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Abstract

PKCS#11 defines an API for cryptographic devices that has been widely adopted

in industry. However, it has been shown to be vulnerable to a variety of attacks that

could, for example, compromise the sensitive keys stored on the device. In this paper, we

set out a formal model of the operation of the API, which differs from previous security

API models notably in that it accounts for non-monotonic mutable global state. We give

decidability results for our formalism, and describe an implementation of the resulting de-

cision procedure using the model checker NuSMV. We report some new attacks and prove

the safety of some configurations of the API in our model. We also analyse proprietary

extensions proposed by nCipher (Thales) and Eracom (Safenet), designed to address the

shortcomings of PKCS#11.
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1 Introduction

RSA Laboratories Public Key Standards (PKCS) #11 defines the ‘Cryptoki’ API, designed to

be an interface between applications and cryptographic devices such as smartcards, Hardware

Security Modules (HSMs), and USB key tokens. It has been widely adopted in industry,

promoting interoperability of devices. However, the API as defined in the standard gives

rise to a number of serious security vulnerabilities, [4]. In practice, vendors try to protect

against these by restricting the functionality of the interface, or by adding extra features, the

details of which are often hard to determine. This has lead to an unsatisfactory situation in

which widely deployed security solutions are using an interface which is known to be insecure

if implemented näıvely, and for which there are no well established fixes. The situation is

complicated by the variety of scenarios in which PKCS#11 is used: an effective security patch

for one scenario may disable functionality that is vital for another.

In this paper, we aim to lay the foundations for an improvement in this situation by

defining a formal model for the operation of PKCS#11 key management commands, proving

the decidability of certain security properties in this model, and describing an automated

framework for proving these properties for different configurations of the API. The organi-

sation of the paper is as follows: in Section 2, we first describe PKCS#11 and some of the

known vulnerabilities. We define our model in Section 3, give some decidability results in

Section 4, and detail our experiments in proving the (in)security of particular configurations

in Section 5. We analyse some proprietary extensions to the standard in Section 6. Finally

we conclude with a discussion of future work in Section 7.

Background. API level attacks were first identified by Longley and Rigby [12]. Ander-

son and Bond discovered many more [1]. Clulow revealed the existence of such attacks on

PKCS#11 [4]. Since then, efforts have been made to formally analyse APIs using model

checkers, theorem provers, and customised decision procedures [5, 6, 7, 15, 17, 19]. None

of these models account for mutable global state, which was identified by Herzog [11] as a

major barrier to the application of security protocol analysis tools to verify APIs. In security

protocol analysis, it is standard to assume that independent runs or sessions of the protocol
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share no mutable (or changeable) state. They might share non-mutable state such as long

term keys, and they might have local mutable state (they might create session keys, for ex-

ample), but independent sessions are assumed not to affect each other. Security APIs do

not have this characteristic. Indeed, the fact that calls to some functions, for example key

import commands, do indeed change the internal state of the device, is vital for the way they

function. In the work in this paper, we specifically aim to model mutable global state.

2 An introduction to PKCS#11

The PKCS#11 API is designed to allow multiple applications to access multiple cryptographic

devices through a number of slots. Each slot represents a socket or device reader in which a

device may or not be present. To talk to a device, an application must establish a session

through the appropriate slot. Once a session has been established, an application can au-

thenticate itself to a token as one of two distinct types of user: the security officer (SO) and

the normal user. Authentication is by means of a PIN: a token is typically supplied with a

default SO PIN, and it is up to the SO to set himself and the user a new PIN. As seen under

PKCS#11, the token contains a number of objects, such as keys and certificates. Objects

are referenced in the API via handles, which can be thought of as pointers to or names for

the objects. In general, the value of the handle e.g. for a secret key does not reveal any

information about the actual value of the key. Objects are marked as public or private. Once

authenticated, the normal user can access public and private objects. The SO can only access

public objects, but can perform functions not available to the user, such as setting the user’s

PIN. The idea is that the SO login will be used to initialise the device, and from then on

only user login will be used. A session can also be unauthenticated, in which case only public

objects and functions are available. In addition to being public or private, objects have other

attributes, which may be general, such as the attribute sensitive which is true of objects which

cannot be exported from the token unencrypted, or specific to certain classes of object, such

as modulus or exponent for RSA keys.

Note that if malicious code is running on the host machine, then the user PIN may
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Initial knowledge: The intruder knows h(n1, k1) and
h(n2, k2). The name n2 has the attributes wrap and decrypt
set whereas n1 has the attribute sensitive and extract set.

Trace:

Wrap: h(n2, k2), h(n1, k1) → senc(k1, k2)
SDecrypt: h(n2, k2), senc(k1, k2) → k1

Figure 1: Decrypt/Wrap attack

easily be intercepted, e.g. by a tampered device driver, allowing an attacker to create his

own sessions with the device. Indeed the PKCS#11 standard recognises this: it states that

this kind of attack cannot however “compromise keys marked ‘sensitive’, since a key that is

sensitive will always remain sensitive”, [14, p. 31]. Clulow presented a number of attacks

which violate exactly this property, [4]. A typical one is the so-called ‘key separation attack’.

The name refers to the fact that the attributes of a key can be set and unset in such a way

as to give a key conflicting roles. Clulow gives the example of a key with the attributes set

for decryption of ciphertexts, and for ‘wrapping’, i.e. encryption of other keys for secure

transport. To determine the value of a sensitive key, the attacker simply wraps it and then

decrypts it, as shown in Figure 1. Here (and in subsequent boxes showing attacks), h(n1, k1)

represents the handle n1 of key k1. Even if the attacker knows, h(n1, k1), he can’t immediately

deduce the value of k1, and if he knows the value of some k3, he can’t a priori create himself a

handle h(n3, k3) for that key. The symmetric encryption of k1 under key k2 is represented by

senc(k1, k2). Note also that, crucially, PKCS#11 cannot tell whether an arbitrary bitstring

is a cryptographic key or some other piece of plaintext. Thus when it executes the decrypt

command, it has no way off telling that the packet it is decrypting contains a key.

As Clulow observes, it is not easy to prevent these kind of attacks, since there are a

large number of possible attributes a key might have, and it is not clear which combinations

are conflicting. The standard itself gives no advice on the subject, perhaps because to give

incomplete advice might lead designers into a false sense of security. Additionally, if safeguards

are added to the commands for setting and unsetting attributes, an attacker can subvert this

by importing two copies of a key onto a device, and setting one of the conflicting attributes on

4



each copy. Clulow also presented a pair of attacks he called ‘Trojan key attacks’, whereby the

intruder introduces a wrapping key that he knows the true value of, using a public unwrapping

key. He then wraps the sensitive key under this known wrapping key and decrypts the result

himself. Other vulnerabilities Clulow found include an attack based on the use of ECB mode

to wrap double length 3DES keys, and the use of single length DES keys to wrap double

length 3DES keys. Finally, he presented a series of attacks relying on particular details of

the algorithms supported by PKCS#11, specifically the use of small exponents in RSA keys

when using the X.509 mechanism to wrap symmetric keys, and the use of mechanisms that

permit a set of related symmetric keys to be generated, making them susceptible to a parallel

key search.

Related work. We are aware of three previous efforts to formally analyse configurations

of PKCS#11. Youn [18] used the first-order theorem prover Otter, and included in his model

only the commands needed for Clulow’s first attack (Figure 1). This model had one handle

for each key, preventing the discovery of some attacks, and a monotonic model of state

which would allow an intruder to take two mutually exclusive steps from the same state,

permitting false attacks. Tsalapati [17] used the AVISPA protocol analysis tools, included all

the key management commands, but also used a monotonic model of state, and one handle

for each key. She rediscovered a number of Clulow’s attacks, but the limitations of the model

prevented the discovery of the attacks we exhibit in this paperm. In unpublished work, Steel

and Carbone adapted Tsalapati’s models to account correctly for non-monotonic state, using

the sets supported by the AVISPA modelling language. However, the number of sessions

and hence command calls had to be bounded, and for non-trivial bounds, the performance of

the AVISPA back-ends rapidly deteriorated. We comment on how this could be improved in

Section 7.

All of these approaches (and our work) follow the ‘Dolev-Yao’ assumptions used for pro-

tocol analysis, [9], i.e. bit strings are abstracted to terms, and it is assumed that the attacker

can decompose and recompose terms arbitrarily, with the restriction that he can only decrypt

encrypted packets if he has the correct key. This means that for example Clulow’s final two
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attacks (small exponent X.509 and parallel key search) are out of scope for these models.

Our contributions. The contributions of our work are: a formal model for the core key

management operations of PKCS#11 which accounts for non-monotonic mutable state; a

decidabilitity result for this formalism given a bound on fresh terms, based on a practical

syntactic pruning rule (‘well-modedness’); a simple implementation that allows model check-

ing in our formalism, together with results on various PKCS#11 configurations, including

some new attacks; a formalisation of the proprietary extansions to the standard used in nCi-

pher and Eracom devices; and the results of an analysis of the security of these measures in

our model.

3 Formal model

3.1 Term algebra

We use classical notations on terms. For the sake of clarity, we recall here some important

definitions and we illustrate them in Example 1. We assume a given signature Σ, i.e. a

finite set of function symbols, with an arity function ar : Σ → ℕ, a (possibly infinite) set of

names N and a (possibly infinite) set of variables X . Names represent keys, data values,

nonces, etc. and function symbols model cryptographic primitives, e.g. encryption. Function

symbols of arity 0 are called constants. The set of plain terms PT (Σ,N ,X ) is defined by the

following grammar:

t, ti := x x ∈ X

∣ n n ∈ N

∣ f(t1, . . . , tn) f ∈ Σ and ar(f) = n

We also consider a finite set A of unary function symbols, disjoint from Σ which we call

attributes. The set of attribute terms is defined as

AT (A,Σ,N ,X ) = {att(t) ∣ att ∈ A, t ∈ PT (Σ,N ,X )}.

6



We define the set of terms as T (A,Σ,N ,X ) = AT (A,Σ,N ,X ) ∪ PT (Σ,N ,X ). The

set T (A,Σ,N , ∅), also written T (A,Σ,N ), is the set of ground terms and similarly for plain

and attribute terms. We write vars(t), resp. names(t), for the set of variables, resp. names,

that occur in the term t and extend vars and names to sets of terms in the expected way. By

abuse of notation, sometimes we will write term instead of plain term.

A position is a finite sequence of positive integers. The empty sequence is denoted �. The

set of positions pos(t) of a term t is defined inductively as pos(u) = {�} for u ∈ N ∪ X and

pos(f(t1, . . . , tn)) = {�} ∪
∪

1≤i≤n i ⋅ pos(ti) for f ∈ Σ ∪ A. If p is a position of t then the

subterm of t at position p is written t∣p, i.e. t∣� = t and f(t1, . . . , tn)∣i⋅p = ti∣p. The set of

subterms of a term t, written st(t), is defined as {t∣p ∣ p ∈ pos(t)}. We denote by top the

function that associates to each term t its root symbol, i.e. top(u) = u for u ∈ N ∪ X and

top(f(t1, . . . , tn)) = f .

A substitution � is a mapping from a finite subset of X called its domain, written dom(�),

to PT (Σ,N ,X ). Substitutions are extended to endomorphisms of T (A,Σ,N ,X ) as usual.

We use a postfix notation for their application. A substitution � is grounding for a term t if

the term t� is ground. This notation is extended as expected to sets of terms.

Example 1 We consider the signature Σenc = {senc, aenc, pub, priv, h} which we will use in

the following to model PKCS#11. The symbols senc and aenc of arity 2 represent respectively

symmetric and asymmetric encryption, whereas pub and priv of arity 1 are constructors to

obtain public and private keys respectively. Lastly, h is a symbol of arity 2 which allows

us to model handles to keys. We will use it with a nonce (formally a name) as the first

argument and a key as the second argument. Adding a nonce to the arguments of h allows us

to model several distinct handles to the same key. For instance having two handles h(n1, k1)

and h(n2, k1) models the fact that two distinct memory locations n1 and n2 hold the same key

k1. We model the attributes that are associated to handles by the means of the set A. For the

sake of simplicity our running example only considers these attributes: extract, wrap, unwrap,

encrypt, decrypt, sensitive.

We illustrate notations for manipulating terms on t = senc(aenc(n1, pub(n2)), x). We have

that vars(t) = {x}, top(t) = senc and pos(t) = {�, 1, 1.1, 1.2, 1.2.1, 2}. The term t∣1.2, i.e. the
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subterm of t at position 1.2, is pub(n2).

3.2 Description language

To model PKCS#11 and attacker capabilities we define a rule-based description language. It

is close to a guarded command language à la Dijkstra (see [8]) and to the multi-set rewriting

framework for protocol analysis (e.g. [13]). One particular point is that it makes a clean

separation between the intruder knowledge part, i.e. the monotonic part, and the current

system state which is formalized by the attributes that may be set or unset. The semantics

will be defined in a classical way as a transition system.

Syntax and informal semantics. As already mentioned attribute terms will be interpeted

as propositions. A literal is of the form a or ¬a where a ∈ AT (A,Σ,N ,X ). The description

of a system is given as a finite set of rules of the form

T ;L
new ñ−−−→ T ′;L′

where T and T ′ are sets of plain terms in PT (Σ,N ,X ), L and L′ are sets of literals and ñ is

a set of names in N . The intuitive meaning of such a rule is the following. The rule can be

fired if all terms in T are in the intruder knowledge and if all the literals in L are evaluated to

true in the current state. The effect of the rule is that terms in T ′ are added to the intruder

knowledge and the valuation of the attributes is updated to satisfy L′. The new ñ means

that all the names in ñ need to be replaced by fresh names in T ′ and L′. This allows us to

model nonce or key generation: if the rule is executed several times, the effects are different

as different names will be used each time.

We always suppose that L′ is satisfiable, i.e. it does not contain both a and ¬a. Moreover,

we require that names(T ∪L) = ∅ and names(T ′∪L′) ⊆ ñ. We also suppose that any variable

appearing in T ′ also appears in T , i.e. vars(T ′) ⊆ vars(T ), and any variable appearing in L′

also appears in L, i.e. vars(L′) ⊆ vars(L). These conditions were easily verified in all of our

experiments with PKCS#11.

Example 2 As an example consider the rules given in Figure 2. They model a part of
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Wrap (sym/sym) : h(x1, y1), h(x2, y2); wrap(x1), extract(x2) → senc(y2, y1)
Wrap (sym/asym) : h(x1, priv(z)), h(x2, y2); wrap(x1), extract(x2) → aenc(y2, pub(z))
Wrap (asym/sym) : h(x1, y1), h(x2, priv(z)); wrap(x1), extract(x2) → senc(priv(z), y1)

Unwrap (sym/sym) : h(x1, y2), senc(y1, y2); unwrap(x1)
new n1−−−−→ h(n1, y1); extract(n1), L

Unwrap (sym/asym) : h(x1, priv(z)), aenc(y1, pub(z)); unwrap(x1)
new n1−−−−→ h(n1, y1); extract(n1), L

Unwrap (asym/sym) : h(x1, y2), senc(priv(z), y2); unwrap(x1)
new n1−−−−→ h(n1, priv(z)); extract(n1), L

KeyGenerate :
new n1,k1−−−−−→ h(n1, k1);¬extract(n1), L

KeyPairGenerate :
new n1,s−−−−−→ h(n1, s), pub(s); ¬extract(n1), L

SEncrypt : h(x1, y1), y2; encrypt(x1) → senc(y2, y1)
SDecrypt : h(x1, y1), senc(y2, y1); decrypt(x1) → y2

AEncrypt : h(x1, priv(z)), y1; encrypt(x1) → aenc(y1, pub(z))
ADecrypt : h(x1, priv(z)), aenc(y2, pub(z)); decrypt(x1) → y2

Set Wrap : h(x1, y1); ¬wrap(x1) → wrap(x1)
Set Encrypt : h(x1, y1); ¬encrypt(x1) → encrypt(x1)

...
...

UnSet Wrap : h(x1, y1); wrap(x1) → ¬wrap(x1)
UnSet Encrypt : h(x1, y1); encrypt(x1) → ¬encrypt(x1)

...
...

where L = ¬wrap(n1),¬unwrap(n1),¬encrypt(n1),¬decrypt(n1),¬sensitive(n1). The ellipsis in
the set and unset rules indicates that similar rules exist for some other attributes.

Figure 2: PKCS#11 key management subset.
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PKCS#11. We detail the first rule which allows wrapping of a symmetric key with a symmet-

ric key. Intuitively the rule can be read as follows: if the attacker knows the handle h(x1, y1),

a reference to a symmetric key y1, and a second handle h(x2, y2), a reference to a symmetric

key y2, and if the attribute wrap is set for the handle h(x1, y1) (note that the handle is uniquely

identified by the nonce x1) and the attribute extract is set for the handle h(x2, y2) then the

attacker may learn the wrapping senc(y2, y1), i.e. the encryption of y2 with y1.

Semantics. The formal semantics of our description language is given in terms of a transi-

tion system. We assume a given signature Σ, a set of attributes A, a set of names N , a set of

variables X , and a set of rules ℛ defined over T (A,Σ,N ,X ). A partial valuation V of ground

attribute terms is a partial function V : AT (A,Σ,N ) → {⊤,⊥}. We extend valuations to

literals as

V (ℓ) =

⎧⎨⎩ V (a) if ℓ = a

¬V (a) if ℓ = ¬a

and to sets of literals (interpreted as a conjunction over the literals) as V (L) =
⋀
ℓ∈L V (ℓ)

when {a ∣ a ∈ L or ¬a ∈ L} ⊆ dom(V ). Moreover, we assume a given set of ground terms

S0 ⊆ PT (Σ,N ) and a partial valuation of ground attribute terms to represent the initial

state. In the following we say that the rule

t1, . . . , tn;L→ v1, . . . , vp;L
′′

is a fresh renaming w.r.t. a set of names N ⊆ N of a rule

t1, . . . , tn;L
new n1,...,nk−−−−−−−−→ u1, . . . , up;L

′

if vi = ui[n1 → n′1, . . . , nk → n′k] (1 ≤ i ≤ p), L′′ = L′[n1 → n′1, . . . , nk → n′k] and n′1, . . . , n
′
k

are distinct names not in N . These fresh renamings allow us to get rid of the new in the rule.

The transition system (Q, q0,⇝) is defined as follows:

∙ Q is the set of states: each state is a pair (S, V ), such that S ⊆ PT (Σ,N ) and V is any
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partial valuation of AT (A,Σ,N ).

∙ q0 = (S0, V0) is the initial state. S0 is the initial attacker knowledge and V0 defines the

initial valuation of some attributes.

∙ ⇝ ⊆ Q×Q is the transition relation defined as follows. We have that (S, V )⇝ (S′, V ′)

if

R := T ;L→ T ′;L′

is a fresh renaming w.r.t. names(S∪dom(V )) of a rule inℛ and there exists a grounding

substitution � for R such that

– T� ⊆ S, and

– V (L�) = ⊤.

Then, we have that S′ = S ∪ T ′�, and the function V ′ is defined as follows:

dom(V ′) = dom(V ) ∪ {a ∣ a ∈ L′ or ¬a ∈ L′}

V ′(a) =

⎧⎨⎩
⊤ if a ∈ L′

⊥ if ¬a ∈ L′

V (a) otherwise

Some of the rules, e.g. the unwrap and key generation rules in Figure 2, allow the creation

of new handles for which attributes are set and unset. We therefore dynamically extend the

domain of the valuation whenever such new handles are created. When an attribute is not

in the domain of the valuation it is considered to be undefined. An instance of a rule with

a literal containing such an undefined attribute on the left-hand side cannot be fired. Real

devices vary in the default values they assign to newly created objects, and our semantics

allows us to model underspecified rules for the creation of objects, where some attributes are

not given a value.

Note also that when (S, V ) ⇝ (S′, V ′) we always have that S ⊆ S′ and dom(V ) ⊆

dom(V ′).
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3.3 Queries

Security properties are expressed by the means of queries.

Definition 1 A query is a pair (T, L) where T is a set of terms and L a set of literals (both

are not necessarily ground).

Intuitively, a query (T, L) is satisfied if there exists a substitution � such that we can reach a

state where the adversary knows all terms in T� and all literals in L� are evaluated to true.

Definition 2 A transition system (Q, q0,⇝) satisfies a query (T, L) iff there exists a substi-

tution � and a state (S, V ) ∈ Q such that q0⇝∗(S, V ), T� ⊆ S, and V (L�) = ⊤.

Example 3 To illustrate our formal model, we will describe how the Decrypt/Wrap attack of

Figure 1 is reflected in this model. We consider the signature Σenc and the set of attributes A

given in Example 1, a set of names N ⊇ {n1, n2, k1, k2}, a set of variables X ⊇ {x1, y1, x2, y2}.

We only use the rules Wrap (sym/sym) and SDecrypt of Figure 2. Suppose that

∙ S0 = {h(n1, k1), h(n2, k2)}, and

∙ V0 is such that V0(wrap(n2)) = V0(decrypt(n2)) = V0(sensitive(n1)) = V0(extract(n1)) =

⊤ and all other attributes of n1 and n2 are mapped to ⊥.

Then we have that

(S0, V0) ⇝ (S0 ∪ {senc(k1, k2)}, V0)
def
= (S1, V1) Wrap (sym/sym)

⇝ (S1 ∪ {k1}, V1) SDecrypt

which implies that the query ({h(x, y), y}, sensitive(x)) is satisfied with the substitution � =

{x→ n1, y→ k1}.

4 Decidability

In this section, we first define the class of well-moded rules, using the notation introduced in

Section 3.2. In this class, when checking the satisfiability of a query, we show that it is correct
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to restrict the search space by considering only well-moded terms (Theorem 1). The notion

of mode is inspired from [2]. It is similar to the idea of having well-typed rules, but we prefer

to call them well-moded to emphasize that we do not have a typing assumption. Informally,

we do not assume that a device is able discriminate between bitstrings that were generated

e.g. as keys and random data, we simply show that if there is an attack, then there is an

attack where bitstrings are used for the purpose they were originally created. For the rules

given in Figure 2 that model a part of PKCS#11, the notion of mode we consider allows us

to bound the size of terms involved in an attack. Unfortunately, the secrecy problem is still

undecidable in this setting. Therefore we restrict ourselves to a bounded number of nonces

(see Section 4.3).

4.1 Preliminaries

In the following we consider a set of modes Mode and we assume that there exists a mode

function M : Σ ∪A×ℕ→ Mode such that M(f, i) is defined for every symbol f ∈ Σ ∪A and

every integer i such that 1 ≤ i ≤ ar(f). We also assume that a function sig : Σ∪A∪X ∪N →

Mode returns the mode to which a symbol f belongs. Note that variables and nonces are also

uniquely moded. As usual, we extend the function sig to terms: sig(t) = sig(top(t)). We will

use a rule-based notation f : m1 × . . .mn → m for each f ∈ Σ ∪ A and u : m for u ∈ N ∪ X

to define the functions M and sig such that M(f, i) = mi for 1 ≤ i ≤ n, sig(f) = m, and

sig(u) = m.

We say that a position p ∕= � of a term t is well-moded if p = p′.i and sig(t∣p) =

M(top(t∣p′), i). In other words the position in a term is well-moded if the subterm at that

position is of the expected mode w.r.t. to the function symbol immediately above it. If a

position is not well-moded, it is ill-moded. By convention, the root position of a term is

ill-moded. A term is well-moded if all its non-root positions are well-moded. A literal ℓ such

that ℓ = a or ℓ = ¬a is well-moded if a is well-moded. This notion is extended as expected

to sets of terms, rules, queries and states. For a state (S, V ), we require that the valuation V

is well-moded, i.e. for every a ∈ dom(V ), we have that a is well-moded.

Note that any term can be seen as a well-moded term if there is a unique mode, e.g. Msg,
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and any symbol f ∈ Σ ∪ A ∪ X ∪ N is such that f : Msg × . . . ×Msg → Msg. However, we

will use modes which imply that the message length of well-moded terms is bounded which

will allow us to reduce the search space.

Example 4 We consider the following set of modes:

Mode = {Cipher,Key, Seed,Nonce,Handle,Attribute}.

The following rules define the mode and signature functions of the associated function symbol:

h : Nonce× Key→ Handle

senc : Key × Key→ Cipher

aenc : Key × Key→ Cipher

pub : Seed→ Key

priv : Seed→ Key

att : Nonce→ Attribute for all att ∈ A

x1, x2, n1, n2 : Nonce

y1, y2, k1, k2 : Key

z, s : Seed

The rules described in Figure 2 are well-moded w.r.t. the mode and signature function

described above. This is also the case of the following rules which represent the deduction

capabilities of the attacker:

y1, y2 → senc(y1, y2)

senc(y1, y2), y2 → y1

y1, y2 → aenc(y1, y2)

aenc(y1, pub(z)), priv(z) → y1

aenc(y1, priv(z)), pub(z) → y1

z → pub(z)

The derivation (S0, V0) ⇝∗ (S1 ∪ {k1}, V1) described in Example 3 is well-moded in the
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sense that each of its states is well-moded. However, let S0 = {senc(k1, k2), k1} and V0 be a

function such that dom(V0) = ∅. Even if the state (S0, V0) and the rule involved in this step

are well-moded, the following derivation is not:

(S0, V0)⇝ (S0 ∪ {senc(senc(k1, k2), k1), V0).

The term senc(senc(k1, k2), k1) is not well-moded because of its subterm senc(k1, k2). However,

note that such a derivation (that is not well-moded) is not forbidden a priori by any typing

mechanism. We consider it in our semantics. By relying on the fact that the API we consider

is well-moded, we simply show that it is not necessary to consider such a derivation when we

are looking for an attack.

4.2 Existence of a well-moded derivation

We now show that in a system induced by well-moded rules, only well-moded terms need to

be considered when checking for the satisfiability of a well-moded query. In the following, we

assume a given mode and signature function.

The key idea to reduce the search space to well-moded terms is to show that whenever a

state (S, V ) is reachable from an initial well-moded state, we have that:

∙ The partial valuation V is necessarily well-moded (Lemma 1). Indeed any instance of

a well-moded rule that can be triggered from a state (S, V ) where the valuation V is

well-moded, leads to a state (S′, V ′) in which V ′ is also well-moded.

∙ Any ill-moded term v′ occurring in a term in S is itself deducible (Lemma 2). Note

that an instance of a well-moded rule can be triggered from a well-moded state (S, V )

to reach an ill-moded state (S′, V ′) (see Example 4). However, in such a situation, the

subterm that occurs at an ill-moded position also occurs in S. This is due to the fact

that the rules we consider are well-moded.

Lemma 1 Let ℛ be a set of well-moded rules and (S0, V0) be a well-moded state. Let (S, V )

be a state such that (S0, V0)⇝∗ (S, V ). We have that V is well-moded.
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Lemma 2 Let ℛ be a set of well-moded rules and (S0, V0) be a well-moded state. Let (S, V )

be a state such that (S0, V0) ⇝∗ (S, V ). Let v ∈ S and v′ be a subterm of v which occurs at

an ill-moded position. Then, we have that v′ ∈ S.

Before we prove our main result, that states that only well-moded terms need to be con-

sidered when checking for satisfiability of well-moded queries, we introduce a transformation

which turns any term into a well-moded term. We show that when we apply this transforma-

tion to a derivation, we obtain again a derivation.

We define for each mode m ∈ M a function ⋅ m over ground terms that replaces any ill-

moded subterm by a well-moded term, say tm, of the expected mode. In the remainder, we

assume given those terms tm (one per mode).

Definition 3 ( ⋅ m , ⋅ ) For each mode m ∈ M we define inductively a function ⋅ m as follows:

∙ nm =

⎧⎨⎩ n if n ∈ N and sig(n) = m

tm otherwise

∙ f(v1, . . . , vn)
m

=

⎧⎨⎩
f(v1

m1 , . . . , vn
mn)

if f : m1 × . . .mn → m

tm otherwise

The function ⋅ is defined as v = v sig(v).

Those functions are extended to sets of terms as expected. Note that, by definition, we

have that um is a well-moded term of mode m and u is a well-moded term of mode sig(u).

In Proposition 1 we show that this transformation allows us to map any derivation to a

well-moded derivation. This well-moded derivation is obtained by applying at each step the

same rule, say R. However, while the original derivation may use an instance R� of this rule

the transformed derivation will use the instance R�′, where �′ is obtained from � as described

in the following lemma.
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Lemma 3 Let v be a well-moded term and � be a grounding substitution for v. Let �′ be the

substitution defined as follows:

∙ dom(�′) = dom(�), and

∙ x�′ = x�
sig(x)

for x ∈ dom(�′).

We have that v�
sig(v)

= v�′.

Proposition 1 Let ℛ be a set of well-moded rules. Let (S0, V0) be a well-moded state and

consider the derivation: (S0, V0) ⇝ (S1, V1) ⇝ . . . ⇝ (Sk, Vk). Moreover, for each mode

m ∈ {sig(t) ∣ t ∈ PT (Σ,N )}, we assume that there exists a well-moded term tm of mode m

such that tm ∈ S0 (i.e. tm is known by the attacker) and ⋅ is defined w.r.t. to these tm’s.

We have that (S0, V0) ⇝ (S1, V1) ⇝ . . . ⇝ (Sk, Vk) by using the same rules (but different

instances).

Example 5 Let S0 be a set of terms that contains h(n1, k1), h(n2, k2) and senc(k1, k2). Let V0

be a function such that V0(unwrap(n2)) = V0(encrypt(n2)) = ⊤. Consider the following deriva-

tion D that is not well-moded:

(S0, V0) ⇝ (S0 ∪ senc(senc(k1, k2), k2), V0)
def
= (S1, V1) SEncrypt

⇝ (S1 ∪ senc(senc(senc(k1, k2), k2), k2), V1)
def
= (S2, V2) SEncrypt

⇝ (S2 ∪ {h(n3, senc(senc(k1, k2), k2))}, V3) Unwrap

for some valuation V3.

It is easy to see that the following sequence (S0, V0)⇝ (S1, V1)⇝ (S2, V2)⇝ (S3, V3) is a

well-moded derivation as soon as tKey ∈ S0 and sig(tKey) = Key. Note that this derivation uses

the same rule as D (but not the same intances). The second step keeps the state unchanged

since the term senc(tKey, k2) is already in the current state.
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(S0, V0) ⇝ (S0 ∪ senc(tKey, k2), V0) SEncrypt

⇝ (S0 ∪ senc(tKey, k2), V0) SEncrypt

⇝ (S0 ∪ {h(n3, tKey)}, V3) Unwrap

By relying on Proposition 1, it is easy to prove the following result.

Theorem 1 Let ℛ be a set of well-moded rules. Let q0 = (S0, V0) be a well-moded state such

that for each mode m ∈ {sig(t) ∣ t ∈ PT (Σ,N )}, there exists a well-moded term tm ∈ S0

of mode m. Let Q be a well-moded query that is satisfiable. Then there exists a well-moded

derivation witnessing this fact.

Note that we do not assume that an implementation enforces well-modedness. We allow

an attacker to yield derivations that are not well-moded. Our result however states that

whenever there exists an attack that uses a derivation which is not well-moded there exists

another attack that is. Our result is arguably even more useful than an implementation that

would enforce typing: it seems unreasonable that an implementation could detect whether

a block has been encrypted once or multiple times, while our result avoids consideration of

multiple encryptions, as such a term is ill-moded with the modes given in Example 4.

Example 6 Continuing Example 5, we consider the query Q = {h(x, y), y} and the well-

moded state q0 = (S0, V0) as defined in Example 5. We also assume that S0 ⊇ {tm ∣ m ∈

{Nonce,Key,Handle,Cipher,Seed}}. The query Q is a well-moded query that is satisfiable

in q0. The derivation D described in Example 5 witnesses this fact (x 7→ n3, and y 7→

senc(senc(k1, k2), k2)). This derivation is not well-moded. However, there exists a well-moded

derivation witnessing this fact. Indeed the well-moded derivation described in Example 5

witnesses this fact: x 7→ n3, and y 7→ tKey.

4.3 Decidability result

Unfortunately, Theorem 1 by itself is not very informative. As already noted, it is possible

to have a single mode Msg which implies that all derivations are well-moded. However, the

modes used in our modelling of PKCS# 11 (see Example 4) imply that all well-moded terms
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have bounded message length. It is easy to see that well-moded terms have bounded message

length whenever the graph on modes that is defined by the functions M and sig is acyclic

(the graph whose set of vertices is Mode with edges between modes mi (1 ≤ i ≤ n) and m

whenever there exists a rule f : m1 × . . . × mk → m). Note that for instance a rule which

contains nested encryption does not yield a bound on the message size.

However, bounded message length is not sufficient for decidability. Indeed, undecidability

proofs [10, 16] for security protocols with bounded message length and unbounded num-

ber of nonces are easily adapted to our setting. We only need to consider rules of the form

T
new ñ−−−→ T ′ (no literal) to realize their encodings of the Post Correspondence Problem. There-

fore we bound the number of atomic data of each mode, and obtain the following corollary of

Theorem 1:

Corollary 1 Let ℛ be a set of well-moded rules such that well-modedness implies a bound

on the message length. Let q0 = (S0, V0) be a well-moded state such that for each mode

m ∈ {sig(t) ∣ t ∈ PT (Σ,N )}, there exists a well-moded term tm ∈ S0 of mode m. The problem

of deciding whether the query Q is satisfiable is decidable when the set of names N is finite.

Our main application is the fragment of PKCS#11 described in Figure 2. Thanks to

Corollary 1, we are able to bound the search space and to realize some experiments with a

well-known model-checker, NuSMV, [3].

5 Analysing PKCS#11

In this section, we describe the implementation of the decision procedure arising from the

decidability result (Corollary 1) for a bounded of number keys and handles. As explained in

Section 1, our formal work was primarily motivated by the example of RSA PKCS#11, which

is widely deployed in industry, and hence our experiments focus on PKCS#11 based APIs.

Other APIs such as the API of the Trusted Platform Module (TPM) will also require global

mutable state to be modelled.

As we described in Section 1, PKCS#11 is a standard designed to promote interoperability,

not a tightly defined protocol with a particular goal. As such, the aim of our experiments was
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to analyse a number of different configurations in order to validate our approach. We take as

our security property the secrecy of sensitive keys, stated in the manual as a property of the

interface, [14, p. 31]. Roughly speaking, our methodology was to start with a configuration

involving only symmetric keys, and to try to restrict the API until a secure configuration was

found. We then added asymmetric keypairs, and repeated the process. A secure configuration

proved only to be possible by adding the ‘trusted keys’ mechanism introduced in PKCS#11

v2.20. We carried out some experiments modelling the algebraic properties of the ECB mode

of encryption. Finally we added the proprietary extensions to the standard used by two

commercial providers of cryptographic hardware, and analysed the security of these. The

proprietary extensions require some explanation, and are described in a separate section

(Section 6).

PKCS#11 is described in a large and complex specification [14], running to 392 pages.

We model here only the key management operations at the core of the API. With the respect

to the full list of commands in the standard [14, p. 89], we omit the DeriveKey command,

all of the commands from the session, object, slot and token management function sets, the

digest, signing and verification functions, and the random number generating functions. We

include key generation, import and export, encryption and decryption of data, and setting

and unsetting of key attributes. We assume, as suggested in PKCS#11 [14, p. 31] that the

intruder is able to freely hijack user sessions, and is thus able to send arbitrary sequences of

commands to the interface with arbitrary parameters from his knowledge set. Following on

from our theoretical work, we further assume that only a fixed bounded number of handles

are available, and a bounded number of atomic keys. We do not a priori bound the number of

times each command may be executed, but this is implicitly bounded by the finite vocabulary

of well-moded terms available, since a rule will not be executed twice with exactly the same

state and intruder knowledge inputs. Finally, note that we model the setting of attributes

of keys stored on the device via a series of rules: one to set and one to unset each attribute.

In the real API, there is a single command C SetAttributeValues, to which the new values

for the attributes are supplied as parameters. We found it more convenient to encode this in

separate commands to facilitate the addition of constraints to certain attribute setting and
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unsetting operations.

5.1 Generating propositional models

By Theorem 1, once we have bounded the number of handles and keys, we only have to

consider a finite set of possible terms in the intruder’s knowledge. Our approach is to encode

each possible term as a propositional variable, which will be true just when the term is in the

intruder’s knowledge set. In addition to this, we have the attributes that constitute the state

of the system. Since we have bounded the number of handles, and we need only consider

attributes applied to handles by our well-modedness result, we can also encode the state as

a finite number of propositional variables: one for each attribute applied to each handle. A

variable is true when the attribute is set for that handle.

We can now generate a propositional model for the API by generating all the ground

instances of the API rules, and compiling these to our propositional encoding. This is cur-

rently done by a Perl script, which accepts parameters defining the exact configuration to be

modelled, but it should be easy enough to produce a general-purpose compiler for our class

of rules. We define a configuration by:

1. the number of symmetric keys, the number of asymmetric key pairs, and the number of

available handles for each key;

2. the initial knowledge of the intruder;

3. the initial state of the attributes.

Note that having set the number of handles available, we are able to pre-compute the

names of the handles rather than having to generate fresh names during the unwrap and

generate commands. Since all commands which generate fresh handles return their values

unencrypted, we can be sure that a handle is fresh when it is generated in a command simply

by checking that it is not yet known to the intruder. As a further optimisation, we include

handles for all the keys the intruder can generate in a particular configuration in his initial

knowledge, and remove the key generation commands.
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To facilitate the generation of the models for our program of experiments, our scripts also

accept the following parameters:

1. A list of sticky attributes, i.e. those which, once set, cannot be unset, and those which

once unset, cannot be set. Footnotes 11 and 12 in the PKCS#11 standard mark these

attributes [14, Table 15]. We add further attributes to the list during our experiments,

as detailed below. Adding an attribute to the list causes the generation script to omit

the appropriate Set or Unset commands from the model.

2. A list of conflicting attributes, i.e. for each attribute a a list of conflicting attributes

a1, a2, . . . such that for a given handle h(n, k), attribute a may not be set on that handle

if any of the ai are also set. Adding attributes to this list causes the script to add

appropriate conditions to the left hand side of the Set rules.

The propositional encoding of the API model is generated in a syntax suitable for the

model checker NuSMV, [3]. We then ask NuSMV to check whether a security property holds,

which is a reachability property in our transition system. In all our experiments we are

concerned with a single security property, the secrecy of sensitive keys.

5.2 Experiments with PKCS#11

All the files for our experiments are available at http://www.lsv.ens-cachan.fr/∼steel/

pkcs11. The output from NuSMV for each experiment is available at the same address. The

standard NuSMV output gives the details of variables whose value has changed at each step,

i.e. changes in attribute values and newly acquired intruder knowledge. Attack traces can be

easily extracted from this output.

We describe each experiment below and summarise in Table 1. In the figures describing

attacks, we sometimes omit the values of attributes whose value is inconsequential to the

attack, for the sake of clarity. Similarly, we omit unused terms from the intruder’s initial

knowledge.
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Experiment 1. In our first four experiments, we model a PKCS#11 configuration with 3

symmetric keys: one is a sensitive key, k1, stored on the device, for which the intruder knows

the handle but not the true value of the key. The second, k2, is also loaded onto the device,

and the intruder has a handle but not the true value. The third is the intruder’s own key, k3,

which is not loaded onto the device in the initial state. We start with a configuration in which

the only restrictions on attribute setting and unsetting are those described in the manual. As

expected, we immediately rediscover Clulow’s key separation attack for the attributes decrypt

and wrap (see Figure 1).

Experiment 2. We modify the configuration from Experiment 1 by applying Clulow’s first

suggestion: attribute changing operations are prevented from allowing a stored key to have

both wrap and decrypt set. Note that in order to do this, it is not sufficient merely to check

that decrypt is unset before setting wrap, and to check wrap is unset before setting decrypt.

One must also add wrap and decrypt to the list of sticky attributes which once set, may not

be unset, or the attack is not prevented, [17]. Having applied these measures, we discovered

a previously unknown attack, given in Figure 3. The intruder imports his own key k3 by

first encrypting it under k2, and then unwrapping it. He can then export the sensitive key k1

under k3 to discover its value.

Initial state: The intruder knows the handles h(n1, k1),
h(n2, k2) and the key k3; n1 has the attributes sensitive and
extract set whereas n2 has the attributes unwrap and encrypt
set.

Trace:

SEncrypt: h(n2, k2), k3 → senc(k3, k2)

Unwrap: h(n2, k2), senc(k3, k2)
new n3−−−−→ h(n3, k3)

Set wrap: h(n3, k3) → wrap(n3)
Wrap: h(n3, k3), h(n1, k1) → senc(k1, k3)
Intruder: senc(k1, k3), k3 → k1

Figure 3: Attack discovered in Experiment 2

23



Experiment 3. To prevent the attack shown in Figure 3, we add encrypt and unwrap to

the list of conflicting attribute pairs. Another new attack is discovered (see Figure 4) of a

type discussed by Clulow, [4, Section 2.3]. Here the key k2 is first wrapped under k2 itself,

and then unwrapped, gaining a new handle h(n4, k2). The intruder then wraps k1 under k2,

and sets the decrypt attribute on handle h(n4, k2), allowing him to obtain k1.

Initial state: The intruder knows the handles h(n1, k1),
h(n2, k2); n1 has the attributes sensitive, extract and whereas
n2 has the attribute extract set.

Trace:

Set wrap: h(n2, k2) → wrap(n2)
Wrap: h(n2, k2), h(n2, k2) → senc(k2, k2)
Set unwrap: h(n2, k2) → unwrap(n2)

Unwrap: h(n2, k2), senc(k2, k2)
new n4−−−−→ h(n4, k2)

Wrap: h(n2, k2), h(n1, k1) → senc(k1, k2)
Set decrypt: h(n4, k2) → decrypt(n4)
SDecrypt: h(n4, k2), senc(k1, k2) → k1

Figure 4: Attack discovered in Experiment 3

Experiment 4. We attempt to prevent the attack in Figure 4 by adding wrap and unwrap

to our list of conflicting attribute pairs. In addition to the initial knowledge from the first

three experiments, we give the intruder an unknown k3 encrypted under k2. Again he is able

to affect an attack similar to the one above, this time by unwrapping senc(k3, k2) twice (see

Figure 5).

Experiment 5. We now add two asymmetric keypairs to the model. One,

(pub(s1), priv(s1)), is loaded onto the device and is unknown to the intruder (apart from

the handle). The other, (pub(s2), priv(s2)), is the intruder’s own keypair, but is not loaded

onto the device. We now rediscover Clulow’s Trojan Wrapped Key attack, [4, Section 3.5],

shown in Figure 6. We also note that Clulow’s other Trojan Key attack, [4, Section 3.4], is

now no longer possible: Clulow analysed version 2.01 of the standard, and observed that the

Wrap command accepts a clear public key as input, allowing a Trojan Public Key attack -
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Initial state: The intruder knows the handles h(n1, k1),
h(n2, k2); n1 has the attributes sensitive, extract and whereas
n2 has the attribute extract set. The intruder also knows
senc(k3, k2).

Trace:

Set unwrap: h(n2, k2) → unwrap(n2)

Unwrap: h(n2, k2), senc(k3, k2)
new n3−−−−→ h(n3, k3)

Unwrap: h(n2, k2), senc(k3, k2)
new n4−−−−→ h(n4, k3)

Set wrap: h(n3, k3) → wrap(n3)
Wrap: h(n3, k3), h(n1, k1) → senc(k1, k3)
Set decrypt: h(n4, k3) → decrypt(n4)
SDecrypt: h(n4, k3), senc(k1, k3) → k1

Figure 5: Attack discovered in Experiment 4

the intruder generates his own keypair, and then supplies the public key as a wrapping key.

In the current version of the standard (2.20), the command accepts only a handle for a public

key, which must be loaded onto the device.

Initial state: The intruder knows the handles h(n1, k1),
h(n2, k2) and the key k3; n1 has the attributes sensitive
and extract set, n2 has the attribute extract. The intruder
also knows the public key pub(s1) and its associated handle
h(n3, priv(s1));

Trace:

Intruder: k3, pub(s1) → aenc(k3, pub(s1))
Set unwrap: h(n3, priv(s1)) → unwrap(n3)

Unwrap: aenc(k3, pub(s1))
new n4−−−−→ h(n4, k3)

h(n3, priv(s1))

Set wrap: h(n4, k3) → wrap(n4)
Wrap: h(n4, k3), h(n1, k1) → senc(k1, k3)
Intruder: senc(k1, k3), k3 → k1

Figure 6: Clulow’s Trojan Wrapped Key attack rediscovered in Experiment 5

Experiment 6. Version 2.20 of the PKCS#11 standard includes a new feature intended to

improve security: trusted keys. Two more attributes are introduced: wrap with trusted and

trusted. In addition to testing that a key to be wrapped is extractable, Wrap now tests that
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if the key to be wrapped has wrap with trusted set, then the wrapping key must have trusted

set. Only the security officer (SO) can mark a key as trusted. Additionally, wrap with trusted

is a sticky attribute - once set, it may not be unset.

This mechanism would appear to have some potential: as long as the security officer

only logs into the device when it is connected to a trusted terminal, he should be able to

keep his PIN secure, and so be able to control which keys are marked as trusted. We took

our configuration from Experiment 5, and added the trusted key features, marking n1 as

wrap with trusted, and n2 as trusted. We discover another attack, given in Figure 7. Here, the

intruder first attacks the trusted wrapping key, and then obtains the sensitive key.

Initial state: The intruder knows the handles h(n1, k1),
h(n2, k2) and the key k3; n1 has the attributes sensitive, ex-
tract and wrap with trusted whereas n2 has the attributes ex-
tract and trusted set. The intruder also knows the public key
pub(s1) and its associated handle h(n3, priv(s1));

Trace:

Intruder: k3, pub(s1) → aenc(k3, pub(s1))
Set unwrap: h(n3, priv(s1)) → unwrap(n3)

Unwrap: aenc(k3, pub(s1))
new n4−−−−→ h(n4, k3)

h(n3, priv(s1))

Set wrap: h(n4, k3) → wrap(n4)
Wrap: h(n4, k3), h(n2, k2) → senc(k2, k3)
Intruder: senc(k2, k3), k3 → k2
Set wrap: h(n2, k2) → wrap(n2)
Wrap: h(n2, k2), h(n1, k1) → senc(k1, k2)
Intruder: senc(k1, k2), k2 → k1

Figure 7: Attack discovered in Experiment 6

Experiment 7. In Experiment 7 we prevent the attack in Figure 7 by marking n2 as

wrap with trusted. Finally we obtain a configuration which is secure in our model.

Experiment 8. We extend the initial state from Experiment 7 by setting the attributes

trusted and wrap with trusted for the public keypair (priv(s1), pub(s1)). Our security property

continues to hold in this model.
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Experiment 9. Clulow has shown vulnerabilities in PKCS#11 arising from the use of

double length 3DES keys and electronic code book (ECB) mode encryption. We extended

our model to bring these attacks in scope. The symbol pair captures pairing of keys. To

preserve well-modedness, we introduce new function symbols for encrypting a single key under

a double length key (sp senc), encrypting a double length key under a single key (ps senc), and

encrypting a double length key under a double length key (pp senc). We give the symbols

and their associated modes in Figure 8. We introduce extra intruder rules to capture the

intruder’s ability to make pairs and deduce exploit the properties of ECB mode encryption of

pairs. To capture Clulow’s attacks, we model the assumption that single-length DES keys can

be cracked by brute force. For this we require rules senc(y1, y2), y1 → y2 (and the equivalent

for plaintext pairs), and senc(y1, y1) → y1 - the intruder can crack single length keys if he

knows the plaintext, or if he knows the ciphertext consists of the key encrypted under itself.

All the intruder rules are given in Figure 8. Note that the model also contains all the rules

in Figure 2 with versions for single and double length keys as expected.

In a model with three atomic keys and two double-length keys, we search for attacks on

a double length key. We first rediscover Clulow’s weaker key attack, [4, Section 2.4], see

Figure 9. Note that this attack does not use any of the specific properties of ECB encryption:

it merely succeeds because the attacker is able to first brute-force crack a single-length DES

key (k3) and then ask to have the double length key pair(k1, k2) encrypted under k3. This

attack is discovered first because it is shorter than the ECB attack.

Experiment 10. In Experiment 10, we prevent Clulow’s weaker key attack by removing

the rule whereby the wrap command uses a single length key to encrypt a double length key.

We now rediscover Clulow’s ECB based attack, [4, Section 2.2], see Figure 10. Here, the

attacker first wraps a double length key under a double length key, then, by exploiting the

properties of ECB encryption, he obtains two single length keys, which he can re-import and

crack individually. Notice that this attack requires a handle for a key with both wrap and

unwrap set, which we have already discovered can give rise to attacks (see Experiment 3). We

re-enabled this combination only to test that Clulow’s attacks would be found.
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Additional Intruder Rules:
y1, y2 → pair(y1, y2)

pair(y1, y2) → y1
pair(y1, y2) → y2

senc(y1, y3), senc(y2, y3) → ps senc(pair(y1, y2), y3)
ps senc(pair(y1, y2), y3) → senc(y1, y3)
ps senc(pair(y1, y2), y3) → senc(y2, y3)

sp senc(y1, pair(y3, y4)), sp senc(y2, pair(y3, y4)) → pp senc(pair(y1, y2), pair(y3, y4))
pp senc(pair(y1, y2), pair(y3, y4)) → sp senc(y1, pair(y3, y4))
pp senc(pair(y1, y2), pair(y3, y4)) → sp senc(y2, pair(y3, y4))

y1, pair(y2, y3) → sp senc(y1, pair(y2, y3))
y1, pair(y2, y3) → ps senc(pair(y2, y3), y1)

pair(y1, y2), pair(y3, y4) → pp senc(pair(y1, y2), pair(y3, y4))
sp senc(y1, pair(y2, y3)), pair(y2, y3) → y1

ps senc(pair(y2, y3), y1), y1 → pair(y2, y3)
pp senc(pair(y1, y2), pair(y3, y4)), pair(y3, y4) → pair(y1, y2)

senc(y1, y2), y1 → y2
ps senc(pair(y1, y2), y3), pair(y1, y2) → y3

senc(y1, y1) → y1

Modes:

pair Key × Key → Pair
sp senc Key × Pair → CipherPair
pp senc Pair × Pair → CipherPairPair
ps senc Pair × Key → PairCipher

Figure 8: Additional Intruder Rules (ECB)

As Table 1 shows, run times vary from a few seconds to a few minutes. However, increasing

the size of the model by adding more handles often leads to a model larger than NuSMV can

store in our compute server’s 4Gb of RAM. The largest models in Table 1 (i.e. Exp. 5, 6, 7

and 8) have 128 variables.

6 Analysing Proprietary Extensions

We obtained details of some extensions to PKCS#11 employed by Hardware Security Module

(HSM) manufacturers nCipher1 and Eracom2. HSMs typically consist of a small computer

capable of carrying out cryptographic operations embedded in a tamper-resistant unit. They

1Now owned by Thales, http://www.ncipher.com
2Now owned by Safenet INC, http://www.safenet-inc.com/
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Initial state: The intruder knows the handles h(n1, pair(k1, k2)) (for double-
length key pair(k1, k2)) and h(n2, k3). n1 has the attributes sensitive and
extract set.

Trace:

Set wrap: h(n2, k3) → wrap(n2)
Set extract: h(n2, k3) → extract(n2)
Wrap: h(n2, k3), h(n2, k3) → senc(k3, k3)
Crack: senc(k3, k3) → k3
Wrap: h(n2, k3), h(n1, pair(k1, k2)) → ps senc(pair(k1, k2), k3)
Intruder: ps senc(pair(k1, k2), k3), k3 → pair(k1, k2)

Figure 9: Clulow’s weaker key attack rediscovered in Experiment 9

are used in security critical environments such as the banking sector, and have a typical

unit price of several thousand dollars. The aim of our experiments was not to ‘attack’ these

manufacturer’s security measures, but rather to validate our approach for analysing particular

configurations of a PKCS#11 API including these measures. This is because it is clear that

even with the proprietary measures, it is still possible to write a PKCS#11 compatible API

that will leak sensitive keys. The aim of the measures is to provide extra functionality

that makes it easier to produce secure configurations. Therefore our methodology for the

experiments was to try various configurations for each measure, both secure and insecure,

and evaluate the performance of our tools on these models.

6.1 nCipher SAM

The nCipher nShield device has a library called the ‘Security Assurance Mechanism’ (SAM),

which is intended to warn you when you use features of PKCS#11 that may lead to at-

tacks. The SAM is designed to throw exceptions when ‘questionable’ behaviour occurs, where

questionable behaviour is designed by a set of checks given below. Intuitively, questionable

behaviour is something that might lead to the value of a key being discovered outside the

device. The intention is that the application developer examines the warning messages when

the application is under test. Then, he can turn off certain rules of the SAM to allow com-

mands which the SAM considers to be questionable to pass, after he has reviewed the error

messages to make sure they are safe for his particular application scenario.
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Initial state: The intruder knows the handles h(n1, pair(k1, k2)) (for double-length key
pair(k1, k2)) and h(n2, k3). n1 has the attributes sensitive, extract,wrap and unwrap.

Trace:

Wrap: h(n1, pair(k1, k2)), h(n1, pair(k1, k2)) → pp senc(pair(k1, k2), pair(k1, k2))
ECB: pp senc(pair(k1, k2), pair(k1, k2)) → sp senc(k1, pair(k1, k2))

Unwrap: sp senc(k1, pair(k1, k2))
new n3−−−−→ h(n3, k1)

h(n1, pair(k1, k2))

ECB: pp senc(pair(k1, k2), pair(k1, k2)) → sp senc(k2, pair(k1, k2))

Unwrap: sp senc(k2, pair(k1, k2))
new n4−−−−→ h(n4, k2)

h(n1, pair(k1, k2))

Set wrap: h(n3, k1) → wrap(n3)
Wrap: h(n3, k1), h(n3, k1) → senc(k1, k1)
Crack: senc(k1, k1) → k1
Wrap: h(n3, k1), h(n3, k2) → senc(k2, k1)
Intruder: senc(k2, k1), k1 → k2
Intruder: k1, k2 → pair(k1, k2)

Figure 10: Clulow’s ECB attack rediscovered in Experiment 10

The description of the SAM is given informally in the nCipher nShield manual, and

contains a certain amount of ambiguity. We have tried to rationally reconstruct the operation

of the mechanism here, but note that we cannot be absolutely sure that the real device

functions in the same way as we have not tested one.

In its default behaviour, the SAM considers several operations to be ‘questionable’. Some

of these are out-of-scope for our abstract model - we do not consider key length, key lifetime or

particular cryptographic algorithms. Our experiments cover only the following ‘questionable’

behaviour:

1. importing keys from external sources;

2. creating or importing wrapping keys;

3. creating or importing unwrapping keys.

The parameter OVERRIDE SECURITY ASSURANCES can be set to various values in order to

prevent exceptions from being thrown when these behaviour occur. Values relevant to the

scope of our model are:
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all setting this flag causes all the SAM checks to be turned off.

import By default, keys imported via Unwrap command are considered insecure. Setting this

parameter allows them to be considered secure, as long as there is no other active SAM

check which rules them insecure.

unwrap mech Setting this parameter allows keys transferred into the device using insecure

encryption to be treated as if they had been protected by secure encryption. When the

unwrap mech parameter is set, unwrap keys automatically have the decrypt attribute

set. This is because abuse of the unwrap mechanism in the nCipher implementation of

PKCS#11 would allow the key to be used for decryption anyway.

unwrap kek Imported keys are only considered secure if the unwrapping key (or key encrypt-

ing key - kek) has only the wrap and unwrap permissions set, not the decrypt attribute.

As noted above, in the nCipher implementation, if unwrap mech is set then all unwrap

keys have the decrypt attribute set. Setting this parameter causes the device to ignore

that, and consider the imported keys to be secure anyway.

The nCipher implementation considers all of PKCS#11’s key transport mechanisms to be

insecure. So, in order to unwrap keys without them being considered insecure by the SAM,

you need to set at least unwrap mech, unwrap kek, and import. Otherwise, any unwrapping

operation will cause an error. There seems to be some confusion here: you have to switch

on unwrap mech to allow key import, which gives unwrapping keys the decrypt attribute,

immediately rendering key import insecure, which you then have to ignore with the unwrap kek

setting. It would seem more sensible to set an attribute which disallows the abuse of the

unwrapping mechanism to decrypt a key, but we report only what we found on reading the

nCipher manual. Possibly these rules were designed for some future version of PKCS#11

where some wrapping mechanisms are considered secure, and some not.

As we have explained, the idea of the SAM is not to produce a secure configuration, but

to warn the developer when a key may not be secure. To model this, we add an attribute

considered secure to the model described in section 3, denoted cs. Note that there are no

set/unset rules for this attribute. We give below the model we used in our formal language
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(Figure 11). As noted, we cannot be sure that the nCipher SAM functions exactly in this way

having not tested a device, but this seemed the most logical interpretation of the informal

specification. During the experiments, the following further changes to the model are made

to account for the different values of OVERRIDE SECURITY ASSURANCES:

1. If all is set, the model functions just as before (see section 3), and the cs attribute is

ignored.

2. If all is unset, but all the other parameters under consideration are set, then the only

difference is that the wrap and unwrap attributes are sticky off, i.e. cannot be set,

preventing the creation of (un)wrapping keys (the second and third ‘questionable be-

haviour’ mentioned above).

3. If any of unwrap mech, unwrap kek, import are unset, then all unwrapped keys have

considered secure set to false - the unwrap rules marked v1 are included. If they are all

set, then an unwrapped key is considered secure, as long as the unwrapping key is also

considered secure - unwrap rules marked v2 are included. Unwrap rules marked v0 are

always included.

Summary of Experiments The aim of the nCipher SAM is not to prevent sensitive keys

from becoming known, but to alert the application when this might be the case. Therefore,

in our experiments, the security property is not that all sensitive keys must remain unknown

to the intruder, as before, but that any key with the attribute considered secure set must

remain unknown to the intruder, i.e., an attack is valid only when the intruder learns the

value of a key and the SAM still considers it to be secure. All model files are available from

http://www.lsv.ens-cachan.fr/∼steel/pkcs11.

Experiment 11 With all the SAM measures in use, no attacks are found in a model with

2 symmetric keys, 2 asymmetric keypairs, and 8 handles, in 10 minutes time.
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Wrap
(sym/sym) : h(x1, y1), h(x2, y2);

wrap(x1), extract(x2), cs(x1)
→ senc(y2, y1)

h(x1, y1), h(x2, y2);
wrap(x1), extract(x2),¬cs(x1) → senc(y2, y1); ¬cs(x2)

Wrap
(sym/asym) : h(x1, priv(z)), h(x2, y2);

wrap(x1), cs(x1), extract(x2)
→ aenc(y2, pub(z))

h(x1, priv(z)), h(x2, y2);
wrap(x1),¬cs(x1), extract(x2) → aenc(y2, pub(z)); ¬cs(x2)

Wrap
(asym/sym) : h(x1, y1), h(x2, priv(z));

wrap(x1), cs(x1), extract(x2)
→ senc(priv(z), y1)

h(x1, y1), h(x2, priv(z));
wrap(x1),¬cs(x1), extract(x2) → senc(priv(z), y1); ¬cs(x2)

Unwrap
(sym/sym)v0 : h(x1, y2), senc(y1, y2);

unwrap(x1),¬cs(n1)
new n1−−−−→ h(n1, y1); extract(n1),

¬cs(n1), L
Unwrap
(sym/asym)v0 : h(x1, priv(z)), aenc(y1, pub(z));

unwrap(x1),¬cs(n1)
new n1−−−−→ h(n1, y1); extract(n1),

¬cs(n1), L
Unwrap
(asym/sym)v0 : h(x1, y2), senc(priv(z), y2);

unwrap(x1),¬cs(n1)
new n1−−−−→ h(n1, priv(z)); extract(n1),

¬cs(n1), L

Unwrap
(sym/sym)v1 : h(x1, y2), senc(y1, y2);

unwrap(x1), cs(n1)
new n1−−−−→ h(n1, y1); extract(n1),

¬cs(n1), L
Unwrap
(sym/asym)v1 : h(x1, priv(z)), aenc(y1, pub(z));

unwrap(x1), cs(n1)
new n1−−−−→ h(n1, y1); extract(n1),

¬cs(n1), L
Unwrap
(asym/sym)v1 : h(x1, y2), senc(priv(z), y2);

unwrap(x1), cs(n1)
new n1−−−−→ h(n1, priv(z)); extract(n1),

¬cs(n1), L

Unwrap
(sym/sym)v2 : h(x1, y2), senc(y1, y2);

unwrap(x1), cs(n1)
new n1−−−−→ h(n1, y1); extract(n1),

cs(n1), L

Unwrap
(sym/asym)v2 : h(x1, priv(z)), aenc(y1, pub(z));

unwrap(x1), cs(n1)
new n1−−−−→ h(n1, y1); extract(n1),

cs(n1), L

Unwrap
(asym/sym)v2 :

h(x1, y2), senc(priv(z), y2);
unwrap(x1), cs(n1)

new n1−−−−→ h(n1, priv(z)); extract(n1),
cs(n1), L

KeyGenerate :
new n1,k1−−−−−→ h(n1, k1);¬extract(n1), cs(n1), L

KeyPairGenerate :
new n1,s−−−−−→ h(n1, s), pub(s); ¬extract(n1), cs(n1), L

SEncrypt : h(x1, y1), y2; encrypt(x1) → senc(y2, y1)
SDecrypt : h(x1, y1), senc(y2, y1); decrypt(x1) → y2

AEncrypt : h(x1, priv(z)), y1; encrypt(x1) → aenc(y1, pub(z))
ADecrypt : h(x1, priv(z)), aenc(y2, pub(z)); decrypt(x1) → y2

Set Encrypt : h(x1, y1); ¬encrypt(x1) → encrypt(x1)
...

...

UnSet Encrypt : h(x1, y1); encrypt(x1) → ¬encrypt(x1)
...

...

where L = ¬wrap(n1),¬unwrap(n1),¬encrypt(n1),¬decrypt(n1),¬sensitive(n1). The ellipsis in the set
and unset rules indicates that similar rules exist for some other attributes.

Figure 11: PKCS#11 key management subset with nCipher SAM
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Experiment 12 If we turn off the key import restrictions by setting unwrap mech, un-

wrap kek, and import, and give the intruder a wrapping key in his initial knowledge, we

rediscover the original wrap/decrypt attack (Fig 1) in just over a minute.

Experiment 13 If we now re-impose the restrictions on attribute setting developed over

experiments 1-3 with the original PKCS#11, no attack is found. Note however that this

includes declaring unwrap and decrypt as a conflicting pair.

Experiment 14 Finally if we set the parameter all, the model functions as before and we

rediscover the Trojan Wrapped Key attack, [4, Section 3.5].

6.2 Eracom Wrap mechanism

The Eracom protectServer API supports an additional key import-export mechanism which

is intended to bind attributes to the key. The Eracom mechanism, Wrapkey DES3 CBC is

a combination of the 3DES encryption of the key using Cipher Block Chaining mode, and

the HMAC of the attributes and key. Given a handle to a wrapping key h(n1, k1) and the

handle for a key to be wrapped h(n2, k2), it proceeds as follows, where atts(n2) represents the

concatenation of all the attributes of h(n2, k2):

1. Generate fresh MAC key Mk;

2. Return senc(k2, k1), atts(n2), hmac(atts(n2), k2,Mk), senc(Mk, k1).

When a key is unwrapped under this mechanism, the MAC key is extracted from the final

packet, and used to check that the HMAC matches up with the attributes and key supplied.

If the HMAC does not match, key import will fail.

To analyse the Eracom measure we used the model in Figure 12. Note that only sym-

metric keys are supported, since the Eracom mechanism only applies to 3DES. In our model,

the Eracom key wrapping method is the only one available. Note also that unfortunately

the introduction of the hash function for the HMAC produces an explosion in the number

of variables in the NuSMV model for our näıve encoding, so we cannot carry out the anal-

ysis without making some abstractions. In Figure 12, we give a simplified model where we
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allow keys to have only the combined attributes ‘encrypt and decrypt’ and ‘wrap and un-

wrap’ (ed and wu) respectively. All keys are considered sensitive and extractable. The two

attributes are declared to be a conflicting pair, and are both sticky on. Note that in our

experiments with the PKCS#11 standard in Section 5, we identified wrap and unwrap as

conflicting attributes, since they allowed a key to be re-imported with different attributes.

With the Eracom wrap mechanism, it seems these attributes are no longer in conflict, since

the HMAC forces the a key to be imported with the same attributes. We consider three

additional function symbols, two constants cst ed and cst wu of mode CstAttr and the HMAC

function of mode hmac : CstAttr × Key × Key→ Hash. We only consider two combined at-

tributes function symbols: wu, ed : Nonce→ Attribute

Note that all HMACS are assumed to be generated by the same secret key Mk. In a model

with no disequality tests such as ours, such an abstraction may introduce false attacks but is

safe for proofs, since any attack involving different HMAC keys can be immediately mapped

to one using a single HMAC key.

Experiment 15 For our simplified abstract model, NuSMV is able to show security in a

model with 3 keys and 9 handles in 1 minute 45 seconds.

Experiment 16 With the conflict between the attributes removed, the wrap/decrypt attack

(Figure 1) is found in just under 8 seconds.

6.3 Evaluation

In our analysis of the nCipher and Eracom measures, we have seen that both allow secure

configurations to be produced, but neither is secure without additional careful restriction

of attribute values. The nCipher approach is to flag up operations that may result in keys

becoming insecure. If all warnings are on, functionality is quite limited - no new keys can be

imported. If some warnings are turned off, attacks are possible. The Eracom measures involve

using a MAC to ensure integrity of keys and attributes, but only apply to a symmetric key

API. There is clearly scope for more work in engineering secure configurations of PKCS#11.
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Wrap : h(x1, y1), h(x2, y2); wu(x1), ed(x2) → senc(y2, y1), hmac(ed, y2)

h(x1, y1), h(x2, y2); wu(x1),wu(x2) → senc(y2, y1), hmac(wu, y2)

Unwrap : h(x1, y2), senc(y1, y2), new n1−−−−→ h(n1, y1); ed(n1)hmac(ed, y1); wu(x1)

h(x1, y2), senc(y1, y2), new n1−−−−→ h(n1, y1); wu(n1)hmac(wu, y1); wu(x1)

KeyGenerate :
new n1,k1−−−−−→ h(n1, k1); ed(n1)

new n1,k1−−−−−→ h(n1, k1);wu(n1)

SEncrypt : h(x1, y1), y2; ed(x1) → senc(y2, y1)

SDecrypt : h(x1, y1), senc(y2, y1); ed(x1) → y2

Figure 12: Abstract model of Eracom version of PKCS#11

The interested reader is invited to download the scripts from http://www.lsv.ens-cachan.

fr/∼steel/pkcs11 and try out her own configurations.

7 Conclusion

In summary, we have presented a model for the analysis of security APIs with mutable global

state, such as PKCS#11. We have given a well-modedness condition for the API that leads

to decidability of secrecy properties when the number of fresh names is bounded. We have

formalised the core of PKCS#11 in our model, and used an automated implementation of our

decision procedure to both discover some new attacks, and to show security (in our bounded

model) of a number of configurations.

Our experiments give an idea of how difficult the secure configuration of a PKCS#11

based API is. Although none of the attacks are particularly subtle or complex, there are so

many variations that without some formal work, it is very hard to be sure that a certain

configuration is secure. We have seen that no matter how many pairs of conflicting attributes

are identified, the fact that the attacker can re-import the same key several times means he

can always circumvent the restrictions, as in the attack in Figure 5. To prevent this, we

investigated three solutions: the trusted keys mechanism, which is part of the standard, and
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the proprietary measures of nCipher and Eracom.

While our combination of a näıve propositional encoding and NuSMV proved capable of

discovering some new attacks, there is clearly room for improvement here. We were forced

to make further abstractions when dealing with the Eracom modifications, because of the

combinatorial possibilities introduced by the HMAC function. One approach to tackling

this would be to adapt a protocol analysis tool, already optimised for the Dolev-Yao intruder.

Currently, no tool supports global mutable state, unbounded sessions, and customisable types

(our ‘well-modedness’ condition). We are involved in ongoing work to adapt the AVISPA

backend SATMC to support all three, since this was the tool that performed best in initial

experiments with PKCS#11 [17].

As a final caveat to our results, we note that Clulow’s paper gives a number of vulnerabil-

ities that take account of particular details of the cryptographic algorithms in use. Security

at the abstract level of our models is no guarantee of security from these lower level vulnera-

bilities. In particular, our free algebra model does not take into account algebraic properties

of cryptographic functions.

In future work, we aim to prove results allowing us to draw conclusions about security of

the unbounded model while analysing a bounded number of keys and handles. We also plan to

cover more commands, more attributes, and more algebraic properties of the operations used

in PKCS#11, in particular the explicit decryption operator. This will require more theoretical

work as well as optimisations to our implementation to combat the combinatorial explosion

of possible intruder terms: adapting an existing protocol analysis tools to unbounded sessions

and well-moded terms is one possible approach.
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A Proofs Pertaining to Section 4

Lemma 1 Let ℛ be a set of well-moded rules and (S0, V0) be a well-moded state. Let (S, V )

be a state such that (S0, V0)⇝∗ (S, V ). We have that V is well-moded.

Proof. We prove this result by induction on the length k of the derivation:

(S0, V0)⇝ (S1, V1)⇝ . . .⇝ (Sk, Vk) = (S, V ).

Base case: k = 0. In this case, we have that V = V0 and we easily conclude thanks to the

fact that (S0, V0) is a well-moded state.

Induction step: k > 0. We assume that V0, . . . , Vk−1 are well-moded. Now, assume that

a ∈ dom(Vk). If a is already in dom(Vk−1) ⊆ dom(Vk) then we can conclude by applying our

induction hypothesis. Otherwise, there exists a fresh renaming of a well-moded rule in ℛ, say

R : t1, . . . , tn, L→ u1, . . . , up, L
′

and a substitution � such that for all ℓ ∈ L�, if ℓ = a or ℓ = ¬a we have that a ∈ dom(Vk−1).

Since a ∕∈ dom(Vk−1), we have that a ∈ L′� or ¬a ∈ L′�. In both cases, we have to show

that a is well-moded. We prove this by contradiction. Assume that there exists t ∈ st(a) such

that t ∕= a and t occurs at an ill-moded position in a. By well-modedness of the rule, t ∈ st(x�)

for some variable x ∈ vars(L′). Since by hypothesis we have that vars(L′) ⊆ vars(L), we easily

deduce that there exists att(u) ∈ L (or ¬att(u) ∈ L) such that x ∈ vars(u). Hence, t is a

strict subterm of att(u�) that occurs at an ill-moded position. This implies that att(u�) is

not well-moded. Since, by hypothesis, we have that att(u�) ∈ dom(Vk−1), this contradicts

the fact that Vk−1 is well-moded and allows us to conclude. □

Lemma 2 Let ℛ be a set of well-moded rules and (S0, V0) be a well-moded state. Let (S, V )

be a state such that (S0, V0) ⇝∗ (S, V ). Let v ∈ S and v′ be a subterm of v which occurs at

an ill-moded position. Then, we have that v′ ∈ S.

42



Proof. We prove this result by induction on the length k of the derivation:

(S0, V0)⇝ (S1, V1)⇝ . . .⇝ (Sk, Vk) = (S, V ).

Base case: k = 0. In this case, we have v ∈ S0 and the term v′ occurs at an ill-moded position

in v. By hypothesis, the term v is well-moded. Hence, we have that v′ = v ∈ S.

Induction step: k > 0. Assume that v ∈ Sk. If v is already in Sk−1 ⊆ Sk then we can

conclude by applying our induction hypothesis. Otherwise, there exists a fresh renaming of a

well-moded rule in ℛ, say

R : t1, . . . , tn, L→ u1, . . . , up, L
′

and a substitution � such that: {ti� ∣ 1 ≤ i ≤ n} ⊆ Sk−1. Let v′ ∈ st(v). Either v′ = v

and hence v′ ∈ Sk = S or by well-modedness of the rule, v′ ∈ st(x�) for some variable x ∈

vars({u1, . . . , up}). Since by hypothesis we have that vars({u1, . . . , up}) ⊆ vars({t1, . . . , tn}),

we easily deduce that v′ is a subterm which occurs in Sk−1 at an ill-moded position. By

induction hypothesis, we deduce that v′ ∈ Sk−1 and hence v′ ∈ Sk. In both cases, we have

that v′ ∈ S. □

Lemma 3 Let v be a well-moded term and � be a grounding substitution for v. Let �′ be the

substitution defined as follows:

∙ dom(�′) = dom(�), and

∙ x�′ = x�
sig(x)

for x ∈ dom(�′).

We have that v�
sig(v)

= v�′.

Proof. The proof is done by structural induction on v.

Base cases: If v is a name the result is obvious. If v is a variable x then, by definition of �′,

we have that v�
sig(v)

= x�
sig(x)

= x�′ = v�′.

Induction step: v = f(v1, . . . , vn) for some function symbol f ∈ Σ ∪ A. We assume w.l.o.g.

that f : m1, . . . ,mn → m. Moreover, since v is well-moded, we have that sig(vi) = mi for
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every i such that 1 ≤ i ≤ n.

Hence, we have that:

v�
sig(v)

= f(v1, . . . , vn)�
sig(f)

= f(v1�
m1
, . . . , vn�

mn
) by definition of ⋅ sig(f)

= f(v1�
′, . . . , vn�

′) by induction hypothesis

= f(v1, . . . , vn)�′

= v�′

□

Proposition 1 Let ℛ be a set of well-moded rules. Let (S0, V0) be a well-moded state and

consider the derivation: (S0, V0) ⇝ (S1, V1) ⇝ . . . ⇝ (Sk, Vk). Moreover, for each mode

m ∈ {sig(t) ∣ t ∈ PT (Σ,N )}, we assume that there exists a well-moded term tm of mode m

such that tm ∈ S0 (i.e. tm is known by the attacker) and ⋅ is defined w.r.t. to these tm’s.

We have that (S0, V0) ⇝ (S1, V1) ⇝ . . . ⇝ (Sk, Vk) by using the same rules (but different

instances).

Proof. We show this result by induction on k.

Base case: k = 0. In such a case the result is obvious.

Induction step: k > 0. In such a case, we have that

(S0, V0)⇝
∗ (Sk−1, Vk−1)⇝ (Sk, Vk)

By induction hypothesis, we know that (S0, V0)⇝∗ (Sk−1, Vk−1). To conclude, it remains to

show that (Sk−1, Vk−1)⇝ (Sk, Vk). By hypothesis, we have that (Sk−1, Vk−1)⇝ (Sk, Vk) with

a fresh renaming of a well-moded rule in ℛ, say:

R : t1, . . . , tn, L→ u1, . . . , up, L
′.

This means that there exists a substitution � such that

∙ {t1�, . . . , tn�} ⊆ Sk−1, and

∙ Vk−1(L�) = ⊤.
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We show that (Sk−1, Vk−1)⇝ (Sk, Vk) by using the rule R and the substitution �′ obtained

from � as in Lemma 3, i.e. dom(�′) = dom(�) and x�′ = x�
sig(x)

for any x ∈ dom(�).

Thanks to Lemma 3, for any well-moded term v, we have that v�
sig(v)

= v�′. Moreover, by

definition of ⋅ , we have that v� = v�
sig(v�)

. Thus, the only case where v� ∕= v�
sig(v)

is when

sig(v�) ∕= sig(v), i.e. when v is a variable, say x, and sig(x) ∕= sig(x�). Thus, we are in one of

the following cases

∙ either v� = v�′, or

∙ v is a variable say x and x�′ = tsig(x) ∈ S0.

Now, it is easy to see that:

∙ for each tj , we have that tj� ∈ Sk−1, and for each mode m, we have that tm ∈ S0 ⊆ Sk−1,

thus we have that tj� ∈ Sk−1 and thus tj�
′ ∈ Sk−1;

∙ for each a ∈ L (resp. ¬a ∈ L), we can use the same reasoning as before to deduce that

either a� = a�′, or a is a variable. By hypothesis, a is of the form att(t) (i.e. a is not a

variable), hence we have that a� = a�′. Thanks to Lemma 1, we know that Vk−1 and Vk

are necessarily well-moded. Hence we have that a� = a�. Altogether this allows us to

conclude that a� = a�′ for any (¬)a ∈ L. The reasoning also holds for any (¬)a ∈ L′.

We deduce that we can apply the same rule R with the substitution �′. Let (S′, V ′) be

the resulting state. It remains to show that (S′, V ′) = (Sk, Vk).

Since we have that a� = a�′ for any (¬)a ∈ L ∪ L′, the valuation is updated in the same

way, hence V ′ = Vk. It remains to show that S′ = Sk. We have that:

∙ S′ = Sk−1 ∪ {u1�′, . . . , up�′}, and

∙ Sk = Sk−1 ∪ {u1�, . . . , up�}.

Hence, the only problematic case is when uj�
′ ∕= uj�, i.e. when uj is a variable, say x, and

sig(x) ∕= sig(x�). By hypothesis we have that vars({u1, . . . , up}) ⊆ vars({t1, . . . , tn}). This

allows us to deduce that x ∈ vars({t1, . . . , tn}). Hence x� ∈ st(v) at an ill-moded position
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in v for some v ∈ Sk−1. By Lemma 2, we deduce that x� ∈ Sk−1, hence x� ∈ Sk−1 and thus

uj� ∈ S′ since Sk−1 ⊆ S′. □
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