Computation of summaries using net unfoldings Javier Esparza¹, Loïg Jezequel², and Stefan Schwoon³ ¹ Institut für Informatik, Technische Universität München, Germany ² ENS Cachan Bretagne, Rennes, France ³ LSV, ENS Cachan & CNRS, INRIA Saclay, France **Abstract.** We study the following summarization problem: given a parallel composition $\mathbf{A} = \mathcal{A}_1 \parallel \dots \parallel \mathcal{A}_n$ of labelled transition systems communicating with the environment through a distinguished component \mathcal{A}_i , efficiently compute a summary \mathcal{S}_i such that $\mathbf{E} \parallel \mathbf{A}$ and $\mathbf{E} \parallel \mathcal{S}_i$ are trace-equivalent for every environment \mathbf{E} . While \mathcal{S}_i can be computed using elementary automata theory, the resulting algorithm suffers from the state-explosion problem. We present a new, simple but subtle algorithm based on net unfoldings, a partial-order semantics, give some experimental results using an implementation on top of Mole, and show that our algorithm can handle divergences and compute weighted summaries with minor modifications. ### 1 Introduction We address a fundamental problem in automatic compositional verification. Consider a parallel composition $\mathbf{A} = \mathcal{A}_1 \parallel \ldots \parallel \mathcal{A}_n$ of processes, modelled as labelled transition systems, which is itself part of a larger system $\mathbf{E} \parallel \mathbf{A}$ for some environment \mathbf{E} . Assume that \mathcal{A}_i is the interface of \mathbf{A} with the environment, i.e., \mathbf{A} communicates with the outer world only through actions of \mathcal{A}_i . The task consists in computing a new interface \mathcal{S}_i with the same set of actions as \mathcal{A}_i such that $\mathbf{E} \parallel \mathbf{A}$ and $\mathbf{E} \parallel \mathcal{S}_i$ have the same behaviour. In other words, the environment E cannot distinguish between \mathbf{A} and \mathcal{S}_i . Since \mathcal{S}_i usually has a much smaller state space than \mathbf{A} (making $\mathbf{E} \parallel \mathbf{A}$ easier to analyse) we call it a summary. We study the problem in a CSP-like setting [13]: parallel composition is by rendez-vous, and the behaviour of a transition system is given by its trace semantics It is easy to compute S_i using elementary automata theory: we first compute the transition system of \mathbf{A} , whose states are tuples (s_1, \ldots, s_n) , where s_i is a state of \mathcal{A}_i . Then we hide all actions except those of the interface, i.e., we replace them by ε -transitions (τ -transitions in CSP terminology). We can then eliminate all ε -transitions using standard algorithms, and, if desired, compute the minimal summary by applying e.g. Hopcroft's algorithm. The problem of this approach is the state-space explosion: the number of states of \mathbf{A} can grow exponentially in the number of sequential components. While this is unavoidable in the worst case (deciding whether S_i has an empty set of traces is a PSPACE-complete problem, and the minimal summary S_i may be exponentially larger than $\mathcal{A}_1, \ldots, \mathcal{A}_n$ in the worst case, see e.g. [11]) the combinatorial explosion happens already in trivial cases: if the components A_1, \ldots, A_n do not communicate at all, we can obviously take $S_i = A_i$, but the algorithm we have just described will need exponential time and space. We present a technique to palliate this problem based on net unfoldings (see e.g. [4]). Net unfoldings are a partial-order semantics for concurrent systems, closely related to event structures [24], that provides very compact representations of the state space for systems with a high degree of concurrency. Intuitively, an unfolding is the extension to parallel compositions of the notion of unfolding a transition system into a tree. The unfolding is usually infinite. We show how to algorithmically construct a finite prefix of it from which the summary can be easily extracted. The algorithm can be easily implemented re-using many components of existing unfolders like Punf [14] and Mole [22]. However, its correctness proof is surprisingly subtle. This proof is the main contribution of the paper. However, we also evaluate the algorithm on some classical benchmarks [2] We then show that – with minor modifications – the algorithm can be extended so that the summary obtained contains information about the possible divergences, that is whether or not after a given finite trace of the interface A_i it is possible that **A** evolves silently forever (i.e. without using any action of A_i). And finally, we show how to extend the algorithm to deal with weighted systems: S_i then also gives for each of its finite traces the minimum cost in A to execute this trace. **Related work.** The summarization problem has been extensively studied in an interleaving setting (see e.g. [10, 23, 25]), in which one first constructs the transition system of **A** and then reduces it. We study it in a partial-order setting. Net unfoldings, and in general partial-order semantics, have been used to solve many analysis problems: deadlock [19,16], reachability and model-checking questions [6,3,15,4,1], diagnosis [7], and other specific applications [18,12]. To the best of our knowledge we are the first to explicitly study the summarization problem. Our problem can be solved with the help of Zielonka's algorithm [26, 20, 9], which yields an asynchronous automaton trace-equivalent to \mathbf{A} . The projection of this automaton onto the alphabet of \mathcal{A}_i yields a summary \mathcal{S}_i . However, Zielonka's algorithm is notoriously complicated and, contrary to our algorithm, requires to store much additional information for each event [20]. In [8], the complete tuple $\mathcal{S}_1, \ldots, \mathcal{S}_n$ is computed – possibly in a weighted context – with an iterative message-passing algorithm that transfers information between components until a fixed point is reached. However, termination is only guaranteed when the communication graph is acyclic. This paper extends [5] with proofs and implementation details. #### 2 Preliminaries #### 2.1 Transition systems A labelled transition system (LTS) is a tuple $\mathcal{A} = (\Sigma, S, T, \lambda, s^0)$ where Σ is a set of actions, S is a set of states, $T \subseteq S \times S$ is a set of transitions, $\lambda \colon T \to \Sigma$ is a labelling function, and $s^0 \in S$ is an initial state. An a-transition is a transition labelled by a. We use this definition – excluding the possibility to have two transitions with different labels between the same pair of states – for simplicity. However, the results presented in this paper would still hold if this possibility was not excluded. A sequence of transitions $\tau = t_1 t_2 t_3 \cdots \in T^* \cup T^\omega$ is an execution of \mathcal{A} if there is a sequence $s_0 s_1 s_2 \ldots$ of states such that $t_k = (s_{k-1}, s_k)$ for every k. We write $s_0 \stackrel{\tau}{\longrightarrow} (\text{or } s_0 \stackrel{\tau}{\longrightarrow} s_n \text{ when } \tau \text{ is finite with } t_n \text{ as last transition}).$ An execution is a history if $s_0 = s^0$. A sequence $\sigma = a_1 a_2 a_3 \ldots \in \mathcal{L}^* \cup \mathcal{L}^\omega$ of actions is a computation if there is an execution $\tau = t_1 t_2 t_3 \ldots$ such that $\lambda(\tau) = \lambda(t_1)\lambda(t_2)\lambda(t_3)\ldots = \sigma$; if $s_0 \stackrel{\tau}{\longrightarrow}$, then we also write $s_0 \stackrel{\sigma}{\longrightarrow}$. It is a trace iff there exists such τ which is an history. We call τ a realization of σ . Abusing language, given an execution $\tau = t_1 t_2 t_3 \ldots$, we denote by $tr(\tau)$ the computation $\lambda(t_1)\lambda(t_2)\lambda(t_3)\ldots$ (even if it is not necessarily a trace). The set of traces of \mathcal{A} is denoted by $Tr(\mathcal{A})$. Figure 1 shows (on its left) three transition systems. Fig. 1. Three labeled transition systems (left) and a branching process (right) Let A_1, \ldots, A_n be LTSs where $A_i = (\Sigma_i, S_i, T_i, \lambda_i, s_i^0)$. The parallel composition $\mathbf{A} = A_1 \parallel \ldots \parallel A_n$ is the LTS defined as follows. The set of actions is $\mathbf{\Sigma} = \Sigma_1 \cup \ldots \cup \Sigma_n$. The states, called global states, are the tuples $\mathbf{s} = (s_1, \ldots, s_n)$ such that $s_i \in S_i$ for every $i \in \{1..n\}$. The initial global state is $\mathbf{s}^0 = (s_1^0, \ldots, s_n^0)$. The transitions, called global transitions, are the tuples $\mathbf{t} = (t_1, \ldots, t_n) \in (T_1 \cup \{\star\}) \times \cdots \times (T_n \cup \{\star\}) \setminus \{(\star, \ldots, \star)\}$ such that there is an action $a \in \mathbf{\Sigma}$ satisfying for every $i \in \{1..n\}$: if $a \in \Sigma_i$, then t_i is an a-transition of T_i , otherwise $t_i = \star$; the label of \mathbf{t} is the action a. If $t_i \neq \star$ we say that A_i participates in \mathbf{t} . It is easy to see that $\sigma \in \mathbf{\Sigma}^* \cup \mathbf{\Sigma}^\omega$ is a trace of \mathbf{A} iff for every $i \in \{1..n\}$ the projection of σ on Σ_i , denoted by $\sigma_{|\Sigma_i}$, is a trace of A_i . #### 2.2 Petri nets A labelled net is a tuple $(\Sigma, P, T, F, \lambda)$ where Σ is a set of actions, P and T are disjoint sets of places and transitions (jointly called nodes), $F \subseteq (P \times T) \cup (T \times P)$ is a set of arcs, and $\lambda \colon P \cup T \to \Sigma$ is a labelling function. For $x \in P \cup T$ we denote by ${}^{\bullet}x = \{y \mid (y, x) \in F\}$ and $x^{\bullet} = \{y \mid (x, y) \in F\}$ the sets of *inputs* and *outputs* of x, respectively. A set M of places is called a *marking*. A *labelled Petri net* is a tuple $\mathcal{N} = (\Sigma, P, T, F, \lambda, M_0)$ where $(\Sigma,
P, T, F, \lambda)$ is a labelled net and $M_0 \subseteq P$ is the *initial marking*. A marking M enables a transition $t \in T$ if ${}^{\bullet}t \subseteq M$. In this case t can occur or fire, leading to the new marking $M' = (M \setminus {}^{\bullet}t) \cup t^{\bullet}$. An occurrence sequence is a (finite or infinite) sequence of transitions that can occur from M_0 in the order specified by the sequence. A trace is the sequence of labels of an occurrence sequence. The set of traces of \mathcal{N} is denoted by $Tr(\mathcal{N})$. ### 2.3 Branching processes The finite branching processes of $\mathbf{A} = \mathcal{A}_1 \parallel \ldots \parallel \mathcal{A}_n$ are labelled Petri nets whose places are labelled with states of $\mathcal{A}_1, \ldots, \mathcal{A}_n$, and whose transitions are labelled with global transitions of \mathbf{A} . Following tradition, we call the places and transitions of these nets conditions and events, respectively. (Since global transitions are labelled with actions, each event is also implicitly labelled with an action.) We say that a marking M of these nets enables a global transition \mathbf{t} of \mathbf{A} if for every state $s \in {}^{\bullet}\mathbf{t}$ some condition of M is labelled by s. The set of finite branching processes of \mathbf{A} is defined inductively as follows: - 1. A labelled Petri net with conditions $b_1^0,...,b_n^0$ labelled by $s_1^0,...,s_n^0$, no events, and with initial marking $\{b_1^0,...,b_n^0\}$, is a branching process of \mathbf{A} . - 2. Let \mathcal{N} be a branching process of \mathbf{A} such that some reachable marking of \mathcal{N} enables some global transition \mathbf{t} . Let M be the subset of conditions of the marking labelled by ${}^{\bullet}\mathbf{t}$. If \mathcal{N} has no event labelled by \mathbf{t} with M as input set, then the Petri net obtained by adding to \mathcal{N} : a new event e, labelled by \mathbf{t} ; a new condition for every state s of \mathbf{t}^{\bullet} , labelled by s; new arcs leading from each condition of M to e, and from e to each of the new conditions, is also a branching process of \mathbf{A} . Figure 1 shows on the right a branching process of the parallel composition of the LTSs on the left. Events are labelled with their corresponding actions. The set of all branching processes of a net, finite and infinite, is defined by closing the finite branching processes under countable unions (after a suitable renaming of conditions and events) [4]. In particular, the union of all finite branching processes yields the *unfolding* of the net, which intuitively corresponds to the result of exhaustively adding all extensions in the definition above. A trace of a branching process \mathcal{N} is the sequence of action labels of an occurrence sequence of events of \mathcal{N} . In Figure 1, firing the events on the top half of the process yields any of the traces cbdcbd, cdbcbd, cbdcdb, or cdbcdb. The sets of traces of \mathbf{A} and of its unfolding coincide. Let x, y be nodes of a branching process. We say that x is a causal predecessor of y, denoted by x < y, if there is a non-empty path of arcs from x to y; further, $x \le y$ denotes that either x < y or x = y. If $x \le y$ or $x \ge y$, then x and y are causally related. We say that x and y are in conflict, denoted by x # y, if there is a condition z (different from x and y) from which one can reach both x and y, exiting z by different arcs. Finally, x and y are concurrent if they are neither causally related nor in conflict. A set of events E is a configuration if it is causally closed (that is, if $e \in E$ and e' < e then $e' \in E$) and conflict-free (that is, for every $e, e' \in E$, e and e' are not in conflict). The past of an event e, denoted by [e], is the set of events e' such that $e' \leq e$ (so it is a configuration). For any event e, we denote by M(e) the unique marking reached by any occurrence sequence that fires exactly the events of [e]. Notice that, for each component \mathcal{A}_i of \mathbf{A} , M(e) contains exactly one condition labelled by a state of \mathcal{A}_i . We denote this condition by $M(e)_i$. We write $\mathbf{St}(e) = \{\lambda(x) \mid x \in M(e)\}$ and call it the global state reached by e. # 3 The Summary Problem Let $\mathbf{A} = \mathcal{A}_1 \parallel \cdots \parallel \mathcal{A}_n$ be a parallel composition with a distinguished component \mathcal{A}_i , called the *interface*. An *environment* of \mathbf{A} is any LTS \mathbf{E} (possibly a parallel composition) that only communicates with \mathbf{A} through the interface, i.e, $\mathcal{E}_{\mathbf{E}} \cap (\mathcal{E}_1 \cup \ldots \cup \mathcal{E}_n) = \mathcal{E}_{\mathbf{E}} \cap \mathcal{E}_i$. We wish to compute a *summary* \mathcal{E}_i , i.e., an LTS with the same actions as \mathcal{A}_i such that $Tr(\mathbf{E} \parallel \mathbf{A})|_{\mathcal{E}_{\mathbf{E}}} = Tr(\mathbf{E} \parallel \mathcal{E}_i)|_{\mathcal{E}_{\mathbf{E}}}$ for every environment \mathbf{E} , where $X|_{\mathcal{E}}$ denotes the projection of the traces of X onto \mathcal{E} . It is well known (and follows easily from the definitions) that this holds iff $Tr(\mathcal{E}_i) = Tr(\mathbf{A})|_{\mathcal{E}_i}$ [13]. We therefore address the following problem: **Definition 1 (Summary problem).** Given LTSs A_1, \ldots, A_n with interface A_i , compute an LTS S_i satisfying $Tr(S_i) = Tr(\mathbf{A})|_{\Sigma_i}$, where $\mathbf{A} = A_1 \parallel \cdots \parallel A_n$. The problem can be solved by computing the LTS \mathbf{A} , but the size of \mathbf{A} can be exponential in $\mathcal{A}_1, \ldots, \mathcal{A}_n$. So we investigate an unfolding approach. The interface projection \mathcal{N}_i of a branching process \mathcal{N} of \mathbf{A} onto \mathcal{A}_i is the following labelled subnet of \mathcal{N} : (1) the conditions of \mathcal{N}_i are the conditions of \mathcal{N} with labels in S_i ; (2) the events of \mathcal{N}_i are the events of \mathcal{N} where \mathcal{A}_i participates; (3) (x,y) is an arc of \mathcal{N}_i iff it is an arc of \mathcal{N} and (x,y) are nodes of \mathcal{N}_i . Obviously, every event of \mathcal{N}_i has exactly one input and one output condition, and \mathcal{N}_i can therefore be seen as an LTS; thus, we sometimes speak of the LTS \mathcal{N}_i . The interface projection \mathcal{N}_1 for the branching process of Figure 1 is the subnet given by the black conditions and their input and output events, and its LTS representation is shown in the left of Figure 2. **Fig. 2.** Projection of the branching process of Figure 1 on A_1 (left) and a folding (right) The projection \mathcal{U}_i of the full unfolding of **A** onto \mathcal{A}_i clearly satisfies $Tr(\mathcal{U}_i) = Tr(\mathbf{A})_{|\Sigma_i|}$; however, \mathcal{U}_i can be infinite. In the rest of the paper we show how to compute a finite branching process \mathcal{N} and an equivalence relation \equiv between the conditions of \mathcal{N}_i such that the result of folding \mathcal{N}_i into a finite LTS by merging the conditions of each equivalence class yields the desired \mathcal{S}_i . The folding of \mathcal{N}_i is the LTS whose states are the equivalence classes of \equiv , and every transition (s, s') of \mathcal{N}_i yields a transition $([s]_{\equiv}, [s']_{\equiv})$ of the folding. Figure 2 shows on the right the result of folding the LTS on the left when the only equivalence class with more than one member is formed by the two rightmost states labelled by q_2 . We construct \mathcal{N} by starting with the branching processes without events and iteratively add one event at a time. Some events are marked as cut-offs [4]. An event e added to \mathcal{N} becomes a cut-off if \mathcal{N} already contains an e', called the companion of e, satisfying a certain, yet to be specified cut-off criterion. Events with cut-offs in their past cannot be added. The algorithm terminates when no more events can be added. The equivalence relation \equiv is determined by the $interface\ cut$ -offs: the cut-offs labelled with interface actions. If an interface cut-off e has companion e', then we set $M(e)_i \equiv M(e')_i$. Algorithm 1 is pseudocode for the unfolding, where $Ext(\mathcal{N}, co)$ denotes the $possible\ extensions$: the events which can be added to \mathcal{N} without events from the set co of cut-offs in their past. ### **Algorithm 1** Unfolding procedure for a product **A**. ``` let \mathcal N be the unique branching process of \mathbf A without events and let co=\emptyset While Ext(\mathcal N,co)\neq\emptyset do choose e in Ext(\mathcal N,co) and extend \mathcal N with e If e is a cut-off event then let co=co\cup\{e\} For every e\in co with companion e' do merge [M(e)_i]_{\equiv} and [M(e')_i]_{\equiv} ``` Notice that the algorithm is nondeterministic: the order in which events are added is not fixed (though it necessarily respects causal relations). We wish to find a definition of cut-offs such that the LTS S_i delivered by the algorithm is a correct solution to the summary problem. Several papers have addressed the problem of defining cut-offs such that the branching process delivered by the algorithm contains all global states of the system (see [4] and the references therein). We first remark that these approaches do not "unfold enough". Standard cut-off condition does not work. Usually, an event e is declared a cut-off if the branching process already contains an event e' with the same global state. If events are added according to an *adequate order* [4], then the prefix generated by the algorithm is guaranteed to contain occurrence sequences leading to all reachable markings. We show that with this definition of cut-off even we do not always compute a correct summary. We do so by showing an example in which independently of
the order in which Algorithm 1 adds events the summary is always wrong. Consider the parallel composition of Figure 3 with A_1 as interface. Independently of the order in which events are added, the branching process \mathcal{N} computed by Algorithm 1 is the one shown on the right of Figure 3. The Fig. 3. Three labeled transition systems (left) and a branching process (right) only cut-off event is 5, with companion event 2, for which we have $\mathbf{St}(5) = \{q_2, r_1, s_2\} = \mathbf{St}(2)$. The interface projection \mathcal{N}_1 is the transition system in Figure 4. **Fig. 4.** Projection of the branching process of Figure 3 on A_1 Since \mathcal{N}_1 does not contain any cut-off, its folding is again \mathcal{N}_1 , and since $Tr(\mathbf{A})|_{\Sigma_1} \supseteq cdc(dc)^*$, \mathcal{N}_1 is not a summary. # 4 Two Attempts The solution turns out to be remarkably subtle, and so we approach it in a series of steps. #### 4.1 First attempt In the following we shall call events in which A_i participates *i-events* for short; analogously, we call *i-conditions* the conditions labelled by states of A_i . The simplest idea is to declare an *i*-event e a cut-off if the branching process already contains another *i*-event e' with $\mathbf{St}(e) = \mathbf{St}(e')$. Intuitively, the behaviours of the interface after the configurations [e] and [e'] is identical, and so we only explore the future of [e']. **Cut-off definition 1.** An event e is a cut-off event if it is an i-event and \mathcal{N} contains an i-event e' such that $\mathbf{St}(e) = \mathbf{St}(e')$. It is not difficult to show that this definition is correct for *non-divergent* systems. **Definition 2.** A parallel composition \mathbf{A} with interface \mathcal{A}_i is divergent if some infinite trace of \mathbf{A} contains only finitely many occurrences of actions of Σ_i . **Theorem 1.** Let \mathbf{A} be non-divergent. The instance of Algorithm 1 with cut-off definition 1 terminates with a finite branching process \mathcal{N} , and the folding \mathcal{S}_i of \mathcal{N}_i is a summary of \mathbf{A} . Proof. Let \mathcal{N} be the branching process constructed by Algorithm 1. Assume \mathcal{N} is infinite (i.e., the algorithm does not terminate). Then \mathcal{N} contains an infinite chain $e_1 < e_2 \cdots$ of causally related events [17]. Since \mathbf{A} is non-divergent, the infinite configuration $C = \bigcup_{i=1}^{\infty} [e_i]$ contains infinitely many i-events. Since the interface \mathcal{A}_i participates in all of them, they are all causally related, and so C contains an infinite chain $e'_1 < e'_2 \ldots$ of causally related i-events. Since \mathbf{A} has only finitely many global states, the chain contains two i-events $e'_j < e'_k$ such that $\mathbf{St}(e'_j) = \mathbf{St}(e'_k)$. So e'_k is a cut-off, in contradiction with the fact that e'_{k+1} belongs to \mathcal{N} . So \mathcal{N} is finite, and so Algorithm 1 terminates. It remains to prove $Tr(S_i) = Tr(\mathbf{A})|_{\Sigma_i}$. We prove both inclusions separately, but we first need some preliminaries. We extend the mapping $\mathbf{St}()$ to conditions by defining $\mathbf{St}(b) = \mathbf{St}(e)$, where e is the unique input event of condition b. Since the states of S_i are equivalence classes of conditions of \mathcal{N}_i and, by definition, if $b \equiv b'$ then $\mathbf{St}(b) = \mathbf{St}(b')$, we can extend $\mathbf{St}()$ further to equivalence classes by defining $\mathbf{St}([b]_{\equiv}) = \mathbf{St}(b)$. $Tr(\mathcal{S}_i) \subseteq Tr(\mathbf{A})|_{\Sigma_i}$. Let tr^i be a trace of \mathcal{S}_i . Then $[b^0]_{\equiv} \xrightarrow{tr^i}$ in \mathcal{S}_i , where $[b^0]_{\equiv}$ is the initial state of \mathcal{S}_i . By the definition of folding, there exist $tr_1^i, tr_2^i, tr_3^i, \ldots$ (finite sequences of actions) and pairs $(b'_1, b_1), (b'_2, b_2), (b'_2, b_2), \ldots$ of conditions of \mathcal{N}_i such that (1) $tr^i = tr_1^i tr_2^i tr_3^i \ldots$; (2) $b^0 = b'_1$; (3) $b'_j \xrightarrow{tr_j^i} b_j$ in \mathcal{N}_i for every j; and (4) $b_{j-1} \equiv b'_j$ for every j. By (3) and the definition of projection, we have $\mathbf{St}(b'_j) \xrightarrow{tr_j} \mathbf{St}(b_j)$ in \mathbf{A} for some $tr_j \in \Sigma^*$ such that $tr_j^i = tr_j|_{\Sigma_i}$: indeed, if e and e' are the input events of b_j and b'_j , then $\mathbf{St}(b_j)$ is reachable from $\mathbf{St}(b'_{j-1})$ by means of any computation tr_j corresponding to executing the events of $[e] \setminus [e']$, and any such tr_j satisfies $tr_j^i = tr_j|_{\Sigma_i}$. Moreover, by (4) we have $\mathbf{St}(b_{j-1}) = \mathbf{St}(b'_j)$. So we get $$\mathbf{St}(b_1') \xrightarrow{tr_1} \mathbf{St}(b_2') \xrightarrow{tr_2} \mathbf{St}(b_3') \xrightarrow{tr_3} \cdots$$ By (1) and (2) we have $\mathbf{St}(b^0) \xrightarrow{-tr_1tr_2tr_3...}$ in \mathbf{A} , and so $tr^i = tr|_{\Sigma_i} \in Tr(\mathbf{A})|_{\Sigma_i}$ with $tr = tr_1tr_2tr_3...$ $Tr(\mathbf{A})|_{\Sigma_i} \subseteq Tr(\mathcal{S}_i)$. Let tr be a finite or infinite trace of \mathbf{A} . We prove that there exists a trace tr^i of \mathcal{S}_i such that $tr^i = tr|_{\Sigma_i}$. For that we prove that for every history h of \mathbf{A} there exists a history h^i of \mathcal{S}_i such that $tr(h^i) = tr(h)|_{\Sigma_i}$. A finite history $h = \mathbf{t}_1 \dots \mathbf{t}_k$ is *short* if the unique sequence of events of the unfolding $e_1 \dots e_k$ such that $\lambda(e_\ell) = \mathbf{t}_\ell$ for every $\ell \in \{1...k\}$ satisfies the following conditions: $e_{\ell} \leq e_k$ for every $\ell \in \{1..k\}$, and e_k is an *i*-event. (The name is due to the fact that, loosely speaking, h is a shortest history in which e_k occurs.) We say that a finite or infinite history h is succinct if there are $h_1, h_2, h_3 \ldots$ such that $h = h_1 h_2 h_3 \ldots |tr(h_k)|_{\Sigma_i}| = 1$ for every k, and $h_1 \ldots h_\ell$ is short for every ℓ . We call $h_1 h_2 h_3 \ldots$ the i-decomposition of h. It is easy to see that for every history h of \mathbf{A} there exists a succinct history h' of \mathbf{A} with the same projection onto \mathcal{A}_i (let $o = o_1 o_2 o_3 \ldots$ be the occurrence sequence such that $\lambda(o) = h$, denote by $e_{i_1} e_{i_2} e_{i_3} \ldots$ its i-events in the order they appear in o, then simply take for h' any history with i-decomposition $h'_1 h'_2 h'_3 \ldots$ such that, for any ℓ , $h'_1 \ldots h'_\ell$ is an history corresponding to $[e_{i_\ell}]$). So it suffices to prove the result for succinct histories. We prove by induction the following stronger result. For every succinct history of **A** with *i*-decomposition $h_1h_2h_3...$ there exist $h_1^i, h_2^i, h_3^i,...$ such that for every k: - (a) $H_k^i = h_1^i \dots h_k^i$ is an history of S_i such that $tr(H_k^i) = tr(h_1 \dots h_k)|_{\Sigma_i}$. - (b) There exists a configuration C_k of \mathcal{N} that contains no cut-offs and such that $[M(C_k)_i]_{\equiv}$ is the state reached by H_k^i . Base case. If k = 0, then H_k^i is the empty history of S_i , take $C_k = \emptyset$. Inductive step. Let H_{k+1} be the prefix of h with i-decomposition $H_{k+1} = h_1 \dots h_k h_{k+1}$ (it is a succinct history of A). Then $H_k = h_1 \dots h_k$ is succinct with i-decomposition $h_1 \dots h_k$. By induction hypothesis $H_k^i = h_1^i \dots h_k^i$ and some configuration C_k satisfy the conditions above. Let $o_{k+1} = e_1 \dots e_m$, where $m = |h_{k+1}|$, be the only sequence of events whose labelling is h_{k+1} and can occur in the order of the sequence from the marking $M(C_k)$ (this sequence always exists by the properties of C_k). Two cases are possible. - 1. o_{k+1} contains no cut-off. In this case o_{k+1} is a sequence of events from \mathcal{N} (because C_k contains no cut-offs). Thus, there exists an execution $h_{i,k+1}$ of \mathcal{S}_i from the state $[M(C_k)_i]_{\equiv}$ to the state $[M(e_m)_i]_{\equiv}$ such that $tr(h_{i,k+1}) = tr(h_{k+1})|_{\Sigma_i}$. So we can take $h_{k+1}^i = h_{i,k+1}$. It remains to choose the configuration C_{k+1} . We take C_{k+1} as $C_k \cup \{e_1, \ldots, e_m\}$, which contains no cut-offs because C_k contains no cut-offs by hypothesis. - 2. o_{k+1} contains some cut-off. Since h_k is succinct, e_m is the only i-event of h_{k+1} , and the only maximal event of $\{e_1, \ldots, e_m\}$ w.r.t. the causal relation. Since only i-events can be cut-offs, e_m is a cut-off, and the only cut-off among the events of o_{k+1} . So o_{k+1} is a sequence of events from $\mathcal N$ whose last event is a cut-off. Further, by the maximality of e_m , the marking reached by o_{k+1} is $M(e_m)$. By the definition of folding, $\mathcal S_i$ has an execution $h_{i,k+1}$ from the state $[M(C_k)_i]_{\equiv}$ to the state $[M(e_m)_i]_{\equiv}$ such that $tr(h_{i,k+1}) = tr(h_{k+1})|_{\Sigma_i}$. As above, this allows to take $h_{k+1}^i = h_{i,k+1}$. It remains to choose the configuration C_{k+1} . We cannot take $C_{k+1} = C_k \cup \{e_1, \ldots, e_m\}$, because then C_{k+1} would contain cut-offs. So we proceed differently. We choose $C_{k+1} = [e'_m]$, where e'_m is the companion of e_m . Since e'_m is not a cut-off, C_{k+1} contains no cut-offs. Moreover, since the marking reached by o_{k+1} is $M(e_m)$, we have that $[M(C_{k+1})_i]_{\equiv}$ is the state reached by H_{k+1}^i . The system of Figure 1 is non-divergent. Algorithm 1 computes the branching process on the right of Figure 1. The only cut-off is event 9 with companion 3. The folding is shown in Figure 2 (right) and is a correct summary. However, cut-off definition 1 never works if $\bf A$ is divergent because the unfolding procedure does not terminate. Indeed, if the system has divergent traces then we can easily construct an infinite firing
sequence of the unfolding such that none of the finitely many *i*-events in the sequence is a cut-off. Since no other events can be cut-offs, Algorithm 1 adds all events of the sequence. This occurs for instance for the system of Figure 5 with interface A_1 , where the occurrence sequence of the unfolding for the trace $i(fcd)^{\omega}$ contains no cut-off. #### 4.2 Second attempt To ensure termination for divergent systems, we extend the definition of cut-off. For this, we define for each event e its i-predecessor. Intuitively, the i-predecessor of an event e is the last condition that e "knows" has been reached by the interface. **Definition 3.** The *i*-predecessor of an event e, denoted by ip(e), is the condition $M(e)_i$. Assume now that two events $e_1 < e_2$, neither of them interface event, satisfy $ip(e_1) = ip(e_2)$ and $\mathbf{St}(e_1) = \mathbf{St}(e_2)$. Then any occurrence sequence σ that executes the events of the set $[e_2] \setminus [e_1]$ leads from a marking to itself and contains no interface events. So σ can be repeated infinitely often, leading to an infinite trace with only finitely many interface actions. It is therefore plausible to mark e_2 as cut-off event, in order to avoid this infinite repetition. ### Cut-off definition 2. An event e is a cut-off if - (1) e is an i-event, and \mathcal{N} contains an i-event e' with $\mathbf{St}(e) = \mathbf{St}(e')$, or - (2) e is not an i-event, and some event e' < e satisfies $\mathbf{St}(e) = \mathbf{St}(e')$ and ip(e) = ip(e'). We give an example showing that this natural definition does not work: the algorithm always terminates but can yield a wrong result. Consider the parallel composition at the left of Figure 5, with interface \mathcal{A}_1 . Clearly $Tr(\mathcal{A})|_{\Sigma_1} = Tr(A_1) = iab^*e$. For any strategy the algorithm generates the branching process \mathcal{N} at the top right of the figure (without the dashed part). \mathcal{N} has two cut-off events: the interface event 6, which is of type (1), and event 8, a non-interface event, of type (2). Event 6 has 5 as companion, with $\mathbf{St}(5) = \mathbf{St}(6) = \{q_2, r_2, s_2\}$. Event 8 has 0 as companion, with $\mathbf{St}(0) = \{q_1, r_1, s_1\} = \mathbf{St}(8)$; moreover, 0 < 8 and ip(0) = ip(8). The folding of \mathcal{N}_1 is shown at the bottom right of the figure. It is clearly not trace-equivalent to \mathcal{A}_1 because it "misses" the trace iabe. The dashed event at the bottom right, which would correct this, is not added by the algorithm because it is a successor of 8. **Fig. 5.** Cut-off definition 2 produces an incorrect result on $\mathbf{A} = \mathcal{A}_1 \parallel \mathcal{A}_2 \parallel \mathcal{A}_3$ ### 5 The Solution Intuitively, the reason for the failure of our second attempt on the example of Figure 5 is that \mathcal{A}_1 can only execute iabe if \mathcal{A}_2 and \mathcal{A}_3 execute ifcd first. However, when the algorithm observes that the markings before and after the execution of ifcd are identical, it declares 8 a cut-off event, and so it cannot "use" it to construct event e. So, on the one hand, 8 should not be a cut-off event. But, on the other hand, some event of the trace $i(fcd)^{\omega}$ must be declared cut-off, otherwise the algorithm does not terminate. The way out of this dilemma is to introduce cut-off candidates. If an event is declared a cut-off candidate, the algorithm does not add any of its successors, just as with regular cut-offs. However, cut-off candidates may stop being candidates if the addition of a new event frees them. (So, an event is a cut-off candidate with respect to the current branching process.) A generic unfolding procedure using these ideas is given in Algorithm 2, where $Ext(\mathcal{N}, co, coc)$ denotes the possible extensions of \mathcal{N} that do not have any event of co or coc in their past. Assuming suitable definitions of cut-off candidates and freeing, the algorithm would, in our example, declare event 8 a cut-off candidate, momentarily stop adding any of its successors, but later free event 8 when event 5 is discovered. The main contribution of our paper is the definition of a correct notion of cut-off candidate for the projection problem. We shall declare event e a cut-off candidate if e is not an interface event, and \mathcal{N} contains a companion e' < e such that $\mathbf{St}(e') = \mathbf{St}(e)$, ip(e) = ip(e'), and, additionally, no interface event e'' of \mathcal{N} is concurrent with e without being concurrent with e'. As long as this condition holds, the successors of e are put "on hold". In the example of Figure 5, if the algorithm first adds events 0, 3, 4, and 8, then event 8 becomes a cut-off candidate with 0 as companion. However, the addition of the interface event 5 frees event 8, because 5 is concurrent with 8 and not with 0. However, we are not completely done yet. The parallel composition at the left of Figure 6 gives an example in which even with this notion of cut-off candidate # **Algorithm 2** Unfolding procedure for a product **A**. ``` let \mathcal{N} be the unique branching process of \mathbf{A} without events; let co = \emptyset and coc = \emptyset While Ext(\mathcal{N}, co, coc) \neq \emptyset do choose e in Ext(\mathcal{N}, co, coc) according to the search strategy If e is a cut-off event then let co = co \cup \{e\} Elseif e is a cut-off candidate of \mathcal{N} then let coc = coc \cup \{e\} Else for every e' \in coc do If e frees e' then coc = coc \setminus \{e'\} extend \mathcal{N} with e For every e \in co with companion e' do merge [M(e)_i]_{\equiv} and [M(e')_i]_{\equiv} ``` the result is still wrong. A_1 is the interface. One branching process is represented at the top right of the figure. Event 3 (concurrent with 1) is a cut-off candidate with 2 (concurrent with 1, 4, and 5) as companion. This prevents the lower dashed part of the net to be added. Event 6 is cut-off with 1 as companion. This prevents the upper dashed part of the net to be added. The refolding obtained then (bottom right) does not contain the word abcb. Fig. 6. An example illustrating the use of strong causality If we wish a correct algorithm for all strategies, we need a final touch: replace the condition e' < e by $e' \ll e$, where \ll is the *strong causal relation*: **Definition 4.** Event e' is a strong cause of event e, denoted by $e' \ll e$, if e' < e and b' < b for every $b \in M(e) \setminus M(e')$, $b' \in M(e') \setminus M(e)$. Using this definition, event 3 is no longer a cut-off candidate in the branching process of Figure 6 as it is not in strong causal relation with its companion 2 (because the t_2 -labelled condition just after 2 belongs to $M(2) \setminus M(3)$ and is not causally related with the r_1 -labelled condition just after 0 which belongs to $M(3) \setminus M(2)$). The two following lemma give properties of the strong causal relation that will be useful to prove our main result (Theorem 2). **Lemma 1.** Every infinite chain $e_1 < e_2 < e_3 \cdots$ of events of a branching process contains a strong causal subchain $e_{i_1} \ll e_{i_2} \ll e_{i_3} \cdots$. Proof. Let $E = \{e_1, e_2, \dots\}$. Say that a component \mathcal{A}_j of \mathbf{A} participates in an event e if it participates in the transition labelling e. We partition the (indices of the) components into the set S of indices j such that \mathcal{A}_j participates in finitely many events of E, and $\bar{S} = \{1, \dots, n\} \setminus S$. We say that the LTS \mathcal{A}_j has stabilized at event e_k in the chain if \mathcal{A}_j does not participate in any event $e \geq e_k$. Let e_α be any event of E such that all LTSs of S have stabilized before e_α . We claim that there exists e_γ in E such that $e_\alpha \ll e_\gamma$. Since clearly all LTSs of S have also stabilized before e_γ , A repeated application of the claim produces the desired subsequence. The claim itself is proved in two steps: - (1) There exists $e_{\beta} > e_{\alpha}$ in E such that $M(e_{\beta})_k \neq M(e_{\alpha})_k$ for every $k \in \bar{S}$, (which implies $M(e_{\alpha})_k < e_{\beta}$ for every $k \in \bar{S}$). The existence of e_{β} follows from (1) the fact that all events of E are causally related, and (2) the definition of \bar{S} , which implies for any $k \in \bar{S}$ the existence of an infinite subchain $e_{\ell_1} < e_{\ell_2} < \dots$ such that $M(e_{\ell_i})_k \neq M(e_{\ell_j})_k$ for every i, j. - (2) There exists $e_{\gamma} > e_{\beta}$ in E such that $M(e_{\gamma})_k > e_{\beta}$ for every $k \in \bar{S}$. Observe that if $e < M(e_i)_k$ for some i and some k, then $e < M(e_j)_k$ for all j > i (as $\forall i, j, \forall k, M(e_i)_k \leq M(e_j)_k$). Suppose that e_{γ} does not exist. Then there exists $k \in \bar{S}$ such that $M(e')_k \not\geq e$ for every e' > e. As $k \in \bar{S}$, there exists, by definition, an infinite subchain $e < e_{\ell_1} < e_{\ell_2} \ldots$ of E such that $M(e_{\ell_i})_k \neq M(e_{\ell_j})_k$ for every i, j. So for any of these e_{ℓ_i} there exists a k-event e'_{ℓ_i} such that $e'_{\ell_i} < e_{\ell_i}$ and e'_{ℓ_i} is concurrent with $e_{\ell_{i-1}}$. Let e''_{ℓ_i} be an event on a path from e'_{ℓ_i} to e_{ℓ_i} and such that b > e and $b' \not> e$ for some $b, b' \in {}^{\bullet}e''_{\ell_i}$ (the existence of such an event is ensured by the fact that $M(e_{\ell_i})_k \not\geq e$). As b > e we get $e''_{\ell_i} > e$ and thus b'' > e for every $b'' \in e''_{\ell_i}$. Hence, by the observation above, the set $\{k \in \bar{S} : M(e_{\ell_i})_k > e\}$ is strictly greater than the set $\{k \in \bar{S} : M(e_{\ell_{i-1}})_k > e\}$. Since A is finite, this contradicts the existence of $k \in \bar{S}$ such that $M(e')_k \not\geq e$ for every e' > e in E. So the event e_{γ} exists. It follows immediately from (1) and (2) that
$e_{\alpha} \ll e_{\gamma}$ (because for any k, k', $M(e_{\alpha})_k < e_{\beta} < M(e_{\gamma})_{k'}$), and all LTSs of S have stabilized before e_{γ} , and so the claim is proved. **Lemma 2.** If $e' \ll e$ and \hat{e} is concurrent with both e' and e, then $([e] \setminus [e']) \cap [\hat{e}] = \emptyset$. *Proof.* Assume $e_1 \in ([e] \setminus [e']) \cap [\hat{e}]$. Then $e_1 \leq e$ and $e_1 \leq \hat{e}$. Since e and \hat{e} are concurrent, we have $e \neq e_1 \neq \hat{e}$. So $e_1 < \hat{e}$, and so there is a nonempty path $e_1 \prec b_1 \prec e_2 \prec b_2 \prec \ldots \prec e_k = \hat{e}$, where $x \prec y$ denotes $y \in x^{\bullet}$. Since e and \hat{e} are concurrent, there is a first condition b_j in the path such that b_j and e are concurrent, and we have $b_j \in M(e)$. Since $e_1 \notin [e']$, we have $b_j \notin M(e')$. Since $e' \ll e$, we have $b_j < b$ for every $b \in M(e') \setminus M(e)$. In particular, since there is at least one condition b' such that $e' \prec b' < e$, we have $b_j < b'$, and so $e' < b_j$. But then, since b_j belongs to the path from e_1 to \hat{e} , we have $e' < b_j < \hat{e}$, contradicting that e and \hat{e} are concurrent. We are now in a position to provide adequate definitions for Algorithm 2. **Definition 5 (Cut-off and cut-off candidate).** Let $Ico_{\mathcal{N}}(e)$ denote the set of non cut-off interface events of \mathcal{N} that are concurrent with e. An event e - is a cut-off if it is an i-event, and \mathcal{N} contains an i-event e' such that $\mathbf{St}(e) = \mathbf{St}(e')$. - is a cut-off candidate of \mathcal{N} if it is not an i-event, and \mathcal{N} contains $e' \ll e$ such that $\mathbf{St}(e) = \mathbf{St}(e')$, ip(e') = ip(e), and $Ico_{\mathcal{N}}(e) \subseteq Ico_{\mathcal{N}}(e')$. - frees a cut-off candidate e_c of \mathcal{N} if e_c is not a cut-off candidate of the branching process obtained by adding e to \mathcal{N} . **Theorem 2.** Let $\mathbf{A} = \mathcal{A}_1 \parallel \ldots \parallel \mathcal{A}_n$ with interface \mathcal{A}_i . The instance of Algorithm 2 given by Definition 5 terminates and returns a branching process \mathcal{N} such that the folding \mathcal{S}_i of \mathcal{N}_i is a summary of \mathbf{A} . *Proof.* We first prove termination. Assume the algorithm does not terminate, i.e., it constructs an infinite branching process \mathcal{N} . Then there exists an infinite chain $e_1 < e_2 < \dots$ of causally related events in \mathcal{N} [17]. First remark that $C = \bigcup_{i=1}^{\infty} [e_i]$ cannot contain an infinite number of i-events: if there is infinitely many i-event in C one of them must be a cut-off (this is due to the finite number of global states in \bf{A}) as all the *i*-events of C are causally related there is a contradiction. Hence, C contains an infinite chain w' of causally related events such that for any two events e and e' of w' one has $M(e)_i = M(e')_i$. From that, the finite number of possible global states in A ensures that there exists an infinite subchain w'' of w' such that for any two events e and e' of w'' one has $\mathbf{St}(e) = \mathbf{St}(e')$. The finite number of possible global states in A also ensures that in \mathcal{N} there exists only a finite set of non-cut-off i-events. So, there exists an infinite subchain w''' of w''such that for any two events e and e' of w''' one has $Ico_{\mathcal{N}}(e) = Ico_{\mathcal{N}}(e')$. Finally, by Lemma 1 there exists two events e and e' of w''' such that $e' \ll e$. Then, e is a cut-off candidate of \mathcal{N} , which is in contradiction with the infiniteness of w'''and so with the existence of $e_1 < e_2 < \dots$ The termination of Algorithm 2 is thus proved. Now we prove $Tr(S_i) = Tr(\mathbf{A})|_{\Sigma_i}$. As in the proof of Theorem 1, we extend the mapping $\mathbf{St}()$ to conditions, and to equivalence classes of conditions of \mathcal{N}_i . $Tr(S_i) \subseteq Tr(\mathbf{A})|_{\Sigma_i}$. The proof of this part is identical to that of Theorem 1: since the folding S_i is completely determined by the cut-offs that are *i*-events, and the definition of these cut-offs in Definition 2 and Definition 5 coincide, the same argument applies. $Tr(\mathbf{A})|_{\Sigma_i} \subseteq Tr(\mathcal{S}_i)$. The proof has the same structure as the proof of Theorem 1, but with a number of important changes. Let tr be a (finite or infinite) trace of **A**. We prove that there exists a trace tr^i of S_i such that $tr^i = tr|_{\Sigma_i}$. For that we prove that for every history h of **A** there exists a history h^i of S_i such that $tr(h^i) = tr(h)|_{\Sigma_i}$. As in Theorem 1, we use the notion of a succinct histories. However, we need to strengthen it even more. Let $\nu = \mathbf{s}_1 \mathbf{s}_2 \mathbf{s}_3 \dots$ be a (finite or infinite) sequence of global states of \mathbf{A} , and let $H(\nu)$ be the (possibly empty) set of succinct histories h with i-decomposition $h_1 h_2 h_3 \dots$ such that $\mathbf{s}^0 \xrightarrow{h_1} \mathbf{s}_1 \xrightarrow{h_2} \mathbf{s}_2 \xrightarrow{h_3} \dots$. We say that a history $h_s \in H(\nu)$ with i-decomposition $h_1 s h_2 s h_3 s \dots$ is strongly succinct if for every history $h \in H(\nu)$ with i-decomposition $h_1 h_2 h_3 \dots$ we have $|h_{js}| \leq |h_j|$ for every j. If $h_1 \dots h_j h_{j+1} h_{j+2} \dots$ is succinct, $\mathbf{s}_{j-1} \xrightarrow{h'_j} \mathbf{s}_j$, and $|h_j| \leq |h'_j|$, then $h_1 \dots h'_j h_{j+1} h_{j+2} \dots$ is also succinct. Therefore, if $H(\nu)$ is nonempty then it contains at least one strongly succinct history. As in Theorem 1, we prove by induction a result implying the one we need. For every (finite or infinite) strongly succinct history of **A** with *i*-decomposition $h = h_1 h_2 h_3 \dots$ there exists $h_1^i h_2^i h_3^i \dots$ such that for every k: - (a) $H_k^i = h_1^i \dots h_k^i$ is a history of S_i such that $tr(H_k^i) = tr(h_1 \dots h_k)|_{\Sigma_i}$. - (b) There exists a configuration C_k of \mathcal{N} that contains no cut-offs and such that $[M(C_k)_i]_{\equiv}$ is the state reached by H_k^i . - (c) If $k \neq 0$, then there exists an *i*-event e_k such that $C_k = [e_k]$. (The first two claims are as Theorem 1, while the third one is new.) **Base case.** If k = 0, then H_k^i is the empty history of S_i and $C_k = \emptyset$. **Inductive step.** The initial part of the inductive step is identical to that of Theorem 1. Let H_{k+1} be the prefix of $h_1h_2h_3...$ with *i*-decomposition $H_{k+1} = h_1...h_kh_{k+1}$ (it is a strongly succinct history). Then $H_k = h_1...h_k$ is strongly succinct with *i*-decomposition $h_1...h_k$. By induction hypothesis H_k^i , some configuration C_k , and, if $k \neq 0$, some event e_k satisfy the conditions above. Let $o_{k+1} = e_1 \dots e_m$, where $m = |h_{k+1}|$, be the only sequence of events whose labelling is h_{k+1} and can occur in the order of the sequence from the marking $M(C_k)$ (this sequence always exists by the properties of C_k). Two cases are possible: 1. o_{k+1} contains no cut-off. The proof of this case is as in Theorem 1. Part (c) follows because in Theorem 1 we choose C_{k+1} as $C_k \cup \{e_1, \ldots, e_m\}$, which, since $e_j \leq e_m$ for every $j \in \{1..m\}$, implies $C_{k+1} = [e_m]$. 2. o_{k+1} contains some cut-off event. In Theorem 1 we used the following argument: since e_m is the only *i*-event of o_{k+1} , and cut-offs must be *i*-events, e_m is a cut-off. This argument is no longer valid, because in Definition 5 non-*i*-events can also be cut-offs. So we prove that e_m is a cut-off in a different way. Let e be a cut-off of o_{k+1} , and let e' be its companion. We prove that, due to the minimality of h_{k+1} in the definition of strong succinctness, we have $e = e_m$. Assume $e \neq e_m$. Since e_m is the unique *i*-event of o_{k+1} , e is not an *i*-event. So, by Definition 5, it is an event that became a cut-off candidate and was never freed. We consider first the case in which C_k is the empty configuration (i.e. k = 0). In this case, consider a permutation $j_1j_2j_3$ of o_{k+1} in which j_1 contains the events of [e'], j_2 contains the events of $[e] \setminus [e']$, and j_3 contains the rest of the events. Since $\mathbf{St}(e) = \mathbf{St}(e')$, $H_k\lambda(j_1j_3) = \lambda(j_1j_3)$ is also a history of \mathbf{A} . Since $|j_1j_3| < |o_{k+1}|$ this contradicts the minimality of h_{k+1} . If C_k is nonempty, then the *i*-event e_k in part (c) of the induction hypothesis exists. We consider the events e and e_k . Since e_k is an *i*-event but e is not, we have $e \neq e_k$. Since there is an occurrence sequence that contains both e and e_k , the events are not in conflict. Moreover, since in this occurrence sequence e occurs after e_k , we have that e is not a causal predecessor of e_k either. So there are two remaining cases, for which we also have to show that they lead to a contradiction: (b1) $e_k < e$. Let e' be the companion of e. By the definition of cut-off candidate, we have ip(e) = ip(e'). Since e_k is an i-event and $e_k < e$, we have $e_k < ip(e)$, and so $e_k < e' \ll e$. Consider the permutation $j_1j_2j_3$ of o_{k+1} in which j_1 contains the events of $[e'] \setminus [e_k]$, j_2 contains the events of $[e] \setminus [e']$, and j_3 the rest of the events. Since $\mathbf{St}(e) = \mathbf{St}(e')$, $H_k\lambda(j_1j_3)$ is also a history of \mathbf{A} . Since $|j_1j_3| < |o_{k+1}|$, this contradicts the minimality of h_{k+1} . (b2) e_k and e are concurrent. We handle this case by means of a sequence of claims. - (i) Let e' be the companion of e. The events e' and e_k are concurrent. Follows from the fact that e_k is an i-event and $Ico_{\mathcal{N}}(e) \subseteq Ico_{\mathcal{N}}(e')$ by the definition of cut-off
candidate. - (ii) $([e] \setminus [e']) \cap [e_k] = \emptyset$. Follows from Lemma 2, assigning $\hat{e} := e_k$. - (iii) h_{k+1} is not minimal, contradicting the hypothesis. By (ii), the sets $[e_k]$ and $[e] \setminus [e']$ are disjoint. So every event of $[e] \setminus [e']$ belongs to o_{k+1} . Consider the permutation $j_1j_2j_3$ of o_{k+1} in which j_1 contains the events that do not belong to [e'], j_2 contains the events of $[e] \setminus [e']$, and j_3 the rest. Since $\mathbf{St}(e) = \mathbf{St}(e')$, $H_k\lambda(j_1j_3)$ is also a history of \mathcal{A} , and since $|j_1j_3| < |o_{k+1}|$ the sequence h_{k+1} is not minimal. Since all cases have been excluded, and so we have $e = e_m$, i.e., the *i*-event e_m is the unique cut-off of o_{k+1} . Now we can reason as in Theorem 1. We have that o_{k+1} is a sequence of events from \mathcal{N} whose last event is a cut-off, and the marking reached by o_{k+1} is $M(e_m)$. By the definition of folding, \mathcal{S}_i has an execution $h_{i,k+1}$ from the state $[M(C_k)_i]_{\equiv}$ to the state $[M(e_m)_i]_{\equiv}$ such that $tr(h_{i,k+1}) = tr(h_{k+1})|_{\Sigma_i}$. This allows to take $h_{k+1}^i = h_{i,k+1}$. We choose $C_{k+1} = [e'_m]$, where e'_m is the companion of e_m and then, obviously $e_{k+1} = e'_m$. Since e'_m is not a cut-off, C_{k+1} contains no cut-offs. Moreover, since the marking reached by o_{k+1} is $M(e_m)$, we have that $[M(C_{k+1})_i]_{\equiv}$ is the state reached by H_{k+1}^i . # 6 Implementation and Experiments As an illustration of the previous results, we report in this section on an implementation of Algorithm 2. All programs and data used are publicly available.⁴ #### 6.1 Implementation We implemented Algorithm 2 by modifying the unfolding tool Mole [22]. The input of our tool is the Petri net representation of a product \mathbf{A} in which every place is annotated with the component it belongs to. Most of the infrastructure of Mole could be re-used, in particular the existing implementation contains efficient algorithms and data structures [6] for detecting new events of the unfolding (the so-called possible extensions), computing the marking $\mathbf{St}(e)$ of an event, etc. The main work therefore consisted in determining cut-off candidates and the "freeing" condition of Definition 5. For this, we introduce a blocking relation between events: we write $e' \vdash_{\mathcal{N}} e$ if $e' \ll e$, $\mathbf{St}(e) = \mathbf{St}(e')$, ip(e) = ip(e'), and $Ico_{\mathcal{N}}(e) \subseteq Ico_{\mathcal{N}}(e')$, in other words e is a cut-off candidate because of e'; let $\vdash_{\mathcal{N}} e := \{e' \in \mathcal{N} \mid e' \vdash_{\mathcal{N}} e\}$. Notice that $\vdash_{\mathcal{N}} e \subseteq [e]$. Therefore, an overapproximation of this set can be computed when e is discovered as a possible extension, by checking all its causal predecessors. When \mathcal{N} is expanded, $\vdash_{\mathcal{N}} e$ can only decrease because adding an event may lead to a violation of the condition $Ico_{\mathcal{N}}(e) \subseteq Ico_{\mathcal{N}}(e')$. The blocking relation requires two principal, interacting additions to the unfolding algorithm: - (i) a traversal of [e] collecting information about the 'cut' M(e); - (ii) computing the concurrency relation between events. For (i), we modify the way Mole determines $\mathbf{St}(e)$: it performs a linear traversal of [e], marking all conditions consumed and produced by the events of [e], thus obtaining M(e). We extend this linear traversal with Algorithm 3, which computes cut = M(e), allowing to directly determine the conditions $\mathbf{St}(e) = \mathbf{St}(e')$ and ip(e) = ip(e'). Moreover, every condition b becomes annotated with a set $ind(b) := \{j \mid b \leq M(e)_j\}$. This, together with M(e) and M(e'), allows to efficiently determine whether $e' \ll e$ holds. Notice that if the number of components in \mathbf{A} is "small", the operations on ind(b) can be implemented with bitsets. Thus, the additional overhead of Algorithm 3 with respect to the previous algorithm can be kept small. Concerning (ii), we are interested in determining the sets $Ico_N(e)$ for all events e. We make use of the facts that: - Mole already determines, for every condition b, a set of other conditions par(b) that are concurrent with b. When the \mathcal{N} is extended with event e, it computes the set $I := \bigcup_{b \in \bullet e} par(b)$ and sets $par(b') = I \cup e^{\bullet} \setminus \{b'\}$ for every $b' \in e^{\bullet}$. ⁴ http://www.lsv.ens-cachan.fr/ schwoon/tools/mole/summaries.tar.gz **Algorithm 3** Traversal of [e] for efficiently determining $\vdash_{\mathcal{N}} e$, where i(b) denotes the component to which condition b belongs. ``` let \mathcal{N} be the current branching process and e its latest extension set worklist := [e] and cut := \emptyset for all conditions b, let b unmarked and ind(b) := \emptyset while worklist \neq \emptyset do remove a <-maximal element e from worklist add all unmarked conditions b \in e^{\bullet} to cut and set ind(b) := \{i(b)\} I := \bigcup_{b \in e^{\bullet}} ind(b); mark all conditions b \in e^{\bullet} and set ind(b) := I end while add all unmarked initial conditions b to cut and set ind(b) := \{i(b)\} ``` - Two events e, e' of \mathcal{N} are concurrent iff their inputs e and e' are disjoint and pairwise concurrent. Thus, when e is added, this relation can be checked by marking the events in I and checking whether I includes e'. Thus, $Ico_N(e)$ can be obtained with small overhead w.r.t. the existing implementation. - At the same time, we can easily determine whether the addition of an event e should lead to the removal of some event e' from $\vdash_{\mathcal{N}} e''$; if this causes $\vdash_{\mathcal{N}} e''$ to become empty, e'' is freed. #### 6.2 Experimental results We tested our implementation on well-known benchmarks used widely in the unfolding literature, see for example [2, 6, 17]. The input is the set of components A_1, \ldots, A_n , which are converted into an equivalent Petri net. All reported times are on a machine with a 2.8 MHz Intel CPU and 4 GB of memory running Linux. For each example, we also report the number of events (including cut-offs) in the prefix (Events), the number of states in the resulting summary S_i ($|S_i|$), the size of a minimal deterministic automaton for a summary (Min), and the number of reachable markings (Markings, taken from [21] where available, and computed combinatorially for DPSYN). The experiments are summarized in Table 1. We used the following families of examples [2]: the CyclicC and CyclicS families are a model of Milner's cyclic scheduler with n consumers and n schedulers; in one case we compute the folding for a consumer, in the other for a scheduler. The DAC family represents a divide-and-conquer computation. RING is a mutual-exclusion protocol on a token-ring. The tasks are not entirely symmetric, we report the results for the first. Finally, DP, DPSYN, and DPD are variants of Dining Philosophers. In DP, philosophers take and release forks one by one, whereas in DPSYN they take and release both at once. In DPD, deadlocks are prevented by passing a dictionary. In all cases except one (DPD) our algorithm needs clearly fewer events than there are reachable markings; in some families (DAC, DPSYN, RING) there are far fewer events. A comparison of DP and DPSYN is instructive. In DP, neighbours can concurrently pick and drop forks. Intuitively, this leads to fewer cases in | Test case | Time/s | Events | $ \mathcal{S}_i $ | Min. | Markings | |-------------|--------|--------|-------------------|------|----------| | CYCLICC(6) | 0.04 | 426 | 5 | 2 | 639 | | CyclicC(9) | 0.17 | 3347 | 5 | 2 | 7423 | | CyclicC(12) | 4.04 | 26652 | 5 | 2 | 74264 | | CYCLICS(6) | 0.05 | 303 | 11 | 5 | 639 | | Cyclics(9) | 0.12 | 2328 | 11 | 5 | 7423 | | CyclicS(12) | 2.38 | 18464 | 11 | 5 | 74264 | | Dac(9) | 0.02 | 86 | 4 | 4 | 1790 | | Dac(12) | 0.03 | 134 | 4 | 4 | 14334 | | Dac(15) | 0.03 | 191 | 4 | 4 | 114686 | | DP(6) | 0.06 | 935 | 20 | 4 | 729 | | DP(8) | 0.22 | 5121 | 28 | 4 | 6555 | | DP(10) | 2.23 | 31031 | 36 | 4 | 48897 | | DPD(4) | 0.10 | 2373 | 114 | 6 | 601 | | Dpd(5) | 0.71 | 23789 | 332 | 6 | 3489 | | Dpd(6) | 17.68 | 245013 | 903 | 6 | 19861 | | DPSYN(10) | 0.02 | 176 | 2 | 2 | 123 | | DPSYN(20) | 0.07 | 701 | 2 | 2 | 15127 | | Degyn(30) | 0.26 | 1576 | 2 | 2 | 1860498 | | RING(5) | 0.07 | 511 | 53 | 10 | 1290 | | Ring(7) | 0.12 | 3139 | 101 | 10 | 17000 | | Ring(9) | 0.93 | 16799 | 165 | 10 | 211528 | **Table 1.** More experimental results which the condition $Ico_{\mathcal{N}}(e) \subseteq Ico_{\mathcal{N}}(e')$ for cut-off candidates is satisfied. On the other hand, in DPSYN both forks are picked and dropped synchronously, and so no event in \mathcal{A}_i is concurrent to any event in the neighbouring components, making the unfolding procedure much more efficient. # 7 Extensions: Divergences and Weights We conclude the paper by showing that our algorithm can be extended to handle more complex semantics than traces. Indeed, the divergences of the system can be captured by the summaries, as well as the minimal weights of the finite traces from $Tr(\mathbf{A})|_{\Sigma_i}$ when $\mathcal{A}_1 \dots \mathcal{A}_n$ are weighted systems. ### 7.1 Divergences We first extend our algorithm so that the summary also contains information about *divergences*. Intuitively, a divergence is a finite trace of the interface after which the system can "remain silent" forever. **Definition 6.** Let A_1, \ldots, A_n be LTSs with interface A_i . A divergence of A_i is a finite trace $\sigma \in Tr(A_i)$ such that $\sigma = \tau_{|\Sigma_i}$ for some infinite trace $\tau \in Tr(\mathbf{A})$. A divergence-summary is a pair (S_i, D) , where S_i is a summary and D is a subset of the states of S_i such that $\sigma \in Tr(S_i)$ is a divergence of A_i
iff some realization of σ in S_i leads to a state of D. We define the set of divergent conditions of the output of Algorithm 2, and show that it is a correct choice for the set D. **Definition 7.** Let \mathcal{N} be the output of Algorithm 2. A condition s of \mathcal{N}_i is divergent if after termination of the algorithm there is $e \in coc$ with companion e' such that s is concurrent to both e and e'. We denote the set of divergent conditions by DC. **Theorem 3.** A finite trace $\sigma \in Tr(S_i)$ is a divergence of A_i iff there is a divergent condition s of N_i such that some realization of σ leads to $[s]_{\equiv}$. Therefore, $(S_i, [DC]_{\equiv})$ is a divergence-summary. *Proof.* (\Rightarrow) Assume that σ is a divergence of \mathcal{A}_i . By the definition of a divergence, there exists $\tau \in Tr(\mathbf{A})$ such that $\tau|_{\Sigma_i} = \sigma$ and τ is infinite. So there exists a strongly succinct history h of A such that $tr(h) = \tau$. Denote by e_i the last i-event of h. The proof of Theorem 2 guarantees the existence of an i-event e'_i in \mathcal{N} which is not a cut-off and satisfies the following two properties: $\mathbf{St}(e_i) = \mathbf{St}(e_i')$, and there exists a realisation of σ leading to $[s]_{\equiv}$, where $s = M(e_i)_i$. As τ is infinite, the unfolding \mathcal{U} of \mathcal{A} contains an infinite occurrence sequence starting at $M(e_i)$ and containing no i-event. Since $\mathbf{St}(e_i) = \mathbf{St}(e_i)$, another infinite sequence with the same labelling and without i-events can occur from $M(e'_i)$ in \mathcal{U} . By construction of \mathcal{N} , and since e'_i is not a cut-off, a non-empty prefix of this second occurrence sequence appears in \mathcal{N} , and contains at least one cut-off candidate e. So e appears in some occurrence sequence without i-events starting at $M(e'_i)$. It follows that e is either (1) concurrent with e'_i , or (2) a successor of e'_i such that $ip(e) = M(e'_i)_i$. Moreover, since e is not an i-event, it is concurrent with $s = M(e_i)_i$. It remains to show that the companion e' of e is also concurrent with s. If (1) holds, i.e., if e is concurrent with e'_i , then e' is concurrent with e'_i (and so with s) as well, because, by the definition of a cut-off candidate, we have $Ico_{\mathcal{N}}(e) \subseteq Ico_{\mathcal{N}}(e')$. If (2) holds, i.e., if $e > e'_i$, then we have $e' > e'_i$ for the same reason as in the case (b1) in the proof of Theorem 2), and so e' and s are concurrent. - (\Leftarrow) Consider a divergent condition s of \mathcal{N}_i . By the definition of a divergent condition there exist a cut-off candidate e with companion e' such that neither e nor e' are i-events, and both e and e' are concurrent with s. Let e_i be the i-event such that $M(e_i)_i = s$. As e is concurrent with s, it is either concurrent with e_i , or a successor of e_i such that $ip(e) = M(e_i)_i$. We consider these two cases separately. - (1) e is a successor of e_i such that $ip(e) = M(e_i)_i$. Then e' is a successor of e_i for the same reason as in case (b1) of Theorem 2. So we have $[e_i] \subseteq [e'] \subseteq [e]$. Let j_1 be any occurrence sequence starting from $M(e_i)$ and containing exactly the events in $[e'] \setminus [e_i]$ (so j_1 contains no i-events). Let j_2 be any occurrence sequence starting at M(e') and containing exactly the events in $[e] \setminus [e']$ (so j_2 contains no i-events either). As $\mathbf{St}(e) = \mathbf{St}(e')$, there exists an occurrence sequence j_2^1 in \mathcal{U} starting at M(e) and such that $tr(j_2^1) = tr(j_2)$; moreover the last event e^1 of j_2^1 satisfies $\mathbf{St}(e^1) = \mathbf{St}(e)$. So we can iteratively construct occurrence sequences j_2^k for every k > 1, each of them starting at $M(e^{k-1})$, satisfying $tr(j_2^k) = tr(j_2)$, and ending with an event e^k satisfying $\mathbf{St}(e^k) = \mathbf{St}(e)$. So the infinite occurrence sequence $j_1 j_2 j_2^1 j_2^2 \ldots$ can occur in \mathcal{U} from $M(e_i)$. (2) e is concurrent with e_i . Then e' is also concurrent with e_i , because the definition of a cut-off candidate requires $Ico_{\mathcal{N}}(e) \subseteq Ico_{\mathcal{N}}(e')$. By Lemma 2 we have $[e_i] \cap ([e] \setminus [e']) = \emptyset$. Let j_1 be any occurrence sequence starting from $M(e_i)$ and containing exactly the events in $[e'] \setminus [e_i]$ (so j_1 contains no i-events). Given two arbitrary concurrent events e_1, e_2 , let $M(e_1, e_2)$ be the unique marking reached by any occurrence sequence that fires exactly the events of $[e_1] \cup [e_2]$. Let j_2 be any occurrence sequence starting from $M(e_i, e')$ and containing exactly the events in $[e'] \setminus [e]$ (so j_2 contains no i-events). As $\mathbf{St}(e) = \mathbf{St}(e')$ and $[e_i] \cap ([e] \setminus [e']) = \emptyset$, there exists an occurrence sequence j_2^1 in \mathcal{U} starting at $M(e_i, e)$ and such that $tr(j_2^1) = tr(j_2)$; moreover the last event e^1 of j_2^1 satisfies $\mathbf{St}(e^1) = \mathbf{St}(e)$. So for every k > 1 we can iteratively construct sequences j_2^k starting from $M(e_i, e^{k-1})$ such that $tr(j_2^k) = tr(j_2)$ and ending with an event e^k satisfying $\mathbf{St}(e^k) = \mathbf{St}(e)$. It follows that the infinite occurrence sequence $j_1 j_2 j_2^1 j_2^2 \ldots$ can occur in \mathcal{U} from $M(e_i)$. So in both cases **A** has an infinite execution h' starting at $\mathbf{St}(e_i)$ and such that $tr(h')|_{\Sigma_i}$ is empty. Moreover, if some realization of σ leads to $[s]_{\equiv} = M(e_i)_i$, the proof of Theorem 2 guarantees the existence of a history h of **A** reaching state $\mathbf{St}(e_i)$ and satisfying $tr(h)|_{\Sigma_i} = \sigma$. Taking $\tau = tr(hh')$ concludes the proof. #### 7.2 Weights We now consider weighted systems, e.g parallel compositions of weighted LTS. Formally, a weighted LTS $\mathcal{A}^w = (\mathcal{A}, c)$ consists of an LTS $\mathcal{A} = (\mathcal{E}, S, T, \lambda, s^0)$ and a weight function $c: T \to \mathbb{R}_+$ associating a weight to each transition. A weighted trace of \mathcal{A}^w is a pair (σ, w) where $\sigma = a_1 \dots a_k$ is a finite trace of \mathcal{A} and w is the minimal weight among the paths realizing σ , i.e: $$w = \min_{\substack{s_0 \dots s_k \in S^{k+1}, s_0 = s^0, \\ t_i = (s_{i-1}, s_i) \in T, \lambda(t_i) = a_i}} \sum_{j=1}^k c(t_j).$$ We denote by $Tr(\mathcal{A}^w)$ the set of all the weighted traces of \mathcal{A}^w . The parallel composition $\mathbf{A}^w = (\mathbf{A}, \mathbf{c}) = \mathcal{A}_1^w ||_w \cdots ||_w \mathcal{A}_n^w$ of the LTS $\mathcal{A}_1^w, \dots, \mathcal{A}_n^w$ is such that $\mathbf{A} = \mathcal{A}_1 || \dots || \mathcal{A}_n$ and the weight of a global transition $\mathbf{t} = (t_1, \dots, t_n)$ is: $$\mathbf{c}(\mathbf{t}) = \sum_{t_i \neq \star} c_i(t_i).$$ Similarly a weighted labelled Petri net is a tuple $\mathcal{N}^w = (\mathcal{N}, c)$ where $\mathcal{N} = (\mathcal{L}, P, T, F, \lambda, M_0)$ is a labelled Petri net and $c: T \to \mathbb{R}_+$ associates weights to transitions. A weighted trace in \mathcal{N}^w is a pair (σ, w) with σ a finite trace of \mathcal{N} and w the minimal weight of an occurrence sequence corresponding to σ , where the weight of an occurrence sequence is the sum of the weights of its transitions. By $Tr(\mathcal{N}^w)$ we denote the set of all the weighted traces of \mathcal{N}^w . The branching processes of $\mathcal{A}_1^w|_w \dots |_w \mathcal{A}_n^w$ are defined as weighted labelled Petri nets like in the non-weighted case, where each event is implicitly labelled by an action (as before) and a cost. Given a finite set of weighted traces W we define its restriction to alphabet Σ as $$W|_{\Sigma} = \{ (\sigma, w) : \exists (\sigma', w') \in W, \sigma = \sigma'|_{\Sigma} \land w = \min_{\substack{(\sigma', w') \in W \\ \sigma'|_{\Sigma} = \sigma}} w' \}.$$ As in the non-weighted case we are interested in solving the following summary problem: **Definition 8 (Weighted summary problem).** Given $\mathcal{A}_1^w, \ldots, \mathcal{A}_n^w$, weighted LTSs with interface \mathcal{A}_i^w , compute a weighted LTS \mathcal{S}_i^w satisfying $Tr(\mathcal{S}_i^w) = Tr(\mathbf{A}^w)|_{\Sigma_i}$, where $\mathbf{A}^w = \mathcal{A}_1^w||_w \ldots ||_w \mathcal{A}_n^w$. This section aims at showing that the approach to the summary problem proposed in the non-weighted case still works in the weighted one. In other words, \mathcal{S}_i^w can be obtained by computing a finite branching process \mathcal{N}^w of \mathbf{A}^w (using Definition 5 of cut-off and cut-off candidates and Algorithm 2) and then taking the interface projection \mathcal{N}_i^w of \mathcal{N}^w on \mathcal{A}_i^w and folding it. The notion of interface projection needs to be slightly modified to take weights into account. The conditions, events, and arcs of \mathcal{N}_i^w are defined exactly as above, and the weight of an event e of \mathcal{N}_i^w is $c_i(e) = c([e]) - c([e'])$ if the predecessor e' of e in \mathcal{N}_i^w exists and $c_i(e) = c([e])$ else, where c is the weight function of \mathcal{N}^w and $c([e]) = \sum_{e_k \in [e]} c(e_k)$, where [e] is the past of e in the weighted branching process \mathcal{N}_i^w **Theorem 4.** Let $\mathbf{A}^w = \mathcal{A}_1^w||_w \dots ||_w \mathcal{A}_n^w$ with interface \mathcal{A}_i^w . The instance of Algorithm 2 given by Definition 5 terminates and returns a weighted branching process \mathcal{N}^w such that the folding S_i^w of \mathcal{N}_i^w is a weighted summary of \mathbf{A}^w . Proof. The termination is granted by Theorem 2 as well as the fact that the weighted trace (tr, w) belongs to $Tr(S_i^w)$ if and only if, for some w', the weighted trace (tr, w')
belongs to $Tr(\mathbf{A}^w)_{|\Sigma_i}$. It remains to show that for any tr such that $(tr, w) \in Tr(S_i^w)$ and $(tr, w') \in Tr(\mathbf{A}^w)_{|\Sigma_i}$ one has w = w'. In the following we denote by c_i the costs functions of S_i^w and \mathcal{N}_i^w , and by \mathbf{c} the cost function of \mathbf{A}^w . Similarly we denote by λ_i the labelling function of \mathcal{N}_i^w and by λ the labelling function of \mathbf{A}^w . $w' \leq w$. This part of the proof is very close to the proof of the first inclusion of Theorem 1. Let (tr^i, w) be a finite weighted trace of \mathcal{S}_i^w . Then $[b^0]_{\equiv} \xrightarrow{tr^i} [b]_{\equiv}$ in \mathcal{S}_i^w with $c_i(tr^i) = w$, where $[b^0]_{\equiv}$ is the initial state of \mathcal{S}_i , and $[b]_{\equiv}$ is some state of \mathcal{S}_i . By the definition of folding, there exist $\tau_1^i, \ldots, \tau_k^i$ occurrence sequences of \mathcal{N}_i and $(b'_1, b_1), \ldots, (b'_k, b_k)$ pairs of conditions of \mathcal{N}_i such that (1) $tr^i =$ $\lambda_i(\tau_1^i)\lambda_i(\tau_2^i)\dots\lambda_i\tau_k^i$; (2) $b^0 = b'_1$ and $b_k = b$; (3) $b'_j \xrightarrow{\tau_j^i} b_j$ in \mathcal{N}_i for every $j = 1, \dots, k$; (4) $b_{j-1} \equiv b'_j$ for every $j \in \{1..k\}$; and (5) $c_i(\tau_1^i) + \dots + c_i(\tau_k^i) = c_i(tr^i) = w$. By (3) and the definition of projection, we have $\mathbf{St}(b'_j) \stackrel{\tau_j}{\longrightarrow} \mathbf{St}(b_j)$ in \mathbf{A} for some execution τ_j such that $\lambda_i(\tau^i_j) = \lambda(\tau_j)|_{\Sigma_i}$ and $\mathbf{c}(\tau_j) = c_i(\tau^i_j)$: indeed, if e and e' are the input events of b_j and b'_j , then $\mathbf{St}(b_j)$ is reachable from $\mathbf{St}(b'_{j-1})$ by means of any execution τ_j corresponding to executing the events of $[e] \setminus [e']$, and any such τ_j satisfies $\lambda_i(\tau^i_j) = \lambda(tr_j)|_{\Sigma_i}$ and $\mathbf{c}(\tau_j) = c_i(\tau^i_j)$. Moreover, by (4) we have $\mathbf{St}(b_{j-1}) = \mathbf{St}(b'_j)$. So we get $$\mathbf{St}(b_1') \xrightarrow{\tau_1} \mathbf{St}(b_2') \xrightarrow{\tau_2} \cdots \xrightarrow{\tau_{k-1}} \mathbf{St}(b_k') \xrightarrow{\tau_k} \mathbf{St}(b_k)$$ By (1) and (2) we have $\mathbf{St}(b^0) \xrightarrow{\tau_1 \dots \tau_k} \mathbf{St}(b)$ in \mathbf{A} , so $tr^i = tr|_{\Sigma_i} \in Tr(\mathbf{A})|_{\Sigma_i}$ with $tr = \lambda(\tau_1) \dots \lambda(\tau_k)$, and by (5) and the definition of a weighted trace $w' \leq \mathbf{c}(tr) \leq \mathbf{c}(\tau_1) + \dots + \mathbf{c}(\tau_k) = c_i(tr_1^i) + \dots + c_i(tr_k^i) = w$. $w \leq w'$. This part of the proof is almost exactly the same as the proof of the second inclusion of Theorem 2 (considering finite traces only). We describe here the few differences between these two proofs. The main one is the definition of strongly succinct histories: instead of requiring $|h_{js}| \leq |h_j|$ we require $\mathbf{c}(h_{js}) < \mathbf{c}(h_j)$, or $\mathbf{c}(h_{js}) = \mathbf{c}(h_j)$ and $|h_{js}| \leq |h_j|$. Then, as we are interested in weights, claim (a) of the induction hypothesis has the supplementary requirement that $c_i(H_k^i) = \mathbf{c}(h_1 \dots h_k)$. The base case is then the same, just remarking that the cost of the empty history is 0 in both S_i^w and A^w . For the inductive step two things have to be done: (1) ensuring that when o_{k+1} contains a cut-off it is necessarily e_m and (2) ensuring the new part of claim (a) about weights. For (1) just remark that in all cases j_1j_3 is such that $\mathbf{c}(j_1j_3) \leq \mathbf{c}(j_1j_2j_3)$ and $|j_1j_3| < |j_1j_2j_3|$ so the same arguments as previously can be used with the new definition of a strongly succinct history. For (2) notice that when e_m is a cut-off i-event, in the unfolding of \mathbf{A}^w the events that can occur from $M(e_m)$ and from $M(e'_m)$ do not only have the same labelling: they in fact correspond to the exact same transitions of \mathbf{A}^w and so they also have the same weights. Reusing this proof we have shown that the weighted trace (tr, w') of \mathcal{A}^w is such that there exists a history h^i of \mathcal{S}^w_i such that $tr_{|\Sigma_i} = tr(h^i)$ and $c_i(h^i) = \mathbf{c}(tr) = w'$. So, by the definition of a weighted trace it comes directly that $w < c_i(h^i) = w'$. # 8 Conclusions We have presented the first unfolding-based solution to the summarization problem for trace semantics. The final algorithm is simple, but its correctness proof is surprisingly subtle. We have shown that it can be extended (with minor modifications) to handle divergences and weighted systems. The algorithm can also be extended to other semantics, including information about failures or completed traces; this material is not contained in the paper because, while laborious, it does not require any new conceptual ideas. We conjecture that the condition $e' \ll e$ in the definition of cut-off candidate can be replaced by e' < e, if at the same time the algorithm is required to add events in a suitable order. Similar ideas have proved successful in the past (see e.g. [6, 17]). #### References - 1. Paolo Baldan, Alessandro Bruni, Andrea Corradini, Barbara König, César Rodríguez, and Stefan Schwoon. Efficient unfolding of contextual Petri nets. *Theoretical Computer Science*, 449(1):2–22, 2012. - James C. Corbett. Evaluating deadlock detection methods for concurrent software. IEEE Transactions on Software Engineering, 22:161–180, 1996. - 3. Jean-Michel Couvreur, Sébastien Grivet, and Denis Poitrenaud. Designing a LTL model-checker based on unfolding graphs. In *Proceedings of the 21st International Conference on Applications and Theory of Petri Nets*, pages 123–145, 2000. - 4. Javier Esparza and Keijo Heljanko. Unfoldings A Partial-Order Approach to Model Checking. Springer, 2008. - Javier Esparza, Loïg Jezequel, and Stefan Schwoon. Computation of summaries using net unfoldings. In Proceedings of the IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, 2013. - Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of McMillan's unfolding algorithm. In Proceedings of the 2nd International Workshop on Tools and Algorithms for Construction and Analysis of Systems, pages 87–106, 1996. - Eric Fabre, Albert Benveniste, Stefan Haar, and Claude Jard. Distributed monitoring of concurrent and asynchronous systems. Discrete Events Dynamic Systems, 15(1):33–84, 2005. - 8. Eric Fabre and Loïg Jezequel. Distributed optimal planning: an approach by weighted automata calculus. In *Proceedings of the 48th IEEE Conference on Decision and Control*, pages 211–216, 2009. - Blaise Genest, Hugo Gimbert, Anca Muscholl, and Igor Walukiewicz. Optimal Zielonka-type construction of deterministic asynchronous automata. In *Proceedings* of the 37th International Colloquium on Automata, Languages and Programming, pages 52–63, 2010. - 10. Susanne Graf and Bernhard Steffen. Compositional minimization of finite state systems. In *Proceedings of the 2nd International Workshop on Computer Aided Verification*, pages 186–196, 1990. - 11. David Harel, Orna Kupferman, and Moshe Y. Vardi. On the complexity of verifying concurrent transition systems. In *Proceedings of the 8th International Conference on Concurrency Theory*, pages 258–272, 1997. - 12. Sarah Hickmott, Jussi Rintanen, Sylvie Thiébaux, and Lang White. Planning via Petri net unfolding. In *Proceedings of the 19th International Joint Conference on Artificial Intelligence*, pages 1904–1911, 2007. - Charles Antony Richard Hoare. Communicating Sequential Processes. Prentice-Hall, 1985. - 14. Victor Khomenko. Punf. homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/. - 15. Victor Khomenko. Model Checking Based on Prefixes of Petri Net Unfoldings. PhD thesis, Newcastle University, 2003. - 16. Victor Khomenko and Maciej Koutny. LP deadlock checking using partial-order dependencies. In *Proceedings of the 11th International Conference on Concurrency Theory*, pages 410–425, 2000. - 17. Victor Khomenko, Maciej Koutny, and Walter Vogler. Canonical prefixes of Petri net unfoldings. *Acta Informatica*, 40(2):95–118, 2003. - 18. Victor Khomenko, Agnes Madalinski, and Alex Yakovlev. Resolution of encoding conflicts by signal insertion and concurrency reduction based on STG unfoldings. In *Proceedings of the 6th International Conference on Application of Concurrency to System Design*, pages 57–68, 2006. - 19. Kenneth McMillan. A technique of state space search based on unfolding. Formal Methods in System Design, 6(1):45–65, 1995. - Madhavan Mukund and Milind Sohoni. Gossiping, asynchronous automata and Zielonka's theorem. Technical Report TCS-94-2, SPIC Science Foundation, 1994. - 21. Stefan Römer. Theorie und Praxis der Netzentfaltungen als Grundlage für die Verifikation nebenläufiger Systeme. Phd thesis, TU München, 2000. - 22. Stefan Schwoon. Mole. http://www.lsv.ens-cachan.fr/schwoon/tools/mole/. - Antti Valmari. Compositionality in state space verification methods. In Proceedings of the 17th Conference on Application and Theory of Petri Nets, pages 29–56, 1996. - Glynn Winskel. Events, causality and symmetry. Computer Journal, 54:42–57, 2011. - Fadi Zaraket, Jason Baumgartner, and Adnan Aziz. Scalable compositional minimization via static analysis. In Proceedings of the IEEE/ACM 2005 International Conference on Computer-Aided Design, pages 1060–1067, 2005. - Wieslaw Zielonka. Notes on finite asynchronous automata. RAIRO Theoretical Informatics and Applications, 21(2):99–135, 1987.