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Abstrat

We present a deidability result in the ontext of the

veri�ation of ryptographi protools in presene of

data whih take value in a �nite known set. Sine

the perfet ryptography assumption is unrealisti for

ryptographi protools that employ weak data, we

extend the onventional Dolev-Yao model to onsider

guessing attaks, where an intruder guesses the values

of weak data and verify these guesses. We show that

the intruder dedution problem, i.e. the existene of

guessing attak, an be deided in polynomial time

for the extended Dolev-Yao model.

1 Introdution

While the automati veri�ation of ryptographi pro-

tools is undeidable, even with several restritions,

it has obtained a lot of attention these last years. In

partiular, the intruder dedution problem, whih or-

responds to the seurity deision problem in presene

of a passive eavesdropper, is a signi�ant question to

the veri�ation problem as well as to the searh for

attaks.

In most approahes, the underlying ryptographi

primitives are based on the so alled \Dolev-

Yao"model [3℄. This model is justi�ed by the per-

fet ryptography assumption, that there is no way to

obtain knowledge about the plaintext enrypted in a

iphertext without knowing the key.

This abstration happened to be aurate in many

works onerned with the searh of attaks or the

proof of ryptographi protools, but it may be too

strong in some partiular situations. For instane,

when we want to take into aount attaks based on

algebrai properties [2, 1℄, or, like in this paper, so

alled guessing attaks [4, 5℄.

Example 1 Consider the following naive vote proto-

ol:

A ! S : fmg

pub(S)

A enrypts its vote m with the publi key of the

vote server S. The server derypts the message with

its private key. The requirement is that, only A and

S know m.

m annot be dedued using the standard Dolev-

Yao model. However, if we assume that m belongs to

a �nite set D known to an intruder, then m an be

omputed: the attaker an enrypt all the possible

values of m with pub(S), he obtains this way a set

of values ffm

0

g

pub(S)

jm

0

2 Dg that he an ompare

with fmg

pub(S)

, whih was already interepted. When

the eavesdropper �nds the omputed message whih

mathes the interepted message, he getsm (assuming

injetivity of enryption).

Example 2 Consider the two-messages handshake

transation (see [4℄), whih is often used in protools:

A ! B : fng

k

B ! A : fn+ 1g

k

A generates a random number n and enrypts it

with a predetermined seret symmetri key that is

shared between A and B. B derypts the message,
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omputes n + 1, and enrypts the result before re-

turning it to A. The ryptosystem is symmetri. In

the standard Dolev-Yao model, an intruder annot get

k nor n.

But, if we assume that k is weak, i.e. k is a value in

a �nite set known by the intruder, then the protool

is vulnerable: the intruder tries to derypt both mes-

sages with a possible value for the key k, he obtains

two values. If the seond is the inrement of the �rst,

then the attaker has guessed the orret value of k

(assuming standard properties of the ryptosystem).

The presene of weak data an allow the intruder

to do guessing attaks. We shall use the de�nition of

guessing attaks from [5℄ whih generalizes the de�ni-

tion of [4℄:

A guessing attak onsists of the intruder guessing

a value g, and then verifying it. The veri�ation will

be by the intruder using g to produe a value v, whih

we all the veri�er and an take a number of di�erent

forms:

1. the intruder knew v initially. (f. example 1)

2. the intruder produed v in two distint ways from

g. (f. example 2)

3. v is an asymmetri key, and the intruder knows

v's inverse from somewhere.

The main ontribution of this paper is the formal-

ization of suh attaks (following the lines of [5℄) and

a proof that the intruder dedution problem is still in

PTIME.

2 Intruder dedution problem

We assume that messages are terms built over a given

alphabet F of funtion symbols ontaining onstants,

pairing h ; i, enryption f g , and a unary symbol

�1

.

Among these onstants symbols, we distinguish

onstants keys. We onsider symmetri key as well

as asymmetri or publi-key systems. A key k is sym-

metri if k

�1

= k and we assume that omposed keys

are symmetri.

We onsider the ongruene generated by the equa-

tion x

�1

�1

= x. If we orient from left to right this

equation, we get a onvergent rewrite system. Hene

every term t has a unique normal form.

To formalize the intruder dedution problem, we

shall distinguish in the intruder's knowledge the

"strongly known" messages (or "known" for short)

and the "weakly known" messages.

Intuitively, the �rst ones are messages that the in-

truder knows exatly.

The seond ones are messages whih take their val-

ues in a �nite set, known to the intruder, so the at-

taker an pik a value in the set and, if he has enough

information, he an verify whether his guess is orret

or not. If the guess is orret, we an assume that the

message is "strongly known" by the intruder.

De�nition 1 (Atomi term)

An atomi term is a onstant, or the inverse k

�1

of

a onstant key symbol k.

We formulate the intruder dedution problem in

the following way:

Given a �nite set of "strongly known" messages T ,

a �nite set of atomi "weakly known" data T

0

and a

(presumably) seret s, an the intruder dedue s from

T and T

0

.

We introdue a new model to represent the intruder

apabilities, and we prove a deidability theorem for

the new set of dedution rules.

3 Extended Dolev-Yao model

In this setion, we desribe how guessing attaks an

be modeled by adapting the standard intruder model.

The new model, alled extended Dolev-Yao model,

is presented in �gure 1. We introdue two forms of

sequents:

� T=T

0

` u means that if the intruder "strongly

knows" messages in T and "weakly knows"

atomi messages in T

0

, he an (strongly) dedue

the message u.

� T=T

0

`

0

u means that if the intruder "strongly

knows" messages in T and "weakly knows" mes-

sages in T

0

, he an weakly dedue the message u.

In other words, he an dedue that u belongs to

a �nite set that he an ompute.

So, the rules (A, P, UL, UR, E, D) represent the

apaity of the intruder to do strong dedution from

strong hypothesis, whereas the rules (A

0

, P

0

, UL

0

, UR

0

,
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u 2 T

T=; ` u

Pairing (P)
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; T
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Enryption (E)
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(R2)

T=T

0

2

`

0

v

T=T

0

1

; T

0

2

` w

where:

(i). w 2 T

0

1

[ T

0

2

(ii). P

1

and P

2

are normal proofs

(iii). R1 6= R2 or fu; x

1

; ::; x

n

g 6= fv; y

1

; :::; y

n

g

(iv). R(u; v) where R = Id [ f(k; k

�1

)j k is a key g

Figure 1: The extended Dolev-Yao intruder apabilities.
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E

0

, D

0

) represent the apaity of the intruder to do

weak dedution from weak hypothesis.

The weakening rule (W) expressed that strongly

known messages are a speial ase of weakly known

messages.

Last but not least, the rule (C) whih mix the two

forms of sequents is used to formalize the veri�ation

of guessed (weak) data w. (f. de�nition of guessing

attaks given in introdution)

The seond ondition, (P

1

and P

2

are normal

proofs, whih is mentioned to apply the rule (C)) is

neessary to prevent ertain false attaks. This on-

dition will prohibit dedution steps that simply undo

previous steps.

De�nition 2 (Normal proof)

A proof P of T=T

0

� u is normal if there is no subtree

of P whose root is labeled with T=T

0

1

�

1

v and whih

ontains itself a strit subtree whose root is labeled

with T=T

0

2

�

1

v. �; �

1

2 f`;`

0

g.

Example 3 We ontinue example 1.

Assume that T = ffmg

pub(S)

; pub(S)g and that m is

weak, then we have the derivation drawn in �gure 2.

The intruder guesses a value for m, produes the

veri�er fmg

pub(S)

, (left subtree) and veri�es his guess

sine he knows the veri�er initially.

Remark 1 In a proof, there is at most one instane

of the rule Compare per branh.

4 Results

Our goal in this setion is to show that the intruder

dedution problem, that we an reformulate in the

following way:

Given two �nite sets of messages T and T

0

, and a

seret s, an we derive a proof of T=T

0

1

` s suh that

T

0

1

� T

0

?

an be deided in polynomial time. To show this

result, we prove a loality theorem [6℄ for the new set

of dedution rules.

If T is a �nite set of terms, St(T ) is the set of sub-

terms of terms in T . The number of elements in St(T )

is linear in the size of T (the size of a set of terms is

de�ned as usual, as the sum of the number of nodes

in eah member of T ).

Theorem 1 (loality theorem) If there is a proof of

T=T

0

` u, then there is a normal proof of T=T

0

` u in

whih only subterms of terms in T [ T

0

[ fug appear.

Proof:

We prove the following results simultaneously by in-

dution on the size of the proof of T=T

0

` u:

1. a normal proof of T=T

0

` u ontains only terms

in St(T [ T

0

[ fug).

2. if the last inferene rule of a normal proof

of T=T

0

` u is a deomposition rule,

(A;UL;UR;D;A

0

;UL

0

;UR

0

;D

0

;W;C), then this

proof ontains only terms in St(T [ T

0

).

Consider all possible ases for the last inferene:

� Assume that the last rule is (C), (see �g 1)

We distinguish two ases:

{ u = v

The proofs P

1

and P

2

an not end with the

same instane of the same rule (iii), so we

an assume (w.l.o.g) that P

1

ends with a de-

omposition rule and, by indution hypoth-

esis (2), involves only terms in St(T [ T

0

1

).

By indution hypothesis (1), the proof P

2

in-

volves only terms in St(T [T

0

2

[fvg). Sine

v = u, u 2 St(T [ T

0

1

) and w 2 T

0

1

[ T

0

2

(i), we dedue that P involves only terms in

St(T [ T

0

1

[ T

0

2

).

{ u is an asymmetri key and v its inverse

Assume (w.l.o.g) that v = u

�1

and u, v are

in normal form. The last inferene rule of

P

2

is neessarily a deomposition rule, so it

is similar to the �rst ase.

� The others ases are very similar.

Theorem 2 The intruder dedution problem T=T

0

`

s, an be deided in polynomial time in the extended

Dolev-Yao intruder model.

Proof: (sketh)

In this inferene system, the proofs have a very par-

tiular form, only the rules (A

0

;UL

0

;UR

0

;D

0

;E

0

;W) are

used until an instane of the rule Compare. Here,

we dedue that a weak data is �nally strongly known

and after, we do strongly dedution as in a Dolev-Yao

model. So, to solve the intruder dedution problem in

presene of weak data, it is suÆient to:
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fmg

pub(S)

2 T

W

T=; `

0

fmg

pub(S)

A

0

T=fmg `

0

m

pub(S) 2 T

W

T=; `

0

pub(S)

E

0

T=fmg `

0

fmg

pub(S)

C

T=fmg ` m

Figure 2: Example 3

� �nd among the weak data, those that the intruder

an strongly dedue

� add these to the intruder knowledge, and then

solve the intruder dedution problem in the stan-

dard Dolev-Yao model

The seond point an be deided in polynomial

time, this result an be easily derived from a theo-

rem by MAllester [6℄. For the �rst point:

� we ode inferene system of �gure 1 as a set S of

Horn lauses

� thanks to theorem 1, determine if there exists

a proof of w is reduible to HORN-SAT for the

(�nite) set of instanes of lause of S by terms of

St(T [ T

0

). The size of this set is polynomial.

5 Conlusion

We have extended the Dolev-Yao model to take into

aount guessing attaks and we have shown that the

intruder dedution problem is still PTIME in presene

of weak data.

This work an be extended to solve the reahability

problem (in presene of weak data) with a bounded

number of sessions. Verifying whether a protool is

seure is equivalent to deiding whether a partiular

sequene of protool messages representing the attak

is reahable, that is, the intruder an use the protool

to onstrut this sequene. Therefore, the reahability

problem is simply an ordered set of intruder dedution

problems, and is in o-NP [7℄.
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