
Formal Analysis of PKCS#11∗

Stéphanie Delaune, Steve Kremer and Graham Steel

LSV, CNRS & INRIA & ENS de Cachan

61, avenue du Président Wilson

94235 CACHAN Cedex, FRANCE

Abstract

PKCS#11 defines an API for cryptographic devices
that has been widely adopted in industry. However, it
has been shown to be vulnerable to a variety of attacks
that could, for example, compromise the sensitive keys
stored on the device. In this paper, we set out a for-
mal model of the operation of the API, which differs
from previous security API models notably in that it
accounts for non-monotonic mutable global state. We
give decidability results for our formalism, and describe
an implementation of the resulting decision procedure
using a model checker. We report some new attacks
and prove the safety of some configurations of the API
in our model.

1 Introduction

RSA Laboratories Public Key Standards (PKCS)
#11 defines the ‘Cryptoki’ API, designed to be an
interface between applications and cryptographic de-
vices such as smartcards, Hardware Security Modules
(HSMs), and PCMCIA and USB key tokens. It has
been widely adopted in industry, promoting interop-
erability of devices. However, the API as defined in
the standard gives rise to a number of serious security
vulnerabilities, [4]. In practice, vendors try to protect
against these by restricting the functionality of the in-
terface, or by adding extra features, the details of which
are often hard to determine. This has lead to an un-
satisfactory situation in which widely deployed security
solutions are using an interface which is known to be
insecure if implemented näıvely, and for which there
are no well established fixes. The situation is compli-
cated by the variety of scenarios in which PKCS#11 is

∗Partially supported by project PFC (“plateforme de con-
fiance”), pôle de compétitivité System@tic Paris-région Ile-de-
France.

used: an effective security patch for one scenario may
disable functionality that is vital for another.

In this paper, we aim to lay the foundations for
an improvement in this situation by defining a for-
mal model for the operation of PKCS#11 key man-
agement commands, proving the decidability of certain
security properties in this model, and describing an
automated framework for proving these properties for
different configurations of the API. The organisation of
the paper is as follows: in Section 2, we first describe
PKCS#11 and some of the known vulnerabilities. We
define our model in Section 3, give some decidability
results in Section 4, and detail our experiments in prov-
ing the (in)security of particular configurations in Sec-
tion 5. Finally we conclude with a discussion of related
work in Section 6.

Background. API level attacks were first identified
by Longley and Rigby [12]. Anderson and Bond discov-
ered many more [1]. Clulow revealed the existence of
such attacks on PKCS#11 [4]. Since then, efforts have
been made to formally analyse APIs using model check-
ers, theorem provers, and customised decision proce-
dures [15, 19, 7, 6, 5, 17]. None of these models ac-
count for non-monotonic mutable global state, which
was identified by Herzog [11] as a major barrier to the
application of security protocol analysis tools to the
problem.

2 An introduction to PKCS#11

The PKCS#11 API is designed to allow multiple
applications to access multiple cryptographic devices
through a number of slots. Each slot represents a
socket or device reader in which a device may or not
be present. To talk to a device, an application must
establish a session through the appropriate slot. Once
a session has been established, an application can au-
thenticate itself to a token as one of two distinct types
of user: the security officer (SO) and the normal user.

Authentication is by means of a PIN: a token is typ-
ically supplied with a default SO PIN, and it is up
to the SO to set himself and the user a new PIN. As
seen under PKCS#11, the token contains a number of
objects, such as keys and certificates. Objects are ref-
erenced in the API via handles, which can be thought
of as pointers to or names for the objects. In general,
the value of the handle e.g. for a secret key does not
reveal any information about the actual value of the
key. Objects are marked as public or private. Once
authenticated, the normal user can access public and
private objects. The SO can only access public ob-
jects, but can perform functions not available to the
user, such as setting the user’s PIN. A session can also
be unauthenticated, in which case only public objects
and functions are available. In addition to being public
or private, objects have other attributes, which may be
general, such as the attribute sensitive which is true of
objects which cannot be exported from the token un-
encrypted, or specific to certain classes of object, such
as modulus or exponent for RSA keys.

Note that if malicious code is running on the host
machine, then the user PIN may easily be intercepted,
e.g. by a tampered device driver, allowing an attacker
to create his own sessions with the device. Indeed the
PKCS#11 standard recognises this: it states that this
kind of attack cannot “compromise keys marked ‘sen-
sitive’, since a key that is sensitive will always remain
sensitive”, [14, p. 31]. Clulow presented a number of
attacks which violate this property, [4]. A typical one is
the so-called ‘key separation attack’. The name refers
to the fact that the attributes of a key can be set and
unset in such a way as to give a key conflicting roles.
Clulow gives the example of a key with the attributes
set for decryption of ciphertexts, and for ‘wrapping’,
i.e. encryption of other keys for secure transport. To
determine the value of a sensitive key, the attacker sim-
ply wraps it and then decrypts it, as shown in Fig-
ure 1. Here (and in subsequent boxes showing attacks),
h(n1, k1) represents the handle n1 of key k1, where h is
a symbol not known to the attacker. Hence, if the at-
tacker knows, h(n1, k1), he can’t immediately deduce
the value of k1, and if he knows the value of some k3,
he can’t a priori create himself a handle h(n3, k3) for
that key. The symmetric encryption of k1 under key k2

is represented by senc(k1, k2).

As Clulow observes, it is not easy to prevent these
kind of attacks, since there are a large number of pos-
sible attributes a key might have, and it is not clear
which combinations are conflicting. The standard it-
self gives no advice on the subject, perhaps because to
give incomplete advice might lead designers into a false
sense of security. Additionally, if safeguards are added

Initial knowledge: The intruder knows h(n1, k1)
and h(n2, k2). The name n2 has the attributes wrap

and decrypt set whereas n1 has the attribute sen-

sitive and extract set.

Trace:

Wrap: h(n2, k2), h(n1, k1) → senc(k1, k2)
SDecrypt: h(n2, k2), senc(k1, k2) → k1

Figure 1. Decrypt/Wrap attack

to the commands for setting and unsetting attributes,
an attacker can subvert this by importing two copies of
a key onto a device, and setting one of the conflicting
attributes on each copy. Clulow also presented a pair
of attacks he called ‘Trojan key attacks’, whereby the
intruder introduces a wrapping key that he knows the
true value of using a public unwrapping key. He then
wraps the sensitive key under this known wrapping key
and decrypts the result himself. Other vulnerabilities
Clulow found include an attack based on the use of
ECB mode to wrap double length 3DES keys, and the
use of single length DES keys to wrap double length
3DES keys. Finally, he presented a series of attacks re-
lying on particular details of the algorithms supported
by PKCS#11, specifically the use of small exponents
in RSA keys when using the X.509 mechanism to wrap
symmetric keys, and the use of mechanisms that per-
mit a set of related symmetric keys to be generated,
making them susceptible to a parallel key search.

The aim of our work described in this paper was to
formally model the core key management operations
of PKCS#11 and analyse them to learn more about
which configurations are secure and insecure. In par-
ticular, we were interested in controlling key attributes
to prevent key separation attacks. Note that attributes
can be set and subsequently unset, which gives rise to
non-monotonic mutable state (i.e. loops) in the model.
We make the usual ‘Dolev-Yao’ assumptions, [9], used
for protocol analysis, i.e. we abstract bit strings to
terms, and assume the attacker can decompose and re-
compose terms arbitrarily, with the restriction that he
can only decrypt encrypted packets if he has the cor-
rect key. This means that Clulow’s final two attacks
(small exponent X.509 and parallel key search) are out
of scope for our model.

2

3 Formal model

3.1 Term algebra

We assume a given signature Σ, i.e. a finite set of
function symbols, with an arity function ar : Σ → N, a
(possibly infinite) set of names N and a (possibly in-
finite) set of variables X . Names represent keys, data
values, nonces, etc. and function symbols model cryp-
tographic primitives, e.g. encryption. Function sym-
bols of arity 0 are called constants. The set of plain
terms PT (Σ,N ,X) is defined by the following gram-
mar:

t, ti := x x ∈ X
| n n ∈ N
| f(t1, . . . , tn) f ∈ Σ and ar(f) = n

We also consider a finite set A of unary function sym-
bols, disjoint from Σ which we call attributes. The set
of attribute terms is defined as

AT (A, Σ,N ,X) = {att(t) | att ∈ A, t ∈ PT (Σ,N ,X)}.

In our model, attribute terms will be interpreted as
propositions. We define the set of terms as follows

T (A, Σ,N ,X) = AT (A, Σ,N ,X) ∪ PT (Σ,N ,X).

The set PT (Σ,N , ∅), also written PT (Σ,N), is the
set of ground terms and similarly for plain and at-
tribute terms. We write vars(t) for the set of vari-
ables that occur in the term t and extend vars to sets
of terms in the expected way. A position is a finite
sequence of positive integers. The empty sequence is
denoted ǫ. The set of positions pos(t) of a term t is
defined inductively as pos(u) = {ǫ} for u ∈ N ∪ X
and pos(f(t1, . . . , tn)) = {ǫ} ∪

⋃

1≤i≤n i · pos(ti) for
f ∈ Σ ∪ A. If p is a position of t then the expression t|p
denotes the subterm of t at the position p, i.e. t|ǫ = t
and f(t1, . . . , tn)|i·p = ti|p. The set of subterms of a
term t, written st(t), is defined as {t|p | p ∈ pos(t)}.
We denote by top the function that associates to each
term t its root symbol, i.e. top(u) = u for u ∈ N ∪ X
and top(f(t1, . . . , tn)) = f .

A substitution σ is a mapping from a finite
subset of X called its domain, written dom(σ),
to PT (Σ,N ,X). Substitutions are extended to endo-
morphisms of T (A, Σ,N ,X) as usual. We use a post-
fix notation for their application. A substitution σ is
grounding for a term t if tσ is ground. This notation
is extended as expected to sets of terms.

Example 1 We consider the signature Σenc =
{senc, aenc, pub, priv, h} which we will use in the follow-
ing to model PKCS#11. The symbols senc and aenc of

arity 2 represent respectively symmetric and asymmet-
ric encryption whereas pub and priv of arity 1 are con-
structors to obtain public and private keys respectively.
Lastly, h is a symbol of arity 2 which allows us to model
handles to keys. We will use it with a nonce as the first
argument and a key as the second argument. Adding a
nonce to the arguments of h allows us to model several
distinct handles to the same key.

We model the attributes that are associated to han-
dles by the means of the set A. For the sake of simplic-
ity our running example only considers these attributes:
extract, wrap, unwrap, encrypt, decrypt, sensitive.

We illustrate notations for manipulating terms on
the plain term t = senc(aenc(n1, pub(n2)), x). We have
that vars(t) = {x} and top(t) = senc. The set of posi-
tions of t is pos(t) = {ǫ, 1, 1.1, 1.2, 1.2.1, 2} and t|1.2,
the subterm of t at position 1.2, is pub(n2).

By abuse of notation, sometimes we will use term
instead of plain term.

3.2 Description language

To model PKCS#11 and attacker capabilities we de-
fine a rule-based description language. It is close to a
guarded command language à la Dijkstra (see [8]) and
to the multi-set rewriting framework (e.g. [13]). One
particular point is that it makes a clean separation be-
tween the intruder knowledge part, i.e. the monotonic
part, and the current system state which is formalized
by the attributes that may be set or unset. The seman-
tics will be defined in a classical way as a transition
system.

Syntax and informal semantics. As already men-
tioned attribute terms will be interpeted as propo-
sitions. A literal is an expression a or ¬a where
a ∈ AT (A, Σ,N ,X). The description of a system is
given as a finite set of rules of the form

T ; L
new ñ
−−−→ T ′; L′

where T and T ′ are sets of plain terms in T (Σ,N ,X), L
and L′ are sets of literals and ñ is a set of names in N .
The intuitive meaning of such a rule is the following.
The rule can be fired if all terms in T are in the intruder
knowledge and if all the literals in L are evaluated to
true in the current state. The effect of the rule is that
terms in T ′ are added to the intruder knowledge and
the valuation of the attributes is updated to satisfy L′.
The new ñ means that all the names in ñ need to be
replaced by fresh names in T ′ and L′. This allows us to
model nonce or key generation: if the rule is executed

3

several times, the effects are different as different names
will be used each time.

We always suppose that L′ is satisfiable, i.e. it does
not contain both a and ¬a. We also suppose that
any variable appearing in T ′ also appears in T , i.e.
vars(T ′) ⊆ vars(T), and any variable appearing in L′

also appears in L, i.e. vars(L′) ⊆ vars(L). These con-
ditions were easily verified in all of our experiments
with PKCS#11.

Example 2 As an example consider the rules given in
Figure 2. They model a part of PKCS#11. We detail
the first rule which allows wrapping of a symmetric key
with a symmetric key. Intuitively the rule can be read
as follows: if the attacker knows the handle h(x1, y1),
a reference to a symmetric key y1, and a second han-
dle h(x2, y2), a reference to a symmetric key y2, and if
the attribute wrap is set for the handle h(x1, y1) (note
that the handle is uniquely identified by the nonce x1)
and the attribute extract is set for the handle h(x2, y2)
then the attacker may learn the wrapping senc(y2, y1),
i.e. the encryption of y2 with y1.

Semantics. The formal semantics of our description
language is given in terms of a transition system. We
assume a given signature Σ, a set of attributes A,
a set of names N , a set of variables X , a set of
rules R defined over T (Σ,N ,X). A partial valua-
tion V of ground attribute terms is a partial function
V : AT (A, Σ,N) → {⊤,⊥}. We extend valuations to
literals as

V (ℓ) =

{

V (a) if ℓ = a
¬V (a) if ℓ = ¬a

and to sets of literals (interpreted as a conjunction
over the literals) as

V (L) =
∧

ℓ∈L

V (ℓ)

when {a | a ∈ L or ¬a ∈ L} ⊆ dom(V). Moreover,
we assume a given set of ground terms S0 ⊆ T (Σ,N)
and a partial valuation of ground attribute terms to
represent the initial state. In the following we say that
the rule

t1, . . . , tn; L → v1, . . . , vp; L
′′

is a fresh renaming of a rule

t1, . . . , tn; L
new n1,...,nk−−−−−−−−→ u1, . . . , up; L

′

if vi = ui[n1 → n′
1, . . . , nk → n′

k] (1 ≤ i ≤ p),
L′′ = L′[n1 → n′

1, . . . , nk → n′
k] and n′

1, . . . , n
′
k are

fresh names of N . The transition system (Q, q0,) is
defined as follows:

• Q is the set of states : each state is a pair (S, V),
such that S ⊆ T (Σ,N) and V is any partial valu-
ation of AT (A, Σ,N).

• q0 = (S0, V0) is the initial state. S0 is the ini-
tial attacker knowledge and V0 defines the initial
valuation of some attributes.

• ⊆ Q × Q is the transition relation defined as
follows. For each fresh renaming R of a rule in R,

R := T ; L → T ′; L′

we have that (S, V) (S′, V ′) if there exists a
grounding substitution θ for R such that

– Tθ ⊆ S, and

– V (Lθ) = ⊤.

Then, we have that S′ = S ∪ T ′θ, and the func-
tion V ′ is defined as follows:

dom(V ′) = dom(V) ∪ {a | a ∈ L′ or ¬a ∈ L′}

V ′(a) =

⊤ if a ∈ L′

⊥ if ¬a ∈ L′

V (a) otherwise

Some of the rules, e.g. the unwrap and key gen-
eration rules in Figure 2, allow the creation of new
handles for which attributes are set and unset. We
therefore dynamically extend the domain of the valu-
ation whenever such new handles are created. Note
also that when (S, V) (S′, V ′) we always have that
S ⊆ S′ and dom(V) ⊆ dom(V ′).

3.3 Queries

Security properties are expressed by the means of
queries.

Definition 1 A query is a pair (T, L) where T is a set
of terms and L a set of literals (both are not necessarily
ground).

Intuitively, a query (T, L) is satisfied if there exists a
substitution θ such that we can reach a state where the
adversary knows all terms in Tθ and all literals in Lθ
are evaluated to true.

Definition 2 A transition system (Q, q0,) satisfies
a query (T, L) iff there exists a substitution θ grounding
for Q and a state (S, V) ∈ Q such that q0

∗(S, V),
Tθ ⊆ S, and V (Lθ) = ⊤.

4

Wrap (sym/sym) : h(x1, y1), h(x2, y2); wrap(x1), extract(x2) → senc(y2, y1)
Wrap (sym/asym) : h(x1, priv(z)), h(x2, y2); wrap(x1), extract(x2) → aenc(y2, pub(z))
Wrap (asym/sym) : h(x1, y1), h(x2, priv(z)); wrap(x1), extract(x2) → senc(priv(z), y1)

Unwrap (sym/sym) : h(x1, y2), senc(y1, y2); unwrap(x1)
new n1−−−−→ h(n1, y1); extract(n1), L

Unwrap (sym/asym) : h(x1, priv(z)), aenc(y1, pub(z)); unwrap(x1)
new n1−−−−→ h(n1, y1); extract(n1), L

Unwrap (asym/sym) : h(x1, y2), senc(priv(z), y2); unwrap(x1)
new n1−−−−→ h(n1, priv(z)); extract(n1), L

KeyGenerate :
new n1,k1
−−−−−→ h(n1, k1);¬extract(n1), L

KeyPairGenerate :
new n1,s
−−−−−→ h(n1, s), pub(s); ¬extract(n1), L

SEncrypt : h(x1, y1), y2; encrypt(x1) → senc(y2, y1)
SDecrypt : h(x1, y1), senc(y2, y1); decrypt(x1) → y2

AEncrypt : h(x1, priv(z)), y1; encrypt(x1) → aenc(y1, pub(z))
ADecrypt : h(x1, priv(z)), aenc(y2, pub(z)); decrypt(x1) → y2

Set Wrap : h(x1, y1); ¬wrap(x1) → wrap(x1)
Set Encrypt : h(x1, y1); ¬encrypt(x1) → encrypt(x1)

...
...

UnSet Wrap : h(x1, y1); wrap(x1) → ¬wrap(x1)
UnSet Encrypt : h(x1, y1); encrypt(x1) → ¬encrypt(x1)

...
...

where L = ¬wrap(n1),¬unwrap(n1),¬encrypt(n1),¬decrypt(n1),¬sensitive(n1). The ellipsis in the set and unset rules
indicates that similar rules exist for some other attributes.

Figure 2. PKCS#11 key management subset.

Example 3 To illustrate our formal model, we will de-
scribe how the Decrypt/Wrap attack of Figure 1 is re-
flected in this model. We consider the signature Σenc

and the set of attributes A given in Example 1, a set
of names N ⊇ {n1, n2, k1, k2}, a set of variables X ⊇
{x1, y1, x2, y2}. We only use the rules Wrap (sym/sym)
and SDecrypt of Figure 2. Suppose that

• S0 = {h(n1, k1), h(n2, k2)}, and

• V0 is such that V0(wrap, n2) = V0(decrypt, n2) =
V0(sensitive, n1) = V0(extract, n1) = ⊤ and all
other attributes of n1 and n2 are mapped to ⊥.

Then we have that

(S0, V0) (S0 ∪ {senc(k1, k2)}, V0)
def
= (S1, V1)

 (S1 ∪ {k1}, V1)

which implies that the query ({h(x, y), y}, sensitive(x))
is satisfied with the substitution θ = {x → n1, y → k1}.

4 Decidability

In this section, we first define the class of well-moded
rules, using the notation introduced in Section 3.2. In

this class, when checking the satisfiability of a query,
we show that it is correct to restrict the search space
and only consider well-moded terms (Theorem 1). The
notion of mode is inspired from [2]. It is similar to the
idea of having well-typed rules, but we prefer to call
them well-moded to emphasize that we do not have a
typing restriction. For the rules given in Figure 2 that
model a part of PKCS#11, the notion of mode we con-
sider allows us to bound the size of terms involved in
an attack. Unfortunately, the secrecy problem is still
undecidable in this setting. Therefore we restrict our-
selves to a bounded number of nonces (see Section 4.3).

4.1 Preliminaries

In the following we consider a set of modes Mode

and we assume that there exists a mode function:

M : Σ ∪ A× N → Mode

such that M(f, i) is defined for every symbol f ∈ Σ∪A
and every integer i such that 1 ≤ i ≤ ar(f). We also
assume that a function sig : Σ ∪ A ∪ X ∪ N → Mode

returns the mode to which a symbol f belongs. Note
that variables and nonces are also uniquely moded. As

5

usual, we extend the function sig to terms as follows:

sig(t) = sig(top(t)).

We will use a rule-based notation f : m1 × . . . mn → m

for each f ∈ Σ ∪ A and u : m for u ∈ N ∪ X to define
the functions M and sig: M(f, i) = mi for 1 ≤ i ≤ n,
sig(f) = m, and sig(u) = m.

We say that a position p 6= ǫ of a term t is well-moded
if p = p′.i and sig(t|p) = M(top(t|p′), i). In other words
the position in a term is well-moded if the subterm
at that position is of the expected mode w.r.t. to the
function symbol immediately above it. If a position is
not well-moded, it is ill-moded. By convention, the root
position of a term is ill-moded. A term is well-moded
if all its non root positions are well-moded. A literal ℓ
such that ℓ = a or ℓ = ¬a is well-moded if a is well-
moded. This notion is extended as expected to sets
of terms, rules, queries and states. For a state (S, V),
we require that the valuation V is well-moded, i.e. for
every a ∈ dom(V), we have that a is well-moded.

Note that any term can be seen as a well-moded
term if there is a unique mode, e.g. Msg, and any
symbol f ∈ Σ ∪ A ∪ X ∪N is such that

f : Msg × . . . × Msg → Msg.

However, we will use modes which imply that the mes-
sage length of well-moded terms is bounded which will
allow us to reduce the search space.

Example 4 We consider the following set of modes:

Mode = {Cipher, Key, Seed, Nonce, Handle, Attribute}.

The following rules define the mode and signature func-
tions of the associated function symbol:

h : Nonce × Key → Handle

senc : Key × Key → Cipher

aenc : Key × Key → Cipher

pub : Seed → Key

priv : Seed → Key

att : Nonce → Attribute for all att ∈ A
x1, x2, n1, n2 : Nonce

y1, y2, k1, k2 : Key

z, s : Seed

The rules described in Figure 2 are well-moded w.r.t.
the mode and signature function described above. This
is also the case of the following rules which represent
the deduction capabilities of the attacker:

y1, y2 → senc(y1, y2)
senc(y1, y2), y2 → y1

y1, y2 → aenc(y1, y2)
aenc(y1, pub(z)), priv(z) → y1

aenc(y1, priv(z)), pub(z) → y1

z → pub(z)

The derivation (S0, V0)
∗ (S1 ∪ {k1}, V1) de-

scribed in Example 3 is well-moded in the sense
that each of its states is well-moded. However, let
S0 = {senc(k1, k2), k1} and V0 be a function such that
dom(V0) = ∅. Even if the state (S0, V0) and the rule in-
volved in this step are well-moded, the following deriva-
tion is not:

(S0, V0) (S0 ∪ {senc(senc(k1, k2), k1), V0).

The term senc(senc(k1, k2), k1) is not well-moded be-
cause of its subterm senc(k1, k2).

4.2 Existence of a well-moded derivation

We now show that in a system induced by well-
moded rules, only well-moded terms need to be consid-
ered when checking for the satisfiability of a well-moded
query. In the following, we assume a given mode and
signature function.

The key idea to reduce the search space to well-
moded terms is to show that whenever a state (S, V)
is reachable from an initial well-moded state, we have
that:

• the partial valuation V is necessarily well-moded
(Lemma 1), and

• any ill-moded term v′ occurring in a term in S is
itself deducible (Lemma 2).

Lemma 1 Let R be a set of well-moded rules and
(S0, V0) be a well-moded state. Let (S, V) be a state
such that (S0, V0)

∗ (S, V). We have that V is well-
moded.

Proof. We prove this result by induction on the
length k of the derivation:

(S0, V0) (S1, V1) . . . (Sk, Vk) = (S, V).

Base case: k = 0. In this case, we have that V = V0

and we easily conclude thanks to the fact that (S0, V0)
is a well-moded state.

Induction step: k > 0. We assume that V0, . . . , Vk−1

are well-moded. Now, assume that a ∈ dom(Vk). If a is
already in dom(Vk−1) ⊆ dom(Vk) then we can conclude
by applying our induction hypothesis. Otherwise, there
exists a fresh renaming of a well-moded rule in R, say

R : t1, . . . , tn, L → u1, . . . , up, L
′

and a substitution θ grounding for R such that for all
ℓ ∈ Lθ, if ℓ = a or ℓ = ¬a we have a ∈ dom(Vk−1).

Since a 6∈ dom(Vk−1), we have that a ∈ L′θ
or ¬a ∈ L′θ. In both cases, we have to show that a is

6

well-moded. We prove this by contradiction. Assume
that there exists t ∈ st(a) such that t 6= a and t occurs
at an ill-moded position in a. Since vars(L′) ⊆ vars(L)
and R is well-moded, we have that t occurs in Lθ at an
ill-moded position. This contradicts the fact that Vk−1

is well-moded and allows us to conclude. �

Lemma 2 Let R be a set of well-moded rules and
(S0, V0) be a well-moded state. Let (S, V) be a state
such that (S0, V0)

∗ (S, V). Let v ∈ S and v′ be
a subterm of v which occurs at an ill-moded position.
Then, we have that v′ ∈ S.

Proof. We prove this result by induction on the
length k of the derivation:

(S0, V0) (S1, V1) . . . (Sk, Vk) = (S, V).

Base case: k = 0. In this case, we have v ∈ S0 and
the term v′ occurs at an ill-moded position in v. By
hypothesis, the term v is well-moded. Hence, we have
that v′ = v ∈ S.

Induction step: k > 0. Assume that v ∈ Sk. If v is
already in Sk−1 ⊆ Sk then we can conclude by applying
our induction hypothesis. Otherwise, there exists a
fresh renaming of a well-moded rule in R, say

R : t1, . . . , tn, L → u1, . . . , up, L
′

and a substitution θ grounding for R such that:
{tiθ | 1 ≤ i ≤ n} ⊆ Sk−1. Let v′ ∈ st(v). Ei-
ther v′ = v and hence v′ ∈ Sk = S or by well-
modedness of the rule, v′ ∈ st(xθ) for some vari-
able x ∈ vars({u1, . . . , up}). Since by hypothesis we
have that vars({u1, . . . , up}) ⊆ vars({t1, . . . , tn}), we
easily deduce that v′ is a subterm which occurs in Sk−1

at an ill-moded position. By induction hypothesis, we
deduce that v′ ∈ Sk−1 and hence v′ ∈ Sk. In both
cases, we have that v′ ∈ S. �

Before we prove our main result, that states that
only well-moded terms need to be considered when
checking for satisfiability of well-moded queries, we in-
troduce a transformation which transforms any term
to a well-moded term. We show that when we apply
this transformation to a derivation, we obtain again a
derivation.

We define for each mode m ∈ M a function · m over
ground terms that replaces any ill-moded subterm by
a well-moded term, say tm, of the expected mode. In
the remainder, we assume given those terms tm (one
per mode).

Definition 3 (· m , ·) For each mode m ∈ M we de-
fine inductively a function · m as follows:

• nm =

{

n if n ∈ N and sig(n) = m

tm otherwise

• f(v1, . . . , vn)
m

=

f(v1
m1 , . . . , vn

mn)
if f : m1 × . . . mn → m

tm otherwise

The function · is defined as v = v sig(v).

Those functions are extended to sets of terms as
expected. Note that, by definition, we have that um

is a well-moded term of mode m and u is a well-moded
term of mode sig(u).

In Proposition 1 we show that this transformation
allows us to map any derivation to a well-moded deriva-
tion. This well-moded derivation is obtained by ap-
plying at each step the same rule, say R. However,
while the original derivation may use an instance Rθ
of this rule the transformed derivation will use the in-
stance Rθ′, where θ′ is obtained from θ as described in
the following lemma.

Lemma 3 Let v be a well-moded term and θ be a
grounding substitution for v. Let θ′ be the substitution
defined as follows:

• dom(θ′) = dom(θ), and

• xθ′ = xθ
sig(x)

for x ∈ dom(θ′).

We have that vθ
sig(v)

= vθ′.

Proof. The proof is done by structural induction on v.
Base cases: If v is a name the result is obvious. If v is
a variable x then, by definition of θ′, we have that:

vθ
sig(v)

= xθ
sig(x)

= xθ′ = vθ′.

Induction step: v = f(v1, . . . , vn) for some function
symbol f ∈ Σ ∪ A ∪ N . We assume w.l.o.g. that f :
m1, . . . , mn → m. Moreover, since v is well-moded, we
have that sig(vi) = mi for every i such that 1 ≤ i ≤ n.
Hence, we have that:

vθ
sig(v)

= f(v1, . . . , vn)θ
sig(f)

= f(v1θ
m1

, . . . , vnθ
mn

) by def. of · sig(f)

= f(v1θ
′, . . . , vnθ′) by induction hyp.

= f(v1, . . . , vn)θ′

= vθ′ �

Proposition 1 Let R be a set of well-moded rules. Let
(S0, V0) be a well-moded state and consider the deriva-
tion:

(S0, V0) (S1, V1) . . . (Sk, Vk).

7

Moreover, for each mode m ∈ {sig(t) | t ∈ PT (Σ,N)},
we assume that there exists a term of mode m such
that tm ∈ S0 and · is defined w.r.t. to these tm’s.

We have that (S0, V0) (S1, V1) . . . (Sk, Vk)
by using the same rules (but different instances).

Proof. We show this result by induction on k.

Base case: k = 0. In such a case the result is obvious.
Induction step: k > 0. In such a case, we have that

(S0, V0)
∗ (Sk−1, Vk−1) (Sk, Vk)

By induction hypothesis, we know that

(S0, V0)
∗ (Sk−1, Vk−1).

To conclude, it remains to show that

(Sk−1, Vk−1) (Sk, Vk)

By hypothesis, we have that (Sk−1, Vk−1) (Sk, Vk)
with a fresh renaming of a well-moded rule in R, say:

R : t1, . . . , tn, L → u1, . . . , up, L
′.

This means that there exists a substitution θ such that

• {t1θ, . . . , tnθ} ⊆ Sk−1, and

• Vk−1(Lθ) = ⊤.

We show that (Sk−1, Vk−1) (Sk, Vk) by using the
rule R and the substitution θ′ obtained from θ as in
Lemma 3, i.e. dom(θ′) = dom(θ) and xθ′ = xθ

sig(x)

for any x ∈ dom(θ).

Thanks to Lemma 3, for any well-moded term v, we

have that vθ
sig(v)

= vθ′. Moreover, the only case where

vθ 6= vθ
sig(v)

is when v is a variable, say x, and sig(x) 6=
sig(xθ). Thus, we are in one of the following cases

• either vθ = vθ′, or

• v is a variable say x and xθ′ = tsig(x) ∈ S0.

Now, it is easy to see that:

• for each tj , since tjθ ∈ Sk−1 and tsig(x) ∈ Sk−1, we

have tjθ ∈ Sk−1 and thus tjθ
′ ∈ Sk−1;

• for each a ∈ L (resp. ¬a ∈ L), since a cannot
be a variable, we have that aθ = aθ′. Thanks to
Lemma 1, we know that Vk−1 and Vk are neces-
sarily well-moded. Hence we have that aθ = aθ′

for any (¬)a ∈ L ∪ L′.

We deduce that we can apply the same rule R with
the substitution θ′. Let (S′, V ′) be the resulting state.
It remains to show that (S′, V ′) = (Sk, Vk).

Since we have that aθ = aθ′ for any (¬)a ∈
L ∪ L′, the valuation is updated in the same way,
hence V ′ = Vk. To show that S′ = Sk, the only
problematic case is when uj is a variable, say x,
and sig(x) 6= sig(xθ). By hypothesis we have that
vars({u1, . . . , up}) ⊆ vars({t1, . . . , tn}). This allows
us to deduce that x ∈ vars({t1, . . . , tn}). Hence
xθ ∈ st(v) at an ill-moded position in v for some
v ∈ Sk−1. By Lemma 2, we deduce that xθ ∈ Sk−1,
hence xθ ∈ Sk−1 and thus ujθ ∈ S′ since Sk−1 ⊆ S′. �

By relying on Proposition 1, it is easy to prove the
following result.

Theorem 1 Let R be a set of well-moded rules. Let
q0 = (S0, V0) be a well-moded state such that for each
mode m ∈ {sig(t) | t ∈ PT (Σ,N)}, there exists a term
tm ∈ S0 of mode m. Let Q be a well-moded query that is
satisfiable. Then there exists a well-moded derivation
witnessing this fact.

Note that we do not assume that an implementation
enforces well-modedness. We allow an attacker to yield
derivations that are not well-formed. Our result how-
ever states that whenever there exists an attack that
uses a derivation which is not well-formed there ex-
ists another attack that is. Our result is arguably even
more useful than an implementation that would enforce
typing: it seems unreasonable that an implementation
could detect whether a block has been encrypted once
or multiple times, while our result avoids consideration
of multiple encryptions, as such a term is ill-moded
with the modes given in Example 4.

4.3 Decidability result

Unfortunately, Theorem 1 by itself is not very in-
formative. As already noted, it is possible to have a
single mode Msg which implies that all derivations are
well-moded. However, the modes used in our mod-
elling of PKCS# 11 (see Example 4) imply that all
well-moded terms have bounded message length. It
is easy to see that well-moded terms have bounded
message length whenever the graph on modes that
is defined by the functions M and sig is acyclic (the
graph whose set of vertices is Mode with edges between
modes mi (1 ≤ i ≤ n) and m whenever there exists a
rule f : m1 × . . . × mk → m). Note that for instance a
rule which contains nested encryption does not yield a
bound on the message size.

8

However, bounded message length is not sufficient
for decidability. Indeed, undecidability proofs [10, 16]
for security protocols with bounded message length and
unbounded number of nonces are easily adapted to our
setting. We only need to consider rules of the form

T
new ñ
−−−→ T ′ (no literal) to realize their encodings of the

Post Correspondence Problem. Therefore we bound
the number of atomic data of each mode, and obtain
the following corollary of Theorem 1:

Corollary 1 Let R be a set of well-moded rules such
that well-modedness implies a bound on the message
length. Let q0 = (S0, V0) be a well-moded state such
that for each mode m ∈ {sig(t) | t ∈ PT (Σ,N)}, there
exists a term tm ∈ S0 of mode m. The problem of
deciding whether the query Q is satisfiable is decidable
when the set of names N is finite.

Our main application is the fragment of PKCS#11
described in Figure 2. Thanks to Corollary 1, we
are able to bound the search space and to realize
some experiments with a well-known model-checker,
NuSMV, [3].

5 Analysing PKCS#11

In this section, we describe the implementation
of the decision procedure arising from the decidabil-
ity result (Corollary 1) for a bounded number keys
and handles. As explained in Section 1, our formal
work was primarily motivated by the example of RSA
PKCS#11, which is widely deployed in industry, but
other APIs such as the API of the Trusted Platform
Module (TPM) will also require global mutable state
to be modelled.

PKCS#11 is described in a large and complex speci-
fication, running to 392 pages. We model here only the
key management operations at the core of the API.
We omit the DeriveKey command, all of the com-
mands from the session, object, slot and token man-
agement function sets, the digest, signing and verifi-
cation functions, and the random number generating
functions. We include key generation, import and ex-
port, encryption and decryption of data, and setting
and unsetting of key attributes. We assume, as sug-
gested in PKCS#11 [14, p. 31] that the intruder is able
to freely hijack user sessions, and is thus able to send
arbitrary sequences of commands to the interface with
arbitrary parameters from his knowledge set. Follow-
ing on from our theoretical work, we further assume
only a fixed bounded number of handles are available,
and a bounded number of atomic keys. We do not a
priori bound the number of times each command may

be executed, but this is implicitly bounded by the finite
vocabulary of well-moded terms available, since a rule
will not be executed twice with exactly the same state
and intruder knowledge inputs. Finally, note that we
model the setting of attributes of keys stored on the
device via a series of rules: one to set and one to un-
set each attribute. In the real API, there is a single
command C SetAttributeValues, to which the new
values for the attributes are supplied as parameters.
We found it more convenient to encode this in sepa-
rate commands to facilitate the addition of constraints
to certain attribute setting and unsetting operations.

5.1 Methodology

As we described in Section 1, PKCS#11 is a stan-
dard designed to promote interoperability, not a tightly
defined protocol with a particular goal. As such, the
aim of our experiments was to analyse a number of dif-
ferent configurations in order to validate our approach.
Roughly speaking, our methodology was to start with a
configuration involving only symmetric keys, and con-
tinue to restrict the API until a secure configuration
was found. We then added asymmetric keypairs, and
repeated the process. Finally we carried out some
experiments modelling the algebraic properties of the
ECB mode of encryption.

5.2 Generating propositional models

By Theorem 1, once we have bounded the number
of handles and keys, we only have to consider a finite
set of possible terms in the intruder’s knowledge. Our
approach is to encode each possible term as a proposi-
tional variable, which will be true just when the term
is in the intruder’s knowledge set. In addition to this,
we have the attributes that constitute the state of the
system. Since we have bounded the number of handles,
and we need only consider attributes applied to handles
by our well-modedness result, we can also encode the
state as a finite number of propositional variables: one
for each attribute applied to each handle. A variable
is true when the attribute is set for that handle.

We can now generate a propositional model for the
API by generating all the ground instances of the API
rules, and compiling these to our propositional encod-
ing. This is currently done by a Perl script, which
accepts parameters defining the exact configuration to
be modelled, but it should be easy enough to produce
a general-purpose compiler for our class of rules. We
define a configuration by:

1. the number of symmetric keys, the number of

9

asymmetric key pairs, and the number of available
handles for each key;

2. the initial knowledge of the intruder;

3. the initial state of the attributes.

Note that having set the number of handles avail-
able, we are able to pre-compute the names of the
handles rather than having to generate fresh names
during the unwrap and generate commands. Since all
commands which generate fresh handles return their
values unencrypted, we can be sure that a handle is
fresh when is it is generated in a command simply by
checking that it is not yet known to the intruder. As
a further optimisation, we include handles for all the
keys the intruder can generate in a particular config-
uration in his initial knowledge, and remove the key
generation commands.

To facilitate the generation of the models for our
program of experiments, our scripts also accept the fol-
lowing parameters:

1. A list of sticky attributes, i.e. those which, once
set, cannot be unset, and those which once un-
set, cannot be set. Footnotes 11 and 12 in the
PKCS standard mark these attributes [14, Table
15]. We add further attributes to the list during
our experiments, as detailed below. Adding an at-
tribute to the list causes the generation script to
omit the appropriate Set or Unset commands from
the model.

2. A list of conflicting attributes, i.e. for each at-
tribute a a list of conflicting attributes a1, a2, . . .
such that for a given handle h(n, k), attribute a

may not be set on that handle if any of the ai

are also set. Adding attributes to this list causes
the script to add appropriate conditions to the left
hand side of the Set rules.

The propositional encoding of the API model is
generated in a syntax suitable for the model checker
NuSMV, [3]. We then ask NuSMV to check whether a
security property holds, which is a reachability prop-
erty in our transition system. In all our experiments
we are concerned with a single security property, the
secrecy of sensitive keys.

5.3 Experiments with PKCS#11

All the files for our experiments are available via
http from http://www.lsv.ens-cachan.fr/~steel/

pkcs11. We describe each experiment below and sum-
marise in Table 1. In the figures describing attacks, we

sometimes omit the values of attributes whose value is
inconsequential to the attack, for the sake of clarity.
Similarly, we omit unused terms from the intruder’s
initial knowledge.

Experiment 1. In our first four experiments, we
model a PKCS#11 configuration with 3 symmetric
keys: one is a sensitive key, k1, stored on the device, for
which the intruder knows the handle but not the true
value of the key. The second, k2, is also loaded onto the
device, and the intruder has a handle but not the true
value. The third is the intruder’s own key, k3, which is
not loaded onto the device in the initial state. We start
with a configuration in which the only restrictions on
attribute setting and unsetting are those described in
the manual. As expected, we immediately rediscover
Clulow’s key separation attack for the attributes de-

crypt and wrap (see Figure 1).

Experiment 2. We modify the configuration from
Experiment 1 by applying Clulow’s first suggestion:
that attribute changing operations be prevented from
allowing a stored key to have both wrap and decrypt

set. Note that in order to do this, it is not sufficient
merely to check that decrypt is unset before setting
wrap, and to check wrap in unset before setting de-

crypt. One must also add wrap and decrypt to the list
of sticky attributes which once set, may not be unset,
or the attack is not prevented, [17]. Having applied
these measures, we discovered a previously unknown
attack, given in Figure 3. The intruder imports his
own key k3 by first encrypting it under k2, and then
unwrapping it. He can then export the sensitive key k1

under k3 to discover its value.

Initial state: The intruder knows the handles
h(n1, k1), h(n2, k2) and the key k3; n1 has the at-
tributes sensitive and extract set whereas n2 has the
attributes unwrap and encrypt set.

Trace:

SEncrypt: h(n2, k2), k3 → senc(k3, k2)

Unwrap: h(n2, k2), senc(k3, k2)
new n3−−−−→ h(n3, k3)

Set wrap: h(n3, k3) → wrap(n3)
Wrap: h(n3, k3), h(n1, k1) → senc(k1, k3)
Intruder: senc(k1, k3), k3 → k1

Figure 3. Attack discovered in Experiment 2

Experiment 3. To prevent the attack shown in Fig-
ure 3, we add encrypt and unwrap to the list of conflict-
ing attribute pairs. Another new attack is discovered

10

(see Figure 4) of a type discussed by Clulow, [4, Section
2.3]. Here the key k2 is first wrapped under k2 itself,
and then unwrapped, gaining a new handle h(n3, k2).
The intruder then wraps k1 under k2, and sets the de-

crypt attribute on handle h(n3, k2), allowing him to ob-
tain k1.

Initial state: The intruder knows the handles
h(n1, k1), h(n2, k2); n1 has the attributes sensitive, ex-

tract and whereas n2 has the attribute extract set.

Trace:

Set wrap: h(n2, k2) → wrap(n2)
Wrap: h(n2, k2), h(n2, k2) → senc(k2, k2)
Set unwrap: h(n2, k2) → unwrap(n2)

Unwrap: h(n2, k2), senc(k2, k2)
new n4−−−−→ h(n4, k2)

Wrap: h(n2, k2), h(n1, k1) → senc(k1, k2)
Set decrypt: h(n4, k2) → decrypt(n4)
SDecrypt: h(n4, k2), senc(k1, k2) → k1

Figure 4. Attack discovered in Experiment 3

Experiment 4. We attempt to prevent the attack in
Figure 4 by adding wrap and unwrap to our list of con-
flicting attribute pairs. We find no attack with respect
to our model, even when the model is extended up to 4
possible handles for each key. We now proceed to add
asymmetric keypairs.

Experiment 5. We now add two asymmetric key-
pairs to the model. One, (pub(s1), priv(s1)), is loaded
onto the device and is unknown to the intruder (apart
from the handle). The other, (pub(s2), priv(s2)), is the
intruder’s own keypair, but is not loaded on to the de-
vice. We now rediscover Clulow’s Trojan Wrapped Key
attack, [4, Section 3.5]. Note that in a model with ex-
plicit destructors for decryption, a similar attack would
be found on the configuration in experiment 4. Extend-
ing our model to deal with this is an area for further
work (see section 6). We also note that Clulow’s other
Trojan Key attack, [4, Section 3.4], is now no longer
possible: Clulow analysed version 2.01 of the standard,
and observed that the Wrap command accepts a clear
public key as input, allowing a Trojan Public Key at-
tack - the intruder generates his own keypair, and then
supplies the public key as a wrapping key. In the cur-
rent version of the standard (2.20), the command ac-
cepts only a handle for a public key, which must be
loaded on to the device.

Experiment 6. Version 2.20 of the PKCS#11 stan-
dard includes a new feature intended to improve secu-

rity: trusted keys. Two more attributes are introduced:
wrap with trusted and trusted. In addition to testing
that a key to be wrapped is extractable, Wrap now tests
that if the key to be wrapped has wrap with trusted set,
then the wrapping key must have trusted set. Only the
security officer (SO) can mark a key as trusted. Addi-
tionally, wrap with trusted is a sticky attribute - once
set, it may not be unset.

This mechanism would appear to have some poten-
tial: as long as the security officer only logs into the
device when it is connected to a trusted terminal, he
should be able to keep his PIN secure, and so be able
to control which keys are marked as trusted. We took
our configuration from Experiment 5, and added the
trusted key features, marking n1 as wrap with trusted,
and n2 as trusted. We discover another attack, given in
Figure 5. Here, the intruder first attacks the trusted
wrapping key, and then obtains the sensitive key.

Initial state: The intruder knows the handles
h(n1, k1), h(n2, k2) and the key k3; n1 has the
attributes sensitive, extract and wrap with trusted

whereas n2 has the attributes extract and trusted set.
The intruder also knows the public key pub(s1) and its
associated handle h(n3, priv(s1)); n3 has the attribute
unwrap set.

Trace:

Intruder: k3, pub(s1) → aenc(k3, pub(s1))
Set unwrap: h(n3, priv(s1)) → unwrap(n3)

Unwrap: aenc(k3, pub(s1))
new n4−−−−→ h(n4, k3)

h(n3, priv(s1))

Set wrap: h(n4, k3) → wrap(n4)
Wrap: h(n4, k3), h(n2, k2) → senc(k2, k3)
Intruder: senc(k2, k3), k3 → k2

Set wrap: h(n2, k2) → wrap(n2)
Wrap: h(n2, k2), h(n1, k1) → senc(k1, k2)
Intruder: senc(k1, k2), k2 → k1

Figure 5. Attack discovered in Experiment 6

Experiment 7. In Experiment 7 we prevent the at-
tack in Figure 5 by marking n2 as wrap with trusted.
We obtain a configuration which is secure in our model.

Experiment 8. We extend the initial state
from Experiment 7 by setting the attributes
trusted and wrap with trusted for the public keypair
(priv(s1), pub(s1)). Our security property continues to
hold in this model.

11

Experiment 9. Clulow has shown vulnerabilities in
PKCS#11 arising from the use of double length 3DES
keys and electronic code book (ECB) mode encryption.
We extended our model to capture the properties of
ECB using the rules in Figure 6, introducing the sym-
bol spenc for encryption of pairs, and modelling the as-
sumption that single-length DES keys can be cracked
by brute force. Note that these rules are still well-
moded. In a model with three atomic keys and two
double-length keys, we rediscover Clulow’s weaker key
attack, [4, Section 2.4].

Additional Intruder Rules:
y1, y2 → pair(y1, y2)

pair(y1, y2) → y1

pair(y1, y2) → y2

senc(y1, y3), senc(y2, y3) → spenc(pair(y1, y2), y3)
spenc(pair(y1, y2), y3) → senc(y1, y3)
spenc(pair(y1, y2), y3) → senc(y2, y3)

senc(y1, y2), y1 → y2

senc(y1, y1) → y1

Modes:

pair Key × Key → Pair

spenc Pair × Key → CipherPair

Figure 6. Additional Intruder Rules (ECB)

Experiment 10. In Experiment 10, we prevent Clu-
low’s weaker key attack by disallowing the wrap com-
mand for accepting a single length key to wrap a dou-
ble length key. We now rediscover Clulow’s ECB based
attack, [4, Section 2.2].

As Table 1 shows, run times vary from a few seconds
to a few minutes. However, we note that increasing the
size of the model by adding more handles often leads to
a model larger than NuSMV can store in our compute
server’s 4Gb of RAM. The largest models in Table 1
(no. s 5, 6, 7 and 8) have 128 variables. This is an area
for future work: see Section 6.

Our experiments give an idea of how difficult the
secure configuration of a PKCS#11 based API is.
Although none of the attacks are particularly sub-
tle or complex, there are so many variations that
without some formal work, it is very hard to be
sure that a certain configuration is secure. We have
seen that for the particular models under investiga-
tion here, a secure configuration of PKCS#11 must in-
clude wrap/decrypt, unwrap/encrypt, and wrap/unwrap

as conflicting attributes. However, one can easily
imagine changes in the scenarios giving rise to more

attacks. The interested reader is invited to down-
load the scripts from http://www.lsv.ens-cachan.

fr/~steel/pkcs11 and try out her own configura-
tions. The output from NuSMV for each experiment is
available at the same address. The standard NuSMV
output gives the details of variables whose value has
changed at each step, i.e. changes in attribute values
and newly acquired intruder knowledge. Attack traces
can be easily extracted from this output.

As a final caveat, we note that Clulow’s paper gives a
number of vulnerabilities that take account of particu-
lar details of the cryptographic algorithms in use. Our
free algebra model does not take into account equa-
tional theories of cryptographic functions. Security at
the abstract level of our models is no guarantee of se-
curity from these lower level vulnerabilities.

6 Conclusion

In summary, we have presented a model for the anal-
ysis of security APIs with mutable global state, such
as PKCS#11. We have given a well-modedness con-
dition for the API that leads to decidability of secrecy
properties when the number of fresh names is bounded.
We have formalised the core of PKCS#11 in our model,
and used an automated implementation of our decision
procedure to both discover some new attacks, and to
show security (in our bounded model) of a number of
configurations.

Related work. We are aware of three previous ef-
forts to formally analyse configurations of PKCS#11.
Youn [18] used the first-order theorem prover Otter,
and included only the commands needed for Clulow’s
first attack (Figure 1). This model had one handle
for each key, preventing the discovery of attacks like
that in Figure 4, and a monotonic model of state, since
predicates T (x, s) specifying that x is true in state s
persist after state changes. This would allow an in-
truder to take two mutually exclusive steps from the
same state, permitting false attacks. Tsalapati [17]
used the AVISPA protocol analysis tools, included all
the key management commands, but also used a mono-
tonic model of state, and one handle for each key. She
rediscovered a number of Clulow’s attacks, but the lim-
itations of the model prevented the discovery of the
attacks we have shown here. In unpublished work,
Steel and Carbone adapted Tsalapati’s models to ac-
count correctly for non-monotonic state, using the sets
supported by the AVISPA modelling language. How-
ever, the number of sessions and hence command calls
had to be bounded, and for non-trivial bounds, the
performance of the AVISPA back-ends rapidly deteri-

12

E
x
p
.

n
o
.
sy

m
k
ey

s
h
a
n
d
le

s
ea

ch
sy

m
k
ey

n
o
.
a
sy

m
k
ey

p
a
ir

s
h
a
n
d
le

s
ea

ch
a
sy

m
k
ey

d
ec

/
w

ra
p

en
c/

u
n
w

ra
p

w
ra

p
/

u
n
w

ra
p

T
ru

st
ed

k
ey

s
E

C
B

A
tt

a
ck

T
im

e

1
3

2
0

0
-

-
-

-
-

F
ig

1
4
.5

s
2

3
2

0
0

×
-

-
-

-
F
ig

3
7
.6

s
3

3
2

0
0

×
×

-
-

-
F
ig

4
1
.9

s
4

3
4

0
0

×
×

×
-

-
-

1
m

1
s

5
3

2
2

1
×

×
×

-
-

[4
,
§3

.5
]

1
0
m

3
0
s

6
3

2
2

1
×

×
×

×
-

F
ig

5
3
m

2
8
s

7
3

2
2

1
×

×
×

×
-

-
1
m

2
1
s

8
3

2
2

1
×

×
×

×
-

-
1
m

2
1
s

9
3

1
0

0
×

×
×

-
×

[4
,
§2

.4
]

3
s

1
0

3
1

0
0

×
×

×
-

×
[4

,
§2

.2
]

5
s

Ta
b

le
1.

S
u

m
m

ar
y

o
f

E
xp

er
im

en
ts

.
T

im
es

ta
k
en

o
n

a
L
in

u
x

2
.6

.2
0

b
ox

w
it
h

a
3
.6

0
G

H
z

p
ro

ce
ss

o
r.

orated. The main problem is that we were unable to
specify our well-modedness condition to the AVISPA
tools, and hence the combinatorial possibilities for the
intruder actions are too great. The model we have de-
scribed in this paper accounts for non-monotonic muta-
ble global state, allows analysis for unbounded sessions
(although we bound the number of atomic data), and
has shown reasonable performance as evidenced by the
discovery of new attacks and (bounded) verifications
for non-trivial models.

In future work, we aim to prove results allowing us
to draw conclusions about security of the unbounded
model while analysing a bounded number of keys and
handles. We also plan to cover more commands, more
attributes, and more algebraic properties of the op-
erations used in PKCS#11, in particular the explicit
decryption operator. This will require more theoreti-
cal work as well as optimisations to our implementa-
tion to combat the combinatorial explosion of possible
intruder terms: adapting an existing protocol analysis
tool (preferably one of the AVISPA tools which already
support state) to unbounded sessions and well-moded
terms is one possible approach.

Acknowledgments. We would like to thank Math-
ieu Baudet for his detailed comments on an early ver-
sion of this paper.

References

[1] M. Bond and R. Anderson. API level attacks on
embedded systems. IEEE Computer Magazine,
pages 67–75, October 2001.

[2] Y. Chevalier and M. Rusinowitch. Hierarchical
combination of intruder theories. In Proc. 17th
International Conference on Term Rewriting and
Applications (RTA’06), volume 4098 of LNCS,
pages 108–122, Seattle, USA, 2006. Springer.

[3] A. Cimatti, E. Clarke, E. Giunchiglia,
F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV Version
2: An OpenSource Tool for Symbolic Model
Checking. In Proc. International Conference on
Computer-Aided Verification (CAV’02), volume
2404 of LNCS, pages 359–364, Copenhagen,
Denmark, July 2002. Springer.

[4] J. Clulow. On the security of PKCS#11. In
Proceedings of the 5th International Worshop on
Cryptographic Hardware and Embedded Systems
(CHES’03), volume 2779 of LNCS, pages 411–425,
Cologne, Germany, 2003. Springer.

13

[5] V. Cortier, S. Delaune, and G. Steel. A formal
theory of key conjuring. In Proceedings of the 20th
IEEE Computer Security Foundations Symposium
(CSF’07), pages 79–93, Venice, Italy, 2007.

[6] V. Cortier, G. Keighren, and G. Steel. Automatic
analysis of the security of xor-based key manage-
ment schemes. In Proceedings of the 13th In-
ternational Conference on Tools and Algorithms
for the Construction and Analysis of Systems
(TACAS’07), volume 4424 of LNCS, pages 538–
552, Braga, Portugal, 2007. Springer.

[7] J. Courant and J.-F. Monin. Defending the bank
with a proof assistant. In Proceedings of the 6th
International Workshop on Issues in the Theory of
Security (WITS’06), pages 87 – 98, Vienna, Aus-
tria, March 2006.

[8] E. W. Dijkstra. Guarded commands, nondetermi-
nacy and formal derivation of programs. Commun.
ACM, 18(8):453–457, 1975.

[9] D. Dolev and A. Yao. On the security of public
key protocols. IEEE Transactions in Information
Theory, 2(29):198–208, March 1983.

[10] N. A. Durgin, P. Lincoln, and J. C. Mitchell. Mul-
tiset rewriting and the complexity of bounded se-
curity protocols. Journal of Computer Security,
12(2):247–311, 2004.

[11] J. Herzog. Applying protocol analysis to security
device interfaces. IEEE Security & Privacy Mag-
azine, 4(4):84–87, July-Aug 2006.

[12] D. Longley and S. Rigby. An automatic search for
security flaws in key management schemes. Com-
puters and Security, 11(1):75–89, March 1992.

[13] J. C. Mitchell. Multiset rewriting and security pro-
tocol analysis. In Proc. 13th International Con-
ference on Rewriting Techniques and Applications
(RTA’02), volume 2378 of LNCS, pages 19–22,
Copenhagen, Denmark, 2002. Springer.

[14] RSA Security Inc., v2.20. PKCS #11: Crypto-
graphic Token Interface Standard., June 2004.

[15] G. Steel. Deduction with XOR constraints in secu-
rity API modelling. In Proceedings of the 20th In-
ternational Conference on Automated Deduction
(CADE’05), volume 3632 of LNCS, pages 322–
336, Tallinn, Estonia, 2005. Springer.

[16] F. L. Tiplea, C. Enea, and C. V. Birjoveanu.
Decidability and complexity results for security

protocols. In Proceedings of the Verification of
Infinite-State Systems with Applications to Secu-
rity (VISSAS’05), volume 1 of NATO Security
through Science Series D: Information and Com-
munication Security, pages 185–211. IOS Press,
2005.

[17] E. Tsalapati. Analysis of PKCS#11 using
AVISPA tools. Master’s thesis, University of Ed-
inburgh, 2007.

[18] P. Youn. The analysis of cryptographic APIs using
the theorem prover Otter. Master’s thesis, Mas-
sachusetts Institute of Technology, 2004.

[19] P. Youn, B. Adida, M. Bond, J. Clulow, J. Her-
zog, A. Lin, R. Rivest, and R. Anderson. Robbing
the bank with a theorem prover. Technical Report
UCAM-CL-TR-644, University of Cambridge, Au-
gust 2005.

14

