
The Effects of Adding Reachability Predicates
in Propositional Separation Logic

S. Demri1, E. Lozes2, and A. Mansutti1

1LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, France
2I3S, Université Côte d’Azur, France

Abstract. The list segment predicate ls used in separation logic for
verifying programs with pointers is well-suited to express properties on
singly-linked lists. We study the effects of adding ls to the full proposi-
tional separation logic with the separating conjunction and implication,
which is motivated by the recent design of new fragments in which all
these ingredients are used indifferently and verification tools start to
handle the magic wand connective. This is a very natural extension that
has not been studied so far. We show that the restriction without the
separating implication can be solved in polynomial space by using an
appropriate abstraction for memory states whereas the full extension is
shown undecidable by reduction from first-order separation logic. Many
variants of the logic and fragments are also investigated from the com-
putational point of view when ls is added, providing numerous results
about adding reachability predicates to propositional separation logic.

1 Introduction

Separation logic [20,25,28] is a well-known assertion logic for reasoning about
programs with dynamic data structures. Since the implementation of Small-
foot and the evidence that the method is scalable [3,33], many tools supporting
separation logic as an assertion language have been developed [3,16,33,8,9,17].
Even though the first tools could handle relatively limited fragments of sep-
aration logic, like symbolic heaps, there is a growing interest and demand to
consider extensions with richer expressive power. We can point out three partic-
ular extensions of symbolic heaps (without list predicates) that have been proved
decidable.

– Symbolic heaps with generalised inductive predicates, adding a fixpoint com-
binator to the language, is a convenient logic for specifying data structures
that are more advanced than lists or trees. The entailment problem is known
to be decidable by means of tree automata techniques for the bounded tree-
width fragment [19,1], whereas satisfiability is ExpTime-complete [6]. Other
related results can be found in [21].

– List-free symbolic heaps with all classical Boolean connectives ∧ and ¬ (and
with the separating conjunction ∗), called herein SL(∗), is a convenient ex-
tension when combinations of results of various analysis need to be expressed,
or when the analysis requires a complementation. This extension already is
PSpace-complete [11].

– Propositional separation logic with separating implication, a.k.a. magic wand
(−∗), is a convenient fragment (called herein SL(∗,−∗)) in which can be solved
two problems of frame inference and abduction, that play an important role
in static analysers and provers built on top of separation logic. SL(∗,−∗) can
be decided in PSpace thanks to a small model property [32].

A natural question is how to combine these extensions, and which separation
logic fragment that allows Boolean connectives, magic wand and generalised re-
cursive predicates can be decided with some adequate restrictions. As already
advocated in [7,31,29,18,24], dealing with the separating implication −∗ is a desir-
able feature for program verification and several semi-automated or automated
verification tools support it in some way, see e.g. [31,29,24,18].

Our contribution. In this paper, we address the question of combining magic
wand and inductive predicates in the extremely limited case where the only in-
ductive predicate is the gentle list segment predicate ls. So the starting point
of this work is this puzzling question: what is the complexity/decidability sta-
tus of propositional separation logic SL(∗,−∗) enriched with the list segment
predicate ls (herein called SL(∗,−∗, ls))? More precisely, we study the decidabil-
ity/complexity status of extensions of propositional separation logic SL(∗,−∗) by
adding one of the reachability predicates among ls (precise predicate as usual
in separation logic), reach (existence of a path, possibly empty) and reach+

(existence of a non-empty path).
First, we establish that the satisfiability problem for the propositional sep-

aration logic SL(∗,−∗, ls) is undecidable. Our proof is by reduction from the
undecidability of first-order separation logic [5,14], using an encoding of the
variables as heap cells (see Theorem 1). As a consequence, we also establish
that SL(∗,−∗, ls) is not finitely axiomatisable. Moreover, our reduction requires
a rather limited expressive power of the list segment predicate, and we can
strengthen our undecidability results to some fragments of SL(∗,−∗, ls). For in-
stance, surprisingly, the extension of SL(∗,−∗) with the atomic formulae of the
form reach(x, y) = 2 and reach(x, y) = 3 (existence of a path between x and
y of respective length 2 or 3) is already undecidable, whereas the satisfiability
problem for SL(∗,−∗, reach(x, y) = 2) is known to be in PSpace [15].

Second, we show that the satisfiability problem for SL(∗, reach+) is PSpace-
complete, extending the well-known result on SL(∗). The PSpace upper bound
relies on a small heap property based on the techniques of test formulae, see
e.g. [23,22,4,15], and the PSpace-hardness of SL(∗) is inherited from [11]. The
PSpace upper bound can be extended to the fragment of SL(∗,−∗, reach+)
made of Boolean combinations of formulae from SL(∗, reach+) ∪ SL(∗,−∗) (see
the developments in Section 4). Even better, we show that the fragment of
SL(∗,−∗, reach+) in which reach+ is not in the scope of −∗ is decidable. As far
as we know, this is the largest fragment including full Boolean expressivity, −∗
and ls for which decidability is established.

2

2 Preliminaries

Let PVAR = {x, y, . . .} be a countably infinite set of program variables and
LOC = {`0, `1, `2, . . .} be a countable infinite set of locations. A memory state
is a pair (s, h) such that s : PVAR→ LOC is a variable valuation (known as the
store) and h : LOC→fin LOC is a partial function with finite domain, known as
the heap. We write dom(h) to denote its domain and ran(h) to denote its range.
Given a heap h with dom(h) = {`1, . . . , `n}, we also write {`1 7→ h(`1), . . . , `n 7→
h(`n)} to denote h. Each `i 7→ h(`i) is understood as a memory cell of h.

As usual, the heaps h1 and h2 are said to be disjoint , written h1 ⊥ h2,
if dom(h1) ∩ dom(h2) = ∅; when this holds, we write h1 + h2 to denote the
heap corresponding to the disjoint union of the graphs of h1 and h2, hence
dom(h1 + h2) = dom(h1)] dom(h2). When the domains of h1 and h2 are not
disjoint, the composition h1 + h2 is not defined. Moreover, we write h′ v h
to denote that dom(h′) ⊆ dom(h) and for all locations ` ∈ dom(h′), we have
h′(`) = h(`). The formulae ϕ of the separation logic SL(∗,−∗, ls) and its atomic
formulae π are built from π ::= x = y | x ↪→ y | ls(x, y) | emp | > and
ϕ ::= π | ¬ϕ | ϕ ∧ ϕ | ϕ ∗ ϕ | ϕ−∗ ϕ, where x, y ∈ PVAR (⇒, ⇔ and ∨ are
defined as usually). Models of the logic SL(∗,−∗, ls) are memory states and the
satisfaction relation |= is defined as follows (omitting standard clauses for ¬,∧):
(s, h) |= x = y ⇐⇒ s(x) = s(y)
(s, h) |= emp ⇐⇒ dom(h) = ∅
(s, h) |= x ↪→ y ⇐⇒ s(x) ∈ dom(h) and h(s(x)) = s(y)
(s, h) |= ls(x, y) ⇐⇒ either (dom(h) = ∅ and s(x) = s(y)) or

h = {`0 7→ `1, `1 7→ `2, . . . , `n−1 7→ `n} with n ≥ 1,
`0 = s(x), `n = s(y) and for all i 6= j ∈ [0, n], `i 6= `j

(s, h) |= ϕ1 ∗ ϕ2 ⇐⇒ there are h1 and h2 such that (h1⊥h2, (h1 + h2) = h,
(s, h1) |= ϕ1 and (s, h2) |= ϕ2)

(s, h) |= ϕ1 −∗ ϕ2 ⇐⇒ ∀h1 if (h1⊥h and (s, h1) |= ϕ1) then (s, h+ h1) |= ϕ2.

Note that the semantics for ∗, −∗, ↪→, ls and for all other ingredients is the
usual one in separation logic and ls is the precise list segment predicate. In
the sequel, we use the following abbreviations: size ≥ 0

def
= > and for all β ≥ 0,

size ≥ β+1
def
= (size ≥ β)∗¬emp, size ≤ β def

= ¬(size ≥ β+1) and size = β
def
=

(size ≤ β) ∧ (size ≥ β). Moreover, ϕ1 −~ ϕ2
def
= ¬(ϕ1 −∗ ¬ϕ2) (septraction

connective), alloc(x)
def
= (x ↪→ x)−∗ ⊥ and x 7→ y

def
= (x ↪→ y) ∧ size = 1.

W.l.o.g., we can assume that LOC = N since none of the developments depend on
the elements of LOC as the only predicate involving locations is the equality. We
write SL(∗,−∗) to denote the restriction of SL(∗,−∗, ls) without ls. Similarly, we
write SL(∗) to denote the restriction of SL(∗,−∗) without −∗. Given two formulae
ϕ,ϕ′ (possibly from different logical languages), we write ϕ ≡ ϕ′ whenever for
all (s, h), we have (s, h) |= ϕ iff (s, h) |= ϕ′. When ϕ ≡ ϕ′, the formulae ϕ and
ϕ′ are said to be equivalent .

Variants with other reachability predicates. We use two additional reachabil-
ity predicates reach(x, y) and reach+(x, y) and we write SL(∗,−∗, reach) (resp.

3

SL(∗,−∗, reach+)) to denote the variant of SL(∗,−∗, ls) in which ls is replaced
by reach (resp. by reach+). The relation |= is extended as follows: (s, h) |=
reach(x, y) holds when there is i ≥ 0 such that hi(s(x)) = s(y) (i functional com-
position(s) of h is denoted by hi) and (s, h) |= reach+(x, y) holds when there is
i ≥ 1 such that hi(s(x)) = s(y). As ls(x, y) ≡ reach(x, y)∧¬(¬emp∗reach(x, y))
and reach(x, y) ≡ >∗ls(x, y), the logics SL(∗,−∗, reach) and SL(∗,−∗, ls) have
identical decidability status. As far as computational complexity is concerned,
a similar analysis can be done as soon as ∗, ¬, ∧ and emp are parts of the
fragments (the details are omitted here). Similarly, we have the equivalences:
reach(x, y) ≡ x = y∨reach+(x, y) and ls(x, y) ≡ (x = y∧emp)∨(reach+(x, y)∧
¬(¬emp∗reach+(x, y))). So clearly, SL(∗, reach) and SL(∗, ls) can be viewed as
fragments of SL(∗, reach+) and, SL(∗,−∗, ls) as a fragment of SL(∗,−∗, reach+).
It is therefore stronger to establish decidability or complexity upper bounds with
reach+ and to show undecidability or complexity lower bounds with ls or reach.
Herein, we provide the optimal results.

Decision problems. Let L be a logic defined above. As usual, the satisfiability
problem for L takes as input a formula ϕ from L and asks whether there is (s, h)
such that (s, h) |= ϕ. The validity problem is also defined as usual. The model-
checking problem for L takes as input a formula ϕ from L, (s, h) and asks whether
(s, h) |= ϕ (s is restricted to the variables occurring in ϕ and h is encoded as a
finite and functional graph). Unless otherwise specified, the size of a formula ϕ
is understood as its tree size, i.e. approximately its number of symbols.

The main purpose of this paper is to study the decidability/complexity status
of SL(∗,−∗, ls) and its fragments.

3 Undecidability of SL(∗,−∗, ls)

In this section, we show that SL(∗,−∗, ls) has an undecidable satisfiability prob-
lem even though it does not admit first-order quantification.

Let SL(∀,−∗) be the first-order extension of SL(−∗) obtained by adding the
universal quantifier ∀. The formulae ϕ of SL(∀,−∗) are built from π ::= x = y |
x ↪→ y and ϕ ::= π | ¬ϕ | ϕ ∨ ϕ | ϕ−∗ ϕ | ∀x ϕ, where x, y ∈ PVAR. Note
that emp can be easily defined by ∀ x, x′ ¬(x ↪→ x′). Models of the logic SL(∀,−∗)
are memory states and the satisfaction relation |= is defined as for SL(−∗) with
the additional clause:

(s, h) |= ∀x ϕ ⇐⇒ for all ` ∈ LOC, we have (s[x← `], h) |= ϕ.

Without any loss of generality, we can assume that the satisfiability [resp. va-
lidity] problem for SL(∀,−∗) is defined by taking as inputs closed formulae (i.e.
without free occurrences of the variables).

Proposition 1. [5,14] The satisfiability problem for SL(∀,−∗) is undecidable
and the set of valid formulae for SL(∀,−∗) is not recursively enumerable.

4

In a nutshell, we establish the undecidability of SL(∗,−∗, ls) by reduction from
the satisfiability problem for SL(∀,−∗). The reduction is nicely decomposed in
two intermediate steps: (1) the undecidability of SL(∗,−∗) extended with a few
atomic predicates, to be defined soon, and (2) a tour de force resulting in the
encoding of these atomic predicates in SL(∗,−∗, ls).

3.1 Encoding quantified variables as cells in the heap

In this section, we assume for a moment that we can express three atomic pred-
icates alloc−1(x), n(x) = n(y) and n(x) ↪→ n(y), that will be used in the
translation and have the following semantics:

– (s, h) |= alloc−1(x) holds whenever s(x) ∈ ran(h),
– (s, h) |= n(x) = n(y) holds iff {s(x), s(y)} ⊆ dom(h) and h(s(x)) = h(s(y)),
– (s, h) |= n(x) ↪→n(y) holds iff {s(x), s(y)} ⊆ dom(h) and h2(s(x)) = h(s(y)).

Let us first intuitively explain how the two last predicates will help encoding
SL(∀,−∗). By definition, the satisfaction of the quantified formula ∀x ψ from
SL(∀,−∗) requires the satisfaction of the formula ψ for all the values in LOC
assigned to x. The principle of the encoding is to use a set L of locations initially
not in the domain or range of the heap to mimic the store by modifying how
they are allocated. In this way, a variable will be interpreted by a location in the
heap and, instead of checking whenever x ↪→ y (or x = y) holds, we will check
if n(x) ↪→ n(y) (or n(x) = n(y)) holds, where x and y correspond, after the
translation, to the locations in L that mimic the store for those variables. Let X
be the set of variables needed for the translation. In order to properly encode the
store, each location in L only mimics exactly one variable, i.e. there is a bijection
between X and L, and cannot be reached by any location. As such, the formula
∀x ψ will be encoded by the formula (alloc(x)∧size = 1)−∗ (OK(X)⇒ T(ψ)),
where OK(X) (formally defined below) checks whenever the locations in L still
satisfy the auxiliary conditions just described, whereas T(ψ) is the translation
of ψ.

Unfortunately, the formula ψ1−∗ψ2 cannot simply be translated into T(ψ1)−∗
(OK(X)⇒ T(ψ2)) because the evaluation of T(ψ1) in a disjoint heap may need
the values of free variables occurring in ψ1 but our encoding of the variable
valuations via the heap does not allow to preserve these values through disjoint
heaps. In order to solve this problem, for each variable x in the formula, X will
contain an auxiliary variable x, or alternatively we define on X an involution (.).
If the translated formula has q variables then the set X of variables needed for
the translation will have cardinality 2q. In the translation of a formula whose
outermost connective is the magic wand, the locations corresponding to variables
of the form x will be allocated on the left side of the magic wand, and checked
to be equal to their non-bar versions on the right side of the magic wand. As
such, the left side of the magic wand will be translated into

((
∧
z∈Z

alloc(z)) ∧ (
∧

z∈X\Z

¬alloc(z)) ∧OK(Z) ∧ T(ψ1)[z← z | z ∈ X]),

5

where Z is the set of free variables in ψ1, whereas the right side will be

(((
∧
z∈Z

n(z) = n(z)) ∧OK(X))⇒ ((
∧
z∈Z

alloc(z) ∧ size = card(Z)) ∗ T(ψ2))).

The use of the separating conjunction before the formula T(ψ2) separates the
memory cells corresponding to x from the rest of the heap. By doing this, we
can reuse x whenever a magic wand appears in T(ψ2).

For technical convenience, we consider a slight alternative for the semantics
of the logics SL(∀,−∗) and SL(∗,−∗, ls), which does not modify the notion of
satisfiability/validity and such that the set of formulae and the definition of the
satisfaction relation |= remain unchanged. So far, the memory states are pairs
of the form (s, h) with s : PVAR → LOC and h : LOC →fin LOC for a fixed
countably infinite set of locations LOC, say LOC = N. Alternatively, the models
for SL(∀,−∗) and SL(∗,−∗, ls) can be defined as triples (LOC1, s1, h1) such that
LOC1 is a countable infinite set, s1 : PVAR → LOC1 and h1 : LOC1 →fin
LOC1. As shown below, this does not change the notion of satisfiability and
validity, but this generalisation will be handy in a few places. Most of the time,
a generalised memory state (LOC1, s1, h1) shall be written (s1, h1) when no
confusion is possible.

Given a bijection f : LOC1 → LOC2 and a heap h1 : LOC1 →fin LOC1

equal to {`1 7→ h1(`1), . . . , `n 7→ h1(`n)}, we write f(h1) to denote the heap
h2 : LOC2 →fin LOC2 with h2 = {f(`1) 7→ f(h1(`1)), . . . , f(`n) 7→ f(h1(`n))}.

Definition 1. Let (LOC1, s1, h1) and (LOC2, s2, h2) be generalised memory sta-
tes and X ⊆ PVAR. A partial isomorphism with respect to X from (LOC1, s1, h1)
to (LOC2, s2, h2) is a bijection f : LOC1 → LOC2 such that h2 = f(h1) and for
all x ∈ X, f(s1(x)) = s2(x) (we write (LOC1, s1, h1) ≈X (LOC2, s2, h2)).

A folklore result states that isomorphic memory states satisfy the same formulae
since the logics SL(∀,−∗), SL(∗,−∗, ls) can only perform equality tests.

Lemma 1. Let (LOC1, s1, h1) and (LOC2, s2, h2) be two generalised memory
states such that (LOC1, s1, h1) ≈X (LOC2, s2, h2), for some X ⊆ PVAR. (I)
For all formulae ϕ in SL(∀,−∗) whose free variables are among X, we have
(LOC1, s1, h1) |= ϕ iff (LOC2, s2, h2) |= ϕ. (II) For all formulae ϕ in SL(∗,−∗, ls)
built on variables among X, we have (LOC1, s1, h1) |= ϕ iff (LOC2, s2, h2) |= ϕ.

As a direct consequence, satisfiability in SL(∗,−∗, ls) as defined in Section 2, is
equivalent to satisfiability with generalised memory states, the same holds for
SL(∀,−∗). Next, we define the encoding of a generalised memory state. This can
be seen as the semantical counterpart of the syntactical translation process and,
as such, formalise the intuition of using part of a heap to mimic the store.

Definition 2. Let X = {x1, . . . , x2q}, Y ⊆ {x1, . . . , xq} and, (LOC1, s1, h1) and
(LOC2, s2, h2) be two (generalised) memory states. We say that (LOC1, s1, h1) is
encoded by (LOC2, s2, h2) w.r.t. X,Y , written (LOC1, s1, h1) BYq (LOC2, s2, h2),
if the following conditions hold:

6

– LOC1 = LOC2 \ {s2(x) | x ∈ X},
– for all x 6= y ∈ X, s2(x) 6= s2(y),
– h2 = h1 + {s2(x) 7→ s1(x) | x ∈ Y }.

Notice that h2 is equal to h1 plus the heap {s2(x) 7→ s1(x) | x ∈ Y } that
encodes the store s1. The picture below presents a memory state (left) and its
encoding (right), where Y = {xi, xj , xk}. From the encoding, we can retrieve the
initial heap by removing the memory cells corresponding to xi, xj and xk. By
way of example, the memory state on the left satisfies the formulae xi = xj ,
xi ↪→ xk and xk ↪→ xk whereas its encoding satisfies the formulae n(xi) = n(xj),
n(xi) ↪→ n(xk) and n(xk) ↪→ n(xk).

xi=xj

xk

xj

xi

xk

3.2 The translation

We are now ready to define the translation of a first-order formula in propo-
sitional separation logic extended with the three predicates introduced at the
beginning of the section. Let ϕ be a closed formula of SL(∀,−∗) with quantified
variables {x1, . . . , xq}. W.l.o.g., we can assume that distinct quantifications in-
volve distinct variables. Moreover, letX = {x1, . . . , x2q} and (.) be the involution
on X such that for all i ∈ [1, q] xi

def
= xi+q.

We write OK(X) to denote the formula (
∧
i 6=j xi 6= xj)∧ (

∧
i ¬alloc−1(xi)).

The translation function T has two arguments: the formula in SL(∀,−∗) to be
recursively translated and the total set of variables potentially appearing in the
target formula (useful to check that OK(X) holds on every heap involved in the
satisfaction of the translated formula). Let us come back to the definition of
T(ψ,X) (homomorphic for Boolean connectives) with the assumption that the
variables in ψ are among x1, . . . , xq.

T(xi = xj , X)
def
= n(xi) = n(xj)

T(xi ↪→ xj , X)
def
= n(xi) ↪→ n(xj)

T(∀xi ψ,X)
def
= (alloc(xi) ∧ size = 1)−∗ (OK(X)⇒ T(ψ,X))

Lastly, the translation T(ψ1 −∗ ψ2, X) is defined as

((
∧
z∈Z

alloc(z)) ∧ (
∧

z∈X\Z

¬alloc(z̄)) ∧OK(X) ∧ T(ψ1, X)[x← x̄])−∗

(((
∧
z∈Z

n(z) = n(z̄)) ∧OK(X))⇒ ((
∧
z∈Z

alloc(z̄) ∧ size = card(Z)) ∗ T(ψ2, X))),

where Z ⊆ {x1, . . . , xq} is the set of free variables in ψ1.

7

Here is the main result of this section, which is essential for the correctness
of TSAT(ϕ), defined below.

Lemma 2. Let X = {x1, . . . , x2q}, Y ⊆ {x1, . . . , xq}, ψ be a formula in SL(∀,−∗)
with free variables among Y that does not contain any bound variable of ψ and
(LOC1, s1, h1) BYq (LOC2, s2, h2). We have (s1, h1) |= ψ iff (s2, h2) |= T(ψ,X).

We define the translation TSAT(ϕ) in SL(∗,−∗, ls) where T(ϕ,X) is defined
recursively.

TSAT(ϕ)
def
= (
∧

i∈[1,2q]

¬alloc(xi)) ∧OK(X) ∧ T(ϕ,X).

The first two conjuncts specify initial conditions, namely each variable y in X is
interpreted by a location that is unallocated, it is not in the heap range and it is
distinct from the interpretation of all other variables; in other words, the value
for y is isolated. Similarly, let TVAL(ϕ) be the formula in SL(∗,−∗, ls) defined
by ((

∧
i∈[1,2q] ¬alloc(xi))∧OK(X))⇒ T(ϕ,X). As a consequence of Lemma 2,

ϕ and TSAT(ϕ) are shown equisatisfiable, whereas ϕ and TVAL(ϕ) are shown
equivalid.

Corollary 1. Let ϕ be a closed formula in SL(∀,−∗) using quantified variables
among {x1, . . . , xq}. (I) ϕ and TSAT(ϕ) are equisatisfiable. (II) ϕ and TVAL(ϕ)
are equivalid.

3.3 Expressing the auxiliary atomic predicates

To complete the reduction, we briefly explain how to express the formulae
alloc−1(x), n(x) = n(y) and n(x) ↪→ n(y) within SL(∗,−∗, ls). Let us intro-
duce a few macros that shall be helpful.

– Given ϕ in SL(∗,−∗, reach+) and γ ≥ 0, we write [ϕ]γ to denote the formula
(size = γ ∧ ϕ) ∗ >. It is easy to show that for any memory state (s, h),
(s, h) |= [ϕ]γ iff there is h′ v h such that card(dom(h′)) = γ and (s, h′) |= ϕ.

– We write reach(x, y) = γ to denote the formula [ls(x, y)]γ , which is sat-
isfied in any memory state (s, h) where hγ(s(x)) = s(y). Lastly, we write
reach(x, y) ≤ γ to denote the formula

∨
0≤γ′≤γ reach(x, y) = γ′.

In order to define the existence of a predecessor (i.e. alloc−1(x)) in SL(∗,−∗, ls),
we need to take advantage of an auxiliary variable y whose value is different from
the one for x. Let alloc−1y (x) be the formula

x ↪→ x ∨ y ↪→ x ∨ [(alloc(y) ∧ ¬(y ↪→ x) ∧ size = 1)−~ reach(y, x) = 2]1

Lemma 3. Let x, y ∈ PVAR. (I) For all memory states (s, h) such that s(x) 6=
s(y), we have (s, h) |= alloc−1y (x) iff s(x) ∈ ran(h). (II) In the translation,
alloc−1(x) can be replaced with alloc−1x (x).

8

As stated in Lemma 3(II), we can exploit the fact that in the translation of
a formula with variables in {x1, . . . , xq}, we use 2q variables that correspond
to 2q distinguished locations in the heap in order to retain the soundness of
the translation while using alloc−1x (x) as alloc−1(x). Moreover, alloc−1y (x)
allows to express in SL(∗,−∗, ls) whenever a location corresponding to a program
variable reaches itself in exactly two steps (we use this property in the definition
of n(x) ↪→ n(y)). We write x ↪→2

y x to denote the formula ¬(x ↪→ x)∧ (x ↪→ y⇔
y ↪→ x) ∧ [alloc(x) ∧ alloc−1y (x) ∧ (>−∗ ¬reach(x, y) = 2)]2. For any memory
state (s, h) such that s(x) 6= s(y), we have (s, h) |= x ↪→2

y x if and only if
h2(s(x)) = s(x) and h(s(x)) 6= s(x).

The predicate n(x) = n(y) can be defined in SL(∗,−∗, ls) as

(x 6= y⇒ [alloc(x) ∧ alloc(y) ∧ ((x ↪→ y ∧ y ↪→ y) ∨ (y ↪→ x ∧ x ↪→ x)∨

((
∧

z,z′∈{x,y}

¬(z ↪→ z′)) ∧ (>−∗ ¬(reach(x, y) = 2 ∧ reach(y, x) = 2))))]2) ∧ alloc(x)

Lemma 4. Let x, y ∈ PVAR. For all memory states (s, h), we have (s, h) |=
n(x) = n(y) iff h(s(x)) = h(s(y)).

Similarly to alloc−1(x), we can show that n(x) ↪→ n(y) is definable in
SL(∗,−∗, ls) by using one additional variable z whose value is different from both
x and y. Let ϕ↪→(x, y, z) be (n(x) = n(y)∧ϕ=

↪→(x, y, z))∨(n(x) 6= n(y)∧ϕ6=↪→(x, y))
where ϕ=

↪→(x, y, z) is defined as

(x ↪→ x ∧ y ↪→ x) ∨ (y ↪→ y ∧ x ↪→ y) ∨ (x ↪→ z ∧ z ↪→ z)

∨ [alloc(x) ∧ ¬alloc−1z (x) ∧ (>−∗ ¬reach(x, z) ≤ 3)]2

whereas ϕ 6=↪→(x, y) is defined as

(x ↪→ y ∧ alloc(y)) ∨ (y ↪→ y ∧ reach(x, y) = 2) ∨ (y ↪→ x ∧ x ↪→2
y x)∨

[alloc(x) ∧ alloc(y) ∧ (
∧

z,z′∈{x,y} ¬z ↪→ z′) ∧ ¬reach(x, y) ≤ 3

∧((size = 1 ∧ alloc−1x (y))−~ (reach(x, y) = 3 ∧ y ↪→2
x y))]3

Lemma 5. Let x, y, z ∈ PVAR. (I) For all memory states (s, h) such that
s(x) 6= s(z) and s(y) 6= s(z), we have (s, h) |= ϕ↪→(x, y, z) iff {s(x), s(y)} ⊆
dom(h) and h(h(s(x))) = h(s(y)); (II) In the translation, n(x) ↪→ n(y) can be
replaced by ϕ↪→(x, y, x).

As for alloc−1y (x), the properties of the translation imply the equivalence be-
tween n(x) ↪→ n(y) and ϕ↪→(x, y, x) (as stated in Lemma 5(II)). By looking at the
formulae herein defined, the predicate reach only appears bounded, i.e. in the
form of reach(x, y) = 2 and reach(x, y) = 3. The three new predicates can there-
fore be defined in SL(∗,−∗) enriched with reach(x, y) = 2 and reach(x, y) = 3.

9

3.4 Undecidability results and non-finite axiomatization

It is time to collect the fruits of all our efforts and to conclude this part about
undecidability. As a direct consequence of Corollary 1 and the undecidability of
SL(∀,−∗), here is one of the main results of the paper.
Theorem 1. The satisfiability problem for SL(∗,−∗, ls) is undecidable.
As a by-product, the set of valid formulae for SL(∗,−∗, ls) is not recursively
enumerable. Indeed, suppose that the set of valid formulae for SL(∗,−∗, ls) were
r.e., then one can enumerate the valid formulae of the form TVAL(ϕ) as it is
decidable in PTime whether ψ in SL(∗,−∗, ls) is syntactically equal to TVAL(ϕ)
for some SL(∀,−∗) formula ϕ. This leads to a contradiction since this would allow
the enumeration of valid formulae in SL(∀,−∗).

The essential ingredients to establish the undecidability of SL(∗,−∗, ls) are
the fact that the following properties n(x) = n(y), n(x) ↪→ n(y) and alloc−1(x)
are expressible in the logic.

Corollary 2. SL(∗,−∗) augmented with built-in formulae of the form n(x) =
n(y), n(x) ↪→ n(y) and alloc−1(x) (resp. of the form reach(x, y) = 2 and
reach(x, y) = 3) admits an undecidable satisfiability problem.

This is the addition of reach(x, y) = 3 that is crucial for undecidability since the
satisfiability problem for SL(∗,−∗, reach(x, y) = 2) is in PSpace [15]. Following
a similar analysis, let SL1(∀, ∗,−∗) be the restriction of SL(∀, ∗,−∗) (i.e. SL(∀,−∗)
plus ∗) to formulae of the form ∃x1 · · · ∃xq ϕ, where q ≥ 1, the variables in ϕ are
among {x1, . . . , xq+1} and the only quantified variable in ϕ is xq+1. The satisfia-
bility problem for SL1(∀, ∗,−∗) is PSpace-complete [15]. Note that SL1(∀, ∗,−∗)
can easily express n(x) = n(y) and alloc−1(x). The distance between the decid-
ability for SL1(∀, ∗,−∗) and the undecidability for SL(∗,−∗, ls), is best witnessed
by the corollary below, which solves an open problem [15, Section 6].
Corollary 3. SL1(∀, ∗,−∗) augmented with n(x) ↪→ n(y) (resp. SL1(∀, ∗,−∗)
augmented with ls) admits an undecidable satisfiability problem.

4 SL(∗, reach+) and other PSpace variants

As already seen in Section 2, SL(∗, ls) can be understood as a fragment of
SL(∗, reach+). Below, we show that the satisfiability problem for SL(∗, reach+)
can be solved in polynomial space. Refining the arguments used in our proof, we
also show the decidability of the fragment of SL(∗,−∗, reach+) where reach+ is
constrained not to occur in the scope of −∗, i.e. ϕ belongs to that fragment iff
for any subformula ψ of ϕ of the form ψ1 −∗ ψ2, reach+ does not occur in ψ1

and in ψ2.
The proof relies on a small heap property: a formula ϕ is satisfiable if and only

if it admits a model with a polynomial amount of memory cells. The PSpace
upper bound then follows by establishing that the model-checking problem for
SL(∗, reach+) is in PSpace too. To establish the small heap property, an equiv-
alence relation on memory states with finite index is designed, following the
standard approach in [32,10] and using test formulae as in [23,22,4,15].

10

4.1 Introduction to test formulae

Before presenting the test formulae for SL(∗, reach+), let us recall the standard
result for SL(∗,−∗) (that will be also used at some point later on).

Proposition 2. [32,22] Any formula ϕ in SL(∗,−∗) built over variables in x1,
. . . ,xq is logically equivalent to a Boolean combination of formulae among xi=xj,
alloc(xi), xi ↪→ xj and size ≥ β (i, j ∈ {1, . . . , q}, β ∈ N).

By way of example,
(
¬emp ∗

(
(x1 ↪→ x2)−∗ ⊥

))
is equivalent to size ≥ 2 ∧

alloc(x1). As a corollary of the proof of Proposition 2, in size ≥ β we can
enforce that β ≤ 2× |ϕ| (rough upper bound) where |ϕ| is the size of ϕ. Similar
results will be shown for SL(∗, reach+) and for some of its extensions.

In order to define a set of test formulae that captures the expressive power of
SL(∗, reach+), we need to study which basic properties on memory states can be
expressed by SL(∗, reach+) formulae. For example, consider the memory states
from Figure 1.

xi

xk

xj

xi

xk

xj

xjxi

` `′

xk

xjxi

` `′

xk

Fig. 1. Memory states (s1, h1), . . . , (s4, h4) (from left to right)

The fragment memory states (s1, h1) and (s2, h2) can be distinguished by the
formula > ∗ (reach(xi, xj) ∧ reach(xj , xk) ∧ ¬reach(xk, xi)). Indeed, (s1, h1)
satisfies this formula by considering a subheap that does not contain a path
from s(xk) to s(xi), whereas it is impossible to find a subheap for (s2, h2) that
retains the path from s(xi) to s(xj), the one from s(xj) to s(xk) but where the
path from s(xk) to s(xi) is lost. This suggests that SL(∗, reach+) can express
whether, for example, any path from s(xi) to s(xj) also contains s(xk). We will
introduce the test formula seesq(xi, xj) ≥ β to capture this property.

Similarly, the memory states (s3, h3) and (s4, h4) can be distinguished by
the formula (size = 1) ∗

(
reach(xj , xk) ∧ ¬reach(xi, xk) ∧ ¬reach+(xk, xk)

)
.

The memory state (s3, h3) satisfies this formula by separating {` 7→ `′} from the
rest of the heap, whereas the formula is not satisfied by (s4, h4). Indeed, there
is no way to break the loop from s(xk) to itself by removing just one location
from the heap while retaining the path from s(xj) to s(xk) and loosing the path
from s(xi) to s(xk). This suggests that the two locations ` and `′ are particularly
interesting since they are reachable from several locations corresponding to pro-
gram variables. Therefore by separating them from the rest of the heap, several
paths are lost. In order to capture this, we introduce the notion of meet-points.

11

Let Termsq be the set {x1, . . . , xq}∪{mq(xi, xj) | i, j ∈ [1, q]} understood as
the set of terms that are either variables or expressions denoting a meet-point.
We write [[xi]]

q
s,h to denote s(xi) and [[mq(xi, xj)]]

q
s,h to denote (if it exists) the

first location reachable from s(xi) that is also reachable from s(xj). Moreover we
require that this location can reach another location corresponding to a program
variable. Formally, [[mq(xi, xj)]]

q
s,h is defined as the unique location ` such that

– there are L1, L2 ≥ 0 such that hL1(s(xi)) = hL2(s(xj)) = `, and
– for all L′1 < L1 and for all L′2 ≥ 0, hL

′
1

(
s(xi)

)
6= hL

′
2

(
s(xj)

)
, and

– there exist k ∈ [1, q] and L ≥ 0 such that hL(`) = s(xk).

These conditions hold for at most one location `. One can easily show that the
notion [[mq(xi, xj)]]

q
s,h is well-defined. The picture below provides a taxonomy of

meet-points, where arrows labelled by ‘+’ represent paths of non-zero length and
zig-zag arrows any path (possibly of zero length). Symmetrical cases, obtained
by swapping xi and xj , are omitted.

xi

mq(xi,xj)
mq(xj ,xi)

xj

xk
xk not inside a loop

xi

mq(xi,xj)
mq(xj ,xi)

xj

xk

+

xi

mq(xi,xj)

mq(xj ,xi)

xj

xk

+

+

xi

mq(xi,xj)

mq(xj ,xi)
xk

xj

+

+

Notice how the asymmetrical definition of meet-points is captured in the two
rightmost heaps. Consider the memory states from Figure 1, (s3, h3) and (s4, h4)
can be seen as an instance of the third case of the taxonomy and, as such, it
holds that [[mq(xi, xj)]]

q
s3,h3

= ` and [[mq(xj , xi)]]
q
s3,h3

= `′.
Given q, α ≥ 1, we write Test(q, α) to denote the following set of atomic

formulae (also called test formulae):

v = v′ v ↪→ v′ alloc(v) seesq(v, v
′) ≥ β + 1 sizeRq ≥ β,

where v, v′ ∈ Termsq and β ∈ [1, α]. It is worth noting that the alloc(v)’s are
not needed for the logic SL(∗, reach+) but it is required for extensions.

We identify as special locations the s(xi)’s and the meet-points of the form
[[mq(xi, xj)]]

q
s,h when it exists (i, j ∈ [1, q]). We call such locations, labelled loca-

tions, and the set of labelled locations is written Labelsqs,h. The formal semantics
of the test formulae is provided below:

(s, h) |= v = v′ ⇐⇒ [[v]]qs,h, [[v
′]]qs,h are defined, [[v]]qs,h = [[v′]]qs,h

(s, h) |= alloc(v) ⇐⇒ [[v]]qs,h is defined and belongs to dom(h)

(s, h) |= v ↪→ v′ ⇐⇒ h([[v]]qs,h) = [[v′]]qs,h

(s, h) |= seesq(v, v
′) ≥ β + 1 ⇐⇒ ∃L ≥ β + 1, hL([[v]]qs,h) = [[v′]]qs,h and

∀ 0 < L′ < L, hL
′
([[v]]qs,h) 6∈ Labelsqs,h

(s, h) |= sizeRq ≥ β ⇐⇒ card(Remq
s,h) ≥ β

12

where Remq
s,h is the set of locations that neither belong to a path between two

locations interpreted by program variables nor are equal to program variable
interpretations, i.e. Remq

s,h
def
= {` ∈ dom(h) | ∀i ∈ [1, q], s(xi) 6= ` and ∀j ∈ [1, q]

@L,L′ ≥ 1, hL(s(xi)) = ` and hL
′
(`) = s(xj)}. There is no need for test for-

mulae of the form seesq(v, v
′) ≥ 1 since they are equivalent to v ↪→ v′ ∨

seesq(v, v
′) ≥ 2. One can check whether [[mq(xi, xj)]]

q
s,h is defined thanks to

the formula mq(xi, xj) = mq(xi, xj). By contrast, sizeRq ≥ β states that the
cardinality of the set Remq

s,h is at least β. Furthermore, seesq(v, v′) ≥ β + 1
states that there is a minimal path between v and v′ of length at least β + 1
and strictly between v and v′, there are no labelled locations. The satisfaction
of seesq(v, v′) ≥ β + 1 entails the exclusion of labelled locations in the wit-

ness path, which is reminiscent to T
h\T ′′

−−→ T ′ in the logic GRASS [26]. So, the
test formulae are quite expressive since they capture the atomic formulae from
SL(∗, reach+) and the test formulae for SL(∗,−∗).
Lemma 6. Given α, q ≥ 1, i, j ∈ [1, q], for any atomic formula among ls(xi, xj),
reach(xi, xj), reach+(xi, xj), emp and size ≥ β with β ≤ α, there is a Boolean
combination of test formulae from Test(q, α) logically equivalent to it.

4.2 Expressive power and small model property

The sets of test formulae Test(q, α) are sufficient to capture the expressive power
of SL(∗, reach+) (as shown below, Theorem 2) and deduce the small heap prop-
erty of this logic (Theorem 3). We introduce an indistinguishability relation be-
tween memory states based on test formulae, see analogous relations in [22,13,15].

Definition 3. Given q, α ≥ 1, we write (s, h) ≈qα (s′, h′)
def⇔ for all ψ ∈

Test(q, α), we have (s, h) |= ψ iff (s′, h′) |= ψ.

Theorem 2(I) states that if (s, h) ≈qα (s′, h′), then the two memory states
cannot be distinguished by formulae whose syntactic resources are bounded in
some way by q and α (details will follow, see the definition for msize(ϕ)).

Below, we state the key intermediate result of the section that can be viewed
as a distributivity lemma. The expressive power of the test formulae allows us
to mimic the separation between two equivalent memory states with respect to
the relation ≈qα, which is essential in the proof of Theorem 2(I).

Lemma 7. Let q, α, α1, α2 ≥ 1 with α = α1 +α2 and (s, h), (s′, h′) be such that
(s, h) ≈qα (s′, h′). For all heaps h1, h2 such that h = h1 + h2 there are heaps h′1,
h′2 such that h = h′1 + h′2, (s, h1) ≈qα1

(s′, h′1) and (s, h2) ≈qα2
(s′, h′2).

For each formula ϕ in SL(∗, reach+), we define its memory size msize(ϕ)
following the clauses below (see also [32]).

msize(π)
def
= 1 for any atomic formula π

msize(ψ ∗ ψ′) def
= msize(ψ) + msize(ψ′)

msize(ψ ∧ ψ′) def
= max(msize(ψ), msize(ψ′))

msize(¬ψ)
def
= msize(ψ).

13

We have 1 ≤ msize(ϕ) ≤ |ϕ|. Theorem 2 below establishes the properties that
formulae in SL(∗, reach+) can express.

Theorem 2. Let ϕ be in SL(∗, reach+) built over the variables in x1, . . . , xq.
(I) For all α ≥ 1 such that msize(ϕ) ≤ α and for all memory states (s, h), (s′, h′)
such that (s, h) ≈qα (s′, h′), we have (s, h) |= ϕ iff (s′, h′) |= ϕ. (II) ϕ is logically
equivalent to a Boolean combination of test formulae from Test(q, msize(ϕ)).

The proof of Theorem 2(I) is by structural induction on ϕ. The basic cases for
atomic formulae follow from Lemma 6 whereas the inductive cases for Boolean
connectives are immediate. For the separating conjunction, suppose (s, h) |=
ϕ1∗ϕ2 and msize(ϕ1∗ϕ2) ≤ α. There are heaps h1 and h2 such that h = h1+h2,
(s, h1) |= ψ1 and (s, h2) |= ψ2. As α ≥ msize(ψ1 ∗ψ2) = msize(ψ1)+msize(ψ2),
there exist α1 and α2 such that α = α1 + α2, α1 ≥ msize(ψ1) and α2 ≥
msize(ψ2). By Lemma 7, there exist heaps h′1 and h′2 such that h′ = h′1 + h′2,
(s, h1) ≈qα1

(s′, h′1) and (s, h2) ≈qα2
(s′, h′2). By the induction hypothesis, we get

(s′, h′1) |= ψ1 and (s′, h′2) |= ψ2. Consequently, we obtain (s′, h′) |= ψ1 ∗ ψ2.
As an example, we can apply this result to the memory states from Figure 1.

We have already shown how we can distinguish (s1, h1) from (s2, h2) using a
formula with only one separating conjunction. Theorem 2 ensures that these two
memory states do not satisfy the same set of test formulae for α ≥ 2. Indeed, only
(s1, h1) satisfies seesq(xi, xj) ≥ 2. The same argument can be used with (s3, h3)
and (s4, h4): only (s3, h3) satisfies the test formula mq(xi, xj) ↪→ mq(xj , xi).
Clearly, Theorem 2(II) relates separation logic with classical logic as advocated
also in the works [23,10]. Now, it is possible to establish a small heap property.

Theorem 3. Let ϕ be a satisfiable SL(∗, reach+) formula built over x1, . . . , xq.
There is (s, h) such that (s, h) |= ϕ and card(dom(h)) ≤ (q2 + q) · (|ϕ|+ 1) + |ϕ|.

The small heap property for SL(∗, reach+) is inherited from the small heap
property for the Boolean combinations of test formulae, which is analogous to
the small model property for other theories of singly linked lists, see e.g. [27,13].

4.3 Complexity upper bounds

Let us draw some consequences of Theorem 3. First, for the logic SL(∗, reach+),
we get a PSpace upper, which matches the lower bound for SL(∗) [11].

Theorem 4. The satisfiability problem for SL(∗, reach+) is PSpace-complete.

Besides, we may consider restricting the usage of Boolean connectives. We
note Bool(SHF) for the Boolean combinations of formulae from the symbolic heap
fragment [2]. A PTime upper bound for the entailment/satisfiability problem
for the symbolic heap fragment is successfully solved in [12,17], whereas the
satisfiability problem for a slight variant of Bool(SHF) is shown in NP in [26,
Theorem 4]. Theorem 3 allows us to conclude this NP upper bound result as
a by-product (we conjecture that our quadratic upper bound on the number of
cells could be improved to a linear one in that case).

14

Corollary 4. The satisfiability problem for Bool(SHF) is NP-complete.

It is possible to push further the PSpace upper bound by allowing occur-
rences of −∗ in a controlled way. Let SL(∗, reach+,

⋃
q,αTest(q, α)) be the exten-

sion of SL(∗, reach+) augmented with the test formulae. The memory size func-
tion is also extended: msize(v ↪→ v′)

def
= 1, msize(seesq(v, v

′) ≥ β + 1)
def
= β + 1,

msize(sizeR ≥ β)
def
= β and msize(alloc(v))

def
= 1. When formulae are encoded

as trees, we have 1 ≤ msize(ϕ) ≤ |ϕ|αϕ where αϕ is the maximal constant in ϕ.
Theorem 2(I) admits a counterpart for SL(∗, reach+,

⋃
q,αTest(q, α)) and conse-

quently, any formula built over x1, . . . , xq can be shown equivalent to a Boolean
combination of test formulae from Test(q, |ϕ|αϕ). By Theorem 3, any satisfiable
formula has therefore a model with card(dom(h)) ≤ (q2 +q) ·(|ϕ|αϕ+1)+ |ϕ|αϕ.
Hence, the satisfiability problem for SL(∗, reach+,

⋃
q,αTest(q, α)) is in PSpace

when the constants are encoded in unary. Now, we can state the new PSpace up-
per bound for Boolean combinations of formulae from SL(∗,−∗)∪SL(∗, reach+).

Theorem 5. The satisfiability problem for Boolean combinations of formulae
from SL(∗,−∗) ∪ SL(∗, reach+) is PSpace-complete.

To conclude, let us introduce the largest fragment including −∗ and ls for which
decidability can be established so far.

Theorem 6. The satisfiability problem for the fragment of SL(∗,−∗, reach+) in
which reach+ is not in the scope of −∗ is decidable.

5 Conclusion

We studied the effects of adding ls to SL(∗,−∗) and variants. SL(∗,−∗, ls) is
shown undecidable (Theorem 1) and non-finitely axiomatisable, which remains
quite unexpected since there are no first-order quantifications. This result is
strengthened to even weaker extensions of SL(∗,−∗) such as the one augmented
with n(x) = n(y), n(x) ↪→ n(y) and alloc−1(x), or the one augmented with
reach(x, y) = 2 and reach(x, y) = 3. If the magic wand is discarded, we have es-
tablished that the satisfiability problem for SL(∗, ls) is PSpace-complete by in-
troducing a class of test formulae that captures the expressive power of SL(∗, ls)
and that leads to a small heap property. Such a logic contains the Boolean combi-
nations of symbolic heaps and our proof technique allows us to get an NP upper
bound for such formulae. Moreover, we show that the satisfiability problem for
SL(∗,−∗, reach+) restricted to formulae in which reach+ is not in the scope of
−∗ is decidable, leading to the largest known decidable fragment for which −∗
and reach+ (or ls) cohabit. So, we have provided proof techniques to establish
undecidability when ∗, −∗ and ls are present and to establish decidability based
on test formulae. This paves the way to investigate the decidability status of
SL(−∗, ls) as well as of the positive fragment of SL(∗,−~, ls) from [30,31].

15

References

1. T. Antonopoulos, N. Gorogiannis, C. Haase, M. Kanovich, and J. Ouaknine. Foun-
dations for decision problems in separation logic with general inductive predicates.
In FOSSACS’14, volume 8412 of LNCS, pages 411–425. Springer, 2014.

2. J. Berdine, C. Calcagno, and P. O’Hearn. A decidable fragment of separation logic.
In FSTTCS’04, volume 3328 of LNCS, pages 97–109. Springer, 2004.

3. J. Berdine, C. Calcagno, and P. O’Hearn. Smallfoot: Modular automatic assertion
checking with separation logic. In FMCO’05, volume 4111 of LNCS, pages 115–137.
Springer, 2005.

4. R. Brochenin, S. Demri, and E. Lozes. Reasoning about sequences of memory
states. APAL, 161(3):305–323, 2009.

5. R. Brochenin, S. Demri, and E. Lozes. On the almighty wand. IC, 211:106–137,
2012.

6. J. Brotherston, C. Fuhs, N. Gorogiannis, and J. Navarro Perez. A decision pro-
cedure for satisfiability in separation logic with inductive predicates. In CSL-
LICS’14, 2014.

7. J. Brotherston and J. Villard. Parametric completeness for separation theories. In
POPL’14, pages 453–464. ACM, 2014.

8. C. Calcagno and D. Distefano. Infer: An automatic program verifier for memory
safety of C programs. In NASA Formal Methods, volume 6617 of LNCS, pages
459–465. Springer, 2011.

9. C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional shape analysis
by means of bi-abduction. JACM, 58(6):26:1–26:66, 2011.

10. C. Calcagno, P. Gardner, and M. Hague. From separation logic to first-order logic.
In FOSSACS’05, volume 3441 of LNCS, pages 395–409. Springer, 2005.

11. C. Calcagno, P. O’Hearn, and H. Yang. Computability and complexity results for
a spatial assertion language for data structures. In FSTTCS’01, volume 2245 of
LNCS, pages 108–119. Springer, 2001.

12. B. Cook, C. Haase, J. Ouaknine, M. Parkinson, and J. Worrell. Tractable reasoning
in a fragment of separation logic. In CONCUR’11, volume 6901 of LNCS, pages
235–249. Springer, 2011.

13. C. David, D. Kroening, and M. Lewis. Propositional reasoning about safety and
termination of heap-manipulating programs. In ESOP’15, volume 9032 of LNCS,
pages 661–684. Springer, 2015.

14. S. Demri and M. Deters. Expressive completeness of separation logic with two
variables and no separating conjunction. ACM ToCL, 17(2):12, 2016.

15. S. Demri, D. Galmiche, D. Larchey-Wendling, and D. Mery. Separation logic with
one quantified variable. Theory of Computing Systems, 61:371–461, 2017.

16. D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis based on separation
logic. In TACAS’06, volume 3920 of LNCS, pages 287–302. Springer, 2006.

17. C. Haase, S. Ishtiaq, J. Ouaknine, and M. Parkinson. SeLoger: A tool for graph-
based reasoning in separation logic. In CAV’13, volume 8044 of LNCS, pages
790–795. Springer, 2013.

18. Z. Hou, R. Goré, and A. Tiu. Automated theorem proving for assertions in separa-
tion logic with all connectives. In CADE’15, volume 9195 of LNCS, pages 501–516.
Springer, 2015.

19. R. Iosif, A. Rogalewicz, and J. Simacek. The tree width of separation logic with
recursive definitions. In CADE’13, volume 7898 of LNCS, pages 21–38. Springer,
2013.

16

20. S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures.
In POPL’01, pages 14–26. ACM, 2001.

21. Q. Le, M. Tatsuta, J. Sun, and W. Chin. A decidable fragment in separation logic
with inductive predicates and arithmetic. In CAV’17, volume 10427 of LNCS,
pages 495–517. Springer, 2017.

22. E. Lozes. Expressivité des Logiques Spatiales. Phd thesis, ENS Lyon, 2004.
23. E. Lozes. Separation logic preserves the expressive power of classical logic. In

SPACE’04, 2004.
24. P. Müller, M. Schwerhoff, and A. Summers. Viper: A verification infrastructure for

permission-based reasoning. In VMCAI’16, volume 9583 of LNCS, pages 41–62.
Springer, 2016.

25. P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter
data structures. In CSL’01, volume 2142 of LNCS, pages 1–19. Springer, 2001.

26. R. Piskać, T. Wies, and D. Zufferey. Automating separation logic using SMT. In
CAV’13, volume 8044 of LNCS, pages 773–789. Springer, 2013.

27. S. Ranise and C. Zarba. A theory of singly-linked lists and its extensible decision
procedure. In SEFM’06, pages 206–215. IEEE, 2006.

28. J. Reynolds. Separation logic: a logic for shared mutable data structures. In
LICS’02, pages 55–74. IEEE, 2002.

29. M. Schwerhoff and A. Summers. Lightweight support for magic wands in an au-
tomatic verifier. In ECOOP’15, pages 999–1023. Leibniz-Zentrum für Informatik,
LIPICS, 2015.

30. A. Thakur. Symbolic Abstraction: Algorithms and Applications. PhD thesis, Uni-
versity of Wisconsin-Madison, 2014.

31. A. Thakur, J. Breck, and T. Reps. Satisfiability modulo abstraction for separation
logic with linked lists. In SPIN’14, pages 58–67. ACM, 2014.

32. H. Yang. Local Reasoning for Stateful Programs. PhD thesis, University of Illinois,
Urbana-Champaign, 2001.

33. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. O’Hearn.
Scalable shape analysis for systems code. In CAV’08, volume 5123 of LNCS, pages
385–398. Springer, 2008.

17

