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Abstract. We consider synchronizing properties of Markov decision
processes (MDP), viewed as generators of sequences of probability dis-
tributions over states. A probability distribution is p-synchronizing if the
probability mass is at least p in some state, and a sequence of probabil-
ity distributions is weakly p-synchronizing, or strongly p-synchronizing
if respectively infinitely many, or all but finitely many distributions in
the sequence are p-synchronizing.

For each synchronizing mode, an MDP can be (i) sure winning if there
is a strategy that produces a 1-synchronizing sequence; (ii) almost-sure

winning if there is a strategy that produces a sequence that is, for all
ε > 0, a (1-ε)-synchronizing sequence; (iii) limit-sure winning if for all
ε > 0, there is a strategy that produces a (1-ε)-synchronizing sequence.

For each synchronizing and winning mode, we consider the problem
of deciding whether an MDP is winning, and we establish matching up-
per and lower complexity bounds of the problems, as well as the optimal
memory requirement for winning strategies: (a) for all winning modes,
we show that the problems are PSPACE-complete for weak synchroniza-
tion, and PTIME-complete for strong synchronization; (b) we show that
for weak synchronization, exponential memory is sufficient and may be
necessary for sure winning, and infinite memory is necessary for almost-
sure winning; for strong synchronization, linear-size memory is sufficient
and may be necessary in all modes; (c) we show a robustness result that
the almost-sure and limit-sure winning modes coincide for both weak
and strong synchronization.

1 Introduction

Markov Decision Processes (MDPs) are studied in theoretical computer science
in many problems related to system design and verification [24,15,10]. MDPs
are a model of reactive systems with both stochastic and nondeterministic be-
havior, used in the control problem for reactive systems: the nondeterminism
represents the possible choices of the controller, and the stochasticity represents
the uncertainties about the system response. The controller synthesis problem is
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to compute a control strategy that ensures correct behaviors of the system with
probability 1. Traditional well-studied specifications describe correct behaviors
as infinite sequences of states, such as reachability, Büchi, and co-Büchi, which
require the system to visit a target state once, infinitely often, and ultimately
always, respectively [3,2].

In contrast, we consider symbolic specifications of the behaviors of MDPs
as sequences of probability distributions Xi : Q → [0, 1] over the finite state
space Q of the system, where Xi(q) is the probability that the MDP is in state
q ∈ Q after i steps. The symbolic specification of stochastic systems is rele-
vant in applications such as system biology and robot planning [18,6,14], and
recently it has been used in several works on design and verification of reactive
systems [21,9,1]. While the verification of MDPs may yield undecidability, both
with traditional specifications [5,17], and symbolic specifications [21,13], decid-
ability results are obtained for eventually synchronizing conditions under general
control strategies that depend on the full history of the system execution [14].
Intuitively, a sequence of probability distributions is eventually synchronizing if
the probability mass tends to accumulate in a given set of target states along
the sequence. This is an analogue, for sequences of probability distributions, of
the reachability condition.

In this paper, we consider an analogue of the Büchi and coBüchi conditions
for sequences of distributions [11]: the probability mass should get synchronized
infinitely often, or ultimately at every step. More precisely, for 0 ≤ p ≤ 1 let a
probability distribution X : Q → [0, 1] be p-synchronized if it assigns probability
at least p to some state. A sequence X̄ = X0X1 . . . of probability distributions
is (a) eventually p-synchronizing if Xi is p-synchronized for some i; (b) weakly
p-synchronizing if Xi is p-synchronized for infinitely many i’s; (c) strongly p-
synchronizing if Xi is p-synchronized for all but finitely many i’s. It is easy
to see that strongly p-synchronizing implies weakly p-synchronizing, which im-
plies eventually p-synchronizing. The qualitative synchronizing properties, cor-
responding to the case where either p = 1, or p tends to 1, are analogous to the
traditional reachability, Büchi, and coBüchi conditions.

We consider the following qualitative (winning) modes, summarized in Ta-
ble 1: (i) sure winning, if there is a strategy that generates a {eventually, weakly,
strongly} 1-synchronizing sequence; (ii) almost-sure winning, if there is a strat-
egy that generates a sequence that is, for all ε > 0, {eventually, weakly, strongly}
(1− ε)-synchronizing; (iii) limit-sure winning, if for all ε > 0, there is a strategy
that generates a {eventually, weakly, strongly} (1− ε)-synchronizing sequence.

For eventually synchronizing deciding if a given MDP is winning is PSPACE-
complete, and the three winning modes form a strict hierarchy [14]. In particular,
there are limit-sure winning MDPs that are not almost-sure winning. An impor-
tant and difficult result in this paper is that the new synchronizing modes are
more robust: for weak and strong synchronization, we show that the almost-sure
and limit-sure modes coincide. Moreover we establish the complexity of deciding
if a given MDP is winning by providing tight (matching) upper and lower bounds:
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Eventually Weakly Strongly

Sure ∃α ∃n Mα
n(T ) = 1 ∃α ∀N ∃n ≥ N Mα

n(T ) = 1 ∃α ∃N ∀n ≥ N Mα
n(T ) = 1

Almost-sure ∃α supn Mα
n(T ) = 1 ∃α lim supn→∞ Mα

n(T ) = 1 ∃α lim infn→∞ Mα
n(T ) = 1

Limit-sure supα supn Mα
n(T ) = 1 supα lim supn→∞ Mα

n(T ) = 1 supα lim infn→∞ Mα
n(T ) = 1

Table 1. Winning modes and synchronizing objectives (where Mα
n(T ) denotes the

probability that under strategy α, after n steps the MDP M is in a state of T ).

for each winning mode we show that the problems are PSPACE-complete for
weak synchronization, and PTIME-complete for strong synchronization.

Thus the weakly and strongly synchronizing properties provide conserva-
tive approximations of eventually synchronizing, they are robust (limit-sure and
almost-sure coincide), and they are of the same (or even lower) complexity as
compared to eventually synchronizing.

We also provide optimal memory bounds for winning strategies: exponential
memory is sufficient and may be necessary for sure winning in weak synchroniza-
tion, infinite memory is necessary for almost-sure winning in weak synchroniza-
tion, and linear memory is sufficient for strong synchronization in all winning
modes. We present a variant of strong synchronization for which memoryless
strategies are sufficient.

Related Works and Applications. Synchronization problems were first considered
for deterministic finite automata (DFA) where a synchronizing word is a finite
sequence of control actions that can be executed from any state of an automaton
and leads to the same state (see [25] for a survey of results and applications).
While the existence of a synchronizing word can be decided in polynomial time
for DFA, extensive research efforts are devoted to establishing a tight bound
on the length of the shortest synchronizing word, which is conjectured to be
(n − 1)2 for automata with n states [8]. Various extensions of the notion of
synchronizing word have been proposed for non-deterministic and probabilistic
automata [7,19,20,12], leading to results of PSPACE-completeness [22], or even
undecidability [20,13].

For probabilistic systems, a natural extension of words is the notion of strat-
egy that reacts and chooses actions according to the sequence of states visited
along the system execution. In this context, an input word corresponds to the
special case of a blind strategy that chooses the control actions in advance.
In particular, almost-sure weak and strong synchronization with blind strate-
gies has been studied [12] and the main result is the undecidability of deciding
the existence of a blind almost-sure winning strategy for weak synchronization,
and the PSPACE-completeness of the emptiness problem for strong synchro-
nization [11,13]. In contrast, for general strategies (which also correspond to
input trees), we establish the PSPACE-completeness and PTIME-completeness
of deciding almost-sure weak and strong synchronization respectively.
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A typical application scenario is the design of a control program for a group
of mobile robots running in a stochastic environment. The possible behaviors of
the robots and the stochastic response of the environment (such as obstacle en-
counters) are represented by an MDP, and a synchronizing strategy corresponds
to a control program that can be embedded in every robot to ensure that they
meet (or synchronize) eventually once, infinitely often, or eventually forever.

2 Markov Decision Processes and Synchronization

We closely follow the definitions of [14]. A probability distribution over a finite
set S is a function d : S → [0, 1] such that

∑
s∈S d(s) = 1. The support of d

is the set Supp(d) = {s ∈ S | d(s) > 0}. We denote by D(S) the set of all
probability distributions over S. Given a set T ⊆ S, let d(T ) =

∑
s∈T d(s)

and ‖d‖T = max s∈T d(s). For T 6= ∅, the uniform distribution on T assigns
probability 1

|T | to every state in T . Given s ∈ S, the Dirac distribution on s

assigns probability 1 to s, and by a slight abuse of notation, we denote it simply
by s.

AMarkov decision process (MDP) is a tupleM = 〈Q,A, δ〉 whereQ is a finite
set of states, A is a finite set of actions, and δ : Q×A → D(Q) is a probabilistic
transition function. A state q is absorbing if δ(q, a) is the Dirac distribution on
q for all actions a ∈ A.

Given state q ∈ Q and action a ∈ A, the successor state of q under action a

is q′ with probability δ(q, a)(q′). Denote by post(q, a) the set Supp(δ(q, a)), and
given T ⊆ Q let Pre(T ) = {q ∈ Q | ∃a ∈ A : post(q, a) ⊆ T } be the set of states
from which there is an action to ensure that the successor state is in T . For
k > 0, let Prek(T ) = Pre(Prek−1(T )) with Pre0(T ) = T .

A path in M is an infinite sequence π = q0a0q1a1 . . . such that qi+1 ∈
post(qi, ai) for all i ≥ 0. A finite prefix ρ = q0a0q1a1 . . . qn of a path (or simply
a finite path) has length |ρ| = n and last state Last(ρ) = qn. We denote by
Play(M) and Pref(M) the set of all paths and finite paths in M respectively.

Strategies. A randomized strategy for M (or simply a strategy) is a function
α : Pref(M) → D(A) that, given a finite path ρ, returns a probability distribution
α(ρ) over the action set, used to select a successor state q′ of ρ with probability∑

a∈A
α(ρ)(a) · δ(q, a)(q′) where q = Last(ρ).

A strategy α is pure if for all ρ ∈ Pref(M), there exists an action a ∈ A

such that α(ρ)(a) = 1; and memoryless if α(ρ) = α(ρ′) for all ρ, ρ′ such that
Last(ρ) = Last(ρ′). We view pure strategies as functions α : Pref(M) → A, and
memoryless strategies as functions α : Q → D(A).

Finally, a strategy α uses finite-memory if it can be represented by a finite-
state transducer T = 〈Mem,m0, αu, αn〉 where Mem is a finite set of modes (the
memory of the strategy), m0 ∈ Mem is the initial mode, αu : Mem× (A×Q) →
Mem is an update function, that given the current memory, last action and
state updates the memory, and αn : Mem×Q → D(A) is a next-move function
that selects the probability distribution αn(m, q) over actions when the current
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Eventually Weakly Strongly

Sure PSPACE-C PSPACE-C PTIME-C

Almost-sure PSPACE-C
PSPACE-C PTIME-C

Limit-sure PSPACE-C

Table 2. Computational complexity of the membership problem (new results in bold-
face).

mode is m and the current state of M is q. For pure strategies, we assume
that αn : Mem × Q → A. The memory size of the strategy is the number
|Mem| of modes. For a finite-memory strategy α, let M(α) be the Markov chain
obtained as the product ofM with the transducer defining α. We assume general
knowledge of the reader about Markov chains, such as recurrent and transient
states, periodicity, and stationary distributions [23].

Outcomes and winning modes. Given an initial distribution d0 ∈ D(Q) and a
strategy α in an MDP M, a path-outcome is a path π = q0a0q1a1 . . . in M such
that q0 ∈ Supp(d0) and ai ∈ Supp(α(q0a0 . . . qi)) for all i ≥ 0. The probability of
a finite prefix ρ = q0a0q1a1 . . . qn of π is

d0(q0) ·
n−1∏

j=0

α(q0a0 . . . qj)(aj) · δ(qj , aj)(qj+1).

We denote by Outcomes(d0, α) the set of all path-outcomes from d0 under strat-
egy α. An event Ω ⊆ Play(M) is a measurable set of paths, and given an initial
distribution d0 and a strategy α, the probability Prα(Ω) of Ω is uniquely de-
fined [24]. We consider the following classical winning modes. Given an initial
distribution d0 and an event Ω, we say that M is: sure winning if there exists a
strategy α such that Outcomes(d0, α) ⊆ Ω; almost-sure winning if there exists
a strategy α such that Prα(Ω) = 1;

For example, given a set T ⊆ Q of target states, and k ∈ N, we denote by
2T = {q0a0q1 · · · ∈ Play(M) | ∀i : qi ∈ T } the safety event of always staying
in T , by 3T = {q0a0q1 · · · ∈ Play(M) | ∃i : qi ∈ T } the event of reaching T , and
by 3

k T = {q0a0q1 · · · ∈ Play(M) | qk ∈ T } the event of reaching T after exactly
k steps. Let 3

≤k T =
⋃

j≤k 3
j T . Hence, if Prα(3T ) = 1 then almost-surely a

state in T is reached under strategy α.
We consider a symbolic outcome of MDPs viewed as generators of sequences

of probability distributions over states [21]. Given an initial distribution d0 ∈
D(Q) and a strategy α in M, the symbolic outcome ofM from d0 is the sequence
(Mα

n)n∈N of probability distributions defined by Mα
k (q) = Prα(3k {q}) for all

k ≥ 0 and q ∈ Q. Hence, Mα
k is the probability distribution over states after

k steps under strategy α. Note that Mα
0 = d0 and the symbolic outcome is

a deterministic sequence of distributions: each distribution Mα
k has a unique

(determinisitic) successor.
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Informally, synchronizing objectives require that the probability of some
state (or some group of states) tends to 1 in the sequence (Mα

n)n∈N, either
once, infinitely often, or always after some point. Given a set T ⊆ Q, consider
the functions sumT : D(Q) → [0, 1] and maxT : D(Q) → [0, 1] that compute
sumT (X) =

∑
q∈T X(q) and maxT (X) = maxq∈T X(q). For f ∈ {sumT ,maxT }

and p ∈ [0, 1], we say that a probability distribution X is p-synchronized ac-
cording to f if f(X) ≥ p, and that a sequence X̄ = X0X1 . . . of probability
distributions is [11,14]:

(a) event (or eventually) p-synchronizing if Xi is p-synchronized for some i ≥ 0;
(b) weakly p-synchronizing if Xi is p-synchronized for infinitely many i’s;
(c) strongly p-synchronizing if Xi is p-synchronized for all but finitely many i’s.

For p = 1, these definitions are analogous to the traditional reachability,
Büchi, and coBüchi conditions [2], and the following winning modes can be con-
sidered [14]: given an initial distribution d0 and a function f ∈ {sumT ,maxT }, we
say that for the objective of {eventually, weak, strong} synchronization from d0,
M is:

– sure winning if there exists a strategy α such that the symbolic outcome of
α from d0 is {eventually, weakly, strongly} 1-synchronizing according to f ;

– almost-sure winning if there exists a strategy α such that for all ε > 0 the
symbolic outcome of α from d0 is {eventually, weakly, strongly} (1 − ε)-
synchronizing according to f ;

– limit-sure winning if for all ε > 0, there exists a strategy α such that the
symbolic outcome of α from d0 is {eventually, weakly, strongly} (1 − ε)-
synchronizing according to f ;

Note that the winning modes for synchronization objectives differ from the
classical winning modes in MDPs: they can be viewed as a specification of the set
of sequences of distributions that are winning in a non-stochastic system (since
the symbolic outcome is deterministic), while the traditional almost-sure and
limit-sure winning modes for path-outcomes consider a probability measure over
paths and specify the probability of a specific event (i.e., a set of paths). Thus for
instance a strategy is almost-sure synchronizing if the (single) symbolic outcome
it produces belongs to the corresponding winning set, whereas traditional almost-
sure winning requires a certain event to occur with probability 1.

We often write ‖X‖T instead of maxT (X) (and we omit the subscript when
T = Q) and X(T ) instead of sumT (X), as in Table 1 where the definitions
of the various winning modes and synchronizing objectives for f = sumT are
summarized.

Decision problems. For f ∈ {sumT ,maxT } and λ ∈ {event, weakly, strongly},
the winning region 〈〈1〉〉λsure(f) is the set of initial distributions such that M
is sure winning for λ-synchronizing (we assume that M is clear from the con-
text). We define analogously the sets 〈〈1〉〉λalmost (f) and 〈〈1〉〉λlimit (f). For a sin-
gleton T = {q} we have sumT = maxT , and we simply write 〈〈1〉〉λµ(q) (where
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Eventually Weakly
Strongly

sumT maxT

Sure exponential exponential memoryless linear

Almost-sure infinite
infinite memoryless linear

Limit-sure unbounded

Table 3. Memory requirement (new results in boldface).

qinit q
a : 1

2

a : 1

2

a

Fig. 1. An MDP M such that 〈〈1〉〉λsure(q) 6= 〈〈1〉〉λalmost (q) for λ ∈ {weakly, strongly}.

µ ∈ {sure, almost, limit}). It follows from the definitions that 〈〈1〉〉stronglyµ (f) ⊆

〈〈1〉〉weakly
µ (f) ⊆ 〈〈1〉〉eventµ (f) and thus strong and weak synchronization are con-

servative approximations of eventually synchronization. It is easy to see that
〈〈1〉〉λsure(f) ⊆ 〈〈1〉〉λalmost (f) ⊆ 〈〈1〉〉λlimit (f), and for λ = event the inclusions are
strict [14]. In contrast, weak and strong synchronization are more robust as we
show in this paper that the almost-sure and limit-sure winning modes coincide.

Lemma 1. There exists an MDP M and state q such that 〈〈1〉〉λsure(q) (

〈〈1〉〉λalmost (q) for λ ∈ {weakly, strongly}.

Proof. Consider the MDP M with initial state qinit and action set {a} as shown
in Fig. 1. On action a in qinit, the successor is qinit or q with probability 1

2 , and q

is an absorbing state.
We show that qinit ∈ 〈〈1〉〉stronglyalmost (q) and qinit 6∈ 〈〈1〉〉stronglysure (q). Since M has

only a single action, so it is a Markov chain with a unique possible strategy α:
always playing a. The outcome under α is such that the probability to be in q

after k steps is 1 − 1
2k

for all k, showing that M is almost-sure winning for the
strongly synchronizing objective in {q} (from qinit). On the other hand, qinit 6∈
〈〈1〉〉stronglysure (q1) because under α, the probability in qinit remains always positive,
and thus in q we have Mα

n(q) < 1 for all n ≥ 0, showing that M is not sure
winning for the strongly synchronizing objective in {q} (from qinit). The same
argument holds for weakly synchronizing objective. ⊓⊔

Themembership problem is to decide, given an initial probability distribution
d0, whether d0 ∈ 〈〈1〉〉λµ(f). It is sufficient to consider Dirac initial distributions
(i.e., assuming that MDPs have a single initial state) because the answer to the
general membership problem for an MDP M with initial distribution d0 can be
obtained by solving the membership problem for a copy of M with a new initial
state from which the successor distribution on all actions is d0.
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For eventually synchronizing, the membership problem is PSPACE-complete
for all winning modes [14]. In this paper, we show that the complexity of the
membership problem is PSPACE-complete for weak synchronization, and even
PTIME-complete for strong synchronization. The complexity results are summa-
rized in Table 2, and we present the memory requirement for winning strategies
in Table 3.

3 Weak Synchronization

We establish the complexity and memory requirement for weakly synchronizing
objectives. We show that the membership problem is PSPACE-complete for sure
and almost-sure winning, that exponential memory is necessary and sufficient
for sure winning while infinite memory is necessary for almost-sure winning, and
we show that limit-sure and almost-sure winning coincide.

3.1 Sure weak synchronization

The PSPACE upper bound of the membership problem for sure weak synchro-
nization is obtained by the following characterization.

Lemma 2. Let M be an MDP and T be a target set. For all states qinit, we
have qinit ∈ 〈〈1〉〉weakly

sure (sumT ) if and only if there exists a set S ⊆ T such that
qinit ∈ Prem(S) for some m ≥ 0 and S ⊆ Pren(S) for some n ≥ 1.

Proof. First, if qinit ∈ 〈〈1〉〉weakly
sure (sumT ), then let α be a sure winning weakly

synchronizing strategy. Then there are infinitely many positions n such that
Mα

n(T ) = 1, and since the state space is finite, there is a set S of states such
that for infinitely many positions n we have Supp(Mα

n) = S and Mα
n(T ) = 1,

and thus S ⊆ T . By the result of [14, Lemma 4], it follows that qinit ∈ Prem(S)
for some m ≥ 0, and by considering two positions n1 < n2 where Supp(Mα

n1
) =

Supp(Mα
n2
) = S, it follows that S ⊆ Pren(S) for n = n2 − n1 ≥ 1.

The reverse direction is straightforward by considering a strategy α that
ensures Mα

m(S) = 1 for some m ≥ 0, and then ensures that the probability mass
from all states in S remains in S after every multiple of n steps where n > 0 is
such that S ⊆ Pren(S), showing that α is a sure winning weakly synchronizing
strategy in S (and thus in T ) from qinit, thus qinit ∈ 〈〈1〉〉weakly

sure (sumT ). ⊓⊔

The PSPACE upper bound follows from the characterization in Lemma 2. A
(N)PSPACE algorithm is to guess the set S ⊆ T , and the numbers m,n (with
m,n ≤ 2|Q| since the sequence Pren(S) of predecessors is ultimately periodic),
and check that qinit ∈ Prem(S) and S ⊆ Pren(S). The PSPACE lower bound
follows from the PSPACE-completeness of the membership problem for sure
eventually synchronization [14, Theorem 2].

Lemma 3. The membership problem for 〈〈1〉〉weakly
sure (sumT ) is PSPACE-hard

even if T is a singleton.
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MDP M

qinit q̂q ⇒

MDP N

MDP M

qinit q̂q

sink

p̂

A
′

♯ ♯

♯

A

♯

Fig. 2. The reduction sketch to show PSPACE-hardness of the emptiness problem for
sure weak synchronization in MDPs.

Proof. The proof is by a reduction from the membership problem for
〈〈1〉〉eventsure (sumT ) with a singleton T , which is PSPACE-complete [14, Theo-
rem 2]. From an MDP M = 〈Q,A, δ〉 with initial state qinit and target state q̂,
we construct another MDP N = 〈Q′,A′, δ′〉 and a target state p̂ such that
qinit ∈ 〈〈1〉〉eventsure (q̂) in M if and only if qinit ∈ 〈〈1〉〉weakly

sure (p̂) in N .
The MDP N is a copy ofM with two new states p̂ and sink that are reachable

only by a new action ♯ (see Fig. 2). Formally, Q′ = Q∪{p̂, sink} and A′ = A∪{♯}.
The transition function δ′ is defined as follows: δ′(q, a) = δ(q, a) for all states
q ∈ Q and a ∈ A, δ(q, ♯)(sink) = 1 for all q ∈ Q′ \ {q̂} and δ(q̂, ♯)(p̂) = 1. The
state sink is absorbing and from state p̂ all other transitions lead to the initial
state, i.e. δ(sink, a)(sink) = 1 and δ(p̂, a)(qinit) = 1 for all a ∈ A.

We establish the correctness of the reduction as follows. First, if qinit ∈
〈〈1〉〉eventsure (q̂) in M, then let α be a sure winning strategy in M for eventually
synchronization in {q̂}. A sure winning strategy in N for weak synchronization
in {p̂} is to play according to α until the whole probability mass is in q̂, then
play ♯ followed by some a ∈ A to visit p̂ and get back to the initial state qinit,
and then repeat the same strategy from qinit. Hence qinit ∈ 〈〈1〉〉weakly

sure (p̂) in N .
Second, if qinit ∈ 〈〈1〉〉weakly

sure (p̂) in N , then consider a strategy α such that
Nα

n (p̂) = 1 for some n ≥ 0. By construction of N , it follows that Nα
n−1(q̂) = 1,

that is all path-outcomes of α of length n− 1 reach q̂, and α plays ♯ in the next
step. If α never plays ♯ before position n − 1, then α is a valid strategy in M
up to step n − 1 and it shows that qinit ∈ 〈〈1〉〉eventsure (q̂) is sure winning in M
for eventually synchronization in {q̂}. Otherwise let m be the largest number
such that there is a finite path-outcome ρ of α of length m < n − 1 such that
♯ ∈ Supp(α(ρ)). Note that the action ♯ can be played by α only in the state q̂,
and thus the initial state is reached again after one more step. It follows that in
some path-outcome ρ′ of α of length m+ 2, we have Last(ρ′) = qinit, and by the
choice of m, the action ♯ is not played by α until position n − 1 where all the
probability mass is in q̂. Hence the strategy that plays like α from ρ′ in N is a
valid strategy from qinit in M, and is a witness that qinit ∈ 〈〈1〉〉eventsure (q̂). ⊓⊔
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qinit

q11 q12

q21

q22

q23

qT

H1

H2

a, b : 1
2

a, b : 1
2

a

a

a

a

a

b

b

a, b

Fig. 3. The MDP M2.

The proof of Lemma 2 suggests an exponential-memory strategy for sure
weakly synchronization that in q ∈ Pren(S) plays an action a such that
post(q, a) ⊆ Pren−1(S), which can be realized with exponential memory since
n ≤ 2|Q|. It can be shown that exponential memory is necessary in general. The
argument is very similar to the proof of exponential memory lower bound for
sure eventually synchronization [14, Section 4.1]. For the sake of completeness,
we present a family of MDPs Mn (n ∈ N) over alphabet {a, b} that are sure
winning for weak synchronization, and where the sure winning strategies require
exponential memory. The MDP M2 is shown in Fig. 3. The structure of Mn is
an initial uniform probabilistic transition to n components H1, . . . , Hn where Hi

is a cycle of length pi the i-th prime number. On action a, the next state in the
cycle is reached, and on action b the target state qT is reached, only from the
last state in the cycles. From other states, the action b leads to an absorbing sink
state (transitions not depicted). A sure winning strategy from qinit for weak syn-
chronization in {qT } is to play a in the first p#n =

∏n
i=1 pi steps, and then play

bb to reach qinit again, through qT . This requires memory of size p#n > 2n while
the size of Mn is in O(n2 log n) [4]. It can be proved that all winning strategies
for weak synchronization need to be, from qinit, sure eventually synchronizing in
{qT } (consider the last occurrence of qinit along a play before all the probability
mass is in qT ) and this requires memory of size at least p#n by standard pumping
arguments as in [14].

Theorem 1. For sure weak synchronization in MDPs:

1. (Complexity). The membership problem is PSPACE-complete.

10



2. (Memory). Exponential memory is necessary and sufficient for both pure and
randomized strategies, and pure strategies are sufficient.

3.2 Almost-sure weak synchronization

We present a characterization of almost-sure weak synchronization that gives a
PSPACE upper bound for the membership problem. Our characterization uses
the limit-sure eventually synchronizing objectives with exact support [14]. This
objective requires that the probability mass tends to 1 in a target set T , and
moreover that after the same number of steps the support of the probability
distribution is contained in a given set U . Formally, given an MDP M, let
〈〈1〉〉eventlimit (sumT , U) for T ⊆ U be the set of all initial distributions such that for
all ε > 0 there exists a strategy α and n ∈ N such that Mα

n(T ) ≥ 1 − ε and
Mα

n(U) = 1.
We show that an MDP is almost-sure weakly synchronizing in target T if

(and only if), for some set U , there is a sure eventually synchronizing strategy in
target U , and from the probability distributions with support U there is a limit-
sure winning strategy for eventually synchronizing in Pre(T ) with support in
Pre(U). This ensures that from the initial state we can have the whole probability
mass in U , and from U have probability 1 − ε in Pre(T ) (and in T in the next
step), while the whole probability mass is back in Pre(U) (and in U in the next
step), allowing to repeat the strategy for ε → 0, thus ensuring infinitely often
probability at least 1− ε in T (for all ε > 0).

Lemma 4. Let M be an MDP and T be a target set. For all states qinit, we have
qinit ∈ 〈〈1〉〉weakly

almost (sumT ) if and only if there exists a set U such that

– qinit ∈ 〈〈1〉〉eventsure (sumU ), and

– dU ∈ 〈〈1〉〉eventlimit (sumPre(T ),Pre(U)) where dU is the uniform distribution
over U .

Proof. First, if qinit ∈ 〈〈1〉〉weakly
almost (sumT ), then there exists a strategy α such that

for all i ≥ 0 there exists ni ∈ N such that Mα
ni
(T ) ≥ 1 − 2−i, and moreover

ni+1 > ni for all i ≥ 0. Let si = Supp(Mα
ni
) be the support of Mα

ni
. Since

the state space is finite, there is a set U that occurs infinitely often in the
sequence s0s1 . . . , thus for all k > 0 there exists mk ∈ N such that Mα

mk
(T ) ≥

1−2−k and Mα
mk

(U) = 1. It follows that α is sure eventually synchronizing in U

from qinit, i.e. qinit ∈ 〈〈1〉〉eventsure (sumU ). Moreover, we can assume that mk+1 > mk

for all k > 0 and thus M is also limit-sure eventually synchronizing in Pre(T )
with exact support in Pre(U) from the initial distribution d1 = Mα

m1
. Since

Supp(d1) = U = Supp(dU ) and since only the support of the initial probability
distributions is relevant for the limit-sure eventually synchronizing objective [14,
Corollary 1], it follows that dU ∈ 〈〈1〉〉eventlimit (sumPre(T ),Pre(U)).

To establish the converse, note that since dU ∈ 〈〈1〉〉eventlimit (sumPre(T ),Pre(U)),
it follows from [14, Corollary 1] that from all initial distributions with sup-
port in U , for all ε > 0 there exists a strategy αε and a position nε such that

11



Mαε
nε
(T ) ≥ 1−ε and Mαε

nε
(U) = 1. We construct an almost-sure weakly synchro-

nizing strategy α as follows. Since qinit ∈ 〈〈1〉〉eventsure (sumU ), play according to a
sure eventually synchronizing strategy from qinit until all the probability mass is
in U . Then for i = 1, 2, . . . and εi = 2−i, repeat the following procedure: given the
current probability distribution, select the corresponding strategy αεi and play
according to αεi for nεi steps, ensuring probability mass at least 1−2−i in Pre(T )
and support of the probability mass in Pre(U). Then from states in Pre(T ), play
an action to ensure reaching T in the next step, and from states in Pre(U) en-
sure reaching U . Continue playing according to αεi+1

for nεi+1
steps, etc. Since

nεi +1 > 0 for all i ≥ 0, this strategy ensures that lim supn→∞ Mα
n(T ) = 1 from

qinit, hence qinit ∈ 〈〈1〉〉weak
almost (sumT ).

⊓⊔

Since the membership problems for sure eventually synchronizing and for
limit-sure eventually synchronizing with exact support are PSPACE-complete
([14, Theorem 2 and 4]), the membership problem for almost-sure weak syn-
chronization is in PSPACE by guessing the set U , and checking that qinit ∈
〈〈1〉〉eventsure (sumU ), and that dU ∈ 〈〈1〉〉eventlimit (sumPre(T ),Pre(U)). We establish a
matching PSPACE lower bound.

Lemma 5. The membership problem for 〈〈1〉〉weakly
almost (sumT ) is PSPACE-hard

even if T is a singleton.

Proof. The problem of deciding, given an MDP M and a singleton T , whether
PrenM(T ) 6= ∅ for all n ≥ 0 is PSPACE-complete [14, Lemma 3]. We present
a reduction of this problem to the membership problem for almost-sure weak
synchronization, very similar to the proof of PSPACE-hardness for limit-sure
eventually synchronizing [14, Lemma 11].

The reduction is as follows (see also Fig. 4). Given an MDP M = 〈Q,A, δ〉
and a singleton T ⊆ Q, we construct an MDP N = 〈Q′,A′, δ′〉 with state space
Q′ = Q ⊎ {qinit} such that PrenM(T ) 6= ∅ for all n ≥ 0 if and only if qinit is
almost-sure weakly synchronizing in T . The MDP N is essentially a copy of M
with alphabet A ⊎ {♯} and the transition function on action ♯ is the uniform
distribution on Q from qinit, and the Dirac distribution on qinit from the other
states q ∈ Q. There are self-loops on qinit for all other actions a ∈ A. Formally,
the transition function δ′ is defined as follows, for all q ∈ Q:

– δ′(q, a) = δ(q, a) for all a ∈ A (copy of M), and δ′(q, ♯)(qinit) = 1;
– δ′(qinit, a)(qinit) = 1 for all a ∈ A, and δ′(qinit, ♯)(q) =

1
|Q| .

We establish the correctness of the reduction as follows. For the first direction,
assume that PrenM(T ) 6= ∅ for all n ≥ 0. It follows that there exist numbers
k0, r ≤ 2|Q| such that Prek0+r

M (T ) = Prek0

M(T ) 6= ∅.
By Lemma 4 with U = Q, we need to show that (i) qinit ∈ 〈〈1〉〉eventsure (sumQ),

and (ii) dQ ∈ 〈〈1〉〉eventlimit (sumPre(T ),Pre(Q)) where dQ is the uniform distribution
over Q. To show (i), we can play ♯ from qinit to get the probability mass syn-
chronized in Q. To show (ii), since playing ♯ from dQ ensures to reach qinit, it

12



MDP M T ⊆ Q

q2. . .q1 ⇒

MDP N

MDP M T ⊆ Q

q2. . .q1

qinit

A

♯

· · ·
♯

♯♯

Fig. 4. Sketch of reduction to show PSPACE-hardness of the membership problem for
almost-sure weak synchronization.

suffices to prove that qinit ∈ 〈〈1〉〉eventlimit (sumT , Q), and it is sufficient to prove this
in M since N embeds a copy of M (note that the requirement that the exact
support is in Q becomes trivial then). Using [14, Lemma 8] with k = k0 and
R = Prek0

M(T ) (and U = Z = Q is the trivial support), it is sufficient to prove
that qinit ∈ 〈〈1〉〉eventlimit (sumR) to get qinit ∈ 〈〈1〉〉eventlimit (sumT ). We show the stronger
statement that qinit is actually almost-sure eventually synchronizing in R with
the pure strategy α defined as follows, for all play prefixes ρ (let m = |ρ| mod r):

– if Last(ρ) = qinit, then α(ρ) = ♯;
– if Last(ρ) = q ∈ Q, then

• if q ∈ Prer−m
M (R) for 0 ≤ m < r, then α(ρ) = a such that post(q, a) ⊆

Prer−m−1
M (R);

• otherwise, α(ρ) = ♯.

Note that if q ∈ R, then q ∈ Prer−m
M (R) for m = 0 since PrerM(R) = R. The

strategy α ensures that the probability mass that is not (yet) in the sequence
of predecessors PrenM(R) goes to qinit, where by playing ♯ at least a fraction 1

|Q|

of it would reach the sequence of predecessors (at a synchronized position). It
follows that after 2i steps, the probability mass in qinit is at most (1− 1

|Q|)
i and

the probability mass in the sequence of predecessors is at least 1 − (1 − 1
|Q| )

i.

For i → ∞, the probability in the sequence of predecessors tends to 1 and since
PrenM(R) = R for all positions n that are a multiple of r, we get supn M

α
n(R) = 1

and qinit ∈ 〈〈1〉〉eventalmost (sumR).
For the converse direction, assume that qinit is almost-sure weakly synchro-

nizing in T , then qinit is also limit-sure eventually synchronizing in T . By [14,
Lemma 8], either (1) qinit is limit-sure eventually synchronizing in PrenN (T ) for
all n ≥ 0, and then it follows that PrenN (T ) 6= ∅ for all n ≥ 0, or (2) qinit is sure
eventually synchronizing in T , and then since only the action ♯ leaves the state
qinit (and post(qinit, ♯) = Q), and since qinit ∈ 〈〈1〉〉eventsure (sumT ) if and only if there

13



qinit q1 q2
a : 1

2

a : 1

2

b

b

a

a, b

Fig. 5. An MDP where infinite memory is necessary for almost-sure weakly synchro-
nizing strategies.

exists k ≥ 0 such that qinit ∈ PrekN (T ) [14, Lemma 4], we have Q ⊆ Prek−1
N (T ).

Moreover, since Q ⊆ PreN (Q) and PreN (·) is a monotone operator, it follows
that Q ⊆ PrenN (T ) for all n ≥ k − 1 and thus PrenN (T ) 6= ∅ for all n ≥ 0.
We conclude the proof by noting that PrenM(T ) = PrenN (T ) ∩ Q and therefore
PrenM(T ) 6= ∅ for all n ≥ 0. ⊓⊔

Simple examples show that winning strategies require infinite memory for
almost-sure weak synchronization.

Theorem 2. For almost-sure weak synchronization in MDPs:

1. (Complexity). The membership problem is PSPACE-complete.
2. (Memory). Infinite memory is necessary in general for both pure and ran-

domized strategies, and pure strategies are sufficient.

Proof. The result on memory requirement is established by following example.
The example and argument are analogous to the proof that infinite memory is
necessary for almost-sure eventually synchronizing [14, Section 4.2]. Consider the
MDP M shown in Fig. 5 with three states qinit, q1, q2 and two actions a, b. The
only probabilistic transition is in qinit on action a that has successors qinit and q1
with probability 1

2 . The other transitions are deterministic. Let qinit be the initial
state. We construct a strategy that is almost-sure weakly synchronizing in {q2},

showing that qinit ∈ 〈〈1〉〉weakly
almost (q2). First, observe that for all ε > 0 we can have

probability at least 1−ε in q2 after finitely many steps from qinit: playing n times
a and then b leads to probability 1− 1

2n in q2. Note that after that, the current
probability distribution has support {qinit, q2} and that from such a distribution,
we can as well ensure probability at least 1 − ε in q2. Thus for a fixed ε, the
MDP is (1− ε)-synchronizing in {q2} (after finitely many steps), and by taking
a smaller value of ε, we can continue to play a strategy to have probability at
least 1 − ε in q2, and repeat this for ε → 0. This strategy ensures almost-sure
weak synchronization in {q2}. Below, we show that infinite memory is necessary
for almost-sure winning in this MDP.

Assume towards contradiction that there exists a finite-memory strategy α

that is almost-sure weakly synchronizing in {q2}. Consider the Markov chain
M(α) (the product of the MDP M with the finite-state transducer defining
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α). A state (q,m) in M(α) is called a q-state. Since α is almost-sure weakly
synchronizing in {q2}, there is a q2-state in the recurrent states of M(α). Since
on all actions qinit is a successor of q2, and qinit is a successor of itself, it follows that
there is a recurrent qinit-state in M(α), and that all periodic classes of recurrent
states in M(α) contain a qinit-state. Hence, in each stationary distribution there
is a qinit-state with a positive probability, and therefore the probability mass in
qinit is bounded away from zero. It follows that the probability mass in q2 is
bounded away from 1 thus α is not almost-sure weakly synchronizing in {q2}, a
contradiction. ⊓⊔

3.3 Limit-sure weak synchronization

We show that the winning regions for almost-sure and limit-sure weak synchro-
nization coincide. The result is not intuitively obvious (recall that it does not
hold for eventually synchronizing) and requires a careful analysis of the structure
of limit-sure winning strategies to show that they always induce the existence
of an almost-sure winning strategy. The construction of an almost-sure winning
strategy from a family of limit-sure winning strategies is illustrated in the fol-
lowing example.

Consider the MDP M in Fig. 6 with initial state qinit and target set T = {q4}.
Note that there is a relevant strategic choice only in q3, and that qinit is limit-sure
winning for eventually synchronization in {q4} since we can inject a probability
mass arbitrarily close to 1 in q3 (by always playing a in q3), and then switching
to playing b in q3 gets probability 1− ε in T (for arbitrarily small ε). Moreover,
the same holds from state q4. These two facts are sufficient to show that qinit
is limit-sure winning for weak synchronization in {q4}: given ε > 0, play from
qinit a strategy to ensure probability at least p1 = 1 − ε

2 in q4 (in finitely many
steps), and then play according to a strategy that ensures from q4 probability
p2 = p1−

ε
4 in q4 (in finitely many, and at least one step), and repeat this process

using strategies that ensure, if the probability mass in q4 is at least pi, that the
probability in q4 is at least pi+1 = pi−

ε
2i+1 (in at least one step). It follows that

pi = 1 − ε
2 − ε

4 − · · · − ε
2i > 1 − ε for all i ≥ 1, and thus lim supi→∞ pi ≥ 1 − ε

showing that qinit is limit-sure weakly synchronizing in target {q4}.
It follows from the result that we establish in this section (Theorem 3) that

qinit is actually almost-sure weakly synchronizing in target {q4}. To see this,
consider the sequence Prei(T ) for i ≥ 0: {q4}, {q3}, {q2}, {q3}, . . . is ultimately
periodic with period r = 2 and R = {q3} = Pre(T ) is such that R = Pre2(R).
The period corresponds to the loop q2q3 in the MDP. It turns out that limit-sure
eventually synchronizing in T implies almost-sure eventually synchronizing in R

(by the proof of [14, Lemma 9]), thus from qinit a single strategy ensures that
the probability mass in R is 1, either in the limit or after finitely many steps.
Note that in both cases since R = Prer(R) this even implies almost-sure weakly
synchronizing in R. The same holds from state q4.

Moreover, note that all distributions produced by an almost-sure weakly syn-
chronizing strategy are themselves almost-sure weakly synchronizing. An almost-
sure winning strategy for weak synchronization in {q4} consists in playing from
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Fig. 6. An example to show qinit ∈ 〈〈1〉〉weakly

limit (q4) implies qinit ∈ 〈〈1〉〉weakly

almost (q4).

qinit an almost-sure eventually synchronizing strategy in target R = {q3}, and
considering a decreasing sequence εi such that limi→∞ εi = 0, when the prob-
ability mass in R is at least 1 − εi, inject it in T = {q4}. Then the remaining
probability mass defines a distribution (with support {q1, q2} in the example)
that is still almost-sure eventually synchronizing in R, as well as the states in T .
Note that in the example, (almost all) the probability mass in T = {q4} can move
to q3 in an even number of steps, while from {q1, q2} an odd number of steps is
required, resulting in a shift of the probability mass. However, by repeating the
strategy two times from q4 (injecting large probability mass in q3, moving to q4,
and injecting in q3 again), we can make up for the shift and reach q3 from q4
in an even number of steps, thus in synchronization with the probability mass
from {q1, q2}. This idea is formalized in the rest of this section, and we prove
that we can always make up for the shifts, which requires a carefully analysis of
the allowed amounts of shifting.

The result is easier to prove when the target T is a singleton, as in the
example. For an arbitrary target set T , we need to get rid of the states in T

that do not contribute a significant (i.e., bounded away from 0) probability
mass in the limit, that we call the ‘vanishing’ states. We show that they can
be removed from T without changing the winning region for limit-sure winning.
When the target set has no vanishing state, we can construct an almost-sure
winning strategy as in the case of a singleton target set.

Given an MDP M with initial state qinit ∈ 〈〈1〉〉weakly
limit (sumT ) that is limit-

sure winning for the weakly synchronizing objective in target set T , let (αi)i∈N

be a family of limit-sure winning strategies such that lim supn→∞ Mαi
n (T ) ≥

1 − εi where limi→∞ εi = 0. Hence by definition of lim sup, for all i ≥ 0
there exists a strictly increasing sequence ki,0 < ki,1 < · · · of positions such
that Mαi

ki,j
(T ) ≥ 1 − 2εi for all j ≥ 0. A state q ∈ T is vanishing if

lim infi→∞ lim infj→∞ Mαi

ki,j
(q) = 0 for some family of limit-sure weakly syn-

chronizing strategies (αi)i∈N. Intuitively, the contribution of a vanishing state q

to the probability in T tends to 0 and therefore M is also limit-sure winning for
the weakly synchronizing objective in target set T \ {q}.
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Lemma 6. If an MDP M is limit-sure weakly synchronizing in target set T ,
then there exists a set T ′ ⊆ T such that M is limit-sure weakly synchronizing
in T ′ without vanishing states.

Proof. If there is no vanishing state for (αi)i∈N, then take T ′ = T and the proof
is complete. Otherwise, let (αi)i∈N be a family of limit-sure winning strategies
such that lim supn→∞ Mαi

n (T ) ≥ 1 − εi where limi→∞ εi = 0 and let q be
a vanishing state for (αi)i∈N. We show that (αi)i∈N is limit-sure weakly syn-
chronizing in T \ {q}. For every i ≥ 0 let ki,0 < ki,1 < · · · be a strictly in-
creasing sequence such that (a) Mαi

ki,j
(T ) ≥ 1 − 2εi for all i, j ≥ 0, and (b)

lim infi→∞ lim infj→∞ Mαi

ki,j
(q) = 0.

It follows from (b) that for all ε > 0 and all x > 0 there exists i > x such
that for all y > 0 there exists j > y such that Mαi

ki,j
(q) < ε, and thus

Mαi

ki,j
(T \ {q}) ≥ 1− 2εi − ε

by (a). Since this holds for infinitely many i’s, we can choose i such that εi < ε

and we have

lim sup
j→∞

Mαi

ki,j
(T \ {q}) ≥ 1− 3ε

and thus

lim sup
n→∞

Mαi

n (T \ {q}) ≥ 1− 3ε

since the sequence (ki,j)j∈N is strictly increasing. This shows that (αi)i∈N is
limit-sure weakly synchronizing in T \ {q}.

By repeating this argument as long as there is a vanishing state (thus at
most |T | − 1 times), we can construct the desired set T ′ ⊆ T without vanishing
state. ⊓⊔

For a limit-sure weakly synchronizing MDP in target set T (without van-
ishing states), we show that from a probability distribution with support T , a
probability mass arbitrarily close to 1 can be injected synchronously back in T

(in at least one step), that is dT ∈ 〈〈1〉〉eventlimit (sumPre(T )). The same holds from the
initial state qinit of the MDP. This property is the key to construct an almost-sure
weakly synchronizing strategy.

Lemma 7. If an MDP M with initial state qinit is limit-sure weakly synchroniz-
ing in a target set T without vanishing states, then qinit ∈ 〈〈1〉〉eventlimit (sumPre(T ))
and dT ∈ 〈〈1〉〉eventlimit (sumPre(T )) where dT is the uniform distribution over T .

Proof. Since qinit ∈ 〈〈1〉〉weakly
limit (sumT ) and 〈〈1〉〉weakly

limit (sumT ) ⊆ 〈〈1〉〉eventlimit (sumT ),
we have qinit ∈ 〈〈1〉〉eventlimit (sumT ) and thus it suffices to prove that dT ∈
〈〈1〉〉eventlimit (sumPre(T )). This is because then from qinit, probability arbitrarily close
to 1 can be injected in Pre(T ) through a distribution with support in T (since
by [14, Corollary 1] only the support of the initial probability distribution is
important for limit-sure eventually synchronizing).
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Let (αi)i∈N be a family of limit-sure winning strategies such that
lim supn→∞ Mαi

n (T ) ≥ 1 − εi where limi→∞ εi = 0, and such that there is
no vanishing state. For every i ≥ 0 let ki,0 < ki,1 < · · · be a strictly in-
creasing sequence such that Mαi

ki,j
(T ) ≥ 1 − 2εi for all i, j ≥ 0, and let

B = minq∈T lim infi→∞ lim infj→∞ Mαi

ki,j
(q). Note that B > 0 since there is

no vanishing state. It follows that there exists x > 0 such that for all i > x there
exists yi > 0 such that for all j > yi and all q ∈ T we have Mαi

ki,j
(q) ≥ B

2 .

Given ν > 0, let i > x such that εi < νB
4 , and for j > yi, consider the

positions n1 = ki,j and n2 = ki,j+1. We have n1 < n2 and Mαi
n1
(T ) ≥ 1 − 2εi

and Mαi
n2
(T ) ≥ 1 − 2εi, and Mαi

n1
(q) ≥ B

2 for all q ∈ T . Consider the strategy
β that plays like αi plays from position n1 and thus transforms the distribution
Mαi

n1
into Mαi

n2
. For all states q ∈ T , from the Dirac distribution on q under

strategy β, the probability to reach Q \ T in n2 − n1 steps is thus at most
M

αi
n2

(Q\T )

M
αi
n1

(q)
≤ 2εi

B/2 < ν.

Therefore, from an arbitrary probability distribution with support T we have
Mβ

n2−n1
(T ) > 1 − ν, showing that dT is limit-sure eventually synchronizing in

T and thus in Pre(T ) since n2 − n1 > 0 (it is easy to show that if the mass of
probability in T is at least 1−ν, then the mass of probability in Pre(T ) one step
before is at least 1− ν

η where η is the smallest positive probability in M). ⊓⊔

To show that limit-sure and almost-sure winning coincide for weakly synchro-
nizing objectives, from a family of limit-sure winning strategies we construct an
almost-sure winning strategy that uses the eventually synchronizing strategies of
Lemma 7. The construction consists in using successively strategies that ensure
probability mass 1− εi in the target T , for a decreasing sequence εi → 0. Such
strategies exist by Lemma 7, both from the initial state and from the set T . How-
ever, the mass of probability that can be guaranteed to be synchronized in T by
the successive strategies is always smaller than 1, and therefore we need to argue
that the remaining masses of probability (of size εi) can also get synchronized
in T , and despite their possible shift with the main mass of probability.

Two main key arguments are needed to establish the correctness of the con-
struction: (1) eventually synchronizing implies that a finite number of steps is
sufficient to obtain a probability mass of 1− εi in T , and thus the construction
of the strategy is well defined, and (2) by the finiteness of the period r (such
that R = Prer(R) where R = Prek(T ) for some k) we can ensure to eventually
make up for the shifts, and every piece of the probability mass can contribute
(synchronously) to the target infinitely often.

Theorem 3. 〈〈1〉〉weakly
limit (sumT ) = 〈〈1〉〉weakly

almost (sumT ) for all MDPs and target
sets T .

Proof. Since 〈〈1〉〉weakly
almost (sumT ) ⊆ 〈〈1〉〉weakly

limit (sumT ) holds by the definition, it is

sufficient to prove that 〈〈1〉〉weakly
limit (sumT ) ⊆ 〈〈1〉〉weakly

almost (sumT ) and by Lemma 6

it is sufficient to prove that if qinit ∈ 〈〈1〉〉weakly
limit (sumT ) is limit-sure weakly syn-

chronizing in T without vanishing state, then qinit is almost-sure weakly syn-
chronizing in T . If T has vanishing states, then consider T ′ ⊆ T as in Lemma 6
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and it will follows that qinit is almost-sure weakly synchronizing in T ′ and thus
also in T . We proceed with the proof that qinit ∈ 〈〈1〉〉weakly

limit (sumT ) implies

qinit ∈ 〈〈1〉〉weakly
almost (sumT ).

For i = 1, 2, . . . consider the sequence of predecessors Prei(T ), which is ul-
timately periodic: let 1 ≤ k, r ≤ 2|Q| such that Prek(T ) = Prek+r(T ), and let
R = Prek(T ). Thus R = Prek+r(T ) = Prer(R).

Claim 1. We have qinit ∈ 〈〈1〉〉eventalmost (sumR) and dT ∈ 〈〈1〉〉eventalmost (sumR).

Proof of Claim 1. By Lemma 7, since there is no vanishing state in T we have
qinit ∈ 〈〈1〉〉eventlimit (sumPre(T )) and dT ∈ 〈〈1〉〉eventlimit (sumPre(T )), and it follows from
the characterization of [14, Lemma 8] and the proof of [14, Lemma 9] that:

either (1) qinit ∈ 〈〈1〉〉eventsure (sumPre(T )) or (2) qinit ∈ 〈〈1〉〉eventalmost (sumR), and
either (a) dT ∈ 〈〈1〉〉eventsure (sumPre(T )) or (b) dT ∈ 〈〈1〉〉eventalmost (sumR).

Note that (a) implies (b) (and thus (b) holds) since (a) implies T ⊆ Prei(T )
for some i ≥ 1 (by [14, Lemma 4]) and thus T ⊆ Pren·i(T ) for all n ≥ 0 by
monotonicity of Prei(·), which entails for n · i ≥ k that T ⊆ Prem(R) where
m = (n · i − k) mod r and thus dT is sure (and almost-sure) winning for the
eventually synchronizing objective in target R.

Note also that (1) implies (2) since by (1) we can play a sure-winning strategy
from qinit to ensure in finitely many steps probability 1 in Pre(T ) and in the next
step probability 1 in T , and by (b) play an almost-sure winning strategy for
eventually synchronizing in R. Hence qinit ∈ 〈〈1〉〉eventalmost (sumR) and thus (2b)
holds, which concludes the proof of Claim 1.

We now show that there exists an almost-sure winning strategy for the weakly
synchronizing objective in target T .

Recall that Prer(R) = R and thus once some probability mass p is in R,
it is possible to ensure that the probability mass in R after r steps is at least
p, and thus that (with period r) the probability in R does not decrease. By
the result of [14, Lemma 9], almost-sure winning for eventually synchronizing
in R implies that there exists a strategy α such that the probability in R tends
to 1 at periodic positions: for some 0 ≤ h < r the strategy α is almost-sure
eventually synchronizing in R with shift h, that is ∀ε > 0 · ∃N · ∀n ≥ N : n ≡ h

mod r =⇒ Mα
n(R) ≥ 1− ε. We also say that the initial distribution d0 = Mα

0

is almost-sure eventually synchronizing in R with shift h.

Claim 2.

(⋆) If Mα
0 is almost-sure eventually synchronizing in R with some shift h, then

Mα
i is almost-sure eventually synchronizing in R with shift h− i mod r.

(⋆⋆) Let t such that dT is almost-sure eventually synchronizing in R with shift
t. If a distribution is almost-sure eventually synchronizing in R with some
shift h, then it is also almost-sure eventually synchronizing in R with shift
h+ k + t mod r (where we chose k such that R = Prek(T )).
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Proof of Claim 2. The result (⋆) immediately follows from the definition of shift,
and we prove (⋆⋆) as follows. We show that almost-sure eventually synchronizing
in R with shift h implies almost-sure eventually synchronizing in R with shift
h + k + t mod r. Intuitively, the probability mass that is in R with shift h

can be injected in T in k steps, and then from T we can play an almost-sure
eventually synchronizing strategy in target R with shift t, thus a total shift of
h + k + t mod r. Precisely, an almost-sure winning strategy α is constructed
as follows: given a finite prefix of play ρ, if there is no state q ∈ R that occurs
in ρ at a position n ≡ h mod r, then play in ρ according to the almost-sure
winning strategy αh for eventually synchronizing in R with shift h. Otherwise,
if there is no q ∈ T that occurs in ρ at a position n ≡ h + k mod r, then we
play according to a sure winning strategy αsure for eventually synchronizing in
T , and otherwise we play according to an almost-sure winning strategy αt from
T for eventually synchronizing in R with shift t. To show that α is almost-sure
eventually synchronizing in R with shift h + k + t, note that αh ensures with
probability 1 that R is reached at positions n ≡ h mod r, and thus T is reached
at positions h + k mod r by αsure, and from the states in T the strategy αt

ensures with probability 1 that R is reached at positions h+ k+ t mod r. This
concludes the proof of Claim 2.

Construction of an almost-sure winning strategy. We construct strategies αε for
ε > 0 that ensure, from a distribution that is almost-sure eventually synchroniz-
ing in R (with some shift h), that after finitely many steps, a distribution d′ is
reached such that d′(T ) ≥ 1 − ε and d′ is almost-sure eventually synchronizing
in R (with some shift h′). Since qinit is almost-sure eventually synchronizing in R

(with some shift h), it follows that the strategy αas that plays successively the
strategies (each for finitely many steps) α 1

2
, α 1

4
, α 1

8
, . . . is almost-sure winning

from qinit for the weakly synchronizing objective in target T .
We define the strategies αε as follows. Given an initial distribution that is

almost-sure eventually synchronizing in R with a shift h and given ε > 0, let αε

be the strategy that plays according to the almost-sure winning strategy αh for
eventually synchronizing in R with shift h for a number of steps n ≡ h mod r

until a distribution d is reached such that d(R) ≥ 1− ε, and then from d it plays
according to a sure winning strategy αsure for eventually synchronizing in T from
the states in R (for k steps), and keeps playing according to αh from the states
in Q \ R (for k steps). The distribution d′ reached from d after k steps is such
that d′(T ) ≥ 1− ε and we claim that it is almost-sure eventually synchronizing
in R with shift t. This holds by definition from the states in Supp(d′) ∩ T , and
by (⋆) the states in Supp(d′) \ T are almost-sure eventually synchronizing in R

with shift h− (h+ k) mod r, and by (⋆⋆) with shift h− (h+ k) + k + t = t.
It follows that the strategy αas is well-defined and ensures, for all ε > 0, that

the probability mass in T is infinitely often at least 1 − ε, thus is almost-sure
weakly synchronizing in T . This concludes the proof of Theorem 3. ⊓⊔

The complexity results of Theorem 1 and Theorem 2 hold for the membership
problem with function maxT by the following lemma.
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Fig. 7. State duplication ensures that the probability mass can never be accumulated
in a single state except in q (we omit action a for readability).

Lemma 8. For weak synchronization and each winning mode, the membership
problems with functions max and maxT are polynomial-time equivalent to the
membership problem with function sumT ′ with a singleton T ′.

Proof. First, for µ ∈ {sure, almost, limit}, we have 〈〈1〉〉weakly
µ (maxT ) =⋃

q∈T 〈〈1〉〉
weakly
µ (q), showing that the membership problems for max are

polynomial-time reducible to the corresponding membership problem for sumT

with singleton T . The reverse reduction is as follows. Given an MDP M, a state
q and an initial distribution d0, we can construct an MDP M′ and initial dis-
tribution d′0 such that d0 ∈ 〈〈1〉〉weakly

µ (q) iff d′0 ∈ 〈〈1〉〉weakly
µ (maxQ′) where Q′

is the state space of M′ (thus maxQ′ is simply the function max). The idea is
to construct M′ and d′0 as a copy of M and d0 where all states except q are
duplicated, and the initial and transition probabilities are equally distributed
between the copies (see Fig. 7). Therefore if the probability tends to 1 in some
state, it has to be in q.

⊓⊔

4 Strong Synchronization

In this section, we show that the membership problem for strongly synchronizing
objectives can be solved in polynomial time, for all winning modes, and both with
functionmaxT and function sumT . We show that linear-size memory is necessary
in general for maxT , and memoryless strategies are sufficient for sumT . It follows
from our results that the limit-sure and almost-sure winning modes coincide for
strong synchronization.
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4.1 Strong synchronization with function max

First, note that for strong synchronization the membership problem with func-
tion maxT reduces to the membership problem with function maxQ where Q is
the entire state space, by a construction similar to the proof of Lemma 8: states
in Q \ T are duplicated, ensuring that only states in T are used to accumulate
probability.

The strongly synchronizing objective with function max requires that from
some point on, almost all the probability mass is at every step in a single state.
The sequence of states that contain almost all the probability corresponds to a
sequence of deterministic transitions in the MDP, and thus eventually to a cycle
of deterministic transitions.

The graph of deterministic transitions of an MDP M = 〈Q,A, δ〉 is the
directed graph G = 〈Q,E〉 where E = {〈q1, q2〉 | ∃a ∈ A : δ(q1, a)(q2) = 1}. For
ℓ ≥ 1, a deterministic cycle in M of length ℓ is a finite path q̂ℓq̂ℓ−1 · · · q̂0 in G

(that is, 〈q̂i, q̂i−1〉 ∈ E for all 1 ≤ i ≤ ℓ) such that q̂0 = q̂ℓ. The cycle is simple if
q̂i 6= q̂j for all 1 ≤ i < j ≤ ℓ.

We show that sure (resp., almost-sure and limit-sure) strong synchronization
is equivalent to sure (resp., almost-sure and limit-sure) reachability to a state in
such a cycle, with the requirement that it can be reached in a synchronized way,
that is by finite paths whose lengths are congruent modulo the length ℓ of the
cycle. To check this, we keep track of a modulo-ℓ counter along the play.

Define the MDP M× [ℓ] = 〈Q′,A, δ′〉 where Q′ = Q × {0, 1, · · · , ℓ− 1} and
δ′(〈q, i〉, a)(〈q′, i − 1〉) = δ(q, a)(q′) (where i − 1 is ℓ − 1 for i = 0) for all states
q, q′ ∈ Q, actions a ∈ A, and 0 ≤ i ≤ ℓ− 1.

Lemma 9. Let η be the smallest positive probability in the transitions of M,
and let 1

1+η < p ≤ 1. There exists a strategy α such that lim infn→∞‖Mα
n‖ ≥

p from an initial state qinit if and only if there exists a simple deterministic
cycle q̂ℓq̂ℓ−1 · · · q̂0 in M and a strategy β in M×[ℓ] such that Prβ(3{〈q̂0, 0〉}) ≥ p

from 〈qinit, 0〉.

Proof. First, assume that there exists a simple deterministic cycle q̂ℓq̂ℓ−1 · · · q̂0
with length ℓ and a strategy β in M× [ℓ] that ensures the target set 3{〈q̂0, 0〉} is
reached with probability at least p from the state 〈qinit, 0〉. Since randomization
is not necessary for reachability objectives, we can assume that β is a pure
strategy. We show that there exists a strategy α such that lim infn→∞‖Mα

n‖ ≥ p

from qinit. From β, we construct a pure strategy α in M. Given a finite path
ρ = q0a0q1a1 . . . qn in M (with q0 = qinit), there is a corresponding path ρ′ =
〈q0, k0〉a0〈q1, k1〉a1 . . . 〈qn, kn〉 inM×[ℓ] where ki = −i mod ℓ. Since the sequence
k0k1 . . . is uniquely determined from ρ, there is a clear bijection between the
paths in M and the paths in M× [ℓ] that we often omit to apply and mention.
For ρ, we define α as follows: if qn = q̂kn

, then there exists an action a such
that post(q̂kn

, a) = {q̂kn+1
} = {q̂n+1} and we define α(ρ) = a, otherwise let

α(ρ) = β(ρ′). Thus α mimics β unless a state q is reached at step n such that
q = q̂k where k = −n mod ℓ, and then α switches to always playing actions that
keeps M in the simple deterministic cycle q̂ℓq̂ℓ−1 · · · q̂0. Below, we prove that
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given ε > 0 there exists k such that for all n ≥ k, we have ‖Mα
n‖ ≥ p−ε. It follows

that lim infn→∞‖Mα
n‖ ≥ p from qinit. Since Prβ(3{〈q̂0, 0〉}) ≥ p, there exists k

such that Prβ(3≤k{〈q̂0, 0〉}) ≥ p− ε. We assume w.l.o.g. that k mod ℓ = 0. For

i = 0, 1, . . . , ℓ − 1, let Ri = {〈q̂i, i〉}. Then trivially Prβ(3≤k
⋃ℓ−1

i=0 Ri) ≥ p − ε

and since α agrees with β on all finite paths that do not (yet) visit
⋃ℓ−1

i=0 Ri,

given a path ρ that visits
⋃ℓ−1

i=0 Ri (for the first time), only actions that keep
M in the simple cycle q̂ℓq̂ℓ−1 · · · q̂0 are played by α and thus all continuations
of ρ in the outcome of α will visit q̂0 after k steps (in total). It follows that
Prβ(3k{〈q̂0, 0〉}) ≥ p − ε, that is Mα

k (q̂0) ≥ p − ε. Thus, ‖Mα
k‖ ≥ p − ε.

Since next, α will always play actions that keeps M looping through the cycle
q̂ℓq̂ℓ−1 · · · q̂0, we have ‖Mα

n‖ ≥ p− ε for all n ≥ k.
Second, assume that there exists a strategy α such that lim infn→∞‖Mα

n‖ ≥ p

from qinit. Thus, for all ε > 0 there exists k ∈ N such that for all n ≥ k we have
‖Mα

n‖ ≥ p− ε. Fix ε < p− 1
1+η . Let k be such that for all n ≥ k, there exists a

unique state p̂n such that Mα
n(p̂n) ≥ p− ε. Below, we prove that for all n ≥ k,

there exists some action a ∈ A such that post(p̂n, a) = {p̂n+1}. Assume towards
contradiction that there exists j > k such that for all a there exists q 6= p̂j+1

such that {q, p̂j+1} ⊆ post(p̂j , a). Therefore, Mα
j+1(q) ≥ Mα

j (p̂j) ·η ≥ (p− ε) ·η.
Hence,

Mα
j+1(p̂j+1) ≤ 1−Mα

j+1(q) ≤ 1− (p− ε) · η.

Thus, p− ε ≤ ‖Mα
j+1‖ ≤ 1− (p− ε) · η that gives ε ≥ p− 1

1+η , a contradiction.
This argument proves that for all n ≥ k, there exists an action a ∈ A such
that post(p̂n, a) = {p̂n+1}. The finiteness of the state space Q entails that in
the sequence p̂kp̂k+1 · · · , some state and thus some simple deterministic cycle
occur infinitely often. Let q̂ℓq̂ℓ−1 · · · q̂0 be a cycle that occurs infinitely often in
the sequence p̂kp̂k+1 · · · (in the right order). For all j, let ij be the position
of q̂0 in all occurrences of the cycle q̂ℓq̂ℓ−1 · · · q̂0 in the sequence p̂kp̂k+1 · · · ;
and let tj = ij mod ℓ. In the sequence t0t1 · · · , there exists 0 ≤ t < ℓ that
appears infinitely often. Let the cycle rℓrℓ−1 · · · r0 be such that r(i+t) mod ℓ = q̂i.
Then, the cycle rℓrℓ−1 · · · r0 happens infinitely often in the sequence p̂kp̂k+1 · · ·
such that the positions of r0 are infinitely often 0 (modulo ℓ). Therefore, the
probability of M to be in r0 in positions (modulo ℓ) equals to 0, is infinitely
often equal or greater than p. Hence, for a strategy β in M× [ℓ] that copies all
the plays of the strategy α, we have Prβ(3{〈r0, 0〉}) ≥ p from 〈qinit, 0〉. ⊓⊔

It follows directly from Lemma 9 with p = 1 that almost-sure strong syn-
chronization is equivalent to almost-sure reachability to a deterministic cycle
in M × [ℓ]. The same equivalence holds for the sure and limit-sure winning
modes.

Lemma 10. A state qinit is sure (resp., almost-sure or limit-sure) winning for
the strongly synchronizing objective (according to maxQ) if and only if there
exists a simple deterministic cycle q̂ℓq̂ℓ−1 · · · q̂0 such that 〈qinit, 0〉 is sure (resp.,
almost-sure or limit-sure) winning for the reachability objective 3{〈q̂0, 0〉} in
M× [ℓ].
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Proof. The proof is organized in three sections:

(1) sure winning mode: First, assume that there exists a simple determin-
istic cycle q̂ℓq̂ℓ−1 · · · q̂0 with length ℓ such that 〈qinit, 0〉 is sure winning for the
reachability objective 3{〈q̂0, 0〉}. Thus, there exists a pure memoryless strategy
β such that Outcomes(〈qinit, 0〉, β) ⊆ 3{〈q̂0, 0〉}. Since β is memoryless, there
must be k ≤ |Q| × ℓ such that Outcomes(〈qinit, 0〉, β) ⊆ 3

≤k{〈q̂0, 0〉} meaning
that all infinite paths starting in 〈qinit, 0〉 and following β reach 〈q̂0, 0〉 within k

steps. From β, we construct a pure finite-memory strategy α in M that is repre-
sented by T = 〈Mem, i, αu, αn〉 where Mem = {0, · · · , ℓ− 1} is the set of modes.
The idea is that α simulates what β plays in the state 〈q, i〉, in the state q of M
and mode i of T (there is only one exception). Thus, the initial mode is 0. The
update function only decreases modes by 1 (αu(i, a, q) = (i − 1) mod ℓ for all
states q and actions a) since by taking any transition the mode is decreased by 1.
The next-move function αn(i, q) is defined as follows: αn(i, q) = β(〈q, i〉) for all
states q and modes 0 ≤ i < ℓ, except when q = q̂i, in this case let αn(i, q) = a

where post(q̂i, a) = {qi−1}. Thus β mimics α unless a state q is reached at step
n such that q = q̂−n mod ℓ, and then α switches to always playing actions that
keeps M in the simple deterministic cycle q̂ℓq̂ℓ−1 · · · q̂0. Now we prove that qinit
is sure winning for the strongly synchronizing objective according to maxQ. Let
j ≥ k be such that j mod ℓ = 0. Let R = {〈q̂i, i〉 | 0 ≤ i < ℓ}. Thus obvi-
ously Outcomes(〈qinit, 0〉, β) ⊆ 3R. and since α agrees with β on all finite paths
that do not (yet) visit R, given a path ρ that visits R (for the first time), only
actions that keep M in the simple cycle q̂ℓq̂ℓ−1 · · · q̂0 are played by α and thus
all continuations of ρ in the outcome of α will visit q̂0 after j steps. It follows
that Prβ(3j{〈q̂0, 0〉}) = 1, that is Mα

j (q0) = 1. Thus, ‖Mα
j ‖ = 1. Since next,

α will always play actions that keeps M looping through the cycle q̂ℓq̂ℓ−1 · · · q̂0,
we have ‖Mα

n‖ = 1 for all n ≥ j.

Second, assume that there exists a strategy α and k such that for all n ≥ k

we have ‖Mα
n‖ = 1 from the initial state qinit. For all n ≥ k, let p̂n be a state

such that Mα
n(p̂n) = 1. The finiteness of the state space Q entails that in the

sequence p̂kp̂k+1 · · · , some state and thus some simple deterministic cycle occur
infinitely often. Let q̂ℓq̂ℓ−1 · · · q̂0 be a cycle that occurs infinitely often in the
sequence p̂kp̂k+1 · · · (in the right order). For all j, let ij be the position of q̂0 in
all occurrences of the cycle q̂ℓq̂ℓ−1 · · · q̂0 in the sequence p̂kp̂k+1 · · · ; and let tj =
ij mod ℓ. In the sequence t0t1 · · · , there exists 0 ≤ t < ℓ that appears infinitely
often. Let the cycle rℓrℓ−1 · · · r0 be such that r(i+t) mod ℓ = q̂i. Then, the cycle
rℓrℓ−1 · · · r0 happens infinitely often in the sequence p̂kp̂k+1 · · · such that the
positions of r0 are infinitely often 0 (modulo ℓ). Hence, for a strategy β in M×[ℓ]
that copies all the plays of the strategy α, we have Outcomes(〈qinit, 0〉, β) ⊆
3{〈r0, 0〉} from the initial state 〈qinit, 0〉.

(2) almost-sure winning mode: This case is an immediate result from
Lemma 9, by taking p = 1.

(3) limit-sure winning mode: First, assume that there exists a sim-
ple deterministic cycle q̂ℓq̂ℓ−1 · · · q̂0 with length ℓ such that 〈qinit, 0〉 is limit-
sure (and thus almost-sure) winning for the reachability objective 3{〈q̂0, 0〉}).
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Since 〈q̂init, 0〉 is almost-sure for reachability objective, then qinit is almost-
sure (and thus limit-sure) for strongly synchronizing objective. Second, assume
that qinit is limit-sure winning for the strongly synchronizing objective (accord-
ing to maxQ). It means that for all i there exists a strategy αi such that
lim infn→∞‖Mαi

n ‖ ≥ 1 − 2−i. Let k be such that 1 − 2−k ≥ 1
1+η . By Lemma 9,

for all i ≥ k there exists a simple deterministic cycle ci = p̂ℓi p̂ℓi−1 · · · p̂0 with
length ℓi and a strategy βi in M × [ℓi] such that Prβi(3{〈q̂0, 0〉}) ≥ 1 − 2−i

from 〈qinit, 0〉. Since the number of simple deterministic cycle is finite, there exists
some simple cycle c that occurs infinitely often in the sequence ckck+1ck+2 · · · .
We see that for the cycle c = q̂ℓq̂ℓ−1 · · · q̂0, the states 〈q̂init, 0〉 is limit-sure win-
ning for the reachability objective 3{〈q̂0, 0〉}). ⊓⊔

Since the winning regions of almost-sure and limit-sure winning coincide for
reachability objectives in MDPs [3], the next corollary follows from Lemma 10.

Corollary 1. 〈〈1〉〉stronglylimit (maxT ) = 〈〈1〉〉stronglyalmost (maxT ) for all target sets T .

If there exists a cycle c satisfying the condition in Lemma 10, then all cycles
reachable from c in the graph G of deterministic transitions also satisfies the
condition. Hence it is sufficient to check the condition for an arbitrary simple
cycle in each strongly connected component (SCC) of G. It follows that strong
synchronization can be decided in polynomial time (SCC decomposition can
be computed in polynomial time, as well as sure, limit-sure, and almost-sure
reachability in MDPs). The length of the cycle gives a linear bound on the
memory needed to win, and the bound is tight.

Theorem 4. For the three winning modes of strong synchronization according
to maxT in MDPs:

1. (Complexity). The membership problem is PTIME-complete.
2. (Memory). Linear memory is necessary and sufficient for both pure and ran-

domized strategies, and pure strategies are sufficient.

Proof. First, we prove the PTIME upper bound. Given an MDP M = 〈Q,A, δ〉
and a state qinit, we say a simple deterministic cycle c = q̂ℓq̂ℓ−1 · · · q̂0 is sure
winning (resp., almost-sure and limit-sure) for strong synchronization from qinit
if 〈qinit, 0〉 is sure winning (resp., almost-sure and limit-sure) for the reachability
objective 3{〈q̂0, 0〉} in M× [ℓ]. We show that if c is sure winning (resp., almost-
sure and limit-sure) for strong synchronization from qinit, then so are all simple
cycles c′ = p̂ℓ′ p̂ℓ′−1 · · · p̂0 reachable from c in the deterministic digraph induced
by M.

(1) sure winning: Since c is sure winning for strong synchronization
from qinit, M is 1-synchronized in q̂0. Since there is a path via deterministic
transitions from q̂0 to p̂0, M is 1-synchronized in p̂0 too. So the cycle c′ is sure
wining for strong synchronization from qinit, too.

(2) limit-sure winning: Assume that c is limit-sure winning for strong
synchronization from qinit. By definition, for all i ∈ N, there exists n such that
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for all j > n we have M is 1− 2−i−j in q̂0. It implies that for all i there exists n
such that M is 1−2−2i-synchronized in q̂0. Since there is a path via deterministic
transitions from q̂0 to p̂0, then M is 1− 2−2i-synchronized in p̂0 for all i. So the
cycle c′ is limit-sure wining for strong synchronization from qinit, too.

(3) almost-sure winning: By corollary 1, since a cycle is almost-sure win-
ning for strong synchronization from qinit if and only if it is limit-sure winning,
the results follows.

The above arguments prove that if a simple deterministic cycle c is sure
winning (resp., almost-sure and limit-sure) for strongly synchronizing objective
from qinit, then all simple cycles reachable from c in the graph of deterministic
transitions G induced by M, are sure winning (resp., almost-sure and limit-
sure). In particular, it holds for all simple cycles in the bottoms SCCs reachable
from c in G. Therefore, to decide membership problem for strongly synchronizing
objective, it suffices to only check whether one cycle in each bottom SCC of G is
sure winning (resp., almost-sure and limit-sure). Since the SCC decomposition
for a digraph is in PTIME, and since the number of bottom SCCs in a connected
digraph is at most the size of the digraph (the number of states |Q|), the PTIME
upper bound follows.

For the PTIME-hardness, for all µ ∈ {sure, almost, limit} the proof is by
a reduction from monotone Boolean circuit problem (MBC). Given an MBC
with an underlying binary tree, the value of leaves are either 0 or 1 (called 0
or 1-leaves), and the value of other vertices, labeled with ∧ or ∨, are computed
inductively. It is known that deciding whether the value of the root is 1 for a
given MBC, is PTIME-complete [16]. From an MBC, we construct an MDP M
where the states are the vertices of the tree with three new absorbing states sync,
q1 and q2, and two actions L,R. On both actions L and R, the next successor of
the 1-leaves is only sync, and the next successor of the 0-leaves is q1 or q2 with
probability 1

2 . The next successor of a ∧-state is each of their children with equal
probability, on all actions. The next successor of a ∨-state is its left (resp., right)
child by action L (resp., action R). We can see that M can be synchronized only
in sync.

We call a subtree complete if (1) root is in subtree, (2) at least one child
of all ∨-vertices is in the subtree, (3) both children of all ∧-vertices are in the
subtree. There is a bijection between a complete subtree and a strategy in M.
The value of root is 1 if and only if there is a complete subtree such that it
has no 0-leaves (all leaves are 1-leaves). For such subtrees, all plays under the
corresponding strategy reach some 1-leave and thus are synchronized in sync. It
means that root ∈ 〈〈1〉〉stronglyµ (sync) if and only if the value of root is 1.

Finally, the result on memory requirement is established as follows. Since
memoryless strategies are sufficient for reachability objectives in MDPs, it fol-
lows from the proof of Lemma 9 and Lemma 10 that the (memoryless) winning
strategies in M × [ℓ] can be transferred to winning strategies with memory
{0, 1, · · · , ℓ − 1} in M. Since ℓ ≤ |Q|, linear-size memory is sufficient to win
strongly synchronizing objectives. We present a family of MDPs Mn (n ∈ N)
that are sure winning for strongly synchronization (according to maxQ), and
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Fig. 8. An MDP that all strategies to win sure strongly synchronizing with function
max{q2,q3} require memory.

where the sure winning strategies require linear memory. The MDP M2 is shown
in Fig. 8, and the MDP Mn is obtained by replacing the cycle q2q3 of deter-
ministic transitions by a simple cycle of length n. Note that only in q1 there
is a real strategic choice. Since q1 and q2 contain probability, we need to wait
in q1 (by playing b) until we play a when the probability in q2 comes back in
q2 through the cycle. We need to play n − 1 times b, and then a, thus linear
memory is sufficient and it is easy to show that it is necessary to ensure strongly
synchronization. ⊓⊔

4.2 Strong synchronization with function sum

The strongly synchronizing objective with function sumT requires that eventu-
ally all the probability mass remains in T . We show that this is equivalent to a
traditional reachability objective with target defined by the set of sure winning
initial distributions for the safety objective 2T .

It follows that almost-sure (and limit-sure) winning for strong synchroniza-
tion is equivalent to almost-sure (or equivalently limit-sure) winning for the
coBüchi objective 32T = {q0a0q1 · · · ∈ Play(M) | ∃j · ∀i > j : qi ∈ T }.
However, sure strong synchronization is not equivalent to sure winning for the
coBüchi objective: the MDP in Fig. 9 is sure winning for the coBüchi objec-
tive 32{qinit, q2} from qinit, but not sure winning for the reachability objective
3S where S = {q2} is the winning region for the safety objective 2{qinit, q2}
(and thus not sure strongly synchronizing). Note that this MDP is almost-sure
strongly synchronizing in target T = {qinit, q2} from qinit, and almost-sure win-
ning for the coBüchi objective 32T , as well as almost-sure winning for the
reachability objective 3S.

Lemma 11. Given a target set T , an MDP M is sure (resp., almost-sure or
limit-sure) winning for the strongly synchronizing objective according to sumT if
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qinit q1 q2

a : 1

2

a : 1

2 a

a

Fig. 9. An MDP such that qinit is sure-winning for coBüchi objective in T = {qinit, q2}
but not for strong synchronization according to sumT .

and only if M is sure (resp., almost-sure or limit-sure) winning for the reachabil-
ity objective 3S where S is the sure winning region for the safety objective 2T .

Proof. First, assume that a state qinit of M is sure (resp., almost-sure or limit-
sure) winning for the strongly synchronizing objective according to sumT , and
show that qinit is sure (resp., almost-sure or limit-sure) winning for the reacha-
bility objective 3S.

(i) Limit-sure winning. For all ε > 0, let ε′ = ε
|Q| ·η

|Q| where η is the smallest

positive probability in the transitions of M. By the assumption, from qinit there
exists a strategy α and N ∈ N such that for all n ≥ N , we have Mα

n(T ) ≥ 1−ε′.
We claim that at step N , all non-safe states have probability at most ε

|Q| , that is

Mα
N (q) ≤ ε

|Q| for all q ∈ Q\S. Towards contradiction, assume thatMα
N (q) > ε

|Q|

for some non-safe state q ∈ Q\S. Since q 6∈ S is not safe, there is a path of length
ℓ ≤ |Q| from q to a state in Q \ T , thus with probability at least η|Q|. It follows
that after N + ℓ steps we have Mα

N+ℓ(Q \ T ) > ε
|Q| · η

|Q| = ε′, in contradiction

with the fact Mα
n(T ) ≥ 1− ε′ for all n ≥ N . Now, since all non-safe states have

probability at most ε
|Q| at step N , it follows that Mα

N (Q\S) ≤ ε
|Q| · |Q| = ε and

thus Prα(3S) ≥ 1 − ε. Therefore M is limit-sure winning for the reachability
objective 3S from qinit.

(ii) Almost-sure winning. Since almost-sure strongly synchronizing implies
limit-sure strongly synchronizing, it follows from (i) that M is limit-sure (and
thus also almost-sure) winning for the reachability objective 3S, as limit-sure
and almost-sure reachability coincide for MDPs [3].

(iii) Sure winning. From qinit there exists a strategy α and N ∈ N such that
for all n ≥ N , we have Mα

n(T ) = 1. Hence α is sure winning for the reachability
objective 3Supp(Mα

N ), and from all states in Supp(Mα
N ) the strategy α ensures

that only states in T are visited. It follows that Supp(Mα
N ) ⊆ S is sure winning

for the safety objective 2T , and thus α is sure winning for the reachability
objective 3S from qinit.

For the converse direction of the lemma, assume that a state qinit is sure
(resp., almost-sure or limit-sure) winning for the reachability objective 3S. We
construct a winning strategy for strong synchronization in T as follows: play
according to a sure (resp., almost-sure or limit-sure) winning strategy for the
reachability objective 3S, and whenever a state of S is reached along the play,
then switch to a winning strategy for the safety objective 2T . The constructed

28



strategy is sure (resp., almost-sure or limit-sure) winning for strong synchroniza-
tion according to sumT because for sure winning, after finitely many steps all
paths from qinit end up in S ⊆ T and stay in S forever, and for almost-sure (or
equivalently limit-sure) winning, for all ε > 0, after sufficiently many steps, the
set S is reached with probability at least 1 − ε, showing that the outcome is
strongly (1 − ε)-synchronizing in S ⊆ T , thus the strategy is almost-sure (and
also limit-sure) strongly synchronizing. ⊓⊔

Corollary 2. 〈〈1〉〉stronglylimit (sumT ) = 〈〈1〉〉stronglyalmost (sumT ) for all target sets T .

The following result follows from Lemma 11 and the fact that the winning
region for sure safety, sure reachability, and almost-sure reachability can be com-
puted in polynomial time for MDPs [3]. Moreover, memoryless strategies are
sufficient for these objectives.

Theorem 5. For the three winning modes of strong synchronization according
to sumT in MDPs:

1. (Complexity). The membership problem is PTIME-complete.
2. (Memory). Pure memoryless strategies are sufficient.
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