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Abstract

In model checking, the state-explosion problem occurs when one checks a non-flat
system, i.e., a system implicitly described as a synchronized product of elementary
subsystems. In this paper, we investigate the complexity of a wide variety of model-
checking problems for non-flat systems under the light of parameterized complexity,
taking the number of synchronized components as a parameter. We provide precise
complexity measures (in the parameterized sense) for most of the problems we
investigate, and evidence that the results are robust.

1 Introduction

Model checking, i.e., the automated verification that (the formal model of) a
system satisfies some formal behavioral property, has proved to be a revolu-
tionary advance for the correctness of critical systems, see, e.g., [13,2].

Investigating the computational complexity of model checking started with [51],
and today the complexity of the main model-checking problems is known 2 ,
see [50] for a survey. This led to the understanding that, in practice, the source
of intractability is the size of the model and not the size of the property to be
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checked. LTL model checking provides a typical example: while the problem
is PSPACE-complete [51], it was observed in [42] that checking whether S |= φ

can be done in time O(|S| × 2|φ|). In practice φ is small and S is huge, so that
“model checking is in linear time”, as is often stated.

State explosion. In practice, the main obstacle to model checking is the
state-explosion problem, i.e., the fact that the model S is described implicitly,
as a synchronized product of several components (with perhaps the addition of
boolean variables, clocks, etc.), so that |S| is usually exponentially larger than
the size of its implicit description. For example, if S is given as a synchronized
product A1 × · · · × Ak of elementary components, the input of the model-
checking problem has size n =

∑k
i=1|Ai| while S has size O

(∏k
i=1|Ai|

)
, that is

O(nk), or 2O(n) when k is not fixed.

From a theoretical viewpoint, the state-explosion problem seems inescapable
in the classical worst-case complexity paradigm (see also the complexity of
other problems with succinct representations in [54,23]). Indeed, studies cov-
ering all the main model-checking problems and the most common ways of
combining components have repeatedly shown that model-checking problems
are exponentially harder when S is given implicitly [22,31,34,39,46,47,41,52].

A parametric analysis. The state-explosion problem can be investigated
more finely through parameterized complexity, a theoretical framework devel-
oped by Downey and Fellows for studying problems where complexity depends
differently on the size n of the input and on some other parameter k that varies
less (in some sense) [17,19,18].

Any of the main model-checking problems where the input S is given implicitly
as a sequence A1, . . . ,Ak of components can be solved in polynomial-time for
every fixed value of k, e.g., in time O(nk). That is, for every fixed k, the
problem is polynomial-time. However, Downey and Fellows consider O(nk)
as intractable for parameterized problems since the exponent k of n is not
bounded, while problems with algorithms running in time f(k)× nc for some
function f and constant c are considered easier (see [17,19,18] for convincing
arguments) and are said to be fixed-parameter tractable or, shortly, FPT.

Parameterized complexity adheres to the “worst-case complexity” viewpoint
but it leads to finer analysis. This can be illustrated on some graph-theoretical
problems: among the NP-complete problems with a natural algorithm running
in O(nk), many admit another algorithm in some f(k)×nc (e.g., the existence
in a graph of a cycle of size k, or the existence of a vertex cover of size k) while
many others seem not to have any such solution (e.g., the existence of a clique
of size k). This difference between the two kinds of problems may have a visible
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impact when comparing the efficiency of the available algorithmic methods,
but this cannot be explained within the classical complexity paradigm where
the two kinds of problems are deemed “equivalent”.

Our contribution. In this paper, we apply the parameterized complexity
viewpoint to model-checking problems where the input is a synchronized prod-
uct of k components, k being the parameter. We investigate model-checking
problems ranging from reachability questions to temporal model checking for
several temporal logics, to equivalence checking for several behavioral equiva-
lences.

We provide precise complexity measures (in the parameterized sense) for most
of the problems we investigate, and informative lower and upper bounds for
the remaining ones. We show how the results are generally robust, i.e., in-
sensitive to slight modifications (e.g., size of the synchronization alphabet) or
restrictions (e.g., to deterministic systems).

Sadly, all the considered problems are shown intractable even in the param-
eterized viewpoint (but they may reach different levels of intractability). See
the summary of results on page 26. This shows that these problems (very
probably) do not admit solutions running in time f(k) × nc for some f and
c, and strengthens the known results about the computational complexity of
the state-explosion problem.

We introduce, as a useful general tool, parameterized problems for Alternating
Turing machines and relate them to Downey and Fellows’ hierarchy. Finally,
we enrich the known catalog of parameterized problems with problems from
an important application field. While mainly aimed at model checking, our
study is also interesting for the field of parameterized complexity itself. For
example, we are able to sharpen the characterization of the complexity of FAI-
II and FAI-III (from [17, p. 470]) that are basic parameterized problems from
automata theory (see section 5).

Related work. For the most part, model-checking of synchronized products
of systems has been studied within the classical computational complexity
paradigm [22,31,34,39,46,47,41,52]. These works consider model checking of
temporal logics and checking of behavioral equivalences.

In the parameterized complexity framework, works considering model-checking
problems depart from our investigation on either one of the following two main
points: the model is not given as a combination of k systems, k being the pa-
rameter, or the property to be checked is not given as a temporal logic formula,
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or in terms of behavioral equivalences:

• [3,55,8] investigate reachability problems on systems of k synchronized au-
tomata, where k is a parameter. Additional parameters, such as alphabet
size and number of states, are used in [55]. Problems complete for the classes
W[1], W[2] and W[P] are investigated in [55,8]. Compared to our study,
these works mainly consider deterministic automata and are concerned with
automata-theoretic (or language-theoretic) questions rather than verifica-
tion and model-checking questions.

• Some works consider model-checking problems for (fragments of) first-order
logic where the parameter is the size of the property to be checked (or is de-
rived from it) and where the model is given explicitly: this has no relation
to the state-explosion problem and trivially leads to tractability in the pa-
rameterized sense for “temporal” logics. In [45], the evaluation problem over
conjunctive queries is shown W[1]-complete when the size of the query is
the parameter. The parameterized complexity of this problem over other
classes of queries (positive, first-order) is characterized leading to problems
W[P]-hard and W[SAT]-hard. In the work [30] also inspired by database the-
ory, the above W[1]-hardness result is refined by proving that the evaluation
problem of conjunctive queries of bounded tree-width becomes FPT.

• In a series of papers Grohe and Flum consider model-checking problems
for first-order formulae over finite structures where the parameter is the
size of the formula, aiming at characterizations of parameterized complex-
ity problems in terms of first-order model-checking problems, for instance
by controlling the alternations of quantifiers, see, e.g., [24,26]. The proper-
ties we investigate, such as reachability, are out of the scope of first-order
logic. It is worth noting that in [26], characterizations of classes from the
W-hierarchy, the A-hierarchy and the AW-hierarchy, are shown leading to
alternative definitions of original classes introduced by Downey and Fel-
lows [17].

• Machine-based characterization of parameterized complexity classes has
probably started with the W[1]-completeness of Short NDTM Compu-
tation, see, e.g., [17]. This result has been refined in [8] where W[2] and
W[P] are characterized by parameterized problems on Turing machines ei-
ther by considering multiple tapes machines or by taking as parameter the
number of nondeterministic steps. In [10,11], parameterized problems on
standard random access machines are introduced and shown complete for
classes such as W[1], W[2], W[P], AW[P] or AW[∗]. Even if our character-
ization of the classes XP and AW[1] in terms of problems on alternating
Turing machines is a by-product of our investigations on parameterized
model-checking problems, it nevertheless belongs to this trend that consists
in characterizing parameterized complexity classes in terms of machines
models.
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Plan of the paper. Sections 2 and 3 recall the basic definitions about pa-
rameterized complexity and synchronized products of systems. We investigate
reachability problems in sections 4 and 5, temporal logic problems in section 6,
and behavioral equivalence problems in section 7. As a rule, proofs omitted
from the main text can be found in the appendix.

2 Parameterized complexity

We follow [17]. A parameterized language P is a set of pairs 〈x, k〉 where x
is a word over some finite alphabet and k, the parameter, is an integer. The
problem associated with P is to decide whether 〈x, k〉 ∈ P for arbitrary 〈x, k〉.

A parameterized problem P is (strongly uniformly) fixed-parameter tractable,

shortly “FPT”,
def

⇔ there exist a recursive function f : N 7→ N and a constant
c ∈ N such that the question 〈x, k〉 ∈ P can be solved in time f(k)× |x|c (see,
e.g., [17, Chapter 2]).

A parameterized problem P is fixed-parameter m-reducible (fp-reducible) to

the parameterized problem P ′ (in symbols P ≤fp
m P ′)

def

⇔ there exist recursive
total functions f1 : k 7→ k′, f2 : k 7→ k′′, f3 : 〈x, k〉 7→ x′ and a constant
c ∈ N such that 〈x, k〉 7→ x′ is computable in time k′′|x|c and 〈x, k〉 ∈ P

iff 〈x′, k′〉 ∈ P ′. Clearly, when P ≤fp
m P ′ and P ′ is FPT, then also P is FPT

because in the definition of fp-reduction k′ only depends on k (not on the input
x) and f3 can be viewed as an FPT function. P and P ′ are fixed-parameter

equivalent (fp-equivalent)
def

⇔ P ≤fp
m P ′ ≤fp

m P .

Parameterized complexity comes with an array of elaborate techniques to de-
vise fp-feasible algorithms, and another set of techniques to show that a prob-
lem is (very probably 3 ) not FPT.

2.1 Downey and Fellows’s hierarchies

Downey and Fellows introduced the following hierarchy of classes of parame-
terized problems [17]:

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[SAT] ⊆ AW[1] ⊆ AW[SAT] ⊆ AW[P] ⊆ XP,

3 Since proving that a PSPACE-complete problem is not FPT entails P 6= PSPACE,
most techniques for proving hardness of parameterized problems just show hardness
in a class of problems that are conjectured not FPT.
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where it is known that the inclusion between FPT, the class of FPT prob-
lems, and XP is strict. All these classes are closed under fp-reductions. W[1] is
usually considered as the parameterized analogue of NP (from classical com-
plexity theory) and a W[1]-hard problem is seen as intractable. Recent devel-
opments [16] indicate that the newly introduced class MINI[1] (between FPT

and W[1]) is the source of untractability. XP contains all problems that can be
solved in time O(ng(k)) for some function g and is considered as the parame-
terized analogue of EXPTIME. It should be stressed that the above analogies
are only useful heuristics: there is no known formal correspondence between
standard complexity classes (NP, PSPACE, EXPTIME, . . . ) and parameterized
complexity classes (W[1], AW[P], XP, . . . ) 4 .

We do not recall the formal definitions of these classes since they are not
required for understanding our results. It is enough to admit that W[1] is
intractable, and to understand the parameterized problems dealing with short
or compact computations we introduce in the next subsection. Most of the
parameterized model-checking problems we consider in this paper are easily
seen to be in XP.

2.2 Short and compact TM computations

Not surprisingly, some fundamental parameterized problems consider Turing
machines (shortly, “TMs”): Short Computation (resp. Compact Com-
putation) is the parameterized problem where one is given a TM M and
where it is asked whether M accepts in at most k steps (resp. using at most
k work tape squares). These are the parameterized versions of the time and
space bounds from classical complexity theory.

We consider TMs with just one initially blank work-tape (an input word can
be encoded in the control states of the TM). One obtains different problems by
considering deterministic (DTM), non-deterministic (NDTM), or alternating
(ATM) machines. For instance, Short DTM Computation is defined as
follows:

Instance: a single-tape deterministic Turing machine M and a positive inte-
ger k (in unary);

Parameter: k;
Question: Does the computation of M on the empty string input reach an

accepting state in at most k steps?

The parameter is k. The other problems are defined analogously.

4 But see the recent work [25].
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Short DTM Computation is FPT while Short NDTM Computation
is W[1]-complete [17]. Compact Computation is more complex and reaches
high levels in the W-hierarchy: Compact DTM Computation is already
AW[SAT]-hard [10]. Some of the parameterized problems on Turing machines
do not yet admit a full characterization in terms of parameterized complexity
classes (see, e.g., [6,9,8,11]) although the parameterized complexity classes
W[1], W[2] and W[P] are characterized by parameterized problems on TMs
in [8]. For instance, Short NDTM Computation with multiple tapes is
W[2]-complete [8].

Remark 2.1 More precise measures are still lacking and [17, Chapter 14]
recalls that it is not known whether Compact DTM Computation and
Compact NDTM Computation are fp-equivalent (it is not known whether
a parameterized version of Savitch’s theorem holds). A related question is that
it is not known whether coCompact NDTM Computation (the comple-
ment parameterized problem of Compact NDTM Computation defined
in the obvious way) and Compact NDTM Computation are fp-equivalent.
Indeed, Lemma 2 of Immerman’s proof [33] does not provide an fp-reduction
from Compact NDTM Computation to coCompact NDTM Compu-
tation because the alphabet size has to be taken into account in an essential
way.

[17] does not consider parameterized problems with ATMs, but such problems
proved very useful in our study. Our first results show how they correspond
to existing levels of the W-hierarchy:

Theorem 2.2 Short ATM Computation is AW[1]-complete.

Theorem 2.2 is a corollary of the two reductions given in Lemmas 2.3 and
2.5 proving equivalence with Parameterized-QBFSATt, a problem shown
AW[1]-complete in [17, Chapter 14]. An instance of Parameterized-QBFSATt

is a quantified boolean formula Ψ = ∃=k1X1∀
=k2X2 . . . ∀

=k2pX2pΦ where Φ, a
positive boolean combination of literals, has at most t alternations between
conjunctions and disjunctions. The literals use variables in X = X1∪· · ·∪X2p

and the quantifications “∃=kiXi” and “∀=kiXi” are relativized to valuations of
Xi where exactly ki variables are set to true. The parameter k is k1 + · · ·+k2p.

Lemma 2.3 For every t ≥ 0,
Parameterized-QBFSATt ≤fp

m Short ATM Computation.

PROOF. With an instance Ψ of Parameterized-QBFSATt, we associate
an ATM MΨ that picks k1 + · · · + k2p variables in X1 ∪ · · · ∪X2p and checks
that Φ evaluates to true under the corresponding valuation. The structure of
Φ is reflected in the transition table of MΨ, and we use universal states to
encode both the universal quantifications “∀=k2i . . .” and the conjunctions in
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Φ. The machine MΨ can be made to answer in O(k + t) steps, which gives us
an fp-reduction since t is a constant. 2

In order to show that Short ATM Computation is in AW[1], we intro-
duce below the parameterized problem Strict Short ATM Computation
shown to be fp-equivalent to Short ATM Computation:

Instance: a single-tape ATMM = 〈Q∃∪Q∀,Σ, δ, q0, qF 〉 such that q0, qF ∈ Q∀

and M has clean alternation (it moves from existential states to universal
states and vice versa), and a positive integer k (in unary);

Parameter: k;
Question: Does M on the empty string input has an accepting run using less

than k steps?

As usual, {Q∃, Q∀} forms a partition of the set of states and Q∃ denotes the
set of existential states, and δ is the transition relation with δ ⊆ Q×Σ×Q×
Σ × {L,R,−}.

First, we show that Strict Short ATM Computation is indeed equivalent
to Short ATM Computation.

Lemma 2.4
Short ATM Computation ≤fp

m Strict Short ATM Computation.

PROOF. (Idea) Let M = 〈Q∃ ∪ Q∀,Σ, δ, q0, qF 〉 be an ATM and k be a
positive integer. One can build a strict ATM M ′ = 〈Q

′∃ ∪ Q
′∀,Σ′, δ′, q′0, q

′
F 〉

such that M on the empty string input has an accepting run using less than
k steps iff M ′ on the empty string input has an accepting run using less than
2× k+2 steps. The idea of the reduction is simply to add intermediate states
when the alternation is not strict and to consider two counters, one to count
the number of steps in the original M and another one to count the number of
steps inM ′. Details are omitted herein since there is no technical difficulty. 2

Lemma 2.5
Strict Short ATM Computation ≤fp

m Parameterized-QBFSATt

for some t ≥ 0.

PROOF. With an ATM M and an odd k = 2p + 1, we associate a for-
mula ΨM that is true iff M accepts in k moves. The variables in Ψ are
all x[i, t, l] and mean “l is the ith symbol in the instantaneous description
(i.d.) of M at step t”. i and t range over 0, . . . , k, while l is any tape sym-
bol or pair 〈symbol, control state〉 of M . Assuming M starts with a uni-
versal move, ΨM has the general form ∃=k+1X0∀

=k+1X1 . . . ∀
=k+1XkΦ where
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Xt = {x[i, t, l] | i, l . . .} and Φ checks that the chosen valuations correspond
to a run, i.e., has the form

Φ∀︷ ︸︸ ︷( p∧

t=0

Φseq(X2t, X2t+1)
)
⇒

(
Φinit(X0) ∧ Φaccept(Xk) ∧

Φ∃︷ ︸︸ ︷
p∧

t=1

Φseq(X2t−1, X2t)
)

where Φseq(X,X
′) checks that (the valuations of) X and X ′ describe valid

i.d.’s in valid succession. The different treatment between Φ∀ and Φ∃ reflects
the fact that valid successions of existential states are only performed when
valid successions of universal states are done. Moreover, this way of grouping
the Φseq(Xl, Xl+1)’s allows us to bound the number of and-or alternations.
The formula Φinit(X) [resp. Φaccept(X)] expresses that X describes an initial
i.d. [resp. an accepting i.d.].

Finally, we observe that Φ is equivalent to a positive boolean combination
of literals with 5 and-or alternations and therefore we obtain an instance of
Parameterized-QBFSAT5 with k′ = (k + 1)2 and size n′ in O(k2n3). 2

Theorem 2.6 Compact ATM Computation is XP-complete.

Theorem 2.6 is a corollary of the two reductions given in Lemmas 2.7 and 2.8.

We show fp-equivalence with Pebble Game, shown XP-complete in [17, The-
orem 15.5]. An instance of Pebble Game is a set N of nodes, a starting po-
sition S = {s1, . . . , sk} ⊆ N of k pebbles on k nodes, a terminal node T ∈ N

and a set of possible moves R ⊆ N × N × N . Players I and II play in turn,
moving pebbles and trying to reach T . A move 〈x, y, z〉 ∈ R means that any
player can move a pebble from x to z if y is occupied (the pebble jumps over
y) and z is free. The problem is to determine whether player I has a winning
strategy. The parameter is k = |S|.

Lemma 2.7 Compact ATM Computation ≤fp
m Pebble Game.

PROOF. Immediate from [37]. Indeed, [37, Theorem 3.1] shows that Pebble
Game is EXPTIME-hard by reducing space-bounded ATMs. Their reduction
can be turned into an fp-reduction where an ATM of size n running in space k
gives rise to a pebble game instance where k′ is k+1, and where n′ is bounded
by a polynomial of n. 2

Lemma 2.8 Pebble Game ≤fp
m Compact ATM Computation.

PROOF. Given an instance I = 〈N,S, T,R〉 with |S| = k, one constructs
an ATM MI that emulates the game and accepts iff player I wins. The al-
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phabet of MI is N and k work-tape squares are sufficient to store the current
configuration at any time in the game. Moves by player I are emulated with
existential states, moves by player II use universal states. Information about
R (the set of rules) and S is stored in the transition table of MI . This gives
an fp-reduction since |MI | is in O(|I|) and k′ = k. 2

3 Synchronized transition systems

3.1 Models

A labeled transition system (LTS) over some alphabet Σ = {a, b, . . .} is a tuple
A = 〈Q,Σ,→〉 where Q = {s, t, . . .} is the set of states and →⊆ Q × Σ × Q

is the set of transitions. We assume the standard notation s
a
−→ t, s

w
−→ t

(w ∈ Σ∗), s
∗
−→ t, s

+
−→ t, etc. The size of a finite LTS A is |A|

def

= |Q|+ |Σ|+ |→
|. Non-flat systems are products of (flat) component LTSs. Assuming Ai =
〈Qi,Σi,→i〉 for i = 1, . . . , k, the product A1×· · ·×Ak denotes a LTS 〈Q,Σ,→〉
where Q

def

=
∏k
i=1Qi, Σ

def

=
⋃k
i=1 Σi and where →⊆ Q × Σ × Q depends on the

synchronization protocol one considers: strong or binary synchronization. A
state s̄ = 〈s1, . . . , sk〉 of A1 × · · · × Ak is also called a configuration and it
corresponds to the state in the composed system A1 × · · · × Ak in which for
every i ∈ {1, . . . , k}, Ai is in the state si.

In strong synchronization, the components synchronize on common actions
and move in lockstep fashion: 〈s1, . . . , sk〉

a
−→str 〈t1, . . . , tk〉 iff si

a
−→i ti for all

i = 1, . . . , k.

In binary synchronization, any two components synchronize while the rest
wait: 〈s1, . . . , sk〉

a
−→bin 〈t1, . . . , tk〉 iff there exist i and j (i 6= j) s.t. si

a
−→i ti

and sj
a
−→j tj while sl = tl for all l 6∈ {i, j}.

Hence a transition s̄
a
−→ t̄ in the composed system A1 × · · · × Ak corresponds

to a set of transitions from the underlying subsystems, depending on the syn-
chronization mode. In this paper, we consider strong synchronization as the
natural model for non-flat systems and the notation A1 × · · · × Ak assumes
strong synchronization when we do not explicitly say otherwise. As shown in
Appendix B, adopting binary synchronization does not modify the complexity
in an essential way.
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3.2 Behavioral equivalences

[53] surveys the main behavioral equivalences (and preorders) used in the
semantics of concurrent systems. We recall below the definition of bisimilarity
and trace inclusion since they are used in Sections 6 and 7. Other relations
can be found in [53].

Given two LTSs A = 〈Q,Σ,→〉 and A′ = 〈Q′,Σ′,→′〉, a bisimulation is any
relation R ⊆ Q×Q′ satisfying the following transfer properties:

• for all qRq′ and q
a
−→ r, there is q′

a
−→

′
r′ such that rRr′;

• for all qRq′ and q′
a
−→

′
r′, there is q

a
−→ r such that rRr′.

The largest bisimulation is called bisimilarity and is denoted by ∼.

Given a LTS A = 〈Q,Σ,→〉 and q ∈ Q, a trace from q is a sequence a1 . . . an . . .

(possibly infinite) such that there exists q0, q1, . . . , qn . . . ∈ Q with q = q0 and
qi−1

ai−→ qi for every i. Given two LTSs A = 〈Q,Σ,→〉 and A′ = 〈Q′,Σ′,→′〉,
q ∈ Q and q′ ∈ Q′, we write A, q ⊆tr A

′, q′ to denote that every trace from q

is a trace from q′.

4 Reachability for non-flat systems

Reachability problems are the most fundamental problems in model checking.
We define below four reachability problems.

Exact Reachability (Exact-Reach)
Instance: k LTSs A1, · · · ,Ak, two configurations s̄ and t̄ of A1 × · · · × Ak.
Question: Does s̄

∗
−→ t̄ ?

Local Reachability (Local-Reach)
Instance: k LTSs A1, · · · ,Ak, sets F1, . . . , Fk of states with Fi ⊆ Qi, and a
configuration s̄ of A1 × · · · × Ak.
Question: Does s̄

∗
−→ t̄ for some t̄ ∈ F̄ where F̄

def

= F1 × · · · × Fk?

Repeated Reachability (Rep-Reach)
Instance: As in Local-Reach.
Question: Does s̄

∗
−→ t̄

+
−→ t̄ for some t̄ ∈ F̄ ?
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Fair Reachability (Fair-Reach)
Instance: k LTSs A1, · · · ,Ak, sets (F j

i )
j=1,...,p
i=1,...,k with F

j
i ⊆ Qi for all i, j, and

a configuration s̄ of A1 × · · · × Ak. For all j we write F̄ j for F j
1 × · · · × F

j
k .

Question: Does s̄
∗
−→ t̄1

∗
−→ t̄2 . . .

∗
−→ t̄p

+
−→ t̄1 for some 〈t̄1, . . . , t̄p〉 ∈ F̄ 1 × · · · ×

F̄ p?

The reachability criterion in the problem Rep-Reach corresponds to the ac-
ceptance condition in Büchi automata. Repeated reachability asks that the
final state t̄ should be accessible from itself with a non-zero number of tran-
sitions. The reachability criterion in the problem Fair-Reach introduces a
fairness condition.

We are interested in the parameterized versions k-Exact-Reach, etc., where
k is the parameter. The choice of such a parameter is quite natural since k
varies less than Σk

i=1|Ai|. It is well-known that the four non-flat reachability
problems are equivalent in the classical sense (i.e., via logspace reductions)
and are PSPACE-complete. These are folklore results for which some hints
can be found in [31,22]. However, in the setting of parameterized complexity,
reductions have to preserve more structure, so that Theorem 4.1 and other
forthcoming results require some more care 5 . Additionally, we shall consider
extra parameters and/or further restrictions on the LTSs which require some
new constructions in proofs.

Theorem 4.1 k-Exact-Reach, k-Local-Reach, k-Rep-Reach and k-
Fair-Reach are fp-equivalent.

Theorem 4.1 allows us to write k-∗-Reach to denote any of the four problems,
as we do below. For a proof, observe first that Exact-Reach is the restriction
of Local-Reach where |F | = 1, and Rep-Reach is the restriction of Fair-
Reach where p = 1. We prove below that k-Fair-Reach ≤fp

m k-Rep-Reach,
refer to Appendix A for k-Rep-Reach ≤fp

m k-Exact-Reach, and omit the
easy k-Local-Reach ≤fp

m k-Rep-Reach.

Lemma 4.2 k-Fair-Reach ≤fp
m k-Rep-Reach.

PROOF. (Sketch) Consider an instance A1, . . . ,Ak, (F
j
i )
j=1,...,p
i=1,...,k , s̄ of k-Fair-

Reach and write F̄ j for F j
1 × · · · ×F

j
k . Assume w.l.o.g. that the Ais are over

some common Σ.

5 For simplicity, we consider that the size n of the input is simply
∑

i|Ai| since the
extra inputs (designated states, etc.) are O(n) anyway. There is one exception with
Fair-Reach where n is considered to be p ×

∑
i|Ai|, an innocuous approximation

of
∑

i|Ai| +
∑

i

∑
j |F

j
i |.
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We reduce this to an instance A′
0,A

′
1, · · · ,A

′
k of k-Rep-Reach where A′

0 is
a special “controller” LTS and where A′

1, . . . ,A
′
k are obtained from the Ais.

Let Σ′ be Σ ∪ {1, . . . , p}. For any i, A′
i is obtained from Ai by adding all

transitions s
j
−→ s for s ∈ F

j
i for every j ∈ {1, . . . , p}. Hence, s̄ ∈ F̄ j iff s̄

j
−→ s̄

in A′
1 × · · · × A′

k. The controller A′
0 has a loop 0

Σ
−→ 1

1
−→ 2

2
−→ . . . p

p
−→ 0 with

local loops i
Σ
−→ i for any i = 1, . . . , p. (“s

Σ
−→ t” is short for “s

a
−→ t for all

a ∈ Σ”). We set F̄ ′ = {0} × F̄ p.

Clearly, there exist t̄1, . . . , t̄p ∈ F̄ 1, . . . , F̄ p with s̄
∗
−→ t̄1

∗
−→ t̄2 . . .

∗
−→ t̄p

+
−→ t̄1 in

A1 × · · · × Ak iff there is a t̄′ ∈ F̄ ′ s.t. 0, s̄
∗
−→ t̄′

+
−→ t̄′ in A′

0 ×A′
1 × · · · × A′

k.

There remains to check that this classical construction is indeed an fp-reduction:
for i = 1, . . . , k, |A′

i| is in O(p × |Ai|), |A′
0| is in O(p × |Σ|). Hence, with

n =
∑
i|Ai| +

∑
i

∑
j|F

j
i | and n′ =

∑
i|A

′
i|, we have k′ = k + 1, |Σ′| = p + |Σ|,

and n′ in O(n2). 2

5 Parameterized complexity of non-flat reachability

5.1 Equivalence with Compact NDTM Computation

In this section we give two reductions (Lemmas 5.2 and 5.3) that allow the
following characterization:

Theorem 5.1 k-∗-Reach is fp-equivalent to Compact NDTM Computa-
tion.

Hence all the parameterized reachability problems are AW[SAT]-hard.

Lemma 5.2 Compact NDTM Computation ≤fp
m k-Local-Reach.

PROOF. (Sketch) With an NDTM M and an integer k we associate a prod-
uct A1×· · ·×Ak×Astate×Ahead of k+2 LTSs that emulate the behavior of M
on a k-bounded tape. An Ai stores the current content of the i-th tape square,
Astate stores the current control-state of M and Ahead stores the position of the
TM head. These LTSs synchronize on labels of the form 〈t, i〉 that stand for
“rule t of M is fired while head is in position i”. Successful acceptance by M
is directly encoded as a local reachability criterion. Altogether, we translate
our instance to a k-Local-Reach instance with k′ = k+2 and n′ in O(kn2).
Details are on the line of the proof of Theorem 6.6. 2
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The proof of Lemma 5.2 is similar to either the proof of the PSPACE-hardness
of the finite automaton intersection problem [28,38] (see also a generalization
in [40]) or the proof of the PSPACE-hardness of Reachable Deadlock
for a system of communicating processes [44, Theorem 19.10] (see also [29,
Appendix AL6]). One can also prove in a similar way that a linearly bounded
automaton of size n can be simulated by a 1-safe Petri net of size O(n2) [35].
Such a similarity does not prevent us from checking that we are in presence
of an fp-reduction.

Lemma 5.3 k-Exact-Reach ≤fp
m Compact NDTM Computation.

PROOF. (Sketch) An instance of k-Exact-Reach of the form A1, . . . ,Ak,
s̄, t̄, is easily reduced to an instance of Compact NDTM Computation.
The TM M emulates the behavior of the product A1 × · · · × Ak by writing
the initial configuration s̄ on its tape (one component per tape square, the
tape alphabet contains all control states of the Ai’s). Then M picks non-
deterministically a synchronization letter a, updates all local states of the Ais
by firing one of their a-transitions (M blocks if some local state has no a-
transition), and repeats until the configuration t̄ is reached. This yields an
fp-reduction: k′ = k and n′ is in O(kn). 2

Hence, k-Exact-Reach is fp-equivalent to one of the most natural parame-
terized problems on Turing machines: Compact NDTM Computation.

5.2 Variants of non-flat reachability problems

In Theorem 4.1, we state that the four parameterized non-flat reachability
problems are fp-equivalent, and in Theorem 5.1 we show that they are fp-
equivalent to Compact NDTM Computation. This characterization is
quite robust: It stays unchanged when we consider binary synchronization
or when we restrict to a binary alphabet or to deterministic LTSs.

5.2.1 Binary synchronization.

We write k-∗-Reach bin the variants of the k-∗-Reach problems where the
LTSs are combined using binary synchronization instead of strong synchro-
nization. Similarly, we write k,Σ-∗-Reachbin to denote the variants of the
k-∗-Reach bin problems with parameters k and |Σ|. By definition, there is
an fp-reduction from k,Σ-∗-Reachbin into k-∗-Reach bin as it is the case
whenever a parameter is added to a parameterized problem.
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Theorem 5.4 k-∗-Reach bin and k,Σ-∗-Reachbin are fp-equivalent to Com-
pact NDTM Computation.

The proof of Theorem 5.4 can be found in Appendix B.

5.2.2 Bounded size alphabet.

Obviously, k-∗-Reach |Σ|=2, the restriction of k-∗-Reach to binary alphabet
reduces to k,Σ-∗-Reach, the variant of k-∗-Reach with parameters k, |Σ|,
which itself reduces to k-∗-Reach. We show the following result:

Theorem 5.5 k,Σ-∗-Reach and k-∗-Reach|Σ|=2 are fp-equivalent to Com-
pact NDTM Computation.

In order to prove Theorem 5.5, first we reduce reachability properties over
any LTS to reachability properties over a LTS using an alphabet Σ′ = {0, 1}.
This is done by the following construction. Note that a simpler construction
is possible but the current one is used again in Section 7 where stronger prop-
erties are required. Let A = 〈Q,Σ,→〉 be a LTS over some Σ = {a1, . . . , am}
and l = ⌈log2m⌉. With each ai ∈ Σ we associate a bit-string wai

of length l

in {0, 1}∗, representing the binary writing of i. Let Â = 〈Q̂, {0, 1},→〉 be the
LTS defined as follows:

• Q̂
def

= {〈q, v〉 : q ∈ Q, v ∈ {0, 1}i, 0 ≤ i ≤ l};

• for i ∈ {0, 1}, 〈q, v〉
i
−→ 〈q′, v′〉

def

⇔
(1) either q = q′ and v′ = vi,

(2) or i = 0, |v| = l, v′ = ε and q
aj
−→ q′ in A with waj

= v.

An illustration of the construction can be found in Fig. 1. Basically, with each
state in Q we associate a binary tree of depth l in Â. By construction, we

guarantee that q
ai−→ q′ in A iff 〈q, wai

〉
0
−→ 〈q′, ε〉, where 〈q, wai

〉 is the leaf in
the binary tree associated with q that is reached via the path wai

. 〈q′, ε〉 is the
root of the binary tree associated with q′.

Lemma 5.6 states that A1 × · · · ×Ak and Â1 × · · · × Âk are equivalent as far
as reachability is concerned.

Lemma 5.6 Let A1 × · · · × Ak be a product of LTSs over some Σ. Then,

〈s1, . . . , sk〉
a1...an−−−→ 〈t1, . . . , tk〉 in A1 ×· · ·×Ak iff 〈〈s1, ε〉, . . . , 〈sk, ε〉〉

wa1
0...wan0

−−−−−−→
〈〈t1, ε〉, . . . , 〈tk, ε〉〉 in Â1 × · · · × Âk.

Consequently,

Lemma 5.7 k-∗-Reach ≤fp
m k-∗-Reach|Σ|=2.
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A: Â:
q

q′

q, ε

q′, ε

a111

a011a000

0 1
10 10

10 0 1 10 10

0 1

10 10

10 0 1 10 10

0

0

0

Fig. 1. A and Â: an example

PROOF. Let A1 × · · · × Ak be a product of LTSs over some Σ. Consider
the product Â1 × · · · × Âk. By Lemma 5.6, 〈s1, . . . , sk〉

a1...an−−−→ 〈t1, . . . , tk〉 in

A1×· · ·×Ak iff 〈〈s1, ε〉, . . . , 〈sk, ε〉〉
wa1

0...wan0
−−−−−−→ 〈〈t1, ε〉, . . . , 〈tk, ε〉〉 in Â1×· · ·×

Âk. Hence, any of the four non-flat reachability problems with parameter k is
reducible to the analogous problem restricted to binary alphabets. These are
fp-reductions since k′ = k and, for i = 1, . . . , k, |Âi| is in O(|Ai| ×m|Σ|), i.e.,
n′ is in O(n2). 2

Theorem 5.5 is then an immediate corollary.

5.2.3 Deterministic LTSs.

We write k-∗-Reach |Σ|=2,det [resp. k,Σ-∗-Reachdet] to denote the restriction
of k-∗-Reach |Σ|=2 [resp. k,Σ-∗-Reach] to deterministic LTSs. It is easy to
show that all our reachability problems remain fp-equivalent to Compact
NDTM Computation when we restrict them to products of Determinis-
tic LTSs. Indeed, all the LTSs in the proof of Lemma 5.2 are deterministic
even if the TM M is nondeterministic. Since the reductions in the proof of
Theorem 4.1 preserve the determinism of the LTSs, we can state:

Theorem 5.8 k-∗-Reachdet is fp-equivalent to Compact NDTM Compu-
tation.

The proof of Lemma 5.7 works for the deterministic case, therefore we obtain
Theorem 5.9.

Theorem 5.9 k,Σ-∗-Reachdet and k-∗-Reach|Σ|=2,det are fp-equivalent to
Compact NDTM Computation.
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As a corollary, we are able to improve the known lower bounds for Finite
Automata Intersection (FAI) problems defined in [17, page 470] (W[t]-hard
for all t ≥ 1, see, e.g., [17]). The general schema is the following:

Instance: k deterministic Σ-automata A1, . . . ,Ak, a configuration s̄, an inte-
ger m (in unary) and a set F̄ = F1 × · · · × Fk of final states, given as some
F1, . . . , Fk with Fi ⊆ Qi for all i.
Question: Is there a t̄ ∈ F̄ s.t. s̄

∗
−→ t̄ in at least m steps?

The above problem with parameter k,Σ (resp. k) is referred to as FAI-III
(resp. II) in [17, page 470].

By an easy manipulation, one can show

Theorem 5.10 FAI-II is fp-equivalent to k-Local-Reachdet and FAI-III
is fp-equivalent to k,Σ-Local-Reachdet.

PROOF. Omitted and obvious.

Corollary 5.11 FAI-II and FAI-III are fp-equivalent to Compact NDTM
Computation (hence AW[SAT]-hard).

By contrast, the above problem with parameter k,m is W[1]-complete [8].

6 Parameterized complexity of non-flat temporal logic model check-
ing

In this section, we investigate the parameterized complexity of temporal logic
model-checking problems when the input is a synchronized product of LTSs
(and a temporal formula!). We assume familiarity with the standard logics
used in verification: LTL, CTL, Hennessy-Milner Logic (HML), the modal
µ-calculus (see [20,13,4]).

In general, parameterized model checking will be harder than k-∗-Reach,
which should not come as a surprise. That is why, in this section, we focus
our attention on showing that parameterized model-checking problems are
higher than k-∗-Reach in the hierarchy of parameterized complexity classes.
Moreover, we shall also exhibit fragments of logics such that the corresponding
parameterized model-checking problems are intractable in the parameterized
sense although the logics cannot express reachability questions.
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6.1 Parameterized model-checking problems

For modal logics, LTSs are the natural models, while for temporal logics like
CTL [12] or LTL [27] the natural models are Kripke structures. Below we
call Kripke structure (or shortly KS) a pair M = 〈A,m〉 of a finite LTS
A = 〈Q,Σ,→〉 extended with a finite valuation m ⊆ Q × AP of its states
(with AP a set of atomic propositions). The size |M| of M = 〈A,m〉 is
|A| + |m|.

The labels of the transitions of a KS do not appear in temporal formulae.
They are only used for synchronization purposes: 〈A1,m1〉× · · · × 〈Ak,mk〉 is
the KS 〈A,m〉 where A = A1 × · · · ×Ak (implicitly assuming strong synchro-
nization) and where m is a valuation built from m1, . . . ,mk. For the sake of
simplicity, we assume in the sequel that m is the “sum” of m1, . . . ,mk, that
is 〈〈q1, . . . , qk〉, p〉 ∈ m as soon as 〈qi, p〉 ∈ mi for some i. The synchronized
structure 〈A,m〉 is assumed to be defined on a unary alphabet.

The problems we consider have the following general form, where L is LTL,
CTL, the modal µ-calculus, or some of their fragments.
Parameterized model checking for logic L (MCL)

Instance: Kripke structures M1, . . . ,Mk, a configuration s̄, an L-formula φ.
Parameter: k, |φ|.
Question: Does M1 × · · · ×Mk, s̄ |= φ?

6.2 Linear time

We assume familiarity with Linear-Time Temporal Logic LTL, see, e.g., [20].
We recall below a few points. The LTL formulae are defined as follows

φ ::= p | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | φ1Uφ2 | Xφ,

where p ∈ AP (set of propositional variables), X is the next-time modality and
U is the until modality (Fφ is an abbreviation for ⊤Uφ). The LTL models are ω-
sequences in P(AP)ω. We recall that M, s |= φ where M is a Kripke structure
and φ is an LTL formula whenever there is an infinite path σ starting from
s such that σ |= φ. Hence, for linear-time logics (LTL and its fragments) we
follow [51] and assume, for the sake of uniformity, that the question “M, s |=
φ?” asks for the existence of a path from s that verifies φ, which is dual to
the universal “all paths from s” formulation commonly used in applications.

LTL model checking for non-flat systems is PSPACE-complete (consequence
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of [51]). In our parameterized setting we have:

Theorem 6.1 k, φ-MCLTL is fp-equivalent to Compact NDTM Compu-
tation and to k-∗-Reach (and hence is AW[SAT]-hard).

PROOF. k-Exact-Reach reduces to k, φ-MCLTL since s̄
∗
−→ 〈t1, . . . , tk〉 in

some A1×· · ·×Ak iff 〈A1, {〈t1, p1〉}〉×· · ·×〈Ak, {〈tk, pk〉}〉, s̄ |= F(p1∧. . .∧pk).
This provides an fp-reduction since |F(p1 ∧ . . . ∧ pk)| is in O(k log k).

In the other direction, the question “does M1 × · · · ×Mk, s̄ |= φ?” reduces to
a repeated reachability problem for M1 ×· · ·×Mk×Bφ, where Bφ is a Büchi
automaton that accepts the paths satisfying φ 6 . There remains to check that
this well known reduction is a reduction in the parameterized sense: since |Bφ|
is in 2O(|φ|), the reduction has k′ = k+1 and n′ ∈ O(2|φ|×n), which is enough
for fp-reducibility since k, |φ| are parameters of k, φ-MCLTL. 2

LTL0 formulae are defined as LTL formulae only built with atomic proposi-
tions, the next-time modality “X”, and disjunction “∨” (no negation allowed).
Observe that LTL0 cannot express reachability questions. However we have:

Theorem 6.2 k, φ-MCLTL0 is W[1]-complete, even if we restrict to formulae
using only one atomic proposition.

PROOF. We prove that Short NDTM Computation, a standard W[1]-
complete problem, is fp-equivalent to our restricted model-checking problem.

Short NDTM Computation ≤fp
m k, φ-MCLTL0:

We emulate an NDTM M via k + 2 KSs as in the proof of Lemma 5.2. That
M accepts in at most k steps can be stated as an LTL0 formula of the form∨k
t=0 Xtpacc if the KSs are labeled so that pacc marks the accepting states of

M .

k, φ-MCLTL0 ≤fp
m Short NDTM Computation:

Consider an instance “M1 × · · · ×Mk, s̄ |= φ?” and write φ under the form∨u
i=1 Xkipli (with the distributivity law X(φ1 ∨ φ2) ≡ Xφ1 ∨ Xφ2, this induces

at most a quadratic blowup). Each ki ∈ N is a number of nested next-time
modalities and each li is a propositional variable index.

6 Strictly speaking, Bφ synchronizes with M1 × · · · ×Mk using a protocol different

from what we used up to now: s̄
a
−→ t̄ and q

v
−→ q′ synchronize iff m(s̄) = v. However,

using the same techniques as in Appendix B, the k-∗-Reach problems for this form
of synchronized products can also be proved fp-equivalent to Compact NDTM
Computation.

19



We build a NDTM M that emulates the product M1 × · · · × Mk as in the
proof of Lemma 5.3 but here M counts how many steps have been emulated
so that it may accept if, for some i, pli holds after ki steps. Emulating one step
requires k moves, so that M answers in at most k′ = k × maxi(ki) steps. 2

6.3 Branching time

6.3.1 CTL.

Computation Tree Logic CTL [12] is also a well-known temporal logic for
model checking. Since we mainly state a hardness result, there is no real need
to recall its definition here.

Theorem 6.3 Compact NDTM Computation ≤fp
m k, φ-MCCTL. (Hence

k, φ-MCCTL is AW[SAT]-hard).

PROOF. (Idea) CTL allows to state reachability questions. 2

Remark 6.4 Even though model checking non-flat systems is PSPACE-com-
plete for CTL, for the moment, we do not have a more precise characterization
for k, φ-MCCTL. Observe that, by definition, model checking CTL is closed
under complementation (unlike the LTL case) so that a conjecture about being
fp-equivalent to Compact NDTM Computation would have an impact on
the open problems mentioned in Remark 2.1. For upper bounds, the problem
is obviously in XP and we failed to refine this, partly because parameterized
complexity does not offer many natural classes above AW[SAT].

Model checking non-flat systems is already W[1]-complete for BT0, a weak
fragment of CTL that cannot express reachability questions. The logic BT0
only allows EX (no other modality) and ∨ (neither negation nor conjunction):

Theorem 6.5 k, φ-MCBT0 is W[1]-complete, even if we restrict to formulae
using only one atomic proposition.

PROOF. This is a corollary of Theorem 6.2 since “M, s |=
∨
i X

kipi?” (a
LTL0 question) is equivalent to “M, s |=

∨
i(EX)kipi?” (a BT0 question). 2
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6.3.2 HML.

We assume familiarity with Hennessy-Milner Logic HML [32]. We consider
HML formulae of the form below

φ ::= p | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | 2φ | 3φ,

where p ∈ AP (set of propositional variables). A HML model is a Kripke
structure over a unary alphabet and as usual in modal logics, M, s |= 2φ

whenever M, s′ |= φ for every successor state s′ of s. Observe that HML
cannot express reachability questions since the quantifications used in the
interpretation of the modalities 2 and 3 involve only direct successors.

Theorem 6.6 k, φ-MCHML is AW[1]-complete.

PROOF. (Idea) That k, φ-MCHML is fp-equivalent to Short ATM Com-
putation can be proved by adapting the techniques of Theorem 6.2 to ATMs.
Actually, the equivalence is shown by restricting the class of ATMs. We exploit
the natural correspondence between the modal operators 2 and 3 and the
behavior of the ATMs with universal states and existential states, respectively.
A detailed proof can be found in Appendix C. 2

6.3.3 µ-calculus.

Model checking non-flat systems is EXPTIME-complete for the µ-calculus [47].
We assume familiarity with the modal µ-calculus, see, e.g., [1] and we recall
here only a few points. The formulae are defined as follows:

φ ::= p | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | 2φ | 3φ | µX · φ′ | νX · φ′,

where p ∈ AP (set of propositional variables) and the variable X occurs
positively in φ′. µ [resp. ν] is the least [resp. greatest] fixed-point operator
and the models are Kripke structures over Σ. The formulae without fixed-
point operators are interpreted as HML formulae and M, s |= µX · φ′ where
M = 〈Q,Σ,→,m〉 iff s belongs to the least fixed-point of the operation f :
P(Q) → P(Q) defined as follows (Z ⊆ Q):

f(Z) = {s ∈ Q : M′ = 〈Q,Σ,→,m ∪ Z × {X}〉, s |= φ′}.

In M′, the state variable X is viewed as a new propositional variable.

In our parameterized setting we have:

Theorem 6.7 k, φ-MCµ is XP-complete.
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PROOF. (Sketch) Writing n for
∑
i|Mi|, k, φ-MCµ can be solved in time

O
(
(|φ|.nk)|φ|

)
[39, Theo. 6.4] and hence is in XP.

XP-hardness is proved by a reduction from Compact ATM Computation.
With an ATM M and an integer k we associate a product 〈A1,m1〉 × · · · ×
〈Ak,mk〉 × 〈Astate,mstate〉 × 〈Ahead,mhead〉 of k + 2 KSs that emulate the be-
havior of M on a k-bounded tape. An Ai stores the current content of the
i-th tape square, Astate stores the current control-state of M and Ahead stores
the position of the TM head. m1 = . . . = mk = mhead = ∅ and the propo-
sitional variables p∃, p∀ and pfin identify states in Astate that are existential,
universal and final, respectively. For instance mstate(p∃) is the set of existen-
tial states of the ATM M . These LTSs synchronize on labels of the form
〈t, i〉 that stand for “rule t of M is fired while head is in position i” (see
also the proof of Theorem 6.6). One can show that M on the empty string
input has an accepting run using less than k cells on the working tape iff
〈A1,m1〉×· · ·×〈Ak,mk〉×〈Astate,mstate〉×〈Ahead,mhead〉, s̄ |= µY.pfin∨((p∃ ⇒
3Y ) ∧ (p∀ ⇒ 2Y )) for some adequate s̄ encoding the initial configuration of
M on the empty string. 2

7 Parameterized complexity of non-flat bisimilarity

7.1 Main parameterized problems

We assume familiarity with bisimulation and the other behavioral equiva-
lences in the branching time–linear time spectrum [53]. Checking for bisim-
ilarity among non-flat systems is EXPTIME-complete in the classical frame-
work [34,41]. For our parametric analysis, the general problem is:

Parameterized Bisimulation (Bisim)
Instance: 2k LTSs A1, · · · ,Ak,A

′
1, · · · ,A

′
k, a configuration s̄ of A1×· · ·×Ak,

a configuration s̄′ of A′
1 × · · · × A′

k.
Question: Is 〈A1 ×· · ·×Ak, s̄〉 (strongly) bisimilar to 〈A′

1 ×· · ·×A′
k, s̄

′〉 (see
Section 3.2)?

Theorem 7.1 k-Bisim is XP-complete.

PROOF. (Idea) k-Bisim is in XP since bisimilarity of flat systems is poly-
nomial-time [36]. XP-hardness is seen by observing that the reduction in the
proof of [41, Theorem 4.1] is an fp-reduction from Compact ATM Compu-
tation to k-Bisim. 2
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This result is robust and Section 7.2 shows that it still holds when we consider
binary synchronization or restricted alphabets (a result we used in the proof
of Theorem 6.7).

Regarding other behavioral equivalences in the linear time–branching time
spectrum [53], we have two generic hardness results (where ⊆tr, ⊑ and ∼
denote resp. trace inclusion, the simulation preorder, and bisimilarity):

Theorem 7.2 For any relation R lying between trace inclusion and bisimilar-
ity, coCompact NDTM Computation is fp-reducible to k-R-Checking,
i.e., the problem of checking whether 〈A1 × · · · × Ak, s̄〉R〈A

′
1 × · · · × A′

k, s̄
′〉.

PROOF. We rely on Theorem 5.1 and reduce the complement of k-Exact-
Reach to k-R-Checking.

Let A1, · · · ,Ak, s̄, t̄ be an instance of k-Exact-Reach where t̄ = 〈t1, . . . , tk〉.

Using a new label #, we add a loop ti
#
−→ ti to every Ai, yielding a modified

LTS A′
i that can signal reaching t̄. Now, writing S for A1 × · · · × Ak and S ′

for A′
1 × · · · × A′

k, we have

(1) 〈S, s̄〉 ∼ 〈S ′, s̄〉 iff (2) 〈S ′, s̄〉 ⊆tr 〈S, s̄〉 iff (3) s̄
∗
−→ t̄ does not hold in S.

(1) implies (2) because bisimilarity is an equivalence relation smaller than
trace inclusion. (2) implies (3) because if s̄

∗
−→ t̄ holds in S, then there is a

trace from s̄ to t̄ that contains # and such a trace cannot be obtained in S.
Moreover, (3) implies (1) because if s̄

∗
−→ t̄ does not hold in S, then in checking

the transfer property for 〈S, s̄〉 ∼ 〈S ′, s̄〉, the label # cannot occur and hence
〈S, s̄〉 ∼ 〈S ′, s̄〉 holds true.

If now R is larger than bisimilarity but smaller than trace inclusion, s̄
∗
−→ t̄ in

S iff 〈S, s̄〉R〈S ′, s̄〉 does not hold. 2

Theorem 7.3 For any relation R lying between the simulation preorder and
bisimilarity, k-R-Checking is XP-hard.

This is a corollary of the proof of [41, Theorem 4.1]. Theorem 7.3 above and
[41, Theorem 4.5] lead to XP-completeness of k-R-Checking for R =⊑ and
many known behavioral equivalences between ⊑ and ∼.

This result can be strengthened when considering non-flat systems with hiding,
where a subset of the alphabet is associated with the synchronized product
and specifies which labels must be hidden (replaced by τ) in the resulting
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LTS. In [48] it is shown that checking any relation lying between trace in-
clusion and bisimilarity for these systems is EXPTIME-hard. In the param-
eterized complexity setting, the same reduction can be done [49] and pro-
vides XP-hardness for k-R-Checking-H for any R between trace inclusion
and bisimilarity (k-R-Checking-H is the generalization of k-R-Checking
where hiding is allowed).

7.2 Variants of bisimulation checking

The aim of the following lemmas is to reduce bisimulation problems from LTSs
over arbitrary alphabets to LTSs over binary alphabets. This result is useful
in the proof of Theorem 6.7 about model checking of µ-calculus and it is also
a result of independent interest.

The following result can be proved by using the forthcoming Lemmas 7.5
and 7.6 and the construction Â defined in section 5.2.

Lemma 7.4 k-Bisim and k-Bisim |Σ|=2 are fp-equivalent.

PROOF. Let A1 ×· · ·×Ak and B1 ×· · ·×Bk be LTSs over Σ. The following
are equivalent:

• A1 × · · · × Ak, 〈s1, . . . , sk〉 ∼ B1 × · · · × Bk, 〈t1, . . . , tk〉

• ̂A1 × · · · × Ak, 〈〈s1, . . . , sk〉, ε〉 ∼ ̂B1 × · · · × Bk, 〈〈t1, . . . , tk〉, ε〉
(by Lemma 7.5 below)

• Â1 × . . .× Âk, 〈〈s1, ε〉, . . . , 〈sk, ε〉〉 ∼ B̂1 × . . .× B̂k, 〈〈t1, ε〉, . . . , 〈tk, ε〉〉
(by Lemma 7.6 and bisimulation is a congruence for synchronized product)

We thus have a reduction of k-Bisim to k-Bisim |Σ|=2 and there only remains

to check this is an fp-reduction. This is clear since n′ =
∑k
i=1|Âi| +

∑k
i=1|B̂i|

is in O
(
l ×m× (

∑k
i=1|Ai| +

∑k
i=1|Bi|)

)
. 2

Lemma 7.5 Let A = 〈Q,Σ,→〉, A′ = 〈Q′,Σ,→′〉 be LTSs over Σ and q, q′

be states of A and A′, respectively. Then, 〈A, q〉 ∼ 〈A′, q′〉 iff 〈Â, 〈q, ε〉〉 ∼
〈Â′, 〈q′, ε〉〉.

PROOF. (Sketch)
(⇒) : Assume that 〈A, q〉 ∼ 〈A′, q′〉, that is there is a bisimulation R ⊆ Q×Q′

such that 〈q, q′〉 ∈ R. Let R′ ⊆ Q̂×Q̂′ be defined as {〈〈q, v〉, 〈q′, v′〉〉 : qRq′, v =
v′}. One can check that R′ has the transfer property (see Section 3.2) by an
immediate use of the transfer property of R, and hence R′ is a bisimulation.
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(⇐): Assume that 〈Â, 〈q, ε〉〉 ∼ 〈Â′, 〈q′, ε〉〉, that is there is a bisimulation
R ⊆ Q̂ × Q̂′ such that 〈q, ε〉R〈q′, ε〉. Let R′ ⊆ Q × Q′ be defined as {〈q, q′〉 :
〈q, ε〉R〈q′, ε〉}. Then R′ has the transfer property. Indeed, assume that qR′q′

and q
ai−→ r. By definition of Â we have, 〈q, ε〉

i1−→ 〈q, i1〉
i2−→ 〈q, i1i2〉 . . .

il−→

〈q, i〉
0
−→ 〈r, ε〉 where i1 . . . il is the binary writing of i. Since R is a bisimulation,

there are r1, . . . , rl+1 such that 〈q′, ε〉
i1−→ r1

i2−→ r2 . . .
il−→ rl

0
−→ rl+1, 〈r, ε〉 R rl+1

and for 1 ≤ j ≤ l, 〈q, i1 . . . ij〉 R rj. But the form of Â′ implies that this
sequence is such that for 1 ≤ j ≤ l, qj = 〈q′, i1 . . . ij〉 and rl+1 = 〈r′, ε〉 for

some q′
ai−→ r′. Hence, there is some q′

ai−→ r′ with 〈r, ε〉R〈r′, ε〉, i.e., rR′r′. 2

Lemma 7.6 Let A = 〈Q,Σ,→〉, A′ = 〈Q′,Σ,→′〉 be LTSs over Σ, and

q, q′ be states of A and A′, respectively. Then, 〈Â × A′, 〈〈q, q′〉, ε〉〉 ∼ 〈Â ×
Â′, 〈〈q, ε〉, 〈q′, ε〉〉〉.

PROOF. (Sketch) One can check that R = {〈〈〈q, q′〉, v〉, 〈〈q, v〉, 〈q′, v〉〉〉 :
q ∈ Q, q′ ∈ Q′, v ∈ {0, 1}i, 0 ≤ i ≤ l} is a bisimulation. 2

As a conclusion,

Theorem 7.7 k-Bisim |Σ|=2 is XP-complete.

8 Conclusion

We studied the complexity of model checking synchronized products of LTSs
in the light of Downey and Fellows’s parameterized complexity. In our study
the parameter k is the number of components (and the size of the property).
We considered a wide variety of problems, and assumed two different synchro-
nization protocols.

It is known that for any fixed value of the parameter, the problems have
polynomial-time solutions in O(nk) and we show that solutions in some f(k)×
nc (for some constant c) do not exist (unless the W-hierarchy collapses). There-
fore our results show that these problems are probably not tractable even in
the parameterized sense of being FPT, and indeed can in general be situated
quite high in the hierarchy (see the summary in Fig. 2 where edges correspond
to the existence of an fp-reduction).

The problems remain intractable (possibly at a weaker level) when natural
restrictions are imposed. We think this must be understood as arguing against
any hope of finding “tractable” algorithms for model checking synchronized
products of components even when the number k of components varies much
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FPT

W[1]

AW[1]

AW[SAT]

AW[P]

XP

Short DTM

Short NDTM

Short ATM

Compact DTM

Compact NDTM

Compact ATM

[7]

Theo. 2.2

[17]

Theo. 2.6

MC(BT0),MC(LTL0)

MC(HML)

Reachability

MC(CTL)

MC(CTL*)

Bisimilarity MC(µ)

MC(LTL)

Theo. 6.7

Theo. 6.3

Theo. 6.1

Theo. 6.2

Theo. 6.6

Theo. 5.1

Theo. 7.1

Fig. 2. A summary of existing reductions between parameterized problems

less than the size of the components themselves. We do not think the difficulty
can be solved by considering other ways of treating k as a parameter (e.g., the
theory of [5] where part of the input is processed off-line).
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A Fp-equivalence of the non-flat reachability problems

We provide the fp-reduction that concludes the proof of Theorem 4.1.

k-Rep-Reach ≤fp
m k-Exact-Reach:

Let A1, . . . ,Ak, s̄ = 〈q1, . . . , qk〉, and F1, . . . , Fk be an instance of k-Rep-
Reach. W.l.o.g. we assume the LTSs are over a common Σ.

Let Σ′ be Σ∪{a′ : a ∈ Σ}∪{choice} where every a′ is a copy of the original a,
and where choice is a new symbol. For 1 ≤ i ≤ k, we build a LTS A′

i over Σ′ as
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follows. Write mi for |Fi| and assume Fi is {fi,1, . . . , fi,mi
}. Each A′

i contains
mi + 1 disjoint copies of Ai, say A′

i,0,A
′
i,1, . . . ,A

′
i,mi

, plus a new (final) state
xi. For a state q ∈ Qi, we write qj to denote the jth copy of q (in A′

i,j).

Additional transitions of A′
i are given by:

• For 1 ≤ j ≤ mi, there is a transition f0
i,j

choice
−−→ f

j
i,j . This corresponds to

choosing fi,j in the ith component of the repeated state from F1 × · · · ×Fk.
The extra label choice allows synchronization.

• For 1 ≤ j ≤ mi, for q ∈ Qi, there is a transition qj
a′

−→ xi if q
a
−→ fi,j in Ai.

This means we can only leave the Ai,j part by revisiting fi,j .

An illustration of the construction can be found in Fig. A.1 where the nodes
in bold are the respective elements of F . A′ simulates A and then decides
that it has reached an adequate t ∈ F . Then A′ enters the t-copy of A (by
a choice transition) and can exit it only by reaching t in that very t-copy
(by a primed letter transition). The introduction of the letters a′ for a ∈ Σ
allows us to preserves determinism whereas the transitions labeled by choice
are used for the synchronization of the different components. Then we clearly

A: q1

q2 q3

a

b

c c

A′:

a

b

c c

a

b

c c a

b

c c

xc′

a′

b′

choice choice

A× {q2} A × {q3}

Fig. A.1. A and A′: an example

have s̄
∗
−→ t̄

+
−→ t̄ for some t̄ of the form 〈f1,j1 , . . . , fk,jk〉 in F1 × · · · × Fk iff

〈q0
1, . . . , q

0
k〉

∗
−→

choice
−−→ 〈f j11 , . . . , f

jk
k 〉

+
−→ 〈x1, . . . , xk〉 in A′

1 × · · · × A′
k, that is iff

〈q0
1, . . . , q

0
k〉

∗
−→ 〈x1, . . . , xk〉. Thus we have reduced our problem to an instance

of k-Exact-Reach.

Finally, since |A′
i| is in O((mi + 1) × |Ai|), we have

k′ = k, |Σ′| = 2 × |Σ| + 1, n′ is in O(n2),

so that the reduction is an fp-reduction with parameter k as well as with pa-
rameter k,Σ.
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In addition, the reader can observe that, since we were careful and made copies
a′ of the a ∈ Σ, the resulting A′

is are deterministic when the Ais are. 2

B Proof of Theorem 5.4

We show that (I) k-∗-Reach bin is fp-reducible to k-∗-Reach, and that recip-
rocally (II) k-∗-Reach is fp-reducible to k-∗-Reach bin. Then Theorem 5.1
concludes.

(I) Let A1 × · · · ×Ak be a product of LTSs assuming binary synchronization.
Let Σ′ be Σ×{{i, j} : 1 ≤ i < j ≤ k} and A′

1, . . . ,A
′
k be LTSs over Σ′ defined

with the idea that a, {i, j} means that Ai and Aj synchronize on a while the
other components do not move.

Formally each A′
i is defined from Ai by replacing each transition s

a
−→ t by

{s
a,{i,j}
−−−→ t : j 6= i} ∪ {s

a,{j,j′}
−−−→ s : i 6∈ {j, j′}, j 6= j′}.

Clearly, s̄
a1...an−−−→bin t̄ in A1×· · ·×Ak iff s̄

a1,{i1,j1}...an,{in,jn}
−−−−−−−−−−−→str t̄ in A′

1×· · ·×A′
k

for some {i1, j1}, . . . , {in, jn} ∈ {{i, j} : 1 ≤ i < j ≤ k}. Hence, any of the
four non-flat reachability problems using binary synchronization is reducible
to the analogous problem with strong synchronization. Now, since |A′

i| is in
O(k2 × |Ai|), so that

k′ =k,

|Σ′| =|Σ| × k × (k − 1),

n′ is in O(k2 × n),

we see the reductions are fp-reductions with either parameter k or parameter
k,Σ.

(II) Let A1 ×· · ·×Ak be a product of LTSs assuming strong synchronization.
Let Σ′ be Σ × {1, . . . , k + 1} and A′

0, · · · ,A
′
k be LTSs over Σ′ defined as

follows. Each A′
i is defined from Ai by replacing each transition s

a
−→ t by the

two transitions s
a,i
−→ 〈s, a, t〉

a,i+1
−−→ t where 〈s, a, t〉 is a new state. The LTS A′

0

is a new controller with states {0} ∪ {sa : a ∈ Σ} such that for a ∈ Σ, there

are loops 0
a,1
−→ sa

a,k+1
−−→ 0. One can show that for s̄, t̄, s̄

a
−→str t̄ in A1 × · · · ×Ak

iff 0, s̄
a,1·...·a,k+1
−−−−−−→bin 0, t̄ in A′

0 ×A′
1 × · · · × A′

k.

Hence, any of the four non-flat reachability problems using strong synchro-
nization is reducible to the analogous problem with binary synchronization
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(for Local-Reach, Rep-Reach and Fair-Reach, a set F̄ ⊆ Q1 × · · · ×Qk

in the instance of the problem is replaced by {0} × F̄ in the reduction).

Since we further have

k′ =k + 1,

|Σ′| =|Σ| × (k + 1),
k∑

i=0

|A′
i| is in O

( k∑

i=1

|Ai| + |Σ|
)
,

the reductions are fp-reductions with either parameter k or parameter k,Σ.

So k-∗-Reach bin and k-∗-Reach are fp-equivalent and, k,Σ-∗-Reachbin

and k,Σ-∗-Reach are fp-equivalent. By Theorem 5.5, k,Σ-∗-Reachbin and
k-∗-Reach are fp-equivalent. 2

C Proof of Theorem 6.6

We shall show that k, φ-MCHML is fp-equivalent to Strict Short ATM
Computation (defined earlier). We first establish an fp-reduction from Strict
Short ATM Computation to k, φ-MCHML which entails AW[1]-hardness
by Lemma 2.4 and Theorem 2.2. To do so, we use the techniques of the re-
duction shown in Lemma 5.2. In order to be self-contained, we provide full
details. Let M = 〈Q∃ ∪ Q∀,Σ, δ, q0, qF 〉 be a strict ATM with blank sym-
bol B ∈ Σ and k be a positive integer. We build the Kripke structures
M1 = 〈A1,m1〉, . . . , Mk = 〈Ak,mk〉, Mstate = 〈Astate,mstate〉, Mhead =
〈Ahead,mhead〉 with m1 = . . . = mk = mhead = ∅ and mstate = {〈qF , p〉} such
that M on the empty string input has an accepting run using less than k steps
iff M1 × · · · ×Mhead, s̄ |=

∨
0≤i≤⌊ k

2
⌋(23)ip for some adequate s̄ (to be defined

later on).

An Ai stores the current content of the i-th tape square. Ahead stores the
position of the TM head. Similarly, Astate stores the control state of the current
configuration. These LTSs synchronize on labels of the form 〈t, i〉 that stand
for “rule t of M is fired while head is in position i”. Successful acceptance
by M is directly encoded by

∨
0≤i≤⌊ k

2
⌋(23)ip. We provide below the formal

definition of the LTSs given that Σ′ = {〈t, j〉 : t ∈ δ, 1 ≤ j ≤ k}.

• Ai = 〈Qi,Σ
′,−→i〉 with Qi = Σ, a

〈t,i〉
−→i a

′ if t is of the form 〈q, a, q′, a′,m〉,

and a
〈t,j〉
−→i a if j 6= i.

• Astate = 〈Qstate,Σ
′,−→state〉 with Qstate = Q∃ ∪Q∀, and q

〈t,i〉
−→ q′ if t is of the
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form 〈q, a, q′, a′,m〉.
• Ahead = 〈Qhead,Σ

′,−→head〉 with Qhead = {0, . . . , k + 1} and −→head is the
union of the following sets:

· i
t,i
−→head i + 1 for all i ∈ {1, . . . , k − 1} and t = 〈q, a, q′, a,m〉 ∈ δ with

m = R (the head moves to the right);

· i
t,i
−→head i− 1 for all i ∈ {1, . . . , k} and t = 〈q, a, q′, a,m〉 ∈ δ with m = L

(the head moves to the left);

· i
t,i
−→head i for all i ∈ {1, . . . , k} and t = 〈q, a, q′, a,m〉 ∈ δ with m = − (the

head does not move).

M1 × · · · ×Mk ×Mstate ×Mhead, 〈B, . . . , B, q0, 1〉 |=
∨

0≤i≤⌊ k
2
⌋(23)ip iff M

on the empty string input has an accepting run using less than k steps.
Observe that |M1| + · · · + |Mk| + |Mstate| + |Mhead| + |

∨
0≤i≤⌊ k

2
⌋(23)ip| is

polynomial in |M | + k, k + 2 Kripke structures are involved in the target in-
stance and |

∨
0≤i≤⌊ k

2
⌋(23)ip| depends only on k. Hence, we really have defined

an fp-reduction.

Now, let us show how to reduce k, φ-MCHML to Short ATM Computa-
tion. Let M1 = 〈A1,m1〉, . . . , Mk = 〈Ak,mk〉, be k Kripke structures,
s̄0 = 〈s0

1, . . . , s
0
k〉 be a configuration of M1 × · · · × Mk and φ be an HML

formula. Without any loss of generality, we can assume that φ is in negative
normal form (NNF), i.e., negation “¬” occurs only in front of propositional
variables.

We shall build an ATM M = 〈Q∃ ∪ Q∀,Σ, δ, q0, qF 〉 such that M1 × · · · ×
Mk, s̄0 |= φ iff M on the empty string input has an accepting run using less
than f(k) steps for some adequate function f(·).

For each subformula ψ of φ we consider a state qψ (in Q = Q∃ ∪ Q∀). We
write Qφ to denote the subset of Q composed of states of the form qψ. We
provide below the main ideas behind the definition of M (some details are
hence omitted).

• Q is the union of Qφ and extra states including the final state qF .
• q0 = qφ ∈ Qφ.
• The states of the form q2ψ and qψ1∧φ2

are universal states (in Q∀) whereas
the states of the form q3ψ and qψ1∨φ2

are existential ones.
• Σ =

⋃
iQi. Only k cells on the tape are used along any computation and a

current state of the tape is encoded by an element of Q1 × · · · × Qk. The
first task done by M in the state q0 consists in writing s̄0 on the tape and
the head goes back to the first cell (head position by default). This first job
requires O(k) steps. More generally, when in a configuration, the current
state of the machine is qψ and the content of the tape is 〈s1, . . . , sk〉, the
machine M checks whether M1 × · · · ×Mk, 〈s1, . . . , sk〉 |= ψ.
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• Some transitions do not move the head, which corresponds in the logical set-
ting to evaluate a subformula at the current state (for Boolean operations).
For instance, the following transitions belong to δ:
· 〈qψ1∧ψ2

, a, qψi
, a,−〉 (i = 1, 2);

· 〈qψ1∨ψ2
, a, qψi

, a,−〉 (i = 1, 2).
• When a state q2ψ [resp. q3ψ] is reached, the machine replaces 〈s1, . . . , sk〉

on the tape by 〈s′1, . . . , s
′
k〉 assuming that 〈s1, . . . , sk〉 −→ 〈s′1, . . . , s

′
k〉 in

A1×· · ·×Ak and goes back to the first cell of the tape. Again, this requires
O(k) steps.

• When a state of the form q¬p is reached, the machine goes to the final state
qF iff none of the states on the tape satisfies p on their respective Kripke
structure. This requires also O(k) steps. Similarly, when a state of the form
qp is reached, the machine goes to the final state qF iff some of the states
on the tape satisfies p on its Kripke structure.

Hence, it is not difficult to show that M1 × · · · × Mk, s̄0 |= φ iff M on the
empty string input has an accepting run using less than O(2k×|φ|) steps. Since
both k and |φ| are parameters of the parameterized problem k, φ-MCHML, we
really have defined an fp-reduction. 2
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