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Abstract

We present a decidability result in the context of the
verification of cryptographic protocols in presence of
data which take value in a finite known set. Since
the perfect cryptography assumption is unrealistic for
cryptographic protocols that employ weak data, we
extend the conventional Dolev-Yao model to consider
guessing attacks, where an intruder guesses the values
of weak data and verify these guesses. We show that
the intruder deduction problem, i.e. the existence of
guessing attack, can be decided in polynomial time
for the extended Dolev-Yao model.

1 Introduction

While the automatic verification of cryptographic pro-
tocols is undecidable, even with several restrictions,
it has obtained a lot of attention these last years. In
particular, the intruder deduction problem, which cor-
responds to the security decision problem in presence
of a passive eavesdropper, is a significant question to
the verification problem as well as to the search for
attacks.

In most approaches, the underlying cryptographic
primitives are based on the so called “Dolev-
Yao”model [3]. This model is justified by the per-
fect cryptography assumption, that there is no way to
obtain knowledge about the plaintext encrypted in a
ciphertext without knowing the key.

This abstraction happened to be accurate in many
works concerned with the search of attacks or the
proof of cryptographic protocols, but it may be too

strong in some particular situations. For instance,
when we want to take into account attacks based on
algebraic properties [2, 1], or, like in this paper, so
called guessing attacks [4, 5].

Example 1 Consider the following naive vote proto-
col:
A — S {m}pub(g)

A encrypts its vote m with the public key of the
vote server S. The server decrypts the message with
its private key. The requirement is that, only A and
S know m.

m cannot be deduced using the standard Dolev-
Yao model. However, if we assume that m belongs to
a finite set D known to an intruder, then m can be
computed: the attacker can encrypt all the possible
values of m with pub(S), he obtains this way a set
of values {{m’},up(s)/m’ € D} that he can compare
with {m}pup(s), which was already intercepted. When
the eavesdropper finds the computed message which
matches the intercepted message, he gets m (assuming
injectivity of encryption).

Example 2 Consider the two-messages handshake
transaction (see [4]), which is often used in protocols:

{n}e
{n =+ l}k

A — B:
B — A:

A generates a random number n and encrypts it
with a predetermined secret symmetric key that is
shared between A and B. B decrypts the message,



computes n + 1, and encrypts the result before re-
turning it to A. The cryptosystem is symmetric. In
the standard Dolev-Yao model, an intruder cannot get
k nor n.

But, if we assume that k is weak, i.e. k is a value in
a finite set known by the intruder, then the protocol
is vulnerable: the intruder tries to decrypt both mes-
sages with a possible value for the key k, he obtains
two values. If the second is the increment of the first,
then the attacker has guessed the correct value of k
(assuming standard properties of the cryptosystem).

The presence of weak data can allow the intruder
to do guessing attacks. We shall use the definition of
guessing attacks from [5] which generalizes the defini-
tion of [4]:

A guessing attack consists of the intruder guessing
a value g, and then verifying it. The verification will
be by the intruder using g to produce a value v, which
we call the verifier and can take a number of different
forms:

1. the intruder knew v initially. (cf. example 1)

2. the intruder produced v in two distinct ways from
g. (cf. example 2)

3. v is an asymmetric key, and the intruder knows
v’s inverse from somewhere.

The main contribution of this paper is the formal-
ization of such attacks (following the lines of [5]) and
a proof that the intruder deduction problem is still in
PTIME.

2 Intruder deduction problem

We assume that messages are terms built over a given
alphabet F of function symbols containing constants,
pairing (-, _), encryption {_}_, and a unary symbol _~1.

Among these constants symbols, we distinguish
constants keys. We consider symmetric key as well
as asymmetric or public-key systems. A key k is sym-
metric if k~! = k and we assume that composed keys
are symmetric.

We consider the congruence generated by the equa-
tion 2~17" = x. If we orient from left to right this
equation, we get a convergent rewrite system. Hence
every term ¢ has a unique normal form.

To formalize the intruder deduction problem, we
shall distinguish in the intruder’s knowledge the
"strongly known” messages (or "known” for short)
and the ”weakly known” messages.

Intuitively, the first ones are messages that the in-
truder knows exactly.

The second ones are messages which take their val-
ues in a finite set, known to the intruder, so the at-
tacker can pick a value in the set and, if he has enough
information, he can verify whether his guess is correct
or not. If the guess is correct, we can assume that the
message is "strongly known” by the intruder.

Definition 1 (Atomic term)
An atomic term is a constant, or the inverse k=! of
a constant key symbol k.

We formulate the intruder deduction problem in
the following way:

Given a finite set of "strongly known” messages T,
a finite set of atomic ”weakly known” data 7" and a
(presumably) secret s, can the intruder deduce s from
T and T'.

We introduce a new model to represent the intruder
capabilities, and we prove a decidability theorem for
the new set of deduction rules.

3 Extended Dolev-Yao model

In this section, we describe how guessing attacks can
be modeled by adapting the standard intruder model.

The new model, called extended Dolev-Yao model,
is presented in figure 1. We introduce two forms of
sequents:

e T/T'  u means that if the intruder ”strongly
knows” messages in T and ”weakly knows”
atomic messages in 7", he can (strongly) deduce
the message u.

e T'/T' F' u means that if the intruder ”strongly
knows” messages in 1" and ”weakly knows” mes-
sages in T”, he can weakly deduce the message u.
In other words, he can deduce that u belongs to
a finite set that he can compute.

So, the rules (A, P, UL, UR, E, D) represent the
capacity of the intruder to do strong deduction from
strong hypothesis, whereas the rules (A, P/, UL’, UR,



ueT T/T{Fu T/T5¢wv

Axiom (A) Pairing (P)
T/ u T/T], Ty b (u,v)
T/T" F (u,v) T/T" F (u,v)
Unpairing (UL) Unpairing (UR)
T/T'Fu T/T' ko
T/TiFu T/T5+wv T/T] +{u}, T/T5F vt
Encryption (E) Decryption (D)
T/T1,T3 - {u}y T/T!, T} F u
T/T!F u T/T,H v
Axiom (A") — watomicterm Pairing (P")
T/ukF u T/T), Ty ' (u,v)
/T H (u,v) T/T' H (u,v)
Unpairing (UL") Unpairing (UR")
T/T' T/T' H v
T/Ti{H uw T/TyH v T/T] V' {u}y, T/THH v=1
Encryption (E) Decryption (D')
/11,15 H {u}e /T, T H u
ueT
Weakening (W)
T/0H u
P1 (o X1 (o Tn PQ H Y1 H Yn
Compare (C) (R1) - (RY
T/T)H u T/TyH v

T/T.. T+ w

where:
(i) weT{UT;
(ii). P, and P, are normal proofs
(iii). R1 # R2 or {u,x1,..,xn} # {v,y1, sy Yn}
(iv). R(u,v) where R = Id U{(k,k™!)| k is a key }

Figure 1: The extended Dolev-Yao intruder capabilities.
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E’, D’) represent the capacity of the intruder to do
weak deduction from weak hypothesis.

The weakening rule (W) expressed that strongly
known messages are a special case of weakly known
messages.

Last but not least, the rule (C) which mix the two
forms of sequents is used to formalize the verification
of guessed (weak) data w. (cf. definition of guessing
attacks given in introduction)

The second condition, (P; and P, are normal
proofs, which is mentioned to apply the rule (C)) is
necessary to prevent certain false attacks. This con-
dition will prohibit deduction steps that simply undo
previous steps.

Definition 2 (Normal proof)
A proof P of T/T" ow is normal if there is no subtree
of P whose root is labeled with T /T o1 v and which

contains itself a strict subtree whose root is labeled
with T/TQI O1 V. 0,01 € {F, F/}

Example 3 We continue example 1.
Assume that T = {{m}pup(s), pub(S)} and that m is
weak, then we have the derivation drawn in figure 2.

The intruder guesses a value for m, produces the
verifier {m},uu(s), (left subtree) and verifies his guess
since he knows the verifier initially.

Remark 1 In a proof, there is at most one instance
of the rule Compare per branch.

4 Results

Our goal in this section is to show that the intruder
deduction problem, that we can reformulate in the
following way:

Given two finite sets of messages T and 7", and a
secret s, can we derive a proof of T/T] s such that
T CcT'?

can be decided in polynomial time. To show this
result, we prove a locality theorem [6] for the new set
of deduction rules.

If T is a finite set of terms, St(T) is the set of sub-
terms of terms in 7'. The number of elements in St(T')
is linear in the size of T' (the size of a set of terms is
defined as usual, as the sum of the number of nodes
in each member of T').

Theorem 1 (locality theorem) If there is a proof of
T/T' b u, then there is a normal proof of T/T' F u in
which only subterms of terms in TUT' U {u} appear.

Proof:
We prove the following results simultaneously by in-
duction on the size of the proof of T/T" F u:

1. a normal proof of T/T" + u contains only terms
in St(TUT' U {u}).

2. if the last inference rule of a normal proof
of T/T" F+ w is a decomposition rule,
(A,UL,UR,D,A’,UL’, UR’,D',W,C), then this
proof contains only terms in St(T'UT").

Consider all possible cases for the last inference:

e Assume that the last rule is (C), (see fig 1)

We distinguish two cases:

—u=v
The proofs P; and P, can not end with the
same instance of the same rule (iii), so we
can assume (w.l.o.g) that P; ends with a de-
composition rule and, by induction hypoth-
esis (2), involves only terms in St(T U T7).
By induction hypothesis (1), the proof P, in-
volves only terms in St(T'UT5 U {v}). Since
v=uwu,u€ S(IrUly) and w € T} UT}
(i), we deduce that P involves only terms in
St(TUT] UTy).

— wu is an asymmetric key and v its inverse
Assume (w.l.o.g) that v = v~ ! and u, v are
in normal form. The last inference rule of
P is necessarily a decomposition rule, so it
is similar to the first case.

e The others cases are very similar.

Theorem 2 The intruder deduction problem T/T' +-
s, can be decided in polynomial time in the extended
Dolev-Yao intruder model.

Proof: (sketch)

In this inference system, the proofs have a very par-
ticular form, only the rules (A’, UL’ UR’, D', E', W) are
used until an instance of the rule Compare. Here,
we deduce that a weak data is finally strongly known
and after, we do strongly deduction as in a Dolev-Yao
model. So, to solve the intruder deduction problem in
presence of weak data, it is sufficient to:
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Figure 2: Example 3

e find among the weak data, those that the intruder
can strongly deduce

e add these to the intruder knowledge, and then
solve the intruder deduction problem in the stan-
dard Dolev-Yao model

The second point can be decided in polynomial
time, this result can be easily derived from a theo-
rem by McAllester [6]. For the first point:

e we code inference system of figure 1 as a set S of
Horn clauses

e thanks to theorem 1, determine if there exists
a proof of w is reducible to HORN-SAT for the
(finite) set of instances of clause of S by terms of
St(T' UT'). The size of this set is polynomial.

5 Conclusion

We have extended the Dolev-Yao model to take into
account guessing attacks and we have shown that the
intruder deduction problem is still PTIME in presence
of weak data.

This work can be extended to solve the reachability
problem (in presence of weak data) with a bounded
number of sessions. Verifying whether a protocol is
secure is equivalent to deciding whether a particular
sequence of protocol messages representing the attack
is reachable, that is, the intruder can use the protocol
to construct this sequence. Therefore, the reachability
problem is simply an ordered set of intruder deduction
problems, and is in co-NP [7].
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