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ABSTRACT
A class of relational databases has low degree if for all δ, all but
finitely many databases in the class have degree at most nδ , where
n is the size of the database. Typical examples are databases of
bounded degree or of degree bounded by logn.

It is known that over a class of databases having low degree,
first-order boolean queries can be checked in pseudo-linear time,
i.e. in time bounded by n1+ε, for all ε. We generalise this result by
considering query evaluation.

We show that counting the number of answers to a query can be
done in pseudo-linear time and that enumerating the answers to a
query can be done with constant delay after a pseudo-linear time
preprocessing.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query processing; H.2.3
[Database Management]: Languages—Query languages

General Terms
Theory; Algorithms

Keywords
query evaluation; enumeration; low degree; algorithm

1. INTRODUCTION
Query evaluation is a fundamental task in databases and a vast

literature is devoted to the complexity of this problem. However,
for more demanding tasks such as producing the whole set of an-
swers or computing aggregates on the query result (such as count-
ing the number of answers), complexity bounds are often simply
extrapolated from those for query evaluation; and until recently,
few specific methods and tools had been developed to tackle these
problems. Given a database A and a first-order query q, it may
be not satisfactory enough to express complexity results in terms
of the sizes of A and q as it is often the case. The fact that the
solution set q(A) may be of size exponential in the query is in-
tuitively not sufficient to make the problem hard, and alternative
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complexity measures had to be found for query answering. In this
direction, one way to define tractability is to assume that tuples of
the query result can be generated one by one with some regularity,
for example by ensuring a fixed delay between two consecutive out-
puts once a necessary precomputation has been done to construct
a suitable index structure. This approach, that considers query an-
swering as an enumeration problem, has deserved some attention
over the last few years. In this vein, the best that one can hope
for is constant delay, i.e., the delay depends only on the size of q
(but not on the size of A). Surprisingly, a number of query evalua-
tion problems have been shown to admit constant delay algorithms,
usually preceded by a preprocessing phase that is linear or almost
linear. This is the case when queries are evaluated over the class
of structures of bounded degree [5, 13] or, more generally, over
the class of structures of “bounded expansion” [14]. Similar results
have been shown for monadic second-order logic over structures of
bounded tree-width [4, 1, 15] or for fragments of first-order logic
over arbitrary structures [2, 3]. However, as shown in [2], the fact
that evaluation of boolean queries is easy does not guarantee the
existence of such efficient enumeration algorithms in general: un-
der some reasonable complexity assumption, there is no constant
delay algorithm with linear preprocessing enumerating the answers
of acyclic conjunctive queries (although it is well-known that the
model checking of boolean acyclic queries can be done in linear
time [19]).

In this paper, we investigate the complexity of the enumeration,
counting, and testing problems for first-order queries over classes
of low degree. A class of relational databases has low degree if for
all δ > 0, all sufficiently large databases in the class have degree at
most nδ , where n is the size of the database. Databases of bounded
degree or of degree bounded by (logn)c, for any fixed constant
c, are examples of low degree classes. However, it turns out to
be incomparable with the class of databases of bounded expansion
mentioned above.

It has been proved in [11] that over a class of databases of low
degree, first-order boolean queries can be checked in pseudo-linear
time, i.e., in time bounded by O(n1+ε), for all ε > 0. In this
paper, we prove that counting the number of answers to a query can
be done in pseudo-linear time, and that enumerating the answers
to a query can be done with constant delay after a pseudo-linear
time preprocessing. We also prove that testing membership of a
tuple to a query result can be done in constant time after a pseudo-
linear time preprocessing. We adopt a uniform approach to prove
all these results by using at the heart of the preprocessing phases a
quantifier elimination method that reduces our different problems
to their analog but for coloured graphs and quantifier-free queries.
With such a tool, we can then focus within each specific task on
very simple instances.
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Over a class of databases of low degree, the difficulty is to handle
queries requiring that in all its answers, some of its components are
far away from each other. When this is not the case, for instance
when in all answers all its components are within short distance
from the first component, then the low degree assumption implies
that there are only few answers in total and those can be computed
in pseudo-linear time. In the difficult case, the number of answers
may be exponential in the arity of the query and the naive evalu-
ation algorithm may spend too much time processing tuples with
components close to each other. To avoid this situation, we intro-
duce suitable functions that can be precomputed in pseudo-linear
time, and that allow us to jump in constant time from a tuple with
components close to each other to a correct answer.

Related work. Enumerating the answers to a boolean query
q over a database A amounts to testing whether q holds on A, a
problem also known as the model checking problem. An enumera-
tion algorithm with constant delay after a preprocessing phase tak-
ing pseudo-linear time, or even polynomial time, induces a model
checking algorithm that is fixed-parameter tractable (FPT), i.e,
works in time f(q)·||A||c for some constant c and some function
f depending only on the class of databases. There is a vast lit-
erature studying the model checking problem for first-order logic
aiming at finding FPT algorithms for larger and larger classes of
databases. Starting from the class of databases of bounded degree,
or bounded treewidth, FPT algorithms were derived for databases
having bounded expansion [6] (see also [14]). Actually, very re-
cently an FPT algorithm has been obtained for a class of databases
known as “nowhere dense”, generalising all the previously known
results [12]. This last result is in a sense “optimal” as it is known
that if a class of databases is closed under substructures and has
no FPT model checking algorithm then it is somewhere dense [16],
modulo some reasonable complexity hypothesis.

Classes of databases of low degree do not belong to this setting.
It is easy to see that they are neither nowhere dense nor closed un-
der substructures (see Section 2.3). Our algorithms build on the
known model checking algorithm for low degree databases [11].
They generalise the known enumeration algorithms for databases
of bounded degree [5, 13]. However, they differ significantly from
those and actually require an extra assumption on our computa-
tional model (see Section 2.2).

Organisation. We fix the basic notation and formulate our main
results in Section 2. In Section 3 we present the algorithms for
counting, testing, and enumerating answers to first-order queries
over classes of structures of low degree. These algorithms rely on
a particular preprocessing which transforms a first-order query on
a database into a quantifier-free query on a coloured graph. The re-
sult is stated in Section 3.2, while its proof is presented in Section 4.
We conclude in Section 5.

2. PRELIMINARIES AND MAIN RESULTS
We write N to denote the set of non-negative integers, and we let

N>1 := N \ {0}. Q denotes the set of rationals, and Q>0 is the set
of positive rationals.

2.1 Databases and queries
A database is a finite relational structure. A relational signature

σ is a finite set of relation symbols R, each of them associated
with a fixed arity ar(R) ∈ N>1. A relational structure A over
σ, or a σ-structure (we omit to mention σ when it is clear from
the context) consists of a non-empty finite set dom(A) called the
domain of A, and an ar(R)-ary relation RA ⊆ dom(A)ar(R) for
each relation symbol R ∈ σ. We define the size ||A|| of A as
||A|| = |σ| + |dom(A)| +

∑
R∈σ |R

A|·ar(R). It corresponds to

the size of a reasonable encoding of A. The cardinality of A, i.e.
the cardinality of its domain, is denoted by |A|.

By query we mean a formula of FO(σ), the set of all first-order
formulas of signature σ, for some relational signature σ (again we
omit σ when it is clear from the context). For ϕ ∈ FO, we write
ϕ(x̄) to denote a query whose free variables are x̄, and the number
of free variables is called the arity of the query. A sentence is a
query of arity 0. Given a structure A and a query ϕ, an answer to
ϕ in A is a tuple ā of elements of dom(A) such that A |= ϕ(ā).
We write ϕ(A) for the set of answers to ϕ in A, i.e. ϕ(A) = {ā :
A |= ϕ(ā)}. As usual, |ϕ| denotes the size of ϕ.

Let C be a class of structures. The model checking problem
of FO over C is the computational problem of given a sentence
ϕ ∈ FO and a database A ∈ C to test whether A |= ϕ or not.

Given a k-ary query ϕ, we care about “enumerating” ϕ(A) effi-
ciently. Let C be a class of structures. The enumeration problem
of ϕ over C is, given a database A ∈ C, to output the elements
of ϕ(A) one by one with no repetition. The time needed to out-
put the first solution is called the preprocessing time. The maximal
time between any two consecutive outputs of elements of ϕ(A) is
called the delay. We are interested here in enumeration algorithms
with pseudo-linear preprocessing time and constant delay. We now
make these notions formal.

2.2 Model of computation and enumeration
We use Random Access Machines (RAMs) with addition and

uniform cost measure as a model of computation. For further de-
tails on this model and its use in logic see [7, 10].

In the sequel we assume that the input relational structure comes
with a linear order on the domain. If not, we use the one induced by
the encoding of the structure as an input to the RAM. Whenever we
iterate through all nodes of the domain, the iteration is with respect
to the initial linear order.

Our algorithms over RAMs will take as input a query ϕ of size
k and a structure A of size n. We then say that an algorithm runs
in linear time (respectively, constant time) if it outputs the solution
within f(k)·n steps (respectively, f(k) steps), for some function
f . We also say than an algorithm runs in pseudo-linear time if, for
all ε ∈ Q>0 it outputs the solution within f(k, ε)·n1+ε steps, for
some function f .

We make the following important hypothesis on our RAM model.
This hypothesis was not necessary in [14, 13, 5] for enumerating
queries over classes of structures of bounded degree or bounded
expansion, but we need it here for the case of structures of low de-
gree (our proofs make crucial use of it; we don’t know, though,
whether this hypothesis is actually unavoidable).

If n is the size of the input structure, we assume available a total
amount of memory of size O(n3).1 Because our algorithms will
be linear or pseudo-linear time, they will access only a small frac-
tion of this memory, but it is important that this total memory is
available. It turns out that we can assume without loss of general-
ity that this memory is initialised to 0. If this were not the case,
it could be achieved by using the so called lazy array initialisation
technique (cf., e.g., the textbook [18]): During the run of the algo-
rithm, a time-stamp is associated to each memory cell indicating
the time of its first initialisation. At the same time we maintain an
inverted list indicating for each time-stamp which memory cell was
initialised. Then, a memory cell is initialised iff the entry for its as-
sociated time-stamp in the inverted list is the memory cell itself.

An important consequence of this assumption is that, modulo
linear time preprocessing, we can assume available the adjacency

1Actually we need a memory of O(n2+ε) for all ε ∈ Q>0
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matrix of a graph given by the list of its edges. We do this by
scanning all its edges and setting to 1 the corresponding entry in
the matrix. As all other entries can be assumed to be 0, we can then
test in constant time whether there is an edge between a given pair.
We will implement this over graphs of size O(n1+ε).

We say that the enumeration problem of FO over a class C of
structures can be solved with constant delay after a pseudo-linear
preprocessing, if it can be solved by a RAM algorithm which, on
input q ∈ FO and A ∈ C, can be decomposed into two phases:

• a preprocessing phase that is performed in pseudo-linear time,
and
• an enumeration phase that outputs q(A) with no repetition

and a delay depending only on q between any two consec-
utive outputs. The enumeration phase has full access to the
output of the preprocessing phase and can use extra memory
whose size depends only on q.

Notice that if we can enumerate q with constant delay after a
pseudo-linear preprocessing, then all answers can be output in time
f(|q|, ε) · (||A||1+ε + |q(A)|), for some function f , and the first
solution is computed in pseudo-linear time. In the particular case
of boolean queries, the associated model checking problem must
be solvable in pseudo-linear time.

EXAMPLE 1. To illustrate these notions, consider the binary
query q(x, y) over coloured graphs computing the pairs of nodes
(x, y) such that x is blue, y is red and there is no edge from x to y.
It can be expressed in FO by

B(x) ∧R(y) ∧ ¬E(x, y).

A naive algorithm for evaluating q would iterate through all blue
nodes, then iterate through all red nodes, check if they are linked
by an edge and, if not, output the resulting pair, otherwise try the
next pair.

With our RAM model, after a linear preprocessing, we can easily
iterate through all blue nodes and through all red nodes with a
constant delay between any two of them. Our extra assumption
allows us to test in constant time whether there is an edge between
any two nodes. The problem with the above algorithm is that many
pairs of appropriate colour may be false hits. Hence the delay
between two consecutive outputs may be arbitrarily large.

If the degree is assumed to be bounded, then the above algorithm
enumerates all answers with constant delay, since the number of
false hits for each blue node is bounded by the degree. We will see
that for structures of low degree we can modify the algorithm in
order to achieve the same result.

2.3 Classes of structures of low degree
The degree of a structure A, denoted degree(A), is the degree

of the Gaifman graph associated with A (i.e., the undirected graph
with vertex set dom(A) where there is an edge between two nodes
if they both occur in a tuple that belongs to a relation of A). In the
sequel we only consider structures of degree > 2. As structures of
degree 1 are quite trivial, this is without loss of generality.

Intuitively a class C of structures has low degree if for all δ > 0,
all but finitely many structures A of C have degree at most |A|δ
(see [11]). More formally, C has low degree if for every δ ∈ Q>0

there is an nδ ∈ N>1 such that all structures A ∈ C of cardinality
|A| > nδ have degree(A) 6 |A|δ .

For example, for every fixed number c > 0, the class of all struc-
tures of degree at most (logn)c is of low degree. Clearly, an arbi-
trary class C of structures can be transformed into a class C′ of

low degree by padding each A ∈ C with a suitable number of iso-
lated elements (i.e., elements of degree 0). Therefore classes of low
degree are usually not closed under taking substructures. In partic-
ular if we apply the padding trick to the class of cliques, we obtain
a class of low degree that is not in any of the class with known low
evaluation complexity such as the “nowhere dense” case mentioned
in the introduction.

Notice that degree(A) 6 |A|δ implies that ||A|| 6 c·|A|1+δ·r ,
where r is the maximal arity of the signature and c is a number only
depending on σ. Therefore all our bounds concerning databases in
a class of low degree could be expressed using |A| instead of ||A||
modulo a small change of the parameters.

It is known that on classes of graphs of low degree, model check-
ing of first-order sentences can be done in pseudo-linear time:

THEOREM 2 (GROHE [11]). Let C be a class of structures
of low degree. There is an algorithm which, on input of a structure
A ∈ C and a sentence q ∈ FO, tests in pseudo-linear time whether
A |= q.

REMARK 3. Actually [11] proved a slightly stronger result. Let
k = |q|. For each ε > 0, the algorithm of [11] runs in time
f(k)·n1+ε if n is bigger than nδ , where δ can be computed from
k and ε, nδ is the number given by the fact that C has low de-
gree, and f is a computable function that does not depend on ε. If
n is smaller than nδ then the algorithm works in time bounded by
f(k)·n3

δ . Altogether the algorithm then works in time g(k, ε)·n1+ε

for some function g that is computable if the function associating
nδ from δ is computable. In any case it is pseudo-linear according
to our definition. For readability we decided to state all our results
using the pseudo-linear shorter variant but we actually prove the
stronger versions as explained in this remark.

2.4 Our results
We are now ready to state our main results, which essentially

lift Theorem 2 to non-boolean queries and to counting, testing, and
enumerating their answers.

We start with counting the number of answers to a query.

THEOREM 4. LetC be a class of structures of low degree. There
is an algorithm that, given A ∈ C and ϕ ∈ FO, computes |ϕ(A)|
in pseudo-linear time.

We move to testing whether a given tuple is part of the answers.

THEOREM 5. LetC be a class of structures of low degree. There
is an algorithm that, given A ∈ C and ϕ ∈ FO, computes in
pseudo-linear time a data structure such that, on input of any ā,
one can then test in constant time whether ā ∈ ϕ(A).

Finally, we consider enumerating the answers to a query.

THEOREM 6. Let C be a class of structures of low degree. The
enumeration problem of FO over C can be solved with constant
delay after a pseudo-linear preprocessing.

2.5 Further notation
We close this section by fixing technical notations that will be

used throughout this paper.
For a structure A we write distA(a, b) for the distance between

two nodes a and b of the Gaifman graph of A. For an element
a ∈ dom(A) and a number r ∈ N, the r-ball around a is the
set NAr (a) of all nodes b ∈ dom(A) with distA(a, b) 6 r. The
r-neighbourhood around a is the induced substructure NAr (a) of
A on NAr (a). Note that if A is of degree 6 d for d > 2, then
|NAr (a)| 6

∑r
i=0 d

i < dr+1.
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3. EVALUATION ALGORITHMS
In this section, we present our algorithms for counting, testing,

and enumerating the solutions to a query (see Sections 3.3, 3.4, and
3.5). They all build on the same preprocessing algorithm which
runs in pseudo-linear time and which essentially reduces the input
to a quantifier-free query over a suitable signature (see Section 3.2).
However, before presenting these algorithms, we start with a very
simple case.

3.1 Warming up
As a warm-up for working with classes of structures of low de-

gree, we first consider the simple case of queries which we call
connected conjunctive queries, and which are defined as follows.

A conjunction is a query γ which is a conjunction of relational
atoms and potentially negated unary atoms. Note that the query
of Example 1 is not a conjunction as it has a binary negated atom.
With each conjunction γ we associate a query graph Hγ . This is
the undirected graph whose vertices are the variables x1, . . . , xk of
γ, and where there is an edge between two vertices xi and xj iff γ
contains a relational atom in which both xi and xj occur. We call
the conjunction γ connected if its query graph Hγ is connected.

A connected conjunctive query is a query q(x̄) of the form
∃ȳ γ(x̄, ȳ), where γ is a connected conjunction in which all vari-
ables of x̄, ȳ occur (here, |ȳ| = 0 is allowed).

The next simple lemma implies that over a class of structures
of low degree, connected conjunctive queries can be evaluated in
pseudo-linear time. It will be used in several places throughout
this paper: in the proof of Proposition 8, and in the proofs for our
counting and enumeration results in Sections 3.3 and 3.5.

LEMMA 7. There is an algorithm which, at input of a structure
A and a connected conjunctive query q(x̄) computes q(A) in time
O(|q|·n·dh(|q|)), where n = |dom(A)|, d = degree(A), and h is a
computable function.

PROOF. Let q(x̄) be of the form ∃ȳ γ(x̄, ȳ), for a connected
conjunction γ. Let k = |x̄| be the number of free variables of q, let
` = |ȳ|, and let r = k + `.

Note that since γ is connected, for every tuple c̄ ∈ γ(A) the fol-
lowing is true, where a is the first component of c̄. All components
c′ of c̄ belong to the r-neighbourhood NAr (a) of a in dom(A).
Thus, q(A) is the disjoint union of the sets

Sa :=
{
b̄ ∈ q(NAr (a)) : the first component of b̄ is a

}
,

for all a ∈ dom(A). For each a ∈ dom(A), the set Sa can be
computed as follows:

(1) Initialise Sa := ∅.

(2) ComputeNAr (a).

SinceA has degree 6 d, this neighbourhood’s domain contains
at most dr+1 elements of dom(A). Thus, by using breadth-
first search, NAr (a) can be computed in time O(dh(|q|)), for a
computable function h.

(3) Use a brute-force algorithm that enumerates all k-tuples b̄ of
elements inNAr (a) whose first component is a.

For each such tuple b̄, use a brute-force algorithm that checks
whetherNAr (a) |= q(b̄). If so, insert b̄ into Sa

Note that the number of considered tuples b̄ is 6 d(r+1)(k−1).
And checking whether NAr (a) |= q(b̄) can be done in time
O(|γ|·d(r+1)`): for this, enumerate all `-tuples c̄ of elements
in NAr (a) and take time O(|γ|) to check whether γ(x̄, ȳ) is
satisfied by the tuple (b̄, c̄).

Thus, we are done after O(|γ|·d(r2)) steps.

In summary, we can compute q(A) =
⋃
a∈A Sa in time

O(n·|q|·dh(|q|)), for a computable function h.

As an immediate consequence we obtain the following:

PROPOSITION 8. Let C be a class of structures of low degree.
Given a structureA ∈ C and a connected conjunctive query q, one
can compute q(A) in pseudo-linear time.

PROOF. We use the algorithm provided in Lemma 7. To see that
the running time is as claimed, we use the assumption that C is of
low degree: for every δ > 0 there is an mδ ∈ N>1 such that every
structure A ∈ C of cardinality |A| > mδ has degree(A) 6 |A|δ .

For a given ε > 0 we let δ := ε
h(|q|) and define nε := mδ .

Then, every A ∈ C with |A| > nε has degree(A) 6 |A|ε/h(|q|).
Thus, on input of A and q, the algorithm from Lemma 7 has run-
ning time O(|q|·|A|1+ε) if |A| > nε and takes time bounded by
O(|q|·n1+h(q)

ε ) otherwise.

The method of the proof of Proposition 8 above will be used for
several times in the paper.

3.2 Quantifier elimination and normal form
In this section, we make precise the quantifier elimination ap-

proach that is at the heart of the preprocessing phase of the query
evaluation algorithms of our paper.

A signature is binary if all its relation symbols have arity at most
2. A coloured graph is a finite relational structure over a binary
signature.

PROPOSITION 9. There is an algorithm which, at input of a
structureA and a first-order query ϕ(x̄), produces a binary signa-
ture τ (containing, among other symbols, a binary relation symbol
E), a coloured graph G of signature τ , an FO(τ)-formula ψ(x̄),
and a mapping f such that the following is true for k = |x̄|,
n = |dom(A)|, d = degree(A) and h some computable function:

1. ψ is quantifier-free. Furthermore, ψ is of the form (ψ1∧ψ2),
where ψ1 states that no distinct free variables of ψ are con-
nected by an E-edge, and ψ2 is a positive boolean combina-
tion of unary atoms.

2. τ and ψ are computed in time and space h(|ϕ|)·n·dh(|ϕ|).
Moreover, |τ | 6 h(|ϕ|) and |ψ| 6 h(|ϕ|).

3. G is computed in time and space h(|ϕ|)·n·dh(|ϕ|).
Moreover, degree(G) 6 dh(|ϕ|).

4. f is an injective mapping from dom(A)k to dom(G)k such
that f is a bijection between ϕ(A) and ψ(G).

Furthermore, on input of any tuple v̄ ∈ ψ(G), the tuple
f−1(v̄) can be computed in time and space O(k2).

Using time O(n·dh(|ϕ|)) and space O(n2), we can further-
more construct a data structure such that, on input of any
ā ∈ dom(A)k, f(ā) can be computed in time O(k2).

The proof of Proposition 9 is long and technical and of a some-
what different nature than the results we now describe. It is post-
poned to Section 4. However, this proposition is central in the
proofs of the results below.

4



3.3 Counting
Here we consider the problem of counting the number of solu-

tions to a query on low degree structures.
A generalised conjunction is a conjunction of relational atoms

and negated relational atoms (hence, also atoms of arity bigger than
one may be negated, and the query of Example 1 is a generalised
conjunction).

EXAMPLE 10. Before moving to the formal proof of Theorem 4,
consider again the query q from Example 1. Recall that it computes
the pairs of blue-red nodes that are not connected by an edge. To
count its number of solutions over a class of structures of low de-
gree we can proceed as follows. We first consider the query q′(x, y)
returning the set of blue-red nodes that are connected. In other
words, q′ is

B(x) ∧R(y) ∧ E(x, y).

Notice that this query is a connected conjunction. Hence, by Propo-
sition 8 its answers can be computed in pseudo-linear time and
therefore we can also count its number of solutions in pseudo-linear
time. It is also easy to compute in pseudo-linear time the number
of pairs of blue-red nodes. The number of answers to q is then the
difference between these two numbers.

The proof sketch for Theorem 4 goes as follows. Using Propo-
sition 9 we can assume modulo a pseudo-linear preprocessing that
our formula is quantifier-free and over a binary signature. Each
connected component is then treated separately and we return the
product of all the results. For each connected component we elim-
inate the negated symbols one by one using the trick illustrated in
Example 10. The resulting formula is then a connected conjunction
that is treated in pseudo-linear time using Proposition 8.

LEMMA 11. There is an algorithm which, at input of a coloured
graph G and a generalised conjunction γ(x̄), computes |γ(G)| in
time O(2m·|γ|·n·dh(|γ|)), where h is a computable function, m
is the number of negated binary atoms in γ, n = |dom(G)|, and
d = degree(G).

PROOF. By induction on the numberm of negated binary atoms
in γ. The base case for m=0 is obtained as follows. We start by
using O(|γ|) steps to compute the query graph Hγ and to compute
the connected components of Hγ .

In case that Hγ is connected, we can use Lemma 7 to compute
the entire set γ(G) in timeO(|γ|·n·dh(|γ|)), for a computable func-
tion h. Thus, counting |γ(G)| can be done within the same time
bound.

In case that γ is not connected, let H1, . . . , H` be the connected
components. For each i ∈ {1, . . . , `} let x̄i be the tuple obtained
from x̄ by removing all variables that do not belong toHi. Further-
more, let γi(x̄i) be the conjunction of all atoms or negated unary
atoms of γ that contain variables in Hi. Note that γ(x̄) is equiva-
lent to

∧`
i=1 γi(x̄i), and

|γ(G)| =
∏̀
i=1

|γi(G)|.

Since each γi is connected, we can compute |γi(G)| in time
O(|γi|·n·dh(|γi|)) by using the algorithm of Lemma 7. We do this
for each i ∈ {1, . . . , `} and output the product of the values. In
summary, we are done in time O(|γ|·n·dh(|γ|)) for the base case
m = 0.

For the induction step, let γ be a formula with m+1 negated
binary atoms. Let ¬R(x, y) be a negated binary atom of γ, and let

γ1 be such that

γ = γ1 ∧ ¬R(x, y), and let
γ2 := γ1 ∧ R(x, y).

Clearly, |γ(G)| = |γ1(G)| − |γ2(G)|. Since each of the formu-
las γ1 and γ2 has only m negated binary atoms, we can use the
induction hypothesis to compute |γ1(G)| and |γ2(G)| each in time
O(2m·|γ|·n·dh(|γ|)). The total time used for computing |γ(G)| is
thus O(2m+1·|γ|·n·dh(|γ|)).

By using Proposition 9, we can lift this to arbitrary structures and
first-order queries:

PROPOSITION 12. There is an algorithm which at input of a
structure A and a first-order query ϕ(x̄) computes |ϕ(A)| in time
h(|ϕ|)·n·dh(|ϕ|), for a computable function h, where n = |dom(A)|
and d = degree(A).

PROOF. We first use the algorithm of Proposition 9 to compute
the according graph G and the quantifier-free formula ψ(x̄). This
takes time h(|ϕ|)·n·dh(|ϕ| for a computable function h. And we
also know that |ψ| 6 h(|ϕ|). By Proposition 9 we know that
|ϕ(A)| = |ψ(G)|.

Next, we transform ψ(x̄) into disjunctive normal form∨
i∈I

γi(x̄),

such that the conjunctive clauses γi exclude each other (i.e., for
each v̄ ∈ ψ(G) there is exactly one i ∈ I such that v̄ ∈ γi(G)).
Clearly, this can be done in time O(2|ψ|). Each γi has length at
most |ψ|, and |I| 6 2|ψ|.

Obviously, |ψ(G)| =
∑
i∈I |γi(G)|. We now use, for each i ∈ I ,

the algorithm from Lemma 11 to compute the number si = |γi(G)|
and output the value s =

∑
i∈I si.

By Lemma 11 we know that for each i ∈ I the computation
of si can be done in time O(2m·|γi|·ñ·d̃h0(|γi|)), where m is the
number of binary atoms in γ, ñ = |dom(G)|, d̃ = degree(G), and
h0 is some computable function.

By Proposition 9 we know that ñ 6 h(|ϕ|)·n·dh(|ϕ|) and d̃ 6
dh(|ϕ|). Since also |γi| 6 |ψ| 6 h(|ϕ|), the computation of si,
for each i ∈ I , takes time h1(|ϕ|)·n·dh1(|ϕ|), for some computable
function h1 (depending on h and h0).

To conclude, since |I| 6 2|ψ|, the total running time for comput-
ing |ϕ(A)| =

∑
i∈I si is h2(|ϕ|)·n·dh2(|ϕ|), for a suitably chosen

computable function h2. Hence, we meet the required bound.

Theorem 4 is an immediate consequence of Proposition 12 (fol-
lowing the arguments of the proof of Proposition 8).

3.4 Testing
Here we consider the problem of testing whether a given tuple

is a solution to a query. By Proposition 9 it is enough to consider
quantifier-free formulas. Those are treated using the lazy array ini-
tialisation technique mentioned in Section 2.

PROPOSITION 13. There is an algorithm which at input of a
structureA and a first-order queryϕ(x̄), has a preprocessing phase
of time h(|ϕ|)·n·dh(|ϕ|) in which it computes a data structure such
that, on input of any ā ∈ dom(A)k for k = |x̄|, it can be tested in
time h(|ϕ|) whether ā ∈ ϕ(A), where h is a computable function,
n = |dom(A)|, and d = degree(A).
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PROOF. We first use the algorithm of Proposition 9 to compute
the graph G, the quantifier-free formula ψ(x̄) and the data struc-
ture for function f . For some computable function h, this takes
time and space h(|ϕ|)·n·dh(|ϕ|), and furthermore, |ψ| 6 h(|ϕ|)
and degree(G) 6 dh(|ϕ|). Note that ||G|| 6 h(|ϕ|)·n·dh(|ϕ|). By
construction, we furthermore know for all ā ∈ dom(A)k that ā ∈
ϕ(A) ⇐⇒ f(ā) ∈ ψ(G).

Recall from Proposition 9 that ψ(x̄) is a quantifier-free formula
built from atoms of the form E(y, z) and C(y) for unary relation
symbols C. Thus, checking whether a given tuple v̄ ∈ dom(G)k

belongs to ψ(G) can be done easily, provided that one can check
whether unary atoms C(u) and binary atoms E(u, u′) hold in G
for given nodes u, u′ of G.

To enable checking whether E(u, u′) holds in G, we construct
the following data structure. W.l.o.g. we assume that dom(G) =
{1, . . . , ñ} for

ñ := |dom(G)| 6 ||G|| 6 h(|ϕ|)·n·dh(|ϕ|).

We use an (ñ × ñ)-array AE that is initialised to 0. By looping
through all edges E(u, u′) of G, we then update the array entry
AE [u, u′] to 1. This way, using time O(||G||), we ensure that for
all nodes u, u′ of G we have AE [u, u′] = 1 if E(u, u′) holds in G,
and AE [u, u′] = 0 otherwise.

In a similar way, within time O(||G||) we can build, for each
unary relation symbol C, a 1-dimensional array AC of length ñ
such that for all nodes u of G we have AC [u] = 1 if C(u) holds in
G, and AC [u] = 0 otherwise.

All these arrays are constructed in time O(||G||), which is
O(h(|ϕ|)·n·dh(|ϕ|)). This completes the preprocessing phase.

Note that using the arrays AE and AC , testing whether a given
tuple v̄ ∈ dom(G)k belongs to ψ(G) can be done in time O(|ψ|),
since each atomic statement of ψ can be checked in constant time
by a simple look-up of the according array entry.

Finally, the testing algorithm works as follows. Given a tu-
ple ā ∈ dom(A)k, we first construct v̄ := f(ā) and then check
whether v̄ ∈ ψ(G). Building v̄ := f(ā) can be done in timeO(k2)
(see Proposition 9), and checking whether v̄ ∈ ψ(G) requires time
O(|ψ|), which is O(h(|ϕ|)). Hence, we meet the required bound
for testing.

Theorem 5 is an immediate consequence of Proposition 13 (fol-
lowing the arguments of the proof of Proposition 8).

3.5 Enumeration
Here we consider the problem of enumerating the solutions to

a given query. We first illustrate the proof of Theorem 6 with our
running example.

EXAMPLE 14. Consider again the query q of Example 1. In
order to enumerate q with constant delay over a class of low de-
gree we proceed as follows. During the preprocessing phase we
precompute those blue nodes that contribute to the answer set, i.e.
such that there is a red node not connected to it. This is doable in
pseudo-linear time because our class has low degree and each blue
node is connected to few red nodes. We call green the resulting
nodes. We then order the green nodes and the red nodes in order
to be able to iterate through them with constant delay. Finally, we
compute the binary function skip(x, y) associating to each green
node x and red node y such that E(x, y) the smallest red node y′

such that y < y′ and ¬E(x, y′), where< is the order on red nodes
precomputed above. From Proposition 8 it follows that computing
skip can be done in pseudo-linear time. It is crucial here that the
domain of skip has pseudo-linear size.

The enumeration phase now goes as follows: We iterate through
all green nodes. For each of them we iterate through all red nodes.
If there is no edge between them, we output the result and continue
with the next red node. If there is an edge, we apply skip to this pair
and the process continues with the resulting red node. Note that the
new red node immediately yields an answer. Note also that all the
red nodes that will not be considered are safely skipped as they are
linked to the current green node.

The proof of Theorem 6 can be sketched as follows. By Propo-
sition 9 it is enough to consider quantifier-free formulas looking
for tuples of nodes that are disconnected and have certain colours.
Hence the query q described in Example 1 corresponds to the bi-
nary case. For queries of larger arities we proceed by induction on
the arity. By induction we can enumerate the answers of the query
projecting out the last variable from the initial query. For each tu-
ple ū obtained by induction, we iterate through all the red nodes
that are a potential completion. We then proceed as in Example 14.
If the current red node a is not connected to ū, then ūa forms an
answer and we proceed to the next red node. If a is connected to
ū then we need to jump in constant time to the next red node that
yields an answer. This is done by precomputing a suitable func-
tion skip that depends on the arity of the query and is slightly more
complex that the one described in Example 14. The design and
computation of this function is the main technical originality of the
proof.

We now turn to the technical details that are summarised in the
next proposition.

PROPOSITION 15. There is an algorithm which at input of a
structure A and a first-order query ϕ(x̄) enumerates ϕ(A) with
delay h(ϕ) after a preprocessing of time h(ϕ)·n·dh(ϕ), where n =
|dom(A)|, d = degree(A), and h is a computable function.

PROOF. The proof is by induction on the number k := |x̄| of
free variables of ϕ. In case that k = 0, the formula ϕ is a sentence,
and we are done using Theorem 2. In case that k > 0 we proceed
as follows.

We first use the algorithm of Proposition 9 to compute the ac-
cording coloured graph G and the quantifier-free formula ψ(x̄).
This takes time g(|ϕ|)·n·dg(|ϕ|) for a computable function g. And
we know that |ψ| 6 g(|ϕ|), that G has degree d̃ 6 dg(|ϕ|), and that
dom(G) has ñ elements, where ñ 6 g(|ϕ|)·n·dg(|ϕ|).

From Item 1 of Proposition 9 we know that the formula ψ(x̄) is
of the form (ψ1 ∧ ψ2), where ψ1 states that no distinct free vari-
ables of ψ are connected by anE-edge and ψ2 is a positive boolean
combination of unary atoms.

We let x̄ = (x1, . . . , xk). In case that k = 1, ψ(x1) = ψ2(x1)
is a positive boolean combination of unary atoms. We can use
Lemma 7 for each unary atom in order to compute ψ(G) in time
O(|ψ|·ñ·d̃g(|ψ|)) for a computable function g. This is time
h(ϕ)·n·dh(ϕ), for a computable function h, and can thus be done
during the preprocessing phase. In the enumeration phase, we then
simply loop through the list of all elements in v̄ ∈ ψ(G), compute
ā := f−1(v̄), and output ā. Due to Item 4 of Proposition 9, the
delay is O(k2), and we are done.

The case for k > 2 requires much more elaborate constructions.
We let x̄k−1 := (x1, . . . , xk−1). To enable enumeration of ψ(G)
(and hence also ϕ(A), by translating each result v̄ ∈ ψ(G) to ā :=
f−1(v̄)), we first transform ψ into a normal form

∨
j∈J θj(x̄) such

that the formulas θj exclude each other (i.e., for each v̄ ∈ ψ(G)
there is exactly one j ∈ J such that v̄ ∈ θj(G)), and each θj(x̄) is
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of the form

φj(x̄k−1) ∧ Pj(xk) ∧ γ(x̄), where

γ(x̄) :=

k−1∧
i=1

(
¬E(xi, xk) ∧ ¬E(xk, xi)

)
,

Pj(xk) is a boolean combination of unary atoms regarding xk, and
φj(x̄k−1) is a formula with only k−1 free variables. Note that the
transformation into this normal form can be done easily, using the
particularly simple form of the formula ψ.

Clearly, we can enumerate ψ(G) by enumerating θj(G) for each
j ∈ J . In the following, we therefore restrict attention to the enu-
meration of θj(G) for a fixed j ∈ J . For θj we shortly write

θ(x̄) = φ(x̄k−1) ∧ P (xk) ∧ γ(x̄).

We let θ′(x̄k−1) := ∃xk θ(x̄). By the induction hypothesis (since
θ′ only has k−1 free variables), we can enumerate θ′(G) with delay
h(θ′) after a preprocessing phase of time h(θ′)·ñ·d̃h(θ′).

Since P (xk) is a boolean combination of unary atoms on xk, we
can use Lemma 7 to compute P (G) in time
O(|P |·ñ·d̃g(|P |)) for a computable function g. Afterwards, we
have available a list of all nodes v of G that belong to P (G). In
the following, we will write 6P to denote the linear ordering of
P (G) induced by this list, and we write firstP for the first element
in this list, and nextP for the successor function, such that for any
node v ∈ P (G), nextP (v) is the next node in P (G) in this list (or
the value void, if v is the last node in the list).

We extend the signature of G by a unary relation symbol P
and a binary relation symbol next, and let Ĝ be the expansion of
G where P is interpreted by the set P (G) and next is interpreted
by the successor function nextP (i.e., next(v, v′) is true in Ĝ iff
v′ = nextP (v)). Note that Ĝ has degree d̂ = d̃+2, which is
6 dg(|ϕ|) for a computable function g.

We now start the key idea of the proof, i.e., the function that
will help us skipping over irrelevant nodes. To this end consider
the first-order formulas E1, . . . , Ek defined inductively as follows,
where E′(x, y) is an abbreviation for (E(x, y) ∨ E(y, x)). The
reason for defining these formulas will become clear only later on,
in the proof of Claim 1.

E1(u, y) := P (y) ∧ E′(u, y), and

Ei+1(u, y) := Ei(u, y) ∨ ∃z∃z′∃v
(

E′(z, u) ∧ next(z′, z) ∧ E′(v, z′) ∧ Ei(v, y)
)
.

A simple induction shows that for Ei(u, y) to hold, y must be at
distance 6 3(i−1) + 1 < 3i from u.

In our enumeration algorithm we will have to test, given nodes
u, v ∈ dom(G), whether (u, v) ∈ Ek(Ĝ). Since Ek is a first-
order formula, Theorem 5 implies that, after preprocessing time
g′(|Ek|)·ñ·d̂g

′(|Ek|) (for some computable function g′), testing
membership inEk(Ĝ), for any given (u, v) ∈ dom(G)2, is possible
within time g′(|Ek|).

By our knowledge on the formula Ek and the size of the param-
eters ñ and d̂ we know that the preprocessing time is bounded by
g′′(|ϕ|)·n·dg

′′(|ϕ|), for a suitable computable function g′′, and that
each membership test can be done in time g′′(|ϕ|).

The last step of the precomputation phase computes the function
skip that associates to each node y ∈ P (G) and each set V of at
most k−1 nodes that are related to y via Ek, the smallest (accord-
ing to the order 6P of P (G)) element z >P y in P (G) that is
not connected by an E-edge to any node in V . More precisely:

For any node y ∈ P (G) and any set V with 0 6 |V | < k and
(v, y) ∈ Ek(Ĝ) for all v ∈ V , we let

skip(y, V ) := min{z ∈ P (G) : y6P z and

∀v ∈ V : (v, z) 6∈ E(G) and (z, v) 6∈ E(G)},

respectively, skip(y, V ) := void if no such z exists.
Notice that the nodes of V are related to y via Ek and hence

are at distance < 3k from y. Hence for each y, we only need to
consider at most d̂(3k2) such sets V .

For each set V , skip(y, V ) can be computed by running consec-
utively through all nodes z >P y in the list P (G) and test whether(
E(z, v) ∨ E(v, z)

)
holds for some v ∈ V . To perform the latter

test in constant time, we precompute an (ñ×ñ)-arrayAE such that
AE [z, v] = 1 if (z, v) ∈ EG , and AE [z, v] = 0 otherwise, in the
same way as in the proof of Theorem 5.

Since |V | 6 k and each v ∈ V is of degree at most d̃ in G,
the value skip(y, V ) can be found in time O(k2·d̃). Therefore, the
entire skip-function can be computed, and stored in an array, in
time O(ñ·d̂(3k2)·g′′(|ϕ|)·k2·d̃), which is time g(|ϕ|)·n·dg(|ϕ|) for
a suitable computable function g. During the enumeration phase we
will use this array such that for given y and V , the value skip(y, V )
can be looked-up within constant time.

We are now done with the preprocessing phase. Altogether it
took

1. the time to compute ψ and G, which is
g(|ϕ|)·n·dg(|ϕ|), for a computable function g

2. the time to compute
∨
j∈J θj , which is

g(|ϕ|), for a computable function g

3. for each j ∈ J and θ := θj , it took

(a) the preprocessing time for enumerating θ′(G),
which is h(θ′)·ñ·d̃h(θ′), for the computable
function h in the Proposition’s statement

(b) the time for computing P (G), which is
g(|ϕ|)·n·dg(|ϕ|), for a computable function g

(c) the preprocessing time for testing membership inEk(Ĝ)
and for producing the array AE , which can be done in
time g(|ϕ|)·n·dg(|ϕ|), for a computable function g

(d) and the time for computing the skip-function, which is
g(|ϕ|)·n·dg(|ϕ|), for a computable function g.

It is straightforward to see that, by suitably choosing the com-
putable function h, all the preprocessing steps can be done within
time h(ϕ)·n·dh(ϕ).

We now turn to the enumeration phase. We will describe how to
enumerate θ(G) with delay h(ϕ). Note that this will immediately
lead to the desired enumeration algorithm for ϕ(G) by doing the
following: Loop through all j ∈ J to enumerate θj(G); however,
instead of outputting a tuple v̄ ∈ θj(G), compute the tuple ā :=
f−1(v̄) and output ā.

In the rest of this proof, we will therefore restrict attention to enu-
merating θ(G). We first describe the enumeration algorithm, then
analyse its running time, and finally prove that it outputs, without
repetition, all the tuples in θ(G).
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Algorithm for enumerating θ(G):

1. Let ū be the first output produced in the enumeration of θ′(G).
If ū = void then STOP with output void,
else let (u1, . . . , uk−1) = ū and goto line 2.

2. Let y := firstP be the first element in the list P (G).

3. Let V := {v ∈ {u1, . . . , uk−1} : (v, y) ∈ Ek(Ĝ)}.

4. Let z := skip(y, V ).

5. If z 6= void then OUTPUT (ū, z) and goto line 9.

6. If z = void then

7. Let ū′ be the next output produced in the enumeration
of θ′(G).

8. If ū′ = void then STOP with output void,
else let ū := ū′ and goto line 2.

9. Let y := nextP (z).

10. If y = void then goto line 7, else goto line 3.

Note that the algorithm never outputs any tuple more than once.
Before proving that this algorithm enumerates exactly the tuples in
θ(G), let us first show that it operates with delay at most h(ϕ).

By the induction hypothesis, the execution of line 1 and and each
execution of line 7 takes time at most h(θ′). Furthermore, each
execution of line 3 takes time (k−1)·g′(|Ek|). Concerning the re-
maining lines of the algorithm, each execution can be done in time
O(1).

Furthermore, before outputting the first tuple, the algorithm exe-
cutes at most 5 lines (namely, lines 1–5; note that by our choice of
the formula θ′ we know that when entering line 5 before outputting
the first tuple, it is guaranteed that z 6= void, hence an output tuple
is generated).

Between outputting two consecutive tuples, the algorithm exe-
cutes at most 12 lines (the worst case is an execution of lines 9, 10,
3, 4, 5, 6, 7, 8, 2, 3, 4, 5; again, by our choice of the formula θ′, at
the last execution of line 5 it is guaranteed that z 6= void, hence an
output tuple is generated).

Therefore, by suitably choosing the function h, we obtain that
the algorithm enumerates with delay at most h(ϕ).

Concerning the correctness of the output, let us first show that
every tuple (ū, z) that is produced as an output, does belong to
θ(G):

Recall that θ(x̄) = φ(x̄k−1) ∧ P (xk) ∧ γ(x̄). We know that
ū ∈ θ′(G), and thus, in particular, φ(ū) is satisfied.

Furthermore, if the tuple (ū, z) is output in line 5 (this is the only
OUTPUT instruction present in the algorithm), we know that V =
{v ∈ {u1, . . . , uk−1} : (v, y) ∈ Ek(Ĝ)} and z = skip(y, V ).
Hence, z belongs to P (G), and we know that z is not connected
by an E-edge to any node in V . By the next claim (Claim 1)
we obtain that z is not connected by an E-edge to any node in
{u1, . . . , uk−1}, and hence γ(ū, z) is satisfied and the tuple (ū, z)
belongs to θ(G). This is the key of our enumeration algorithm.

CLAIM 1. Let U be a set of at most k−1 nodes of G. Let
y ∈ P (G), let V := {v ∈ U : (v, y) ∈ Ek(Ĝ)}, and let
z := skip(y, V ) 6= void. Then,

z = min{w ∈ P (G) : y 6P w and

∀u ∈ U : (u,w) 6∈ E(G) and (w, u) 6∈ E(G)}.

PROOF OF CLAIM 1. By definition of skip(y, V ) we have

z = min{z ∈ P (G) : y6P z and

∀v ∈ V : (v, z) 6∈ E(G) and (z, v) 6∈ E(G)}.

Since V ⊆ U , we thus know that

z 6P min{w ∈ P (G) : y 6P w and

∀u ∈ U : (u,w) 6∈ E(G) and (w, u) 6∈ E(G)}.

All that remains to be done is to show that for all u ∈ U \ V we
have (u, z) 6∈ E(G) and (z, u) 6∈ E(G).

In case that z = y, this is true because U \ V only contains
vertices that are not connected to y by an Ek-edge, and hence also
not connected to y by an E-edge.

In case that z 6= y, we know that y <P z, and thus y 6P z′ <P

z for the immediate predecessor z′ of z, i.e., the node z′ ∈ P (G)
with nextP (z′) = z.

For contradiction, assume that for some u ∈ U \ V we have
(u, z) ∈ E(G) or (z, u) ∈ E(G). Thus, E′(z, u) is satisfied in Ĝ.
Also, next(z′, z) is satisfied in Ĝ. Since y 6P z′ <P z (i.e., z′ is
skipped by skip(y, V )), we furthermore know that z′ is connected
by an E-edge to some node v ∈ V , i.e., E′(v, z′) is true in Ĝ.

Assume now that alsoEk−1(v, y) is true in Ĝ. Recalling the def-
inition of the formula Ek, note that we thus have found witnesses
showing that Ek(u, y) holds in Ĝ, i.e., (u, y) ∈ Ek(Ĝ). This,
however, implies that u ∈ V , contradicting the assumption that
u ∈ U \ V .

To conclude the proof of Claim 1 it remains to show that
Ek−1(v, y) is indeed true in Ĝ, i.e., (v, y) ∈ Ek−1(Ĝ). To this
end, for all j 6 k, let Vj := {v′ ∈ V : (v′, y) ∈ Ej(Ĝ)}.
Clearly, Vk = V . By the choice of the formulas Ej we know that
∅ ⊆ V1 ⊆ · · · ⊆ Vk. Moreover, it is straightforward to see that the
definition of the formulas E1, . . . , Ek ensures that the following is
true: if Vj = Vj+1, for some j < k, then Vj = · · · = Vk. Thus,
there is a j 6 k such that

(∗): ∅ ⊆ V1  · · ·  Vj = · · · = Vk = V.

Since V ⊆ U , |U | 6 k−1, and u ∈ U \ V , we know that |V | 6
k−2. Hence, (∗) implies that j 6 k−1. Thus, Vk−1 = V . Since
v ∈ V , we therefore obtain that v belongs to Vk−1, i.e.,Ek−1(v, y)

is true in Ĝ. This completes the proof of Claim 1.

To finish the proof of Proposition 15, we need to verify that
every tuple in θ(G) is eventually output by the algorithm. Let
(u1, . . . , uk) be an arbitrary tuple in θ(G). Then, in particular, for
ū := (u1, . . . , uk−1), we have that ū ∈ θ′(G), Thus, by the induc-
tion hypothesis, the enumeration algorithm for θ′ will eventually
output the tuple ū. Let z1 <

P · · · <P zm be an ordered list of all
elements such that the enumeration algorithm for θ(G) outputs the
tuple (ū, zi) for i ∈ {1, . . . ,m}. Clearly, it suffices to show that
uk is one of the zi’s.

Let U := {u1, . . . , uk−1}. Since (ū, uk) ∈ θ(G) we, in partic-
ular, have that uk ∈ P (G) and uk is not connected to any u ∈ U
by an E-edge.

In case that uk 6P z1, by construction of the algorithm we know
that z1 = skip(y, V ) for y := firstP . By Claim 1, we furthermore
know that z1 is the minimum element w ∈ P (G) with y 6P w,
which is not connected to any u ∈ U by an E-edge. Thus, z1 6P

uk, and hence uk = z1.
In case that zi−1 <

P uk 6P zi, we know for y := nextP (zi−1)
that zi = skip(y, V ). Since y 6P uk, we obtain from Claim 1 that
zi 6P uk, and hence uk = zi.
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The case that zm <P uk cannot occur since, by construction
of the algorithm, the following is true: Either zm is the largest
element w.r.t. 6P or for the element y := nextP (zm), we have
skip(y, V ) = void, whereas according to the definition of the skip-
function, skip(y, V ) would have to be an element 6P uk. This
concludes the proof of Proposition 15

Theorem 6 follows immediately from Proposition 15 (following
again the arguments of the proof of Proposition 8).

4. PROOF OF QUANTIFIER ELIMINATION
AND NORMAL FORM

This section is devoted to the proof of Proposition 9. The proof
consists of several steps, the first of which relies on a transforma-
tion of ϕ(x̄) into an equivalent formula in Gaifman normal form,
i.e., a boolean combination of basic-local sentences and formu-
las that are local around x̄. A formula λ(x̄) is r-local around
x̄ (for some r > 0) if every quantifier is relativized to the r-
neighbourhood of x̄. A basic-local sentence is of the form

∃y1 · · · ∃y`
∧

16i<j6`

dist(yi, yj) > 2r ∧
∧̀
i=1

θ(yi),

where θ(y) is r-local around y. By Gaifman’s well-known theorem
we obtain an algorithm that transforms an input formula ϕ(x̄) into
an equivalent formula in Gaifman normal form [9].

The rest of the proof can be sketched as follows. Basic-local
sentences can be evaluated on structures of low degree in pseudo-
linear time by Theorem 2, so it remains to treat formulas that are
local around their free variables. By the Feferman-Vaught Theo-
rem (cf., e.g. [17]), we can further decompose local formulas into
formulas that are local around one of their free variables. The lat-
ter turns out to have a small answer set that can be precomputed
in pseudo-linear time. The remaining time is used to compute the
structures useful for reconstructing the initial answers from their
components. We now give the details.

PROOF OF PROPOSITION 9.
Step 1: transform ϕ(x̄) into a local formula ϕ′(x̄).

We first transform ϕ(x̄) into an equivalent formula ϕG(x̄) in
Gaifman normal form. For each basic-local sentence χ occurring
in ϕG(x̄), check whether A |= χ and let χ′ := true if A |= χ
and χ′ := false if A 6|= χ. Let ϕ′(x̄) be the formula obtained
from ϕG(x̄) by replacing every basic-local sentence χ occurring
in ϕG(x̄) with χ′. By using Gaifman’s theorem and Theorem 2,
all this can be done in time and space O(h(|ϕ|)·n·dh(|ϕ|)), for a
computable function h.

Clearly, for every ā ∈ dom(A)k we have A |= ϕ′(ā) iff A |=
ϕ(ā). Note that there is a number r > 0 such that ϕ′(x̄) is r-local
around x̄, and this number can easily be computed given ϕG(x̄).

Step 2: transform ϕ′(x̄) into a disjunction
∨
P∈P ψ

′
P (x̄).

Let x̄ = (x1, . . . , xk). A partition of the set {1, . . . , k} is a list
P = (P1, . . . , P`) with 1 6 ` 6 k such that

• ∅ 6= Pj ⊆ {1, . . . , k}, for every j ∈ {1, . . . , `},
• P1 ∪ · · · ∪ P` = {1, . . . , k},
• Pj ∩ Pj′ = ∅, for all j, j′ ∈ {1, . . . , `} with j 6= j′,
• minPj < minPj+1, for all j ∈ {1, . . . , `−1}.

Let P be the set of all partitions of {1, . . . , k}. Clearly, |P| 6 k!.
For each P = (P1, . . . , P`) ∈ P and each j 6 ` let x̄Pj be the
tuple obtained from x̄ by deleting all those xi with i 6∈ Pj .

For every partition P = (P1, . . . , P`) ∈ P let %P (x̄) be an
FO(σ)-formula stating that each of the following is true:

1. The r-neighbourhood around x̄ in A is the disjoint union of
the r-neighbourhoods around x̄Pj for j 6 `. I.e., δP (x̄) :=∧

16j<j′6`

∧
(i,i′)∈Pj×Pj′

dist(xi, xi′) > 2r+1.

2. For each j 6 `, the r-neighbourhood around x̄Pj in A is
connected, i.e., satisfies the formula γPj (x̄Pj ) :=∨

E⊆Pj×Pj such that the
graph (Pj,E) is connected

∧
(i,i′)∈E

dist(xi, xi′) 6 2r+1.

Note that the formula %P (x̄) := δP (x̄) ∧
∧`
j=1 γPj (x̄Pj ) is r-

local around x̄. Furthermore, ϕ′(x̄) obviously is equivalent to the
formula

∨
P∈P

(
%P (x̄) ∧ ϕ′(x̄)

)
.

Using the Feferman-Vaught Theorem (see e.g. [17]), we can, for
each P = (P1, . . . , P`) ∈ P , compute a decomposition of ϕ′(x̄)
into r-local formulas ϑP,j,t(x̄Pj ), for j ∈ {1, . . . , `} and t ∈ TP ,
for a suitable finite set TP , such that the formula

(
%P (x̄) ∧ ϕ′(x̄)

)
is equivalent to

%P (x̄) ∧
∨
t∈TP

(
ϑP,1,t(x̄P1) ∧ · · · ∧ ϑP,`,t(x̄P`)

)
which, in turn, is equivalent to ψ′P := (ψ′P,1 ∧ ψ′P,2), where
ψ′P,1 := δP (x̄) and

ψ′P,2 :=
( ∧̀
j=1

γPj (x̄Pj )
)
∧

∨
t∈TP

( ∧̀
j=1

ϑP,j,t(x̄Pj )
)
.

In summary, ϕ′(x̄) is equivalent to
∨
P∈P ψ

′
P (x̄), and for every

tuple ā ∈ dom(A)k with A |= ϕ′(ā), there is exactly one partition
P ∈ P such that A |= ψ′P (ā) (since A |= %P (ā) is true for only
one such P ∈ P).

Step 3: defining G, f , and ψ.
We define the domain G of G to be the disjoint union of the

sets A and V , where A := dom(A), and V consists of a “dummy
element” v⊥, and an element v(b̄,ι)

• for each b̄ ∈ A1 ∪ · · · ∪ Ak such that A |= γPj (b̄) for
Pj := {1, . . . , |b|} and

• for each injective mapping ι : {1, . . . , |b̄|} → {1, . . . , k}.

Note that the first item ensures that the r-neighbourhood around b̄
inA is connected. The second item ensures that we can view ι as a
description telling us that the i-th component of b̄ shall be viewed
as an assignment for the variable xι(i) (for each i ∈ {1, . . . , |b̄|}).

We let f be the function from Ak to V k defined as follows: For
each ā ∈ Ak let P = (P1, . . . , P`) be the unique element in P
such that A |= %P (ā). For each j 6 {1, . . . , `}, we write āPj

for the tuple obtained from ā by deleting all those ai with i 6∈
Pj . Furthermore, we let ιPj be the mapping from {1, . . . , |Pj |}
to {1, . . . , k} such that for any i ∈ {1, . . . , |Pj |}, ι(i) is the i-th
smallest element of Pj . Then,

f(ā) :=
(
v(āP1

,ιP1
), . . . , v(āP`

,ιP`
), v⊥, . . . , v⊥

)
,

where the number of v⊥-components is (k−`). It is straightforward
to see that f is injective.
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We let τ1 be the signature consisting of a unary relation symbol
C⊥, and a unary relation symbol Cι for each injective mapping
ι : {1, . . . , s} → {1, . . . , k} for s ∈ {1, . . . , k}.

In G, the symbol C⊥ is interpreted by the singleton set {v⊥},
and each Cι is interpreted by the set of all nodes v(b̄,ι̂) ∈ V with
ι̂ = ι.

We letE be a binary relation symbol which is interpreted in G by
the set of all tuples (v(b̄,ι), v(c̄,ι̂)) ∈ V 2 such that there are elements
b′ ∈ A in b̄ and c′ ∈ A in c̄ such that distA(b′, c′) 6 2r+1.

For each P = (P1, . . . , P`) ∈ P , each j ∈ {1, . . . , `}, and each
t ∈ TP we let CP,j,t be a unary relation symbol which, in G, is
interpreted by the set of all nodes v(b̄,ι) ∈ V such that ι = ιPj and
A |= ϑP,j,t(b̄).

We let τ2 be the signature consisting of all the unary relation
symbols CP,j,t.

We let ȳ = (y1, . . . , yk) be a tuple of k distinct variables, and
we define ψ1(ȳ) to be the FO(E)-formula

ψ1(ȳ) :=
∧

16j,j′6k
with j 6=j′

¬E(yj , yj′).

For each P = (P1, . . . , P`) we let ψP (ȳ) be the FO(τ1 ∪ τ2)-
formula defined as follows:

ψP (ȳ) :=
( ∧̀
j=1

CιPj
(yj)

)
∧
( k∧
j=`+1

C⊥(yj)
)
∧

∨
t∈TP

( ∧̀
j=1

CP,j,t(yj)
)
.

It is straightforward to verify that the following is true:

(1) For every ā ∈ Ak with A |= ψ′P (ā), we have
G |= (ψ1 ∧ ψP )(f(ā)).

(2) For every v̄ ∈ Gk with G |= (ψ1 ∧ ψP )(v̄), there is a (unique)
tuple ā ∈ Ak with v̄ = f(ā), and for this tuple we have A |=
ψ′P (ā).

Finally, we let

ψ(ȳ) :=
(
ψ1(ȳ) ∧ ψ2(ȳ)

)
with ψ2(ȳ) :=

∨
P∈P

ψP (ȳ).

It is straightforward to see that f is a bijection between ϕ(A) and
ψ(G).

In summary, we now know that items 1 and 2, as well as the first
statement of item 4 of Proposition 9 are true.

To achieve the second statement of item 4, we use additional
binary relation symbols F1, . . . , Fk which are interpreted in G as
follows: Start by initialising all of them to the empty set. Then, for
each v = v(b̄,ι) ∈ V and each j ∈ {1, . . . , |b̄|}, add to FGι(j) the
tuple (v, a), where a is j-th component of b̄. This completes the
definition of G and τ , letting τ := τ1 ∪ τ2 ∪ {E,F1, . . . , Fk}.

Using the relations F1, . . . , Fk of G, in time and space O(k)
we can, upon input of v = v(b̄,ι) ∈ V compute the tuple b̄ and
the mapping ι (for this, just check for all i ∈ {1, . . . , k} whether
node v has an outgoing Fi-edge). Using this, it is straightforward
to see that upon input of v̄ ∈ ψ(G), the tuple f−1(v̄) ∈ Ak can
be computed in time and space O(k2), thus proving the second
statement of item 4.

Step 4: proving item 3.
First of all, note that for each v(b̄,ι) ∈ V , the tuple b̄ is of the

form (b1, . . . , bs) ∈ As for some s 6 k, such that all components

of the tuple belong to the r̂-neighbourhoodNAr̂ (b1) of b1 inA, for
r̂ := k(2r+1). Since A has degree d, NAr̂ (b1) contains at most
dr̂+1 elements of A. And by using breadth-first search, NAr̂ (b1)

can be computed in time dO(r̂+1).
Thus, the set V , along with the relations C⊥, Cι and F1, . . . , Fk

of G, can be computed as follows: Start by letting V := {v⊥} and
initialising all relations to the empty set. Let CG⊥ := {v⊥}. Then,
for each a ∈ A, compute the r̂-neighbourhood NAr̂ (a) of a in A,
and compute (by a brute-force algorithm), for each s ∈ {1, . . . , k},
the set of all s-tuples b̄ of elements from this neighbourhood, which
satisfy the following: The first component of b̄ is a, andNAr̂ (a) |=
γPj (b̄) for Pj = {1, . . . , s}. For each such tuple b̄ do the follow-
ing: For each injective mapping ι : {1, . . . , s} → {1, . . . , k} add
to V a new element v(b̄,ι), add this element to the relation CGι , and
for each j ∈ {1, . . . , s}, add to FGι(j) the tuple (v(b̄,ι), a), where a
is the j-th component of b̄.

This way, the domain G = A ∪ V of G, along with the rela-
tions Cι and F1, . . . , Fk of G, can be computed in time and space
O(h(|ϕ|)·n·dh(|ϕ|)), for a computable function h.

For computing the unary relations CP,j,t of G, start by initial-
ising all of them to the empty set. For each v(b̄,ι) ∈ V do the
following: Compute (by using the relations F1, . . . , Fk) the tuple
b̄ and the mapping ι. Let a be the first component of b̄. Compute
the r̃-neighbourhood NAr̃ (a) of a in A, for r̃ := r̂+r. For each
P = (P1, . . . , P`) ∈ P , each j ∈ {1, . . . , `} such that ιPj = ι,
and each t ∈ TP , check whether NAr̃ (a) |= θP,t,j(b̄). If so, add
the element v(b̄,ι) to the relation CP,j,t of G. (This is correct, since
the formula θP,j,t is r-local around its free variables, and the radius
of the neighbourhood is large enough.)

This way, G’s relationsCP,j,t can be computed in time and space
O(h(|ϕ|)·n·dh(|ϕ|)), for a computable function h.

To compute the E-relation of G, note that for all tuples
(v(b̄,ι), v(c̄,ι̂)) ∈ EG , we have distA(a, cj) 6 (2k+1)(2r+1), for
all components cj of c̄, where a is the first component of b̄. Thus,
theE-relation of G can be computed as follows: Start by initialising
this relation to the empty set. For each v(b̄,ι) ∈ V do the following:
Compute (by using the relations F1, . . . , Fk) the tuple b̄. Let a be
the first component of b̄. Compute the r′-neighbourhoodNAr′ (a) of
a in A, for r′ := r + (2k+1)(2r+1). Use a brute-force algorithm
to compute all tuples c̄ of elements in NAr′−r(a), such that |c̄| 6 k

and NAr′ (a) |= γPj (c̄) for Pj = {1, . . . , |c̄|}. Check if there are

components b′ of b̄ and c′ of c̄ such that distN
A
r′ (a)(b′, c′) 6 2r+1.

If so, add to EG the tuple (v(b̄,ι), v(c̄,ι̂)) for each injective mapping
ι̂ : {1, . . . , |c̄|} → {1, . . . , k}.

This way, theE-relation of G can be computed in time and space
O(h(|ϕ|)·n·dh(|ϕ|)), for a computable function h.

In summary, we obtain that G is computable fromA andϕwithin
the desired time and space bound.

To finish the proof of item 3, we need to give an upper bound on
the degree of G. As noted above, (v(b̄,ι), v(c̄,ι̂)) ∈ EG implies that
distA(a, cj) 6 r′ for r′ := (2k+1)(2r+1), for all components
cj of c̄, where a is the first component of b̄. Thus, for each fixed
v(b̄,ι) ∈ V , the number of elements v(c̄,ι̂) such that (v(b̄,ι), v(c̄,ι̂)) ∈
EG is at most

k! ·
k∑
s=1

|NAr′ (a)|s 6 k! · |NAr′ (a)|k+1 6 k! · d(r′+1)(k+1).

Thus, since EG is symmetric, its degree is 6 2k!d(r′+1)(k+1).
Similarly, for each tuple (v(b̄,ι), a) ∈ FGi (with i ∈ {1, . . . , k})

we know that a is the ι−1(i)-th component of b̄ and each com-
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ponent of b̄ belongs to the r̂-neighbourhood of a in A, for r̂ =
k(2r+1). Thus, for each fixed a ∈ A, the number of elements
v(b̄,ι) ∈ V such that (v(b̄,ι), a) ∈ FGi is at most k!·

∑k
s=1 |N

A
r̂ (a)|s

6 k! · d(r̂+1)(k+1). In summary, we thus obtain that G is of degree
at most dh(|ϕ|) for a computable function h.

Step 5: proving the third statement of item 4.
For ā ∈ Ak we know that

f(ā) :=
(
v(āP1

,ιP1
), . . . , v(āP`

,ιP`
), v⊥, . . . , v⊥

)
,

for the unique partition P = (P1, . . . , P`) ∈ P such that A |=
%P (ā). The number of v⊥-components in f(ā) is (k−`). To com-
pute the partition P for a given tuple ā = (a1, . . . , ak), we can
proceed as follows:

Construct an undirected graph H with vertex set {1, . . . , k},
where there is an edge between i 6= j iff distA(ai, aj) 6 2r+1.
Compute the connected components of H . Let ` be the number of
connected components of H . For each j ∈ {1, . . . , `} let Pj be
vertex set of the j-th connected component, such that minPj <
minPj+1 for all j ∈ {1, . . . , `−1}.

Once the edge set of H is constructed, all further steps of this
algorithm can be performed in time O(k2).

After having constructed the partition P = (P1, . . . , P`), fur-
ther O(k2) steps suffice to construct the tuples āP1 , . . . , āP` , the
mappings ιP1 , . . . , ιP` , and the according tuple f(ā). Hence, we
can compute f(ā) in time O(k2), provided that the edge set of H
can be computed in time O(k2).

To enable the fast computation of the edge set of H , we precom-
pute an (n×n)-arrayD such that for any two elements a, b ∈ A =
{1, . . . , n} we have D[a, b] = 1 if a 6= b and distA(a, b) 6 2r+1,
and D[a, b] = 0 otherwise. Once D is available, we can com-
pute the edge set of H in time O(k2) by checking, for all i, j ∈
{1, . . . , k}whetherD[ai, aj ] = 1. To precompute the arrayD, we
can proceed as follows: In the standard RAM-model, when start-
ing the RAM D is initialised to 0 for free (in a model where this
initialisation is not for free, we can avoid initialisation by using
the lazy array technique described in Section 2). For each a ∈ A,
we use time dO(2r+1) to compute the (2r+1)-neighbourhood of a
in A, and for each element b 6= a in this neighbourhood we let
D[a, b] := 1. In summary, the computation of the array D thus is
done in time O(n·dh(|ϕ|) for a computable function h. This com-
pletes the proof of Proposition 9.

5. CONCLUSION
For classes of databases of low degree, we presented an algo-

rithm which enumerates the answers to first-order queries with con-
stant delay after pseudo-linear preprocessing. An inspection of the
proof shows that the constants involved are non-elementary in the
query size. In the bounded degree case the constants are triply ex-
ponential in the query size [13]. In the (unranked) tree case the con-
stants are provably non-elementary [8] (modulo some complexity
assumption). We do not know what is the situation for classes of
low degree. It would also be interesting to know whether we can
enumerate the answers to a query using the lexicographical order
(as it is the case over structures of bounded expansion [14]). Finally
it would be interesting to know whether the memory assumption
that we use for our RAMs can be avoided.
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