
Submitted to:
SecCo 2010

c© S. Delaune, S. Kremer, M.D. Ryan, and G. Steel
This work is licensed under the
Creative Commons Attribution License.

A Formal Analysis of Authentication in the TPM
(extended abstract)

St́ephanie Delaune1, Steve Kremer1, Mark D. Ryan2, and Graham Steel1

1LSV, ENS Cachan & CNRS & INRIA SaclaŷIle-de-France, France
2School of Computer Science, University of Birmingham, UK

1 Introduction

The Trusted Platform Module (TPM) is a hardware chip designed to enable commodity computers to
achieve greater levels of security than is possible in software alone. To this end, theTPM provides a
way to store cryptographic keys and other sensitive data in its shielded memory. Through its API, one
can use those keys to achieve some security goals. There are 300 million TPMs currently in existence,
mostly in high-end laptops, but now increasingly in desktops and servers. TheTPM specification is an
industry standard [11] and an ISO/IEC standard [9] (more than 700 pages) coordinated by the Trusted
Computing Group.

Several papers have appeared describing systems that leverage theTPM to create secure applications,
but most of these assume that theTPM API behaves correctly and provides the high-level security
properties required [6, 7]. Lower level analyses of theTPM API also exist and several vulnerabilities
in theTPM API have been discovered: offline dictionary attacks on the passwords or ‘authdata’ used
to secure access to keys [5], attacks exploiting the fact that the same authdata can be shared between
users [4], an attacker can also in some circumstances illegitimately obtain a certificate on a TPM key of
his choice [8], . . . These attacks highlight the necessity offormal analysis of the API specification. We
perform such an analysis in this work, focusing on the mechanisms for authentication and authorisation.

2 Our Contributions

We model a collection of fourTPM commands, concentrating on the authentication mechanisms. We
identify security properties which we will argue are central to correct and coherent design of the API.
We formalise these properties for our fragment in the applied pi calculus [1], and usingProVerif [3], we
rediscover some known attacks on the API and some new variations on them. We propose some fixes to
the API, partly inspired by ongoing discussions in the Trusted Computing Group, and prove our security
properties for the modified API.

One of the difficulties in reasoning about security APIs suchas that of theTPM is non-monotonic
state. If the TPM is in a certain states, and then a command is successfully executed, then typically the
TPM ends up in a states′ 6= s. Commands that require it to be in the previous stateswill no longer work.
We choseProVerif after first experimenting with theAVISPA tool suite [2], which provides support for
mutable global state. However, of theAVISPA back ends that support state, OFMC and CL-AtSe require
concrete bounds on the number of command invocations and fresh nonces to be given. It is possible to
avoid this restriction using SATMC, but SATMC performed poorly in our experiments

Tools such asProVerif are not optimised to work with non-monotonic state. We address this restric-
tion by introducing the assumption that only one command is executed in each authorisation session.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 A Formal Analysis of Authentication in the TPM

This assumption appears to be quite reasonable. Indeed, theTPM imposes the assumption itself when-
ever a command introduces new authdata. Moreover, tools like TPM/J [10] that provide software-level
APIs also implement the assumption. Again to avoid non-monotonicity, we do not allow keys to be
deleted from the memory of theTPM. However, we allow an unbounded number of keys to be loaded.

TheTPM specification does not detail explicitly which security properties are intended to be guar-
anteed, although it provides some hints. For example, the specification [11, Part I, p.60] states that:
“The design criterion of the protocols is to allow for ownership authentication, command and parame-
ter authentication and prevent replay and man in the middle attacks.” We will formalise these security
properties ascorrespondence propertiesthat state:

1. If theTPM has executed a certain command, then a user in possession of the relevant authdata has
previously requested the command.

2. If a user considers that theTPM has executed a certain command, then either theTPM really has
executed the command, or an attacker is in possession of the relevant authdata.

The first property expresses authentication of user commands, and is achieved by the authorisation
HMACs that accompany the commands. The second one expressesauthentication of theTPM, and is
achieved by the HMACs provided by theTPM with its answer. We argue that theTPM certainly aims at
achieving these properties, as otherwise there would be no need for the HMAC mechanism. The above
mentioned properties can be expressed by injective correspondence properties. In all experiments, the
security properties under test are the correspondence properties explained above.

Our methodology was to first study some core key management commands in isolation in order to
analyse the weakness of each command. This leads us to propose some fixes for these commands. Then
we carried out an experiment where we consider the commandsTPM CertifyKey, TPM CreateWrapKey,
TPM LoadKey2, andTPM UnBind together. We consider the fixed version of each of these commands
and we show in our last experiment (Experiment 10) that the security properties are satisfied for a sce-
nario that allows:

• an attacker to load his own keys inside theTPM, and

• an honest user to use the same authdata for different keys.

All the files for our experiments are available on line at:

http://www.lsv.ens-cachan.fr/∼delaune/TPM.

In our first six experiments, we model the commandTPM CertifyKey in isolation. Then, in Ex-
periments 7-9, we model the commandTPM CreateWrapKey only. Lastly, in Experiment 10, we con-
sider a model where the commandsTPM CertifyKey, TPM CreateWrapKey, TPM LoadKey2, and
TPM UnBind are taken into account.

3 Conclusion and Future Work

In this work, we proposed a detailed modelling of a fragment of the TPM in the applied pi calculus.
We model core security properties as correspondence properties and use the toolProVerif to automate
our security analysis. We were able to rediscover several known attacks and some new variants of these
attacks.

http://www.lsv.ens-cachan.fr/~delaune/TPM


S. Delaune, S. Kremer, M.D. Ryan, and G. Steel 3

As future work we foresee to extend our model with more commands such as the key migration
part. We also plan to include a modelling of the TPM’s registers (the PCRs) which allow to condition
some commands on the current value of a register. PCRs are crucial when using the TPM for checking
the integrity of a system. Modelling the PCRs and the commands for manipulating these registers for
automated verification seems to be a challenging task.

Acknowledgments. Mark Ryan gratefully thanks Microsoft and Hewlett-Packardfor interesting dis-
cussions and financial support that contributed to this research.

References

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. InProc. 28th Symposium
on Principles of Programming Languages (POPL’01), pages 104–115. ACM Press, 2001.

[2] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cúellar, P. Drielsma, P.-C. H́eam,
O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turu-
ani, L. Vigaǹo, and L. Vigneron. The AVISPA tool for the automated validation of internet security protocols
and applications. InComputer Aided Verification, 17th International Conference, CAV 2005, Edinburgh,
Scotland, UK, July 6-10, 2005, Proceedings, pages 281–285, 2005.

[3] B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In14th IEEE Computer
Security Foundations Workshop (CSFW’01), pages 82–96. IEEE Computer Society Press, 2001.

[4] L. Chen and M. Ryan. Attack, solution and verification forshared authorisation data in TCG TPM. In
P. Degano and J. D. Guttman, editors,Formal Aspects in Security and Trust, volume 5983 ofLecture Notes
in Computer Science, pages 201–216. Springer, 2009.

[5] L. Chen and M. D. Ryan. Offline dictionary attack on TCG TPMweak authorisation data, and solution.
In D. Grawrock, H. Reimer, A. Sadeghi, and C. Vishik, editors, Future of Trust in Computing. Vieweg &
Teubner, 2008.

[6] A. Datta, J. Franklin, D. Garg, and D. Kaynar. A logic of secure systems and its application to trusted
computing. InProceedings of 30th IEEE Symposium on Security and Privacy, pages 221–236, May 2009.

[7] Y. Gasmi, A.-R. Sadeghi, P. Stewin, M. Unger, and N. Asokan. Beyond secure channels. InScalable Trusted
Computing (STC’07), pages 30–40, November 2007.

[8] S. Gürgens, C. Rudolph, D. Scheuermann, M. Atts, and R. Plaga. Security evaluation of scenarios based on
the TCG’s TPM specification. InESORICS, pages 438–453, 2007.

[9] ISO/IEC PAS DIS 11889: Information technology – Security techniques – Trusted platform module.

[10] L. Sarmenta. TPM/J developer’s guide. MassachussettsInstitute of Technology.

[11] Trusted Computing Group. TPM Specification version 1.2. Parts 1–3, revision 103. http://www.
trustedcomputinggroup.org/resources/tpm main specification, 2007.

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

	Introduction
	Our Contributions
	Conclusion and Future Work

