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Abstract. We apply to Petri net theory the technique of polynomial-

time many-one reductions. We study boundedness, reachability, dead-

lock, liveness problems and some of their variations. We derive three

main results. Firstly, we highlight the power of expression of reachability

which can polynomially give evidence of unboundedness. Secondly, we

prove that reachability and deadlock are polynomially-time equivalent;

this improves the known recursive reduction and it complements the

result of Cheng and al. [4]. Moreover, we show the polynomial equiv-

alence of liveness and t-liveness. Hence, we regroup the problems in

three main classes: boundedness, reachability and liveness. Finally, we

give an upper bound on the boundedness for post self-modi�ed nets:

2

O(size(N)

2

�log size(N))

. This improves a decidability result of Valk [18].

Key words: Petri net theory; Complexity Theory; Program Veri�cation;

Equivalences.

1 Introduction

The boundedness, the reachability, the deadlock, the t-liveness and the live-

ness problems are among the main problems studied in Petri nets. Solving these

problems requires huge space and time resources. For boundedness, Lipton [13]

proved that a lower space-bound is 2

c:

p

jN j

, improved with 2

c:jN j

by Bouziane [2]

(where c is some constant and jN j is the size of the input net); Racko� [17] proved

that an upper space-bound for this problem is 2

O(jN j�log jN j)

. For reachability,

decidability has been proved by Mayr [14] and Kosaraju [12]; Cardoza, Lipton,

Mayr and Meyer [3,15] established that this problem is Expspace-hard. How-

ever, until now, it is not known whether the reachability, the deadlock and the

liveness problems are primitive recursive or not. In this paper, our aim is to

compare these problems, to regroup similar problems into classes and to order

these classes.

We use polynomial-time many-one reductions [9]. The idea is to take one

instance of a problem A and to polynomially transform it into one instance of

another problem B. The problem B is seen as an oracle used to solve the prob-

lem A. In the literature, we often �nd two other kinds of reductions: polynomial-

time Turing reductions which allow to consult the oracle not only once, but a



polynomial number of times and recursive reductions. We obtain two sorts of

results. Firstly, we prove three main theorems:

{ Boundedness is polynomially reducible to reachability,

{ Reachability and deadlock are polynomially equivalent,

{ Liveness and t-liveness are polynomially equivalent.

For instance, we show that a Petri net N is unbounded if and only if a marking

M

N

is reachable in the net

b

N which is polynomially constructed from N . Let

us note that our second theorem strengthens a recent result of Cheng, Esparza

and Palsberg [4] who showed that reachability is polynomially reducible to dead-

lock. Secondly, we establish a strong relation between Petri nets and Post Self-

Modifying nets (PSM-nets) on the boundedness problem. Post self-modifying

nets, de�ned by Valk [18], are extended Petri nets in which a transition may add

a \dynamic number" of tokens (which is an a�ne function, with a speci�c form,

of the current marking) in its output places. Valk has proven that the bound-

edness problem is decidable for post self-modifying nets. Here, we improve his

decidability result by giving 2

O(jN j

2

�log jN j)

as an upper space-bound. Moreover,

this upper bound is not so far from the lower bound 
(2

jN j

).

There are four advantages in grouping problems together. Firstly, even if

we still do not know the exact complexity of reachability and deadlock, it is

instructive to know that they have the same complexity, modulo a polynomial

transformation. Secondly, when we know that seven problems are polynomially

equivalent, as for the ones of the reachability class, we may focus our attention

on only one of these problems, to produce a good implementation of an algo-

rithm solving it; this unique program may be used for solving the sixth other

problems. Thirdly, the obtained results con�rm our intuition about the hardness

of problems in Petri nets. Basically we obtain the following order:

Boundedness � Reachability � Deadlock � Liveness

Fourthly, we obtain a new complexity result in using the equivalence between

boundedness for Petri nets and boundedness for post self-modifying nets.

In the next section, we give the basic de�nitions of Petri nets and polynomial-

time reductions; then we make an overview of the known many-one polynomial-

time reductions. In section 3, we reduce boundedness to reachability. In section

4, we prove that reachability is polynomially equivalent to deadlock; moreover,

both are polynomially equivalent to reachability and deadlock for normalized

Petri nets (for which valuations over arcs and initial marking are upper-bounded

with 1). In section 5, we show that liveness is equivalent to t-liveness. In section

6, we prove that boundedness for Petri nets and boundedness for post self-

modifying nets are polynomially equivalent; we deduce from there the upper-

bound on the boundedness problem for PSM-nets. We conclude in section 7.



2 Petri nets and polynomial-time reductions

Let IN be the set of nonnegative integers and let IN

k

(k � 1) be the set of k-

dimensional column vectors of elements in IN. Let X 2 IN

k

, X(i) (1 � i � k) is

the i

th

component of X. Let X;Y 2 IN

k

, we have X � Y i� the two conditions

hold : (a) X(i) � Y (i) (1 � i � k) and (b) 9j; 1 � j � k; s:t: X(j) < Y (j).

Let � be a �nite alphabet, �

�

is the set of all �nite words (or sequences) over

�. We note jSj, the cardinal of a �nite set S. We note jN j, the size of a Petri

net N .

2.1 Petri nets, properties and complexity

A Petri net is a 4-tuple N =< P; T; F;M

0

> where P is a �nite set of places, T

is a �nite set of transitions with P \ T = ;, F : (P � T ) [ (T � P ) �! IN is a

ow function and M

0

2 IN

jP j

is the initial marking. A Petri net is normalized

or ordinary if F is a function into f0; 1g and M

0

is a function into f0; 1g

jP j

.

A transition t is �rable from a marking M 2 IN

jP j

, written M

t

!, if for every

place p, we have F (p; t) � M (p). Firing t from M leads to a new marking

M

0

, written M

t

! M

0

, de�ned as follows : for every place p, we have M

0

(p) =

M (p)�F (p; t)+F (t; p). A markingM

0

is reachable fromM , written M

�

!M

0

,

if there exists a sequence � 2 T

�

such that M

�

! M

0

. A marking is dead if no

transition is �rable from it. The reachability set of N , denoted RS(N ), contains

all the markings reachable fromM

0

. A Petri net is unbounded if its reachability

set is in�nite. A transition t is quasi-live from M if it is �rable from a marking

M

0

with M

�

!M

0

. A transition t 2 T is live if it is quasi-live from any marking

in RS(N ). A Petri net is live if all transitions are live.

De�nition 1. Given a Petri net N =< P; T; F;M

0

>, t 2 T and M 2 IN

jP j

:

{ The Boundedness Problem (BP) is to determine whether N is bounded or not.

{ The Reachability Problem (RP) is to determine whether M 2 RS(N ) or not.

{ The Deadlock Problem (DP) is to determine whether RS(N ) contains a dead-

marking or not.

{ The t-Liveness Problem (t-LP) is to determine whether the transition t is live

or not.

{ The Liveness Problem (LP) is to determine whether N is live or not.

These problems have been widely studied. They are all decidable [11,8,12,14,7],

but intractable in practice. A lower space-bound for the RP and BP is 2

c:

p

jN j

[13].

Reachability is Expspace-hard [3,15], but we don't know yet if the RP is primi-

tive recursive or not. There exists a family of bounded Petri nets such that every

net N of the family has a reachability set with a non-primitive recursive size in

jN j [10]. An upper space-bound for deciding the BP is 2

O(jN j�log jN j)

[17]. This

bound comes from the following theorem:

Theorem 2. [11,17] A Petri net N =< P; T; F;M

0

> is unbounded if and

only if there exists two sequences �

1

; �

2

2 T

�

such as M

0

�

1

! M

1

�

2

! M

2

with



M

1

� M

2

.The net is unbounded if and only if there exists such an execution of

length less than a double exponential in the size of N .

If we talk about complexity, we need to determine what is the size of a Petri

net. The representation we have chosen which is slightly di�erent from the one in

[20] commonly used. Let V be the greatest integer found over the ow function

and the initial marking. We propose to encode the ow function of a Petri net

with two matrices of size (jP j � jT j) containing �(logV ) bits: one matrix for

input arcs and an other for output arcs. A Petri net is encoded with a sequence

of bits giving the number of places, the number of transitions, the size of V , the

ow function and �nally the initial marking. The total size belongs to:

�(log jP j+log jT j+log logV +2�jP j�jT j�logV +jP j�logV ) = �(jP j�jT j�logV )

2.2 Known polynomial-time reductions for Petri nets

Reductions [9] are used to compare di�erent problems for which, most of the

time, no e�cient algorithm is known. We manipulate decision problems which

are problems requiring Yes or No as output. We ask questions of the kind : \Does

Petri net N possess the property P or not ?". The net given in input is called

the instance of problem P . Most of the time, instances of our problems are Petri

nets but it may happen that we need to specify a marking (as for the RP) or

a transition (as for the t-LP). We note I

P

the set of instances associated to

problem P . We say that P is many-one polynomial-time reducible to Q, written

P �

poly

Q, if we can exhibit a polynomial-time computable function f such as

I

P

2 P , f(I

p

) 2 Q. We say many-one because the function f is not necessar-

ily a bijection. Sometimes, we have to take the complement of usual problems:

for instance, we talk about the reduction from reachability to not-liveness and

not to liveness.

Not

Deadlock Liveness

SPZero-RP

Sub-RP, Zero-RP

Reachability-norm

Reachability

t-Liveness-norm

t-Liveness

Boundedness

Boundedness-norm

Boundedness-PSMN

Not

Fig. 1. Summary of known polynomial-time many-one reductions.



We give in the current section an overview of known many-one polynomial-time

reductions focusing on the BP, RP, DP, LP and t-LP and some of their varia-

tions. The Fig. 1 summarizes the relation between the problems with a diagram.

All problems put in a same box are equivalent. An arrow from a box to another

indicates the existence of a reduction from the �rst class to the other. An arc

labeled with \not" refers to a reduction to the complement of a problem. The

boundedness problem for post self-modifying nets is written Boundedness-PSMN

(the de�nition of PSM-nets is recalled in section 6).

Normalization: The normalization proposed in [6] is performed in quadratic

time and preserves boundedness, reachability and t-liveness. We add the su�x

-norm to design the classical problems over normalized, or ordinary, Petri nets.

We have BP equivalent to BP-norm, RP equivalent to RP-norm and t-LP equiv-

alent to t-LP-norm.

Reachability:Many polynomial reductions were given by Hack [8], [16] about

reachability properties. Hack pointed out three problems equivalent to the RP.

The Submarking Reachability Problem (Sub-RP) over < N;M

0

>, where M

0

is

a marking over the subset P

0

� P , is to decide whether there exists a marking

M reachable such that for all p 2 P

0

; M (p) = M

0

(p). The Zero-Reachability

Problem (Zero-RP) over < N > is to decide whether there exists a reachable

marking in which all the places are empty. The Single-Place Zero-Reachability

(SPZero-RP) over < N; p > is to decide whether there exists a reachable mark-

ing for which place p is empty. Cheng and al. [4] showed that reachability is

polynomially reducible to deadlock.

Liveness: Reachability is polynomially reducible to not-liveness [16]. The other

sense of the reduction is known recursive but we do not know a polynomial

reduction. More recently, Cheng and al. [4] showed that the deadlock problem

is polynomially reducible to not-liveness. But as for RP, the other sense is not

known. Liveness appears to be a very expressive property. Hack [8] mentions a

reduction from t-LP to LP performed in almost linear-time.

3 From unboundedness to reachability

Let us compare the current state of knowledge about boundedness and reach-

ability. Firstly, about complexity, we know an upper space-bound for solving

boundedness [17] but we still do not know if reachability is primitive recursive

or not. Moreover, this last question remains one of the hardest open questions in

Petri net theory. Secondly, we know that if we increase the power of Petri nets a

little bit then reachability becomes undecidable while boundedness seems more

resistant. An illustrative example is the class of the post self-modifying nets for

which boundedness is decidable but not reachability (see section 6). Reachability

seems to be a stronger property than boundedness because BP is in Expspace

and RP is Expspace-hard; in the current section, we explicitly give the reduc-
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Fig. 2. Reduction from boundedness to reachability.

tion from BP to RP. The other sense, reachability to unboundedness, is probably

false otherwise we would obtain a surprising upper bound complexity on solving

reachability.

Theorem 3. Unboundedness is polynomially reducible to reachability

Proof : Let N =< P; T; F;M

0

> be a Petri net. Recall that N is not bounded if

and only if there exists an execution of N ,M

0

�

1

!M

0

�

2

!M

00

, such thatM

0

�M

00

[11]. The di�erence M

d

= M

00

�M

0

is a nonnegative vector, with at least one

strictly positive component. Our strategy is to look for such a markingM

d

. But

we want to detect M

d

through reachability, by asking whether a speci�c marking

is reachable, and this implies that we need to characterize M

d

in a standard way.

Let us suppose that we add a summing-place that contains at any step the sum

over all the places (a summing-place can easily be implemented in a Petri net by

adding to each transition an arc labeled with the total e�ect of the transition).

The marking M

d

is certainly strictly greater than marking with 0 in all the

places except 1 in the summing-place. We use this characterization for the �nal

question of the reduction. Let us explain our reduction with the help of Fig. 2.

We build

b

N =<

b

P;

b

T;

b

F;

c

M

0

> as follows:



{ Make two copies ofN inN

1

=< P

1

; T

1

; F

1

;M

0

1

> andN

2

=< P

2

; T

2

; F

2

;M

0

2

>

with M

0

= M

0

1

= M

0

2

;

{ Add two summing-places. At �rst, p

1

�

contains the sum over all the places

of N

1

and p

2

�

contains the sum over all the places of N

2

;

{ Each transition t 2 T

2

is duplicated leading to a new transition t

0

in T

2

(note

that now N

2

is not anymore an exact copy of N );

{ Make the fusion of N

1

and N

2

over pairs (t

1

; t

2

) where t

1

2 N

1

and t

2

2 N

2

are copies of the same original transition in N ;

{ Add four levels of control, which are activated successively during an exe-

cution. Levels are managed with permission-places labeled explicitly in the

picture. Control is �rst given at level 1 and moves as follows: Level 1 !

level 2 ! level 3 ! level 4. The dashed arcs link a permission-place to

the set of transitions that it allows to be �red:

� Level 1 allows the two nets N

1

and N

2

to �re the original transitions

together;

� Level 2 allows only N

2

to continue to �re the original transition while

N

1

and its summing-place are frozen;

� Level 3 allows simultaneous emptying of two associated places (p

1

; p

2

)

where p

1

2 P

1

[ fp

1

�

g and p

2

2 P

2

[ fp

2

�

g is its corresponding place;

� Level 4 allows to empty places of N

2

[ fp

2

�

g only.

Correctness: N is unbounded if and only if M

r

= (0; 0; 0; 1; 0 � � �0; 0; 0 � � �0; 1)

is reachable in

b

N . The �rst four positions in M

r

are related to the four levels.

The last position in M

r

is related to summing-place p

2

�

. The other positions, all

equal to 0, are related to the remaining places of N

1

and N

2

. Note that M

r

is

a marking at level 4 (M

r

(4) = 1). By construction, in

b

N , at any time M

0

in N

1

and M

00

in N

2

are two markings appearing along an execution of N . The only

way to empty correctly P

1

and p

1

�

and to keep at least one token in p

2

�

is to have

M

0

� M

00

; this happens if and only if N is unbounded. Finally, level 4 allows to

clean up the remaining places in order to exactly reachM

r

when N is unbounded.

Complexity: The net

b

N contains O(jP j) places and O(jP j+ jT j) transitions.

The greatest value in

b

N is (jP j�V ), because of the summing-places (recall that V

is the greatest value of N ). The total size is thus O(jP j�(jP j+ jT j)� log(jP j�V ))

and the construction is linear on this size. We conclude that the time-complexity

of the reduction is O(log jP j � jN j

2

) and this concludes the proof.

4 Polynomial equivalence of reachability and deadlock

Reachability and deadlock are decidable and thus recursively equivalent [4]. In

the current section, we prove that reachability, deadlock, reachability for normal-

ized Petri nets and deadlock for normalized Petri nets are polynomially equiva-

lent. Recall that a Petri net is normalized if the ow function returns an integer

in f0; 1g and the initial marking belongs to f0; 1g

jP j

. The reachability set how-

ever may be in�nite and thus, normalized Petri nets should not be confused



with 1-safe nets for which any reachable marking contains only 0 or 1 as values.

Normalization provides a simpler representation of Petri nets; in this sense, it

is interesting to notice that studying RP or DP may be restricted to this class

modulo a polynomial transformation. Our proofs use some known results but we

explain in detail the main reduction \from deadlock to reachability".

Proposition 4. Reachability, deadlock, reachability for normalized PN and

deadlock for normalized PN are polynomially-time equivalent.

Proof:We prove that RP �

poly

RP-norm �

poly

DP-norm �

poly

DP �

poly

RP.

,! The �rst reduction, from RP to RP-norm, is true by the normalization in

[6] which is performed in quadratic time and preserves reachability. To make

an e�cient normalization, the main idea is to use the binary strings encoding

integers appearing in F and M

0

, instead of using their values.

,! The second reduction, from RP-norm to DP-norm, is true from the reduc-

tion in Cheng and al. [4]. The main idea of the reduction is the following: let

the original net run with dummy self-loop transitions. At any time, the current

marking can be tested. The expected marking (which is part of the input) is

subtracted from current marking. If the current marking was the expected one,

the dummy transitions are not �rable anymore and this leads to a deadlock.

However, to preserve the normalization, we need to perform a pre-normalization

over the expected marking.

,! The third reduction, from DP-norm to DP, is trivial.

,!We explain in detail the fourth reduction, from DP to RP. A natural Turing

reduction is to list all the partial dead markings and to ask for each of them,

whether it is reachable or not. However, there exists an exponential number of

dead markings and this strategy is not polynomial.

Construction, from DP to RP. Let N =< P; T; F;M

0

> be a Petri net. A

deadlockM

d

in N is a reachable marking allowing no transition to be �red. This

means that for every transition t, there exists a place p such thatM

d

(p) < F (p; t).

It is not necessary to describe the marking M

d

over all the places; a subset of

places is su�cient. The main idea is to guess a partial marking, to validate it

as a good candidate for a deadlock, to let run the original net and �nally to

compare M

d

guessed with the current marking M of the original net. For that,

M

d

is subtracted from M (token by token). If the markings are the same, 0 is

reachable in the chosen places for M and M

d

.

Fig. 3 gives the general skeleton of the reduction. We construct a net

b

N

with 4 levels of control. Each level controls a speci�c subnet, isolated in a box.

However, two boxes may have common transitions, and this is illustrated with

non-oriented dashed arcs. Control is given �rst at level 1 and moves as follows:

level 1 ! level 2 ! level 3 ! level 4. We explain in detail the four levels.

� At Level 1, a subset of places P

0

� P is chosen, and a markingM

d

is guessed

over P

0

. In Fig. 3, the guessed marking appears in the central box. If the place

p is chosen, then a place Yes

p

is marked; otherwise, a place No

p

is marked.
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Fig. 3. Reduction from deadlock to reachability.

For each original place p 2 P

0

, the aimedM

d

(p) is stored into a place labeled

with p

0

. Fig. 4 gives the details of the implementation for place p. An M

d

(p)

cannot be greater than V , where V is the greatest valuation of the original

net. To guess M

d

(p), i.e. the content of p

0

, we use a complementary place,

labeled with C

p

0

. Places of kind p

0

are initialized with 0, and complementary

places with V . At any time, the sum over a place and its complementary

place is the constant V .

No

p

Y es

p

0

0

0

p

0

C

p

0

V

0

1

Chooses if p 2 P

0

or not

Level 1

Guesses M

d

(p)

Fig. 4. From deadlock to reachability : to choose p and to guess M

d

(p) into p

0

.

� At level 2, the net veri�es that M

d

is a good candidate: M

d

must under-

evaluate for any transition the number of tokens required by at least one



input place. If the condition holds, then the place p

sat

is marked. To con�rm

that M

d

is a good candidate, we verify the following boolean equation :

^

t2T

_

p2

�

t

[(M

d

(p) < F (p; t))^ (p 2 P

0

)]

Condition M

d

(p) < F (p; t) is easily implemented using the complementary

places: in fact, if p

0

, i.e. M

d

(p), contains less than F (p; t) tokens then its

complementary place contains at least V �F (p; t)+ 1 tokens. The condition

p 2 P

0

is veri�ed by using the Yes

p

places. We illustrate the construction in

Fig. 5, where we focus on transition t

1

which has here as input places: p

1

and

an arbitrary p

i

. If the guessed marking is dead for t

1

, then a place \Dead

for t

1

" is marked. The same implementation is done for all the transitions.

Note that we use reexive arcs, because places of kind Yes

p

or C

p

0

may be

used for more than one original transition. When M

d

is recognized as dead

for all transitions, then p

sat

may be marked (once here, but this is only a

choice of construction).

OR[p

i

; t

1

]

OR[p

1

; t

1

]

Y es

p

jPj

Y es

p

i

Y es

p

1

V � F (p

1

; t

1

) + 1 V � F (p

i

; t

1

) + 1

0

0

0

V

V

V

0

0

1

0

0

p

sat

Level 2

Dead for t

1 Dead for t

jT j

^

t2T

_

p2

�

t

[(M

d

(p) < F (p; t)) ^ (p 2 P

0

)]

C

p

0

1

C

p

0

i

C

p

0

jP j

Fig. 5. From deadlock to reachability : to verify M

d

.

� At level 3, the net emulates the behavior of N . A copy of N is included in

the current construction with a permission-token to level 3.

� At level 4, the net stops the emulation and tests whether M

d

and the current

marking M in the copy of N coincide. For that, the Yes

p

places are used to

debit the chosen places simultaneously in M and M

d

. The other non chosen

places of M are emptied using the No

p

places. The remaining non relevant

places of the construction are emptied without condition.



Correctness: N reaches a dead marking if and only ifM

r

= (1; 0; 0; 0; 1; 0 � � �0)

is reachable in

b

N , where the �rst position of M

r

refers to p

sat

and the �fth one

refers to level 4. It is evident that if a dead-marking is reachable in N , then it is

possible to choose it as a good candidate and to �nally reach M

r

. In the other

sense, if no dead marking is reachable in N then there are two cases: either p

sat

is not marked; or p

sat

is marked but this means that the guessed marking is not

reachable and that current marking in the copy of N andM

d

will never coincide.

Complexity: The net

b

N �nally contains O(jP j+ jT j) places and O(jP j � jT j)

transitions (because of the module which veri�es M

d

). The greatest value in

b

N

is V . The total size is thus in O(jN j

2

), and the construction is linear on this size

then quadratic. This concludes the proof.

5 Polynomial equivalence of liveness and t-liveness

There exists a polynomial reduction from reachability to not-liveness [16] using

the variation of RP which asks whether a place p may be emptied. A similar

reduction exists from deadlock to not-liveness [4]. The other senses of the re-

ductions, from not-LP to RP and from not-LP to DP, are not known. Hack [8]

gave a reduction from t-liveness to liveness. In the current section we show the

other sense of the reduction, from liveness to t-liveness, making the two problems

many-one polynomially equivalent. Note that we do not have this equivalence for

the subclass of bounded free-choice net where t-liveness is NP -complete, while

liveness is polynomial [5].

Theorem 5. Liveness is polynomially reducible to t-liveness.

Proof: Let N =< P; T; F;M

0

> be a Petri net. The construction of

b

N is as

follows: (1) Add a place p

t

in output of every transition t 2 T ; (2) Add a

transition t

test

having as input places the set of places fp

t

jt 2 Tg. All the

original transitions are live if and only if t

test

is quasi-live from any reachable

marking in

b

N . In

b

N we add jT j places and O(jT j) transitions. The total size of

the net is O((jT j+ jP j)� jT j) and this size is quadratic in jN j. The total time is

linear in this size and thus polynomial.

6 An upper-bound on solving boundedness for Post

Self-Modifying nets

Post Self-Modifying nets (PSM-nets), de�ned by Valk [18,19], are more powerful

than Petri nets. In this model, transitions have extended arcs and/or classical

arcs. Extended arcs are only in output of transitions. Let us suppose that there

exists an extended arc from t to place p

2

labeled with 21�p

1

+4�p

3

. Firing t from

M , leads to a new markingM

0

such thatM

0

(p

2

) = M (p

2

)+21�M (p

1

)+4�M (p

3

).

Thus, the next marking depends narrowly on the current one and this is why

one uses the quali�er \self-modifying".



A PSM-net is a 5-tuple < P; T; F;M

0

; E >. The four �rst components are the

same as in Petri nets and the �fth one, componentE, is a function (T�P�P ) �!

IN which returns a multiplicative coe�cient, given a transition, an output place

and a place to be consulted. In our example, we have E(t; p

2

; p

1

) = 21. Although

PSM-nets are more expressive, the boundedness is still decidable and this is what

makes this model attractive. The proof [18] is similar to the original one for Petri

nets. However, reachability is undecidable. Let us de�ne a lower bound on the

size of an PSM-net. Let V be the greatest integer found over F , M

0

and E. We

encode the ow functions with matrices as for Petri nets. The size of a PSM-net

belongs to 
(jP j � jT j � logV ).

In the current section, we give an upper bound on solving boundedness for

PSM-nets. We prove that we have a polynomial-time equivalence between bound-

edness for Petri nets and boundedness for post self-modifying nets. The non

trivial sense of the reduction, from BP to BP-PSMN, requires quadratic time.

As boundedness for Petri nets is decidable in space 2

O(jN j log jN j)

, we obtain

2

O(jN j

2

log jN j)

as an upper space-bound for BP-PSMN. The main idea is to build

a net

b

N that emulates the behavior of N but computes the number of tokens

output of extended arcs in a weak sense. This means that, in the best case, the

computation will be the right one but, in any other case, the computation will

under-evaluate the number of tokens to be produced. Any marking reachable in

b

N is, in some sense, covered by a marking reachable in N and this implies that

N is unbounded if and only if

b

N is unbounded.

Theorem 6. Boundedness for PSM-nets is decidable in space 2

O(jN j

2

log jN j)

Proof: Let N =< P; T; F;E;M

0

> be a post self-modifying net. We reduce

BP-PSMN to BP; the time complexity is O(jN j

2

) leading to the theorem above.

To construct

b

N =<

b

P ;

b

T;

b

F;

c

M

0

>, we decompose the e�ect of any original

transition for the weak computing of the tokens to be produced in output. Every

transitions are replaced by a subnet as illustrated on an example in Fig. 6. For

that, we need to associate every original place p to a place reservoir-p initialized

with 0. We ensure the mutual exclusion between the jT j subnets, such that as

long as a current decomposition is not over, it is impossible to emulate another

original transition. In Fig. 6, transition t has p

4

as input place, p

5

as classical

output place and p

2

, p

6

as \extended" output places. The arc to p

2

is labeled

with 21 � p

1

+ 4 � p

3

and the arc to p

6

with 7 � p

1

. This implies that �ring t from

M has for consequence the addition of 21 �M (p

1

) + 4 �M (p

3

) tokens in p

2

and

7 �M (p

1

) tokens in p

6

. The emulation of t is performed in four steps :

� Start t : the decomposition begins with the update of input places (here

p

4

) and classical output places (here p

5

). Control is given to the next step.

� Update by p

1

: the weak computations of 21 �M (p

1

) and 7 �M (p

1

) take

place here. As long as desired, t

p

1

debits p

1

of 1 token, crediting at the same

time its reservoir place of 1 token, p

2

of 21 tokens and p

6

of 7 tokens. If the

process ends when p

1

is empty, then p

2

and p

6

received the exact number of

tokens; otherwise they received less tokens than aimed.
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Fig. 6. Reduction from boundedness{PSMN to boundedness : weak �ring of t.

� Update by p

3

: the weak computation of the multiplicative coe�cient for p

3

takes place here. The value 4 �M (p

3

) is calculated in a weak sense, debiting

p

3

but keeping a trace in reservoir-p

3

by the same time.

� Restore altered places : we have now to restore the original contents

of places p

1

and p

3

. As long as desired, the contents of the reservoirs are

put back into the original places. If the process continues up to empty the

reservoirs, then p

1

and p

3

are restored; otherwise, they receive less tokens

than aimed. Note that in this last case, we have not however lost any tokens

because the remaining ones are in the reservoir places. Control is given to

the next transition to be emulated.

When all the steps are fully processed, we �nd in places p

6

and p

2

the right

number of tokens, and we leave p

1

and p

3

unalterated. At any time, and this is

the interesting point, if we \merge" any pair p and its reservoir by making their

sum, we �nd a marking which is covered by a marking that is reachable in the

original PSM-net. Moreover when the decompositions are well performed we �nd

a marking reachable in the original PSM-net. These two facts are su�cient to

make the reduction correct. Note that the construction needs to be a bit adapted

for other cases such as reexive extended arc.

Correctness: The original net N is unbounded if and only if the built net

b

N is

unbounded. If N is unbounded, then

b

N is unbounded because there is always a

way to emulate correctly the original net. If N is bounded then: either

b

N fully

performs the decomposition steps and produces as many tokens as N produces

at any step; or it produces less tokens.



Complexity: The original places, the reservoirs and the mechanism which re-

stores the places are common to all the decompositions of original transitions.

Each decomposition of an original transition requires O(jP j) places and transi-

tions in worst case. The whole net

b

N contains O(jP j+ (jT j � jP j)) places and

O(jT j+ (jT j � jP j)) transitions. The greatest value in

b

N is logV . The total size

is thus O((jT j � jP j)

2

� logV ) and the construction is linear on this size, thus

O(jN j

2

) and this concludes the proof.

7 Conclusion

Boundedness-PSMN

Boundedness

Boundedness-norm

Deadlock-norm

Deadlock

SPZero-RP

Sub-RP, Zero-RP

Reachability-norm

Reachability

Not

Not

t-Liveness

t-Liveness-norm

Liveness

Fig. 7. Summary of polynomial-time many-one reductions.

In this paper we were interested in ordering Petri net problems, boundedness,

reachability, deadlock, liveness and t-liveness, through their complexity. The

Fig. 6 summarizes the contribution of our work. The main results are the fol-

lowing:

We give an illustration of the expressive power of reachability by reducing

to it the not-boundedness and the deadlock problems. Reachability is a very

vulnerable property in term of decidability and often becomes undecidable, as

soon as the power of Petri nets is increased. An example of an extended model

for which RP is undecidable, is the class of Petri nets allowing Reset arcs [1]; a

Reset arc clears a place as a consequence of a �ring.

We put in the same class the reachability and the deadlock problems. These

problems were known to be recursively equivalent and thus, our comparison is

more precise.

We give 2

O(jN j

2

�log jN j)

as an upper-bound on the space-complexity for bound-

edness in post self-modifying nets, and this bound is not so far from the one for

Petri nets, even though PSM-nets are strictly more powerful than Petri nets.
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