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Abstra
t

We present a de
idability result in the 
ontext of the

veri�
ation of 
ryptographi
 proto
ols in presen
e of

data whi
h take value in a �nite known set. Sin
e

the perfe
t 
ryptography assumption is unrealisti
 for


ryptographi
 proto
ols that employ weak data, we

extend the 
onventional Dolev-Yao model to 
onsider

guessing atta
ks, where an intruder guesses the values

of weak data and verify these guesses. We show that

the intruder dedu
tion problem, i.e. the existen
e of

guessing atta
k, 
an be de
ided in polynomial time

for the extended Dolev-Yao model.

1 Introdu
tion

While the automati
 veri�
ation of 
ryptographi
 pro-

to
ols is unde
idable, even with several restri
tions,

it has obtained a lot of attention these last years. In

parti
ular, the intruder dedu
tion problem, whi
h 
or-

responds to the se
urity de
ision problem in presen
e

of a passive eavesdropper, is a signi�
ant question to

the veri�
ation problem as well as to the sear
h for

atta
ks.

In most approa
hes, the underlying 
ryptographi


primitives are based on the so 
alled \Dolev-

Yao"model [3℄. This model is justi�ed by the per-

fe
t 
ryptography assumption, that there is no way to

obtain knowledge about the plaintext en
rypted in a


iphertext without knowing the key.

This abstra
tion happened to be a

urate in many

works 
on
erned with the sear
h of atta
ks or the

proof of 
ryptographi
 proto
ols, but it may be too

strong in some parti
ular situations. For instan
e,

when we want to take into a

ount atta
ks based on

algebrai
 properties [2, 1℄, or, like in this paper, so


alled guessing atta
ks [4, 5℄.

Example 1 Consider the following naive vote proto-


ol:

A ! S : fmg

pub(S)

A en
rypts its vote m with the publi
 key of the

vote server S. The server de
rypts the message with

its private key. The requirement is that, only A and

S know m.

m 
annot be dedu
ed using the standard Dolev-

Yao model. However, if we assume that m belongs to

a �nite set D known to an intruder, then m 
an be


omputed: the atta
ker 
an en
rypt all the possible

values of m with pub(S), he obtains this way a set

of values ffm

0

g

pub(S)

jm

0

2 Dg that he 
an 
ompare

with fmg

pub(S)

, whi
h was already inter
epted. When

the eavesdropper �nds the 
omputed message whi
h

mat
hes the inter
epted message, he getsm (assuming

inje
tivity of en
ryption).

Example 2 Consider the two-messages handshake

transa
tion (see [4℄), whi
h is often used in proto
ols:

A ! B : fng

k

B ! A : fn+ 1g

k

A generates a random number n and en
rypts it

with a predetermined se
ret symmetri
 key that is

shared between A and B. B de
rypts the message,
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omputes n + 1, and en
rypts the result before re-

turning it to A. The 
ryptosystem is symmetri
. In

the standard Dolev-Yao model, an intruder 
annot get

k nor n.

But, if we assume that k is weak, i.e. k is a value in

a �nite set known by the intruder, then the proto
ol

is vulnerable: the intruder tries to de
rypt both mes-

sages with a possible value for the key k, he obtains

two values. If the se
ond is the in
rement of the �rst,

then the atta
ker has guessed the 
orre
t value of k

(assuming standard properties of the 
ryptosystem).

The presen
e of weak data 
an allow the intruder

to do guessing atta
ks. We shall use the de�nition of

guessing atta
ks from [5℄ whi
h generalizes the de�ni-

tion of [4℄:

A guessing atta
k 
onsists of the intruder guessing

a value g, and then verifying it. The veri�
ation will

be by the intruder using g to produ
e a value v, whi
h

we 
all the veri�er and 
an take a number of di�erent

forms:

1. the intruder knew v initially. (
f. example 1)

2. the intruder produ
ed v in two distin
t ways from

g. (
f. example 2)

3. v is an asymmetri
 key, and the intruder knows

v's inverse from somewhere.

The main 
ontribution of this paper is the formal-

ization of su
h atta
ks (following the lines of [5℄) and

a proof that the intruder dedu
tion problem is still in

PTIME.

2 Intruder dedu
tion problem

We assume that messages are terms built over a given

alphabet F of fun
tion symbols 
ontaining 
onstants,

pairing h ; i, en
ryption f g , and a unary symbol

�1

.

Among these 
onstants symbols, we distinguish


onstants keys. We 
onsider symmetri
 key as well

as asymmetri
 or publi
-key systems. A key k is sym-

metri
 if k

�1

= k and we assume that 
omposed keys

are symmetri
.

We 
onsider the 
ongruen
e generated by the equa-

tion x

�1

�1

= x. If we orient from left to right this

equation, we get a 
onvergent rewrite system. Hen
e

every term t has a unique normal form.

To formalize the intruder dedu
tion problem, we

shall distinguish in the intruder's knowledge the

"strongly known" messages (or "known" for short)

and the "weakly known" messages.

Intuitively, the �rst ones are messages that the in-

truder knows exa
tly.

The se
ond ones are messages whi
h take their val-

ues in a �nite set, known to the intruder, so the at-

ta
ker 
an pi
k a value in the set and, if he has enough

information, he 
an verify whether his guess is 
orre
t

or not. If the guess is 
orre
t, we 
an assume that the

message is "strongly known" by the intruder.

De�nition 1 (Atomi
 term)

An atomi
 term is a 
onstant, or the inverse k

�1

of

a 
onstant key symbol k.

We formulate the intruder dedu
tion problem in

the following way:

Given a �nite set of "strongly known" messages T ,

a �nite set of atomi
 "weakly known" data T

0

and a

(presumably) se
ret s, 
an the intruder dedu
e s from

T and T

0

.

We introdu
e a new model to represent the intruder


apabilities, and we prove a de
idability theorem for

the new set of dedu
tion rules.

3 Extended Dolev-Yao model

In this se
tion, we des
ribe how guessing atta
ks 
an

be modeled by adapting the standard intruder model.

The new model, 
alled extended Dolev-Yao model,

is presented in �gure 1. We introdu
e two forms of

sequents:

� T=T

0

` u means that if the intruder "strongly

knows" messages in T and "weakly knows"

atomi
 messages in T

0

, he 
an (strongly) dedu
e

the message u.

� T=T

0

`

0

u means that if the intruder "strongly

knows" messages in T and "weakly knows" mes-

sages in T

0

, he 
an weakly dedu
e the message u.

In other words, he 
an dedu
e that u belongs to

a �nite set that he 
an 
ompute.

So, the rules (A, P, UL, UR, E, D) represent the


apa
ity of the intruder to do strong dedu
tion from

strong hypothesis, whereas the rules (A

0

, P

0

, UL

0

, UR

0

,
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Axiom (A)

u 2 T

T=; ` u

Pairing (P)

T=T

0

1

` u T=T

0

2

` v

T=T

0

1

; T

0

2

` hu; vi

Unpairing (UL)

T=T

0

` hu; vi

T=T

0

` u

Unpairing (UR)

T=T

0

` hu; vi

T=T

0

` v

En
ryption (E)

T=T

0

1

` u T=T

0

2

` v

T=T

0

1

; T

0

2

` fug

v

De
ryption (D)

T=T

0

1

` fug

v

T=T

0

2

` v

�1

T=T

0

1

; T

0

2

` u

Axiom (A

0

)

T=u `

0

u

u atomi
 term Pairing (P

0

)

T=T

0

1

`

0

u T=T

0

2

`

0

v

T=T

0

1

; T

0

2

`

0

hu; vi

Unpairing (UL

0

)

T=T

0

`

0

hu; vi

T=T

0

`

0

u

Unpairing (UR

0

)

T=T

0

`

0

hu; vi

T=T

0

`

0

v

En
ryption (E

0

)

T=T

0

1

`

0

u T=T

0

2

`

0

v

T=T

0

1

; T

0

2

`

0

fug

v

De
ryption (D

0

)

T=T

0

1

`

0

fug

v

T=T

0

2

`

0

v

�1

T=T

0

1

; T

0

2

`

0

u

Weakening (W)

u 2 T

T=; `

0

u

Compare (C)

P

1

8

>

>

>

>
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>

>

>

>
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::
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1

:::

::

`

0

x

n

(R1)

T=T

0

1

`

0

u

P

2

8

>

>

>

>

<
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>

>

>
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`
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(R2)

T=T

0

2

`

0

v

T=T

0

1

; T

0

2

` w

where:

(i). w 2 T

0

1

[ T

0

2

(ii). P

1

and P

2

are normal proofs

(iii). R1 6= R2 or fu; x

1

; ::; x

n

g 6= fv; y

1

; :::; y

n

g

(iv). R(u; v) where R = Id [ f(k; k

�1

)j k is a key g

Figure 1: The extended Dolev-Yao intruder 
apabilities.
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E

0

, D

0

) represent the 
apa
ity of the intruder to do

weak dedu
tion from weak hypothesis.

The weakening rule (W) expressed that strongly

known messages are a spe
ial 
ase of weakly known

messages.

Last but not least, the rule (C) whi
h mix the two

forms of sequents is used to formalize the veri�
ation

of guessed (weak) data w. (
f. de�nition of guessing

atta
ks given in introdu
tion)

The se
ond 
ondition, (P

1

and P

2

are normal

proofs, whi
h is mentioned to apply the rule (C)) is

ne
essary to prevent 
ertain false atta
ks. This 
on-

dition will prohibit dedu
tion steps that simply undo

previous steps.

De�nition 2 (Normal proof)

A proof P of T=T

0

� u is normal if there is no subtree

of P whose root is labeled with T=T

0

1

�

1

v and whi
h


ontains itself a stri
t subtree whose root is labeled

with T=T

0

2

�

1

v. �; �

1

2 f`;`

0

g.

Example 3 We 
ontinue example 1.

Assume that T = ffmg

pub(S)

; pub(S)g and that m is

weak, then we have the derivation drawn in �gure 2.

The intruder guesses a value for m, produ
es the

veri�er fmg

pub(S)

, (left subtree) and veri�es his guess

sin
e he knows the veri�er initially.

Remark 1 In a proof, there is at most one instan
e

of the rule Compare per bran
h.

4 Results

Our goal in this se
tion is to show that the intruder

dedu
tion problem, that we 
an reformulate in the

following way:

Given two �nite sets of messages T and T

0

, and a

se
ret s, 
an we derive a proof of T=T

0

1

` s su
h that

T

0

1

� T

0

?


an be de
ided in polynomial time. To show this

result, we prove a lo
ality theorem [6℄ for the new set

of dedu
tion rules.

If T is a �nite set of terms, St(T ) is the set of sub-

terms of terms in T . The number of elements in St(T )

is linear in the size of T (the size of a set of terms is

de�ned as usual, as the sum of the number of nodes

in ea
h member of T ).

Theorem 1 (lo
ality theorem) If there is a proof of

T=T

0

` u, then there is a normal proof of T=T

0

` u in

whi
h only subterms of terms in T [ T

0

[ fug appear.

Proof:

We prove the following results simultaneously by in-

du
tion on the size of the proof of T=T

0

` u:

1. a normal proof of T=T

0

` u 
ontains only terms

in St(T [ T

0

[ fug).

2. if the last inferen
e rule of a normal proof

of T=T

0

` u is a de
omposition rule,

(A;UL;UR;D;A

0

;UL

0

;UR

0

;D

0

;W;C), then this

proof 
ontains only terms in St(T [ T

0

).

Consider all possible 
ases for the last inferen
e:

� Assume that the last rule is (C), (see �g 1)

We distinguish two 
ases:

{ u = v

The proofs P

1

and P

2


an not end with the

same instan
e of the same rule (iii), so we


an assume (w.l.o.g) that P

1

ends with a de-


omposition rule and, by indu
tion hypoth-

esis (2), involves only terms in St(T [ T

0

1

).

By indu
tion hypothesis (1), the proof P

2

in-

volves only terms in St(T [T

0

2

[fvg). Sin
e

v = u, u 2 St(T [ T

0

1

) and w 2 T

0

1

[ T

0

2

(i), we dedu
e that P involves only terms in

St(T [ T

0

1

[ T

0

2

).

{ u is an asymmetri
 key and v its inverse

Assume (w.l.o.g) that v = u

�1

and u, v are

in normal form. The last inferen
e rule of

P

2

is ne
essarily a de
omposition rule, so it

is similar to the �rst 
ase.

� The others 
ases are very similar.

Theorem 2 The intruder dedu
tion problem T=T

0

`

s, 
an be de
ided in polynomial time in the extended

Dolev-Yao intruder model.

Proof: (sket
h)

In this inferen
e system, the proofs have a very par-

ti
ular form, only the rules (A

0

;UL

0

;UR

0

;D

0

;E

0

;W) are

used until an instan
e of the rule Compare. Here,

we dedu
e that a weak data is �nally strongly known

and after, we do strongly dedu
tion as in a Dolev-Yao

model. So, to solve the intruder dedu
tion problem in

presen
e of weak data, it is suÆ
ient to:
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fmg

pub(S)

2 T

W

T=; `

0

fmg

pub(S)

A

0

T=fmg `

0

m

pub(S) 2 T

W

T=; `

0

pub(S)

E

0

T=fmg `

0

fmg

pub(S)

C

T=fmg ` m

Figure 2: Example 3

� �nd among the weak data, those that the intruder


an strongly dedu
e

� add these to the intruder knowledge, and then

solve the intruder dedu
tion problem in the stan-

dard Dolev-Yao model

The se
ond point 
an be de
ided in polynomial

time, this result 
an be easily derived from a theo-

rem by M
Allester [6℄. For the �rst point:

� we 
ode inferen
e system of �gure 1 as a set S of

Horn 
lauses

� thanks to theorem 1, determine if there exists

a proof of w is redu
ible to HORN-SAT for the

(�nite) set of instan
es of 
lause of S by terms of

St(T [ T

0

). The size of this set is polynomial.

5 Con
lusion

We have extended the Dolev-Yao model to take into

a

ount guessing atta
ks and we have shown that the

intruder dedu
tion problem is still PTIME in presen
e

of weak data.

This work 
an be extended to solve the rea
hability

problem (in presen
e of weak data) with a bounded

number of sessions. Verifying whether a proto
ol is

se
ure is equivalent to de
iding whether a parti
ular

sequen
e of proto
ol messages representing the atta
k

is rea
hable, that is, the intruder 
an use the proto
ol

to 
onstru
t this sequen
e. Therefore, the rea
hability

problem is simply an ordered set of intruder dedu
tion

problems, and is in 
o-NP [7℄.
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