop
body, and one that enters it exactly once. The resulting counterexample DAG produced
by Moped is shown on the right-hand side of Figure 4. (For the time being, ignore the
predicates in curly brackets.)

Once we have the DAG, we discard the information about the abstract variable values
and replace the abstract rules by their concrete counterparts. We then need to decide if all
counterexamples in the DAG are spurious or if there exists a real one. We call the DAG
spurious in the first case. For instance, the DAG in Figure 4 is spurious.

1: X := X · (X + 1)
2: while Y odd do

3: Y := Y + 1
4: if (X + Y) odd

then goto error

5: end

X := X · (X + 1)

2 ≡ {X even}
{(X even ∨ Y odd) ∧ (X even ∨ Y even)}

3 {X even ∨ Y even}

2′ {X even ∨ Y odd}

4

(Y even)

{X + Y even}

(X + Y odd)

(Y even)

error {false}

(Y odd)

Y := Y + 1

1 {true}

Figure 4. Program and counterexample DAG with weakest interpolants

Let D be a DAG for the rest of the section. We describe our predicate generation method
in three steps: (i) for single counterexamples without procedures, (ii) for counterexample

11

DAGs without procedures, and (iii) for counterexample DAGs with a procedural structure.
In all cases, we proceed as follows:

• We construct a so-called characteristic formula FD that is unsatisfiable if and only if
the DAG is spurious.

• For each node n in D, we compute a predicate Pn such that the following holds. For
every arc in D, say the arc is from n1 to n2 and is labeled by a rule with relation R,
the triple {Pn1

} R {Pn2
} is a valid Hoare triple (recall that a SPDS rule R corresponds

to a program instruction). For example, in Figure 4, the triple

{X even ∨ Y even} Y := Y + 1 {X even ∨ Y odd}

is a valid Hoare triple.

• We show that unsatisfiability of FD can be decided by computing and examining these
predicates Pn. If FD is unsatisfiable, i.e., if D is spurious, then the predicates explain
the infeasibility of the traces of D, and adding them in future abstractions excludes
those traces.

4.1 Single Counterexamples

We first consider the case where D contains a single path. Since we do not consider pro-
cedures yet, the nodes in D correspond to control points in the program (without any
calling context). In this case, we can equivalently view D as a sequence of (intraprocedural)
statements.

Consider the following SPDS with its equivalent program formulation:

〈0〉 →֒ 〈1〉 (X ′ ∧ (Y ′ ↔ Y) ∧ (Z ′ ↔ Z))
〈1〉 →֒ 〈2〉 ((X ′ ↔ X) ∧ (Y ′ ↔ X) ∧ (Z ′ ↔ Z))
〈2〉 →֒ 〈3〉 ((¬Y ∧ Z) ∧ (X ′ ↔ X) ∧ (Y ′ ↔ Y) ∧ (Z ′ ↔ Z))

0: X := true
1: Y := X
2: if (¬Y ∧ Z) then

3: error

Clearly, error is not reachable. However, if we check the initial abstraction that ig-
nores data, we obtain the (unique) abstract counterexample trace X := true; Y :=
X; assume(¬Y ∧ Z). We demonstrate how by computing interpolants we can simultane-
ously show that the trace is spurious and find an explanation of why it is so. Renaming the
variables in the trace yields the following formulas:

F1 ≡ X1 ∧ (Y1 ↔ Y0) ∧ (Z1 ↔ Z0) // X := true
F2 ≡ (X2 ↔ X1) ∧ (Y2 ↔ X1) ∧ (Z2 ↔ Z1) // Y := X
F3 ≡ (¬Y2 ∧ Z2) ∧ (X3 ↔ X2) ∧ (Y3 ↔ Y2) ∧ (Z3 ↔ Z2) // assume(¬Y ∧ Z)

For instance, the variables with index 2 (X2, Y2 and Z2) refer to the values of X,Y and
Z after X := true; Y := X has been executed, and before assume(¬Y ∧ Z) has been
executed. The characteristic formula of the trace is FD ≡ F1 ∧ F2 ∧ F3. It is unsatisfiable
if and only if the trace is spurious.

12

The procedures derived from Proposition 2.6 show that FD is indeed unsatisfiable and
yield the following strongest and weakest interpolants:

I1 = SI (F ..1, F 2..) ≡ ∃{Y0, Z0, Y1}.F1 ≡ X1

I2 = SI (F ..2, F 3..) ≡ ∃{X1, Z1}.(SI (F ..1, F 2..) ∧ F2) ≡ (X2 ∧ Y2)

J2 = WI (F ..2, F 3..) ≡ ∀{X3, Y3, Z3}.¬F3 ≡ (Y2 ∨ ¬Z2)
J1 = WI (F ..1, F 2..) ≡ ∀{X2, Y2, Z2}.(F2 → WI (F ..2, F 3..)) ≡ (X1 ∨ ¬Z1)

Thus, the predicate Pn we are interested in at node n (where n = 0, 1, 2, 3), is an interpolant
for the formula pair (F ..n, Fn+1..), which is in fact a predicate over variable values at n. For
instance, the interpolants SI (F ..2, F 3..) and WI (F ..2, F 3..), or any other interpolant for this
pair, can only contain logical variables common to F ..2 and F 3.., which must necessarily
have index 2. These logical variables refer to the values of the program variables after the
execution of X := true;Y := X and before the execution of assume(¬Y ∧Z). The reader
may observe that the interpolant computation is, in fact, equivalent to a computation of
strongest postconditions and weakest preconditions.

Fact 4.1 Let F1 ∧ . . . ∧ Fk be the (unsatisfiable) characteristic formula of a spurious trace
consisting of statements c1; c2; . . . ; ck, let {Ki} be a family of interpolants satisfying the
tracking property, and let Pi be the predicate over program variables obtained by removing
the index i from all logical variables in Ki.
Then {true}c1{P1}c2{P2} . . . {Pk−1}ck{false} is a valid Hoare annotation.

Hence, interpolants satisfying the tracking property “explain” the infeasibility of a trace by
providing Hoare annotations. In our example we obtain

{true} X := true {X} Y := X {X ∧ Y } assume(¬Y ∧ Z) {false} (Ii),
{true} X := true {X ∨ ¬Z} Y := X {Y ∨ ¬Z} assume(¬Y ∧ Z) {false} (Ji).

Notice that, by definition, we have Ii |= Ji; for instance, X ∧ Y |= Y ∨ ¬Z.

In this example, conciliated interpolants provide a better explanation of infeasibility.
The procedures of Proposition 2.8 guarantee the tracking property and lead to the Hoare
annotation

{true} X := true {X} Y := X {Y } assume(¬Y ∧ Z) {false}

Intuitively, a strongest interpolants at node n records all facts that are established by the
path leading up to n; e.g. the strongest interpolant at node 2 is X ∧ Y . The weakest
interpolant at n represents the disjunction of all conditions that make the trace infeasible if
they hold at n; e.g. the weakest interpolant at node 2 is Y ∨¬Z. The conciliated interpolant
combines both aspects: it takes the facts that can be established at node n (the strongest
interpolant) and filters out the information that is actually relevant for making the trace
infeasible (the weakest interpolant); in the example, the conciliated interpolant at node 2
is Y .

13

4.2 Multiple Counterexamples

We now extend the techniques from Section 4.1 to the more general case where D contains
multiple paths to the error. First, we adapt the construction of FD. This is illustrated by
the following formula, which represents the DAG in Figure 4. For every node in the DAG,
we take the disjunction over the labels on its incoming arcs; e.g., at control point 4, where
two branches of the DAG merge, we take the disjunction of the labels on the edges from
nodes 2 and 2′.

FD ≡ (X2 = X1 · (X1 + 1)) ∧ (Y2 = Y1)
∧ (X3 = X2) ∧ (Y3 = Y2 odd)
∧ (X2′ = X3) ∧ (Y2′ = Y3 + 1)
∧ (((X4 = X2) ∧ (Y4 = Y2 even)) ∨ ((X4 = X2′) ∧ (Y4 = Y2′ even)))
∧ (Xerror = X4) ∧ (Yerror = Y4) ∧ (X4 + Y4 odd).

As before, D is spurious if and only if FD is unsatisfiable. For a node n, let us define the
formula pair of n as (F,G), where F is the formula corresponding to the DAG “above n”
and G is the formula corresponding to the DAG “below n”. Then, our predicate Pn is an
interpolant for the formula pair of n. In the example above, P3 is an interpolant for the
formula pair (F3, G3), where

F3 ≡ (X2 = X1 · (X1 + 1)) ∧ (Y2 = Y1) ∧ (X3 = X2) ∧ (Y3 = Y2 odd),
G3 ≡ (X2′ = X3) ∧ (Y2′ = Y3 + 1) ∧ (X4 = X2′) ∧ (Y4 = Y2′ even)

∧ (Xerror = X4) ∧ (Yerror = Y4) ∧ (X4 + Y4 odd).

It is easy to see that, in spurious DAGs, such formula pairs are unsatisfiable. By definition,
only current variable values can occur in interpolants for those pairs, i.e., variable values
with index 3 in the example above.

Strongest and weakest interpolants at each control point in D can be computed in a
stepwise way as sketched in Props. 2.6 and 2.10.

In the example, the predicates in curly brackets in Figure 4 are weakest interpolants.
Proposition 2.10 (ii) is used to compute the interpolant at point 2. Since the predicate
computed at 1 turns out to be true, one can infer (cf. Proposition 2.6) that the DAG is
spurious and the computed predicates are indeed interpolants. Strongest interpolants could
be computed similarly. In that case, the DAG is spurious if the predicate at error is indeed
false.

Thanks to the tracking property, the interpolants computed in this manner explain
the infeasibility of the traces in the DAG. For instance, we have the valid Hoare triple
{X even ∨ Y even} Y := Y + 1 {X even ∨ Y odd}. Combined, for the whole DAG D we
have the Hoare triple {true} D {false}, which is an alternative way to state the spuriousness
of D.

Example 4.2 DAGs can represent exponentially many counterexamples. Consider, for
instance, the program in Figure 5. This program contains 23 = 8 different paths to the error
label, which are all shown in the DAG on the right side.

In this example, a CEGAR scheme that considers only single counterexamples requires
23 − 1 = 7 refinement cycles, essentially one for each single path (assuming a simple pred-
icate generation strategy such as weakest or strongest interpolants). This number grows

14

bool A; bool B[3];

1: A := true
2: if B[0] then

3: skip

4: else skip

5: if B[1] then

6: skip

7: else skip

8: if B[2] then

9: skip

10: else skip

11: if ¬A then error

error {false}

3

2 {A}

{A ∧ B[0]}

skip skip

6

{A}

{A ∧ B[1]}

skip skip

9

8 {A}

{A ∧ B[2]}

skip skip

1 {true}

A := true

4 {A ∧ ¬B[0]}

7 {A ∧ ¬B[1]}

10 {A ∧ ¬B[2]}

5

11 {A}

(B[0])

(B[1])

(B[2])

(¬B[0])

(¬B[1])

(¬B[2])

(¬A)

Figure 5. Program with many paths

15

exponentially with the number of “diamonds” in the DAG. The problem gets worse when
such a program structure occurs as a part of a bigger program.

With the DAG of Figure 5, on the other hand, we can exclude all counterexamples in a
single cycle. Intuitively, the strongest interpolant {A} at the control points 2, 5, 8 and 11 is
the “right” predicate: It is simple and powerful enough to rule out the whole DAG, because
the different paths to the points 5, 8 and 11 demonstrate that the values of the Boolean array
B[] are irrelevant and only the value of A matters.

4.3 Programs with Procedures

We now discuss the case where the underlying SPDS represents a program with (possibly
recursive) procedures. The nodes of D now represent control points of the program plus
calling context, i.e., a stack of return addresses.

The construction of the characteristic formula FD is the same as in Section 4.2. However,
FD now contains global and local variables. Local variables are saved during procedure calls
and restored upon completion of a procedure. Thus, if we consider the formula pair (F,G)
at a node n, where n is inside a callee, the local variables of the callers become part of the
common variables of F and G and could occur in Pn. However, we believe that Pn should
be independent of the calling context, for two reasons:

• To generate the abstract transition rules in a simple and efficient way (see Section 5),
the predicate Pn should depend only on the data that is available in the concrete
transition rules that lead into or out of n.

• Allowing local data from the callers to ‘pollute’ the abstract data space of the callee
would severely impair the usefulness of the SPDS model, effectively ‘flattening’ the
system into one that resembles a version where all procedures have been inlined.

In the following, we sketch the modifications that arise in this case. Our goal is to ensure
that the predicates Pn at each node n are independent of the calling context and still satisfy
the tracking property. For simplicity of the presentation we assume that there is a single
global variable G and one local variable L in each procedure.

• For all nodes n, we generate a predicate Pn(Gin, Lin, G,L) recording a relation between
the global/local data G,L at n and the data Gin, Lin that was valid when entering
the procedure that n belongs to. If n corresponds to the entry point of a procedure,
we ensure (Gin ↔ G) ∧ (Lin ↔ L) |= Pn.

• If an edge from n to n′ is labeled by an intraprocedural rule R, we ensure Pn∧R |= Pn′ ,
preserving the tracking property.

• If an edge from node n is labeled by a transition rule Push(G,L,G′, L′, L′′) (modeling
a call), we generate an interpolant Pn>(Gin, Lin, G′, L′, L′′) s.t. Pn ∧ Push |= Pn>.
Thus, Pn> contains information about the arguments given to the callee (G′, L′) and
the saved local data (L′′).

• If an edge from node n′ is labeled by a transition rule Pop(G,L,G′) (a return state-
ment) and f was the called procedure, we generate an interpolant P<f (Gin , Lin , G′)

16

s.t. Pn′ ∧Pop |= P<f . The predicate P<f is effectively an input-output relation of the
called procedure f or, in other words, a predicate that argues about the effect of f.
So, if n′′ is the target node of the edge and n is the node from which the call took
place, we ensure that Pn> ∧ P<f |= Pn′′ .

Figure 6 gives an example for a (spurious) counterexample DAG to the SPDS in Figure 3,
which contains a procedure call. The left-hand side shows the control flow in the procedure m,
which is interrupted by a call to a function f, whose control flow is shown on the right. The
predicates associated with the nodes are the weakest interpolants for our example.

m2

(G 6= 0)

error

m1

L := L · (L + 1)

m0

Ain := L

Pm0
≡ {true}

Pm1
≡ {L even}

Pm2
≡ {G = 0}

Perror ≡ {false}

Pm1> ≡ {Ain even} A := 0 A := 561

G := A

P<f ≡ {Ain even → G = 0}

Pf1
≡{true}

Pf0
≡ {A odd → Ain odd}

(A even)

f1

(A odd)

f2

Pf3
≡ {Ain even → A = 0}

Pf2
≡ {Ain odd}

f3

f0

Figure 6. An example for a counterexample DAG with procedure call

To explain how the predicates are computed in the general case, we consider a generic
procedure call/return pair, see Figure 7. A procedure m calls a procedure f and is resumed
after the termination of f.

In order to simplify our description, we assume that the variables that the rules might
depend on (they are put in parentheses) actually occur there. Table 1 shows the computation
of strongest and weakest interpolants for the predicates Px.

Most of the top-down computation of strongest interpolants (left-hand side of Table 1)
is quite straightforward and resembles Proposition 2.6. Observe that the predicate Sf0

simply states that the local and global variable values at the beginning of f equal the local
and global variable values at point f0. This paves the way for the following predicates
Sf1

, Sf2
, . . . that keep track of the relation between the variable values at the beginning

of f (Gfin
, Lfin

) and the current variable values. The predicate S<f finally captures the
input-output behavior of f. Notice that Smi+1

, the strongest interpolant after the execution
of f, is computed by combining Smi

(the strongest interpolant before f) with the procedure
effect S<f .

The bottom-up computation scheme of weakest interpolants (right-hand side of Table 1)
requires some more explanation. Consider the predicate Wmi> and assume that we have
already computed Wmi+1

in our bottom-up computation scheme. Earlier, we noted that we
want to guarantee Wmi> ∧ P<f |= Wmi+1

, no matter what the predicate P<f may be. The

17

m0

m1

mi

mi+1

merr

f0

fj

Pm0
(Gmin

, Lmin
, Gm0

, Lm0
)

Pm1
(Gmin

, Lmin
, Gm1

, Lm1
)

Pmi
(Gmin

, Lmin
, Gmi

, Lmi
)

Pmi+1
(Gmin

, Lmin
, Gmi+1

, Lmi+1
)

Pmerr
(Gmin

, Lmin
, Gmerr

, Lmerr
)

Rm1
(Gm0

, Lm0
, Gm1

, Lm1
)

Rf1
(Gf0

, Lf0
, Gf1

, Lf1
)

Pf0
(Gf in , Lfin

, Gf0
, Lf0

)

Pf1
(Gf in , Lfin

, Gf1
, Lf1

)

Pfj
(Gf in , Lfin

, Gfj
, Lfj

)

P<f(Gfin
, Lfin

, Gmi+1
)

Pmi>(Gmin
, Lmin

, Gfin
, Lfin

, Lmi+1
)

Push(Gmi
, Lmi

, Gfin
, Lfin

, Lmi+1
)

Pop(Gfj
, Lfj

, Gmi+1
)

f1

Figure 7. A counterexample DAG with procedure call

weakest formula over (Gmin
, Lmin

, Gfin
, Lfin

, Lmi+1
) that satisfies this implication is

Wmi> ≡ ∀{Gmi+1
}.(P<f → Wmi+1

) .

Now one can see that a stronger P<f will make Wmi> weaker. Since we wish Wmi> to be
as weak as possible, we choose for P<f the strongest interpolant S<f .

Once Wmi> is fixed, the predicate W<f can be computed. The weakest formula W<f

over (Gfin
, Lfin

, Gmi+1
) that satisfies the implication Wmi> ∧ W<f |= Wmi+1

is

W<f ≡ ∀{Gmin
, Lmin

, Lmi+1
}.(Wmi> → Wmi+1

) ,

Table 1. Computation of strongest and weakest interpolants

strongest interpolant S weakest interpolant W

Sm0
/Wm0

true ∀{Gm1
, Lm1

}.(Rm1
→ Wm1

)
Sm1

/Wm1
∃{Gm0

, Lm0
}.(Sm0

∧ Rm1
) bottom-up

Smi
/Wmi

top-down ∀{Gfin
, Lfin

, Lmi+1
}.(Push → Wmi>)

Smi>/Wmi> ∃{Gmi
, Lmi

}.(Smi
∧ Push) ∀{Gmi+1

}.(S<f → Wmi+1
)

Sf0
/Wf0

(Gfin
↔ Gf0

) ∧ (Lfin
↔ Lf0

) ∀{Gf1
, Lf1

}.(Rf1
→ Wf1

)
Sf1

/Wf1
∃{Gf0

, Lf0
}.(Sf0

∧ Rf1
) bottom-up

Sfj
/Wfj

top-down ∀{Gmi+1
}.(Pop → W<f)

S<f/W<f ∃{Gfj
, Lfj

}.(Sfj
∧ Pop) ∀{Gmin

, Lmin
, Lmi+1

}.(Wmi> → Wmi+1
)

Smi+1
/Wmi+1

∃{Gfin
, Lfin

}.(Smi> ∧ S<f) bottom-up
Smn/Wmn top-down false

18

bool G;

procedure main {
G := true
level1()

level1()

if (G == false) then

error

}

procedure level1() {
level2()

level2()

}
...

procedure leveln−1() {
leveln()

leveln()

}
procedure leveln() {

if (G == true) then G := false
else G := true

}

Figure 8. Program whose first abstraction includes an exponentially long spurious counterex-
ample

as stated in Table 1.

On a more intuitive level, we use the most precise description of f’s effect available
to us, namely the strongest interpolant S<f , to compute Wmi> from Wmi+1

. Thus we
get the weakest Wmi> possible. Once Wmi> is known, we can weaken S<f to W<f by
overapproximating f’s effect in terms of the given counterexample DAG: We need not say
more about W<f than that it transforms Wmi> to Wmi+1

.

It is straightforward to extend this scheme so as to handle unfinished procedure calls,
e.g. if the error label is reached before a callee completes its execution. In this case, two
simplifications can be applied:

• We need not care about the local variables of the caller after the call because they are
irrelevant for counterexamples.

• We need not track an input-output relation of the callee because unfinished procedures
produce no output.

Conceptually, we inline the procedure call in this case and treat the push rule like an
ordinary intraprocedural statement: the local variables of the caller (the variable Lmi+1

in
Figure 7) are quantified away, and the input-output relation of the callee is omitted.

Our implementation improves the efficiency of predicate generation by working directly
on the witness graphs discussed in [RSJM05]. This data structure represents counterex-
ample DAGs in a compact way by reusing nodes from procedures that are called multiple
times. For example, consider the program in Figure 8 (simplified from [Sch02]), whose first
abstraction contains an exponentially (in n) long spurious counterexample.

In [Sch02] and [RSJM05] it is discussed how to model check such a program in linear
time. Moped constructs the witness graph while it model checks, so the resulting repre-
sentation of the abstract counterexample has only linear size. We can take advantage of

19

this representation and compute only one predicate for each node in the compressed coun-
terexample DAG. This leads to a linear number of predicates in the example above. In the
following, we sketch how this is accomplished.

The strongest interpolants in a callee do not depend on the calling context (see
Sf0

, Sf1
, Sfj

in Table 1), so it is easy to compute those predicates only once for all in-
vocations of the procedure. In contrast, the weakest interpolants in a callee do depend on
the context: In Table 1, the predicates Wf0

,Wf1
,Wfj

depend indirectly on the previously
computed Wmi+1

. In order to compute those predicates only once for each node in the
witness graph, we first compute the “effect” of f relative to the context. This procedure
effect is given by W<f for each invocation that uses the corresponding witness node. The
procedure effect for all those invocations can then be obtained by taking the conjunction
of all W<f . The resulting predicate expresses the effect of any of those invocations of f.

This treatment of multiple branches in a counterexample is quite analogous to the one
of Section 4.2. Both times we use a disjunction or a conjunction to summarize multi-
ple branches according to Proposition 2.10. Note that this would not work for recursive
programs, if the witness graph contained cycles. Fortunately, witness graphs are always
DAGs. If a procedure calls itself in a counterexample, the two invocations are represented
by distinct nodes in the witness graph [RSJM05].

We conclude that the witness graph structure gives us two different exponential savings.
In Section 4.2, we gave a counterexample DAG that contains an exponential number of
counterexamples. In this section, we mentioned that counterexamples of exponential length
can be compressed by reusing procedure invocations.

5. Computing the Abstract SPDS

In each CEGAR cycle, we derive predicates to refine our abstraction. In the methods of
Section 4, each predicate naturally belongs to a control point. Thus, as in [HJMM04],
we maintain for each control point a list of predicates that are useful there. In the fol-
lowing we explain how, given a concrete SPDS and a predicate list, one can compute an
(overapproximating) abstract SPDS.

5.1 An Example

Consider the example SPDS of Section 4.1 which contains no procedure calls. We derived
conciliated interpolants that explain the infeasibility of the error trace. At each control
point, we now associate each predicate (except for true and false) with a Boolean variable
that reflects the truth of the predicate: [1] := l1 ↔ X and [2] := l2 ↔ Y .

For the computation of the abstract rules, we use existential abstraction. For instance,
the concrete BDD R ≡ (X ′ = X)∧ (Y ′ = X) ∧ (Z ′ = Z) of the SPDS rule 〈1〉 →֒ 〈2〉 (R) is
replaced by an “abstract” BDD

∃{X,Y,Z,X ′, Y ′, Z ′}.
(

(l2 ↔ X)∧((X ′ ↔ X)∧(Y ′ ↔ X)∧(Z ′ ↔ Z))∧(l′3 ↔ Y ′)
)

≡ l′2 ↔ l1.

The number of abstract variables can be reduced because we track the predicates only at
the control points where they were derived. In our example, we have only one predicate per
control point. Therefore, one abstract Boolean variable suffices for the abstract SPDS:

20

〈0〉 →֒ 〈1〉 (l′)
〈1〉 →֒ 〈2〉 (l′ ↔ l)
〈2〉 →֒ 〈3〉 (¬l)

0: l := true
1: skip

2: if ¬l then

3: error

The error label is no longer reachable in the abstract program. This is due to the fact that
the Hoare annotation of a concrete program can be abstractly translated:

{true} X := true {X} Y := X {Y } assume(¬Y ∧ Z) {false} translates into
{true} l := true {l} skip {l} assume(¬l) {false}.

Hence, if the predicates that explain the infeasibility of a trace are added to the program
by means of an existential abstraction as above, this spurious trace is excluded.

5.2 The General Case

We now discuss how to compute an abstract SPDS. The idea, as seen in the example, is to
introduce Boolean variables in the abstract SPDS that track the truth of the predicates.

In order to simplify the presentation, we show the construction for the case where there
is only one predicate per control point. Hence, we may reuse the notation of Figure 7
and Table 1. We also assume again that there is a single global variable G and one local
variable L at each control point. The techniques can easily be generalized to eliminate those
assumptions.

As sketched in Section 5.1, we compute concretizations for each control point. These
concretizations map the abstract variables (in small letters) to the corresponding predicates
over the concrete variables (in capital letters). We also compute concretizations for some
additional control points that occur only in the abstract SPDS, see below. For the program
in Fig. 7, we compute the following concretizations:

[m0] ≡ lm0
↔ Pm0

(Gmin
, Lmin

, Gm0
, Lm0

)
[m1] ≡ lm1

↔ Pm1
(Gmin

, Lmin
, Gm1

, Lm1
)

[mi] ≡ lmi
↔ Pmi

(Gmin
, Lmin

, Gmi
, Lmi

)
[mi >] ≡ lmi> ↔ Pmi>(Gmin

, Lmin
, Gfin

, Lfin
, Lmi+1

)
[f0] ≡ lf0

↔ Pf0
(Gfin

, Lfin
, Gf0

, Lf0
)

[fj] ≡ lfj
↔ Pfj

(Gfin
, Lfin

, Gfj
, Lfj

)

[<f] ≡ g ↔ P<f (Gfin
, Lfin

, Gmi+1
)

[mi+1] ≡ lmi+1
↔ Pmi+1

(Gmin
, Lmin

, Gmi+1
, Lmi+1

)

If the predicate list at control point n consists of more than one predicate, a concretization
[n] becomes the conjunction of more than one equivalence.

The abstract variables lx may all be local. In contrast, the effect of a called procedure
(the predicate P<f) must be captured in an abstract global variable g, because it needs to
be inspected later by the caller in order to incorporate the procedure effect into its local
abstract variable values. Notice that we abuse Fig. 7 here in the sense that the abstract
SPDS does not depend on a particular counterexample DAG, but only on the computed
predicates which happen to be shown in Fig. 7.

For each type of rule in the concrete SPDS (intraprocedural rule, push rule, pop rule),
we now provide the details for generating the corresponding abstract rules. The general

21

idea is to take the concrete BDD R, conjoin it with the concretizations of the predicates of
interest both before and after the execution of the rule, and finally to existentially abstract
away the concrete variables. The latter operation is denoted below by Abs, i.e. Abs(R)
existentially abstracts away all copies of G and L occurring in R.

A concrete intraprocedural rule

〈m0〉 →֒ 〈m1〉 (Rm1
(Gm0

, Lm0
, Gm1

, Lm1
))

is replaced by the abstract rule

〈m0〉 →֒ 〈m1〉 (rm1
(lm0

, lm1
)),

where
rm1

≡ Abs
(

[m0] ∧ Rm1
∧ [m1]

)

.

This case was illustrated in Section 5.1. However, there we neglected the relation to the
input variables Gmin

and Lmin
.

A concrete push rule

〈mi〉 →֒ 〈f0,mi+1〉 (Push(Gmi
, Lmi

, Gfin
, Lfin

, Lmi+1
))

is replaced by two abstract rules:

〈mi〉 →֒ 〈f0,mi >〉 (push(lmi
, lf0

, lmi>))

and

〈mi >〉 →֒ 〈mi+1〉 (eval(lmi>, g, lmi+1
)) ,

where mi > is a new control point,

push ≡ Abs
(

[mi] ∧ Push ∧ (Gfin
↔ Gf0

) ∧ (Lfin
↔ Lf0

) ∧ [f0] ∧ [mi >]
)

,

and

eval ≡ Abs
(

[mi >] ∧ [<f] ∧ [mi+1]
)

.

We introduce the new control point mi > because we need an additional evaluation step in
order to set the value of lmi+1

correctly: The status directly after the procedure call, saved
in lmi>, is combined in eval with the procedure effect, saved in g.

Finally, a concrete pop rule

〈fj〉 →֒ 〈〉 (Pop(Gfj
, Lfj

, Gmi+1
))

is replaced by the abstract rule

〈fj〉 →֒ 〈〉 (pop(lfj
, g)) ,

where
pop ≡ Abs

(

[fj] ∧ Pop ∧ [<f]
)

.

As mentioned in Section 5.1, we can save variables in a straightforward way, since each
local variable lx is relevant at only one control point. We did not spend much effort to
optimize the assignment of predicates to BDD variables, as model checking the abstract
system with Moped did not turn out to be costly.

22

6. Case Studies

We have implemented the ideas of this paper in an extension of Moped, in order to decrease
resources needed for model checking SPDSs. Moped accepts multiple input languages in-
cluding a subset of Java [SSE05, SBSE07].

Sections 6.1–6.3 demonstrate the benefits of abstraction refinement with conciliated in-
terpolants. For these examples, a comparison of our program with existing CEGAR tools
did not seem appropriate because the assumptions of tools like BLAST and SLAM (infi-
nite variable ranges, theorem provers) differ significantly from ours (finite variable ranges).
However, in Sections 6.4 and 6.5 we provide a comparison with BLAST to illustrate a bad
asymptotic behavior if some techniques described in this paper are not used. In Section 6.6
we describe unsuccessful experiments.

6.1 Locking Example

Figure 9 shows an example of a program where CEGAR clearly pays off, especially when
the number of bits for the integer variables (“bit width”) is increased. The “*”-sign stands
for a nondeterministic value. We want to check the fact that the assertions in the program
always hold. This property is actually independent of the integer variables. Table 2 shows
performance results (on an Intel Xeon CPU 2.40GHz and using a bit width of 8).

struct file {
bool locked;

int pos;

};
open(file f) {

assert(¬f.locked);
f.locked = true;

f.pos = 0;

}
close(file f) {

assert(f.locked ∨
f.pos==0);

f.locked = false;

}

rw(file f) {
assert(f.locked ∨ f.pos==0);

f.pos = f.pos + 1;

}
main() {

file f1,f2;

f1.locked = f2.locked = false;

open(f1);

while(*) {
open(f2);

while(*) { rw(f2); rw(f1); }
close(f2);

}
close(f1);

}

Figure 9. Locking example (pseudo code)

Table 2. Results of different Moped versions applied on the locking example

time/s memory/BDD nodes # cycles # gl. var. # loc. var.

w/o CEGAR 460 440482 n/a n/a n/a
weakest interp. 0.43 89936 14 13 6
concil. interp. 0.29 80738 10 10 7

23

Moped without CEGAR needs exponential time in the bit width. On the other hand,
using weakest or conciliated interpolants, our CEGAR scheme automatically abstracts from
the integers and proves the assertions in constantly many refinement cycles. The number of
global and local variables in the final abstract program (containing no spurious error traces
anymore) is also shown in the table and is also independent of the bit width. Time and
memory consumption of the abstract versions grow modestly with the bit width. Conciliated
interpolants have the best performance because the predicate simplification allows them to
“discover” that the f.pos fields are irrelevant to the property.

6.2 Equality Tracking Example

Figure 10 shows another example highlighting the possible benefit of conciliated inter-
polants. The error label is not reachable because X = Y holds. The idea of this example
is that the variable Z is irrelevant for the property to be checked. However, the weakest-
interpolants heuristic cannot discover this, as suggested by Table 3. The array Q simply
provides for a large state space. We used a bit width of 3.

int X, Y, Z;

foo() {
int P;

int Q[8];

while(*) {
if(*) {

P = * % 8; /* any number in {0, . . . , 7} */

Q[P] = Q[P] + 1;

} else {
Z = *; /* any number */

X = X + P;

Y = Y + P;

}
}

}

main() {
X = 0;

Y = 0;

foo();

if (X 6= Y)

if (Z == 0)

error;

}

Figure 10. Equality tracking example (pseudo code)

Table 3. Results of different Moped versions applied on the equality tracking example

time/s memory/BDD nodes # cycles # gl. var. # loc. var.

w/o CEGAR 25 1723092 n/a n/a n/a
weakest interp. 3.0 556990 8 3 6
concil. interp. 0.1 44968 3 1 1
strongest interp. > 3600 ? >100 ? ?

Notice that abstraction with strongest interpolants does not work well here. We often
observed that and do not recommend this heuristic. The advantage of conciliated inter-

24

polants can be arbitrarily increased by increasing the size of the problem, e.g. by extending
the array Q. On the other hand, conciliated interpolants are not always better than weakest
interpolants. For example, if the statements involving Z are eliminated from Figure 10, then
weakest and conciliated interpolants coincide and both prove the property in 3 refinement
cycles and in less than 0.1 seconds. In practice, conciliated interpolants are never worse
than weakest interpolants because the additional resources required to compute conciliated
interpolants do not form a bottleneck. We therefore use conciliated interpolants as our
standard heuristic.

6.3 LinkedList Example

Abstraction can also be useful in positive instances (where the error label is reachable) and
in larger programs. As an example, we took Java code for the class LinkedList from a
textbook on data structures [Wei98] and modified only the main method, simulating a user
who accesses class methods randomly:

public class LinkedList { · · ·
private ListNode header;

public static void main (String[] args) {
LinkedList l = new LinkedList();

while (NONDET())

if (NONDET()) l.insert(null, l.zeroth());

else l.remove(null);

assert(l.header == null);

}
}

The assertion to be checked is not valid in the class implementation.4. This reachability
problem is scalable, as the size of jMoped’s heap representation is adjustable. We compared
Moped with and without CEGAR on different problem sizes. We used 5 bits per pointer
variable in all cases. Conciliated interpolants were used in the cases with CEGAR. A
refinement was not necessary. Table 4 shows the results.

Table 4. Results of different Moped versions applied to the LinkedList example

without CEGAR with CEGAR
heap size/bits time/s memory/BDD nodes time/s memory/BDD nodes

40 13 2.8 · 106 23 5.7 · 106

50 22 3.3 · 106 28 6.9 · 106

60 36 3.7 · 106 33 7.8 · 106

70 86 4.9 · 106 31 9.1 · 106

80 437 7.0 · 106 36 10.9 · 106

90 1474 12.1 · 106 44 12.9 · 106

100 4980 24.8 · 106 51 15.0 · 106

4. However, we did not discover a bug here. The class implementation is correct.

25

Moped with CEGAR outperforms Moped without CEGAR with growing heap sizes.
Table 4 suggests an exponential increase in runtime for the non-abstracted version, whereas
the CEGAR version seems to grow linearly in the heap size. Memory consumption is
comparable in both versions; the non-abstracted version has some advantage for smaller
heap sizes.

6.4 DAG Example

To show the usefulness of excluding a whole DAG of counterexamples in one cycle, we
slightly extended the program of Figure 5 (page 15), see Figure 11.

bool B[3];

bool C[3];

main() {
B[0] = *; B[1] = *; B[2] = *;

if (B[0] == false) C[0] = false; else C[0] = B[0];

if (B[1] == false) C[1] = false; else C[1] = B[1];

if (B[2] == false) C[2] = false; else C[2] = B[2];

if (B[0] 6= C[0]) error;

if (B[1] 6= C[1]) error;

if (B[2] 6= C[2]) error;

}

Figure 11. DAG example for n = 3 (pseudo code)

Notice that the program shown in Figure 11 can be generalized from n = 3 (the size of
the arrays) to arbitrary n in a straightforward way. We ran both Moped with CEGAR and
BLAST (version 3.0)5. on this code. Table 5 shows the results.

Table 5. Results of Moped with CEGAR and BLAST applied to the DAG example

Moped with CEGAR BLAST
n time/s time/s Nb iterations of reachability

1 0.02 0.7 44
2 0.02 1.1 118
3 0.02 2.1 260
4 0.03 5.0 542
5 0.03 12.3 1124
6 0.04 31.5 2358
7 0.05 86.2 5012
8 0.07 221.0 10750

The results suggest that BLAST needs exponential time in n. The exponential behavior
of BLAST is further suggested by the “Nb iterations of reachability” number from BLAST’s

5. In all of our BLAST experiments we used the options -cf -craig 1 -predH 7 -alias bdd which were
recommended to us by the authors of BLAST.

26

output. Moped with CEGAR is much faster. In particular, it always needs exactly one
refinement, because the full counterexample DAG (containing 2n spurious counterexamples)
is already obtained in the very first abstraction. This DAG is completely excluded by the
first refinement.

6.5 Level Example

We ran both Moped with CEGAR and BLAST (version 3.0) on the code of Figure 8
(page 19) and on some variation of this code, see below. Table 6 shows the results.

Table 6. Results of Moped with CEGAR and BLAST applied to the level example

Moped with CEGAR BLAST on initial code BLAST on changed code
Nb iterations Nb iterations

n time/s time/s of reachability time/s of reachability

1 0.02 0.6 46 0.8 69
2 0.02 0.8 70 1.0 105
3 0.02 1.1 88 1.4 132
4 0.02 1.4 106 1.8 159
5 0.02 1.5 124 3.8 277
6 0.02 1.9 142 9.7 418
7 0.02 2.6 160 25.7 583
8 0.02 4.0 178 77.9 800
9 0.02 6.8 196 291.3 985

Moped with CEGAR is very fast on this example (< 0.1 s for all n < 10). According
to the explanation from the end of Section 4, the runtime grows linearly with n. However,
this growth is not apparent from the table, as n is too small. Independently from n, Moped
with CEGAR needs exactly one refinement to rule out all spurious counterexamples.

We also ran Moped on a modified example in which we replaced the code of procedure
leveln()

procedure leveln() {
if (G == true) then G := false
else G := true

}

by

procedure leveln() {
if (G == false) then G := true
else G := false

}

and left all other code unchanged. The results remained the same, since Moped is insensitive
to the code modification because both code fragments lead to the same SPDS rule with the
same BDD.

27

BLAST also checks the initial example in linear time (see columns 3 and 4), where the
“Nb iterations of reachability” number from BLAST’s output grows only linearly. On the
other hand, when we ran BLAST on the modified example (see columns 5 and 6), it seemed
to need exponential time in n to verify the code, where the number of iterations in BLAST
grows super-linearly. This suggests that the predicate generation of BLAST is not stable
with respect to this seemingly trivial modification, whereas the use of BDDs causes Moped
to remain stable.

6.6 Discussion of Unsuccessful Experiments

With our predicate generation heuristics, CEGAR does not always pay off. This is usually
the case when properties are checked whose validity depends on the correctness of large
portions of the code working on large data. For instance, CEGAR does not turn out to
be useful in order to verify that a Quicksort program indeed correctly sorts an array of
numbers. In this case, the abstraction refinement loop essentially restores the original non-
abstracted program, because our predicate generation heuristics fail to “understand” how
Quicksort works. So the CEGAR cycle considers exponentially many permutations of the
array to be sorted. The “raw” version of Moped (without CEGAR) performs much better
here. The situation for other sorting algorithms is similar.

In general terms, the abstracted version is superior if the validity of a property can be
explained by predicates that can be found by our interpolation methods. If it is not clear
whether this is the case, we recommend to try Moped both with and without CEGAR. The
performance may be extremely different.

7. Conclusions

While Craig interpolation has previously been used for CEGAR together with SAT solvers
and theorem provers, we found that it is also useful to enhance a BDD-based model checker.
Strongest and weakest interpolants form a framework inside which heuristics can be applied
to find good predicates, e.g. conciliated interpolants. The number of refinement cycles often
depends crucially on the quality of the derived predicates.

BDD-based model checkers record how program states can be reached in order to report
possible counterexamples. This information can be exploited by a CEGAR scheme to
exclude multiple counterexamples at the same time. This can save exponentially (in the
size of the DAG) many refinement cycles.

Our CEGAR scheme can achieve large savings, especially if the property to be checked
is much simpler than the full functionality of the program. For future research, we plan
to further improve predicate generation heuristics. Possibilities include an adapted form of
lazy abstraction [HJMS02] and the incorporation of dataflow information to detect relevant
counterexample parts [JM05].

Acknowledgments

We thank Dejvuth Suwimonteerabuth for his great support with jMoped and Andreas Holzer
for installing BLAST. We also thank Grégory Théoduloz for his help on using BLAST. Fi-

28

nally, we thank the anonymous referees for their valuable comments that helped to improve
this paper significantly.

References

[BR01] T. Ball and S.K. Rajamani. Automatically validating temporal safety prop-
erties of interfaces. In SPIN 01, LNCS 2057, pages 103–122, 2001.

[CCG+03] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. In Proc. 25th International Conference on Software
Engineering (ICSE), pages 385–395. IEEE Computer Society Press, 2003.

[CGJ+00] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In Proc. CAV’00, LNCS 1855, pages 154–169.
Springer, 2000.

[Cra57] W. Craig. Linear reasoning. A new form of the Herbrand-Genzen theorem.
Journal of Symbolic Logic, 22:250–268, 1957.

[EKS06] J. Esparza, S. Kiefer, and S. Schwoon. Abstraction refinement with Craig
interpolation and symbolic pushdown systems. In Proceedings of TACAS 2006,
volume 3920 of LNCS, pages 489–503, 2006.

[GKMH+03] M. Glusman, G. Kamhi, S. Mador-Haim, R. Fraer, and M. Vardi. Multiple-
counterexample guided iterative abstraction refinement: An industrial evalu-
ation. In Proceedings of TACAS 2003, LNCS 2619, pages 176–191. Springer,
2003.

[HJMM04] T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan. Abstractions
from proofs. In Proc. POPL’04, pages 232–244. ACM Press, 2004.

[HJMS02] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
Proc. POPL’02, pages 58–70. ACM Press, 2002.

[JKSC05] H. Jain, D. Kroening, N. Sharygina, and E. Clarke. Word level predicate
abstraction and refinement for verifying RTL Verilog. In Proc. DAC’05, pages
445–450. ACM Press, 2005.

[JM05] R. Jhala and R. Majumdar. Path slicing. In Proc. of PLDI ’05, pages 38–47.
ACM, 2005.

[Kie05] S. Kiefer. Abstraction refinement for pushdown systems. Master’s thesis,
Universität Stuttgart, 2005. http://www.fmi.uni-stuttgart.de/szs/
publications/info/kiefersn.Kie05.shtml.

[McM03] K.L. McMillan. Interpolation and SAT-based Model Checking. In Proc.
CAV’03, LNCS 2725, pages 1–13. Springer, 2003.

[McM05] K.L. McMillan. Applications of Craig interpolants in model checking. In
Proceedings of TACAS 2005, LNCS 3440, pages 1–12. Springer, 2005.

29

[RSJM05] T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and
their application to interprocedural dataflow analysis. Science of Computer
Programming, 58(1–2):206–263, October 2005. Special Issue on the Static
Analysis Symposium 2003.

[SBSE07] D. Suwimonteerabuth, F. Berger, S. Schwoon, and J. Esparza. jMoped: A
test environment for Java programs. In Proc. CAV’07, LNCS 4590, pages
164–167, 2007.

[Sch02] S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, TU München,
2002.

[SSE05] D. Suwimonteerabuth, S. Schwoon, and J. Esparza. jMoped: A Java bytecode
checker based on Moped. In Proceedings of TACAS 2005, LNCS 3440, pages
541–545. Springer, 2005.

[Wei98] M.A. Weiss. Data Structures and Algorithm Analysis in Java. Addison-Wesley,
1998.

30

	Introduction
	Our Work and Related Work

	Craig Interpolation
	Strongest and Weakest Interpolants
	Iterative Computation of Interpolants
	Conciliated Interpolants

	Symbolic Pushdown Systems
	Computing Predicates for a DAG of Counterexamples
	Single Counterexamples
	Multiple Counterexamples
	Programs with Procedures

	Computing the Abstract SPDS
	An Example
	The General Case

	Case Studies
	Locking Example
	Equality Tracking Example
	LinkedList Example
	DAG Example
	Level Example
	Discussion of Unsuccessful Experiments

	Conclusions

