A Formal Analysis of Authentication
in the TPM

Stephanie Delaurte Steve Kremer, Mark D. Ryart, and Graham Stekl

1 LSV, ENS Cachan & CNRS & INRIA Saclalye-de-France, France
2 School of Computer Science, University of Birmingham, UK

Abstract. The Trusted Platform ModuleTPM) is a hardware chip designed to
enable computers to achieve a greater level of securityishfawssible in software
alone. To this end, thEPM provides a way to store cryptographic keys and other
sensitive data in its shielded memory. Through its API, careuse those keys to
achieve some security goals. ThEM is a complex security component, whose
specification consists of more than 700 pages.

We model a collection of foufPM commands, and we identify and formalise
their security properties. Using the toBroVerif, we rediscover some known
attacks and some new variations on them. We propose modtifisab the API
and verify our properties for the modified API.

1 Introduction

The Trusted Platform Modul&dPM) is a hardware chip designed to enable commodity
computers to achieve greater levels of security than isilpless software alone. There
are 300 million TPMs currently in existence, mostly in highd laptops, but now in-
creasingly in desktops and servers. Application softwach sis Microsoft’s BitLocker
and HP’s HP ProtectTools use tfi@M in order to guarantee security properties. The
TPM specification is an industry standard [16] and an ISO/IE@dded [13] coordi-
nated by the Trusted Computing Group.

In the last few years, several vulnerabilities in T@M API have been discovered,
particularly in relation to secrecy and authenticatiorpemies (we detail a few of them
in Section 5). These attacks highlight the necessity of &ramalysis of the API spec-
ification. We perform such an analysis in this paper, foaygsin the mechanisms for
authentication and authorisation.

Formal analysis of security APIs involves many of the toold gechniques used in
the analysis of security protocols, but the long-term st#tamation held by thdPM
presents an additional challenge. Tools suclPas/erif are not optimised to reason
with stateful protocols. There is no easy solution to thisbgm, although we show
how to alleviate it in this case with suitable abstractions.

In this paper, we model a collection of foiPM commands, concentrating on the
authentication mechanisms. We identify security propsrtvhich we will argue are
central to correct and coherent design of the API. We forsealhese properties for
our fragment, and usinBroVerif, we rediscover some known attacks on the API and
some new variations on them. We discuss some fixes to the A@Rr@ve our security
properties for the modified API.

2 Anoverview of theTPM

The TPM stores cryptographic keys and other sensitive data in iedgd memory,
and provides ways for platform software to use those key<ldege security goals.
The TPM offers three kinds of functionality:

— Secure storageJser processes can store content that is encrypted by kéys on
available to therPM.

— Platform authenticationA platform can obtain keys by which it can authenticate
itself reliably.

— Platform measurement and reportiriy platform can create reports of its integrity
and configuration state that can be relied on by a remote eferifi

To store data using BPM, one create$PM keys and uses them to encrypt the data.
TPM keys are arranged in a tree structure, withstarage root keySRK) at its root.
To eachTPM key is associated a 160-bit string calladthdata which is analogous
to a password that authorises use of the key. A user can usgladded in theTPM
through the interface provided by the device. This intexfecactually a collection of
commands that (for example) allow one to load a new key inlidedevice, or to
certify a key by another one. All the commands have as an agtuian authorisation
HMAC that requires the user to provide a proof of knowledgéhefrelevant authdata.
Each command has to be called insideaaithorisation sessian\e first describe this
mechanism before we explain some commands in more detail.

2.1 Sessions
TheTPM provides two kinds of authorisation sessions:

— Object Independent Authorisation Protod®IAP), which creates a session that
can manipulate any object, but works only for certain comasan

— Object Specific Authorisation Protoc@SAP), which creates a session that ma-
nipulates a specific object specified when the session igset u

An authorisation session begins when the commaR¥_OIAP or TPM_OSAP is
successfully executed.

OIAP authorisation sessioo set up aOIAP session, the user process sends the com-
mandTPM_OIAP to theTPM. Then, the user receives backession handlgogether
with a nonce. Each command within the session sends thesdssndle as part of its
arguments, and also a new nonce. Nonces from the user prereesslledodd nonces
and nonces from th€PM are calleceven noncesThis system of rotating nonces guar-
antees freshness of the commands and responses. All aatiwt HMACs include
the most recent odd and even nonce. INGHAP session, the authorisation HMACs
required to execute a command are keyed on the authdataefoesburced.g. key)
requiring authorisation.

OSAP authorisation sessiorzor anOSAP session, the user process sends the com-
mandTPM_OSAP to theTPM, together with the name of the objeetd.key handle),
and anOSAP odd noncéVo®S"P. The response includes a session handle, an even
nonce for the rolling nonces, and &SAP even nonc¥e°*". Then, the user process
and theTPM both compute th©SAP shared secréimac(auth, (Ne®%AP | No©AP)),
i.e.an HMAC of the oddOSAP nonce and the eve@SAP nonce, keyed on the ob-
ject’s authdata. Now commands within such a session may éeuged. In arOSAP
session, the authorisation HMACSs are keyed on@$AP shared secret. The purpose
of this arrangement is to permit the user process to cacheeston key for a possibly
extended session duration, without compromising the giga@frthe authdata on which

it is based.

2.2 Commands

The TPM provides a collection of commands that allow one to createespnew keys
and to manipulate them. These commands are described irH&f3, we explain only
a few of them in order to illustrate how ti&>M works.

To store data using 8PM, one creates &PM key and uses it to encrypt the data.
TPM keys are arranged in a tree structure. Bierage Root Ke{SRK) is created by
a command calledPM_TakeOwnership. At any time afterwards, a user process can
call TPM_CreateWrapKey to create a child key of an existing key. Once a key has been
created, it may be loaded usifig’M_LoadKey?2, and then can be used in an operation
requiring a key €.9.TPM_CertifyKey, TPM_UnBind).

TPM_CreateWrapKey. The command creates the key but does not store it; it simply
returns it to the user process (protected by an encrypthsgume that the parent key
pair (sk, pk(sk)) under which we want to create a new key is already loadederthiel
device with the authdatauth. Assume also that ZDSAP session has been established
on this key, withss = hmac(auth, (ne®SAP no°SAP)) as the OSAP shared secret and
assume the current even rolling nonce associated to thstogsesne. The command
can be informally described as follows:

handle(auth, sk), no, cipher, _, new SK,new Ne - Ne, pk(SK), wrp,
hmac(ss, (cwk, cipher, ne, no)) hmac(ss, (cwk, wrp, pk(SK), Ne, no))

where:

— cipher = senc(NewAuth, hash(ss, ne)), and
— wrp = wrap(pk(sk), (SK, NewAuth, tpmproof)).

The intuitive meaning of such a rule is: if an agent (possthly attacker) has the
data items on the left, then, by means of the command, he damdhe data items on
the right. Thenew keyword indicates that data,g.nonces or keys, is freshly generated.

The TPM_CreateWrapKey command takes arguments that include the handle for
the parent key of the key to be created, an odd rolling nonatigha priori freshly
generated by the user, the new encrypted authdata of theokleg treated, and the
authorisation HMAC based on the authdata of the parent kegturns the public part

pk(SK) of the new key and an encrypted package; the package cotitaipsivate part
and the authdata of the new key, as well as the conspamproof (a private constant
only known by theTPM). This package is encrypted with the parent p&ysk). An
authentication HMAC is also constructed by fhiéM to accompany the response. The
newly created key is not yet available to fheM for use.

Note that this command introduced a new authdata that iypted with theOSAP
secret. Because this arrangement could expos@ 8#&° shared secret to cryptanalytic
attacks if used multiple times, @SAP session that is used to introduce new authdata
is subsequently terminated by thBM. Commands that want to continue to manipulate
the object have to create a new session.

TPM_LoadKey2. To use alPM key, it must be loadedlPM_LoadKey?2 takes as ar-
gument a wrap created by the commariiM_CreateWrapKey, and returns a handle,
that is, a pointer to the key stored in theM memory. Commands that use the loaded
key refer to it by this handle. SinéB°M_LoadKey?2 involves a decryption by the par-
ent key, it requires the parent key to be loaded and it regu@ireauthorisation HMAC
based on the parent key authdata. The root&RBK is permanently loaded and has a
well-known handle value, and therefore never needs to luketha

Once loaded, a key can be used, for example to encrypt orpledaya, or to sign
data. As an illustrative example, we describe the comnidpid_CertifyKey in more
detail.

TPM_CertifyKey. This command requires two key handle arguments, repiiegehe
certifying key and the key to be certified, and two correspagduthorisation HMACSs.
It returns the certificate.

Assume that twdOIAP sessions are already established with their current even
rolling noncene; and ney respectively, and that two keysandle(auth;, sk;) and
handle(authy, sko) are already loaded inside tHé°M. The TPM_CertifyKey com-
mand can be informally described as follows:

n,noi,nog, new Neq,new Nes -
hmac(auth;, (cfk,n, ney, noy)) . Neq, Neo, certif
hmac(authg, (cfk, n, nea, nos)) hmac(authy, (cfk, n, Neq, noq, certif))
handle(auth;, sk;), handle(auths, sks) hmac(authg, (cfk,n, Nea, noa, certif))

wherecertif = cert(sk;, pk(skz)).

The user requests to certify the kely(sk2) with the keysk, . For this, he generates
a noncen and two odd rolling nonceso; andno, that he gives to th@PM together
with the two authorisation HMACs. ThéPM returns the certificateertif. Two au-
thentication HMACs are also constructed by TfeéM to accompany the response. The
TPM also generates two new even rolling nonces to continue gs@e

3 Modelling the TPM

In this section, we first give a short introduction to the tBobVerif that we used to
perform our analysis. We cho$&roVerif after first experimenting with the AVISPA

toolsuite [3], which provides support for mutable globaitst However, of the AVISPA
backends that support state, OFMC and CL-AtSe require etebounds on the num-
ber of command invocations and fresh nonces to be given.piossible to avoid this
restriction using SATMC [10], but SATMC performed poorlydnr experiments due to
the relatively large message length, a known weakness oM&AWe therefore opted
for ProVerif using abstractions to model state, as we explain below. Weexplain
how the TPM commands as well as its security properties can be fornuhlizeur
framework.

3.1 The toolProVerif

ProVerif takes as input a process written in a syntax close to the mteinshe applied
pi calculus [1], a modelling language for security protacdh particular, it allows pro-
cesses to send first-order terms built over a signature, {anmkvariables. These terms
model the messages that are exchanged during a protocol.

Example 1.Consider for example the signatufe = {senc, sdec, hmac} which con-
tains three binary function symbols. The signature is guedpwith an equational theory
and we interpret equality up to this theory. For instancetiberysdec(senc(x, y),y) =

x models that decryption and encryption cancel out when&eesame key is used. We
do not need to consider any equations for modelling an HMA®fion.

Processe®, Q, R, . .. are constructed as follows. The procéss the empty pro-
cess which does nothingew «.P restricts the name in P and can for instance be
used to model that is a fresh random numben(c, z). P models the input of a term on
a channet, which is then substituted far in processP. out(c, t) outputs a terna on a
channek. P | @ models the parallel composition of procesgeand(. In particular,
an input and an output on the same channel in parallel carhsymize and perform
a communication. The conditiondl M/ = N then P else () behaves a$> when M
and N are equal modulo the equational theory and behavés atherwise.! P is the
replication of P, modelling an unbounded number of copies of the pro¢esislore-
over we annotate processes with evemg, ..., t,) which are useful for modelling
correspondence properties, discussed batwaNerif can automatically check security
properties assuming that an arbitrary adversary process is parallel.

Example 2.Consider the procesew k£.(!P |!Q) where

P = new np.beginl(np). Q =in(c,y);
out(c, senc(np, k)).in(c,). if y = senc(sdec(y, k), k) then
let (xp,zq) = sdec(z, k) in letyp = sdec(y, k) in end1(yp).new ng.
if xp = np then end2(np, zq) begin2(yp, ng);out(c, senc((yp, ng), k))

The processe® and(share a long term symmetric kéywhich they use to perform
a handshake protocol. Note that we use some syntactic stigiae BroVerif syntax
for readability: final0 andelse 0 are omitted, we use lat construct to introduce local
variables and use a variadic tuple operdter. . ., ¢,) for concatenating terms. For the
moment we ignore thbeegin andend events. The proced? first generates a nonee

which is encrypted with the kek. This ciphertext is sent tQ over a channet. In Q,

the testy = senc(sdec(y, k), k) is used to check whether decryption succeeds. If it
does, then the procegsgenerates a fresh noneg, and sends the encryption of both
nonces back ta’. Lastly, the proces#® checks that the received nonce matches the
previously generated noneg-.

We now discuss correspondence properties, which can beatitally verified by
ProVerif [4]. A correspondence proper&y2(xy,...,x,) = evl(yi,...,y,) holds if
on every execution trace each occurrencev@fzy, ..., z,)o is preceded by an occur-
rence ofevl(yi,...,y,)o whereo is a substitution mapping thes andy;s to terms.
An injectivecorrespondence property holds if each occurrence®(xy, ..., x,)o is
preceded by a different occurrencesot (y., . . ., v,)o. Intuitively, injective correspon-
dence avoids replay attacks.

Example 3.Coming back to Example 2, the properydl(z) = beginl(z) mod-

els that whenever the proce§sreceives a correctly encrypted message with key
(end1(x) occurs) it must have originated frof (beginl(x) occurs). Moreover, the
processe® and(agree on the value of. This correspondence property indeed holds.
However, the stronger injective version does not hold, aditht message af can be
replayed toQ). The second correspondence propeny2(z,,z2) = beginl(zy,x2)
models that whenever the procd3sinishes a session successfully, it must have inter-
acted with the proces3. This property holds injectively.

3.2 Modelling commands of the TPM

One of the difficulties in reasoning about security APIs saslthat of théTPM is non-
monotonic statelf the TPM is in a certain state, and then a command is successfully
executed, then typically tHEPM ends up in a stat€ # s. Commands that require it to
be in the previous statewill no longer work. Some of the over-approximations made
by tools such a®roVerif do not work well with non-monotonic state. For example,
although private channels could be used to represent ttescstanges, the abstraction of
private channels th&roVerif makes prevents it from being able to verify correctness of
the resulting specification. MoreovéroVerif does not model a state transition system,
but rather a set of derivable facts representing attackewlatge, together with the
assumption that the attacker never forgets any fact.

We address these restrictions by introducing the assumbtéd only one command
is executed in eacDIAP or OSAP session. This assumption appears to be quite reason-
able. Indeed, th& PM imposes the assumption itself whenever a command intreduce
new authdata. Moreover, tools like TPM/J [15] that providéwsare-level APIs also
implement this assumption. Again to avoid non-monotowjieite do not allow keys to
be deleted from the memory of tA®PM; instead, we allow an unbounded number of
keys to be loaded.

An important aspect of th&PM is its key table that allows one to store crypto-
graphic keys and other sensitive data in its shielded mentuy aim is to allow the
key table to contain dishonest key&, keys for which the attacker knows the authdata,
as well as honest keys. Some of these keys may also sharentkeeasi#ghdata. Indeed,

User_CertifyKey =
in(c, h1).in(c, h2).in(c, ne1).in(c, nez).
new N.new Noi.new Nos.
let (authi,pk1) = (getAuth(hi), getPK(h1)) in
let (authz, pk2) = (getAuth(hs), getPK(h2)) in
let hmaci = hmac(authi, (cfk, N, ne1, No1)) in
let hmace = hmac(auths, (cfk, N, ne2, No2)) in
UserRequestsC(authi, pk1, auths, pk2).
out(c, (N, No1, hmaci, Noz, hmacs)).
in(c, (zcert, ney, ney, hmi, hms)).
if hm1 = hmac(authi, (cfk, N,ne’, Noi, zcert)) then
if hma = hmac(auths, (cfk, N, neb, Nos, zcert)) then
UserConsidersC(auth, pki, auths, pka, xcert).

~ ~—

Fig. 1. ProcesdJser_CertifyKey

it would be incorrect to suppose that all keys have distimthdata, as the authdata
may be derived from user chosen passwords. Our first ideaoneseta binary function
symbolhandle(auth, sk) to model a handle to the secret kdywith authdatawuth. We
use private functiong,e. functions which may not be applied by the attacker, to allow
the TPM process to extract the authdata and the secret key from dehdigs models
a lookup in the key table where each handle can indeed beiat=sbto its authdata
and private key. Unfortunately, with this encodiRgoVerif does not succeed in prov-
ing some expected properties. The tool outputs a falsekattased on the hypothesis
that the attacker knows two handlesidle(authy, sk) andhandle(auths, sk) which are
built over two distinct authdata but the same secret keydlwis impossible). We there-
fore use a slightly more involved encoding where the handfgedds on the authdata
and aseed the secret key is now obtained by applying a binary privatefion symbol
(denotechsk hereafter) to both the authdata and the seed. Hénedle(auth;, s) and
handle(auths, s) will now point to two different private keys, namehsk(authy, s)
andhsk(auths, s). This modelling avoids false attacks.

In our modelling we have two processes for each command: lapueeess and
a TPM process. The user processd. User_CertifyKey) models an honest user who
makes a call to th&PM while the TPM process €.9. TPM_CertifyKey) models the
TPM itself. The user process first takes parameters, such asthkandles used for
the given command, and can be invoked by the adversary. Tibvgsathe adversary to
schedule honest user actions in an arbitrary way withoutvikmgp himself the authdata
corresponding to the keys used in these commands.

Our model assumes that the attacker can intercept, injdehadify commands sent
by applications to the TPM, and the responses sent by the TWhe this might not be
the case in all situations, it seems to be what the TPM dessdrazl in mind; otherwise,
neither the authentication HMACs keyed on existing authdaor the encryption of
new authdata described in section 2.2 would be necessary.

TPM_CertifyKey =
new Nej.new Nes.out(c, Neq).out(c, Nes).
in(c,n).in(c, (h1,n01, hma)).in(c, (h2, no2, hms)).
let (authi, ski,pk1) = (getAuth(hi), getSK(h1), getPK (k1)) in
let (auths, sk2, pk2) = (getAuth(hs), getSK(h2), getPK(h2)) in
if hm1 = hmac(authy, (cfk, n, Nes, no;)) then
if hma = hmac(auths, (cfk, n, Nez, noz)) then
let certif = cert(sky, pke)in
out(c, certif).
TpmC(auth;, pki, auths, pke, certif).
new Ne’.new Neb.
let hmaci = hmac(auth;, (cfk, n, Ne';, nos, certif)) in
let hmace = hmac(authg, (cfk, n, Ne%, nog, certif)) in
out(c, (Ney, Neb, hmaciy, hmacs)).

Fig. 2. ProcesSPM_CertifyKey

We now illustrate our modelling on thePM_CertifyKey command in arOIAP
session. The procedsser_CertifyKey is detailed in Figure 1. This process starts by
inputing two handles:;, ho which are provided by the attacker. In this way the at-
tacker can schedule with which keys this command is execitee user also inputs
two even nonces which are supposed to come fronTBM. Then the user constructs
the two authorisation HMACs for the corresponding noncaeguthe authdata and
public keys extracted out of the handles and outputs thes&EBvtogether with the
nonces. The everdserRequestsC is used to declare that the user requested the com-
mand with the given parameters. When receiving the replysiee checks the received
HMAC:s. If all checks go through the user triggers the evgsarConsidersC. The pro-
cessTPM_CertifyKey is detailed in Figure 2 and does the complementary actiotigeto
user process. We may note that when the attacker knows théaatcorresponding to
a handle he can directly interact with this process withbeatuser process.

3.3 Security Properties of theTPM

The TPM specification does not detail explicitly which security pecties are intended
to be guaranteed, although it provides some hints. The figet@n [16, Part |, p.60]

states that: The design criterion of the protocols is to allow for ownepsauthentica-

tion, command and parameter authentication and preverayegnd man in the middle
attacks” We will formalise these security properties @srrespondence properties

1. If the TPM has executed a certain command, then a user in possesshumnrele-
vant authdata has previously requested the command.

2. If a user considers that tiePM has executed a certain command, then either the
TPM really has executed the command, or an attacker is in pageesfghe rele-
vant authdata.

The first property expresses authentication of user commandl is achieved by
the authorisation HMACSs that accompany the commands. Toenskeone expresses

authentication of th&PM, and is achieved by the HMACSs provided by theM with
its answer. We argue that tié€M certainly aims at achieving these properties, as oth-
erwise there would be no need for the HMAC mechanism. Goirnff bmthe example
of the TPM_CertifyKey command (Figures 1 and 2) the above mentioned properties
can be expressed by the injective correspondence progpertie

1. TpmC(xy, xo, 23, x4, x5) = UserRequestsC(z1, 22, x3,24), and

2. UserConsidersC(x1, xo, 3, x4, x5) = TpmC(z1, 22, T3, T4, X5).

These properties, however, cannot hold if we provide treckér with a dishonest
key, i.e. a handle for which he knows the corresponding authdataebhdée attacker
can simply execute the command without the user processe;#nve provide the at-
tacker with a handlaandle(auth;, seed;) and the authdatauth;, we weaken the prop-
erty to avoid the trivial failure of the property. We cannapect the property to hold
whenzx, andx3 are both instantiated withuth;. However, as soon as we give the at-
tacker the possibility to create new keys (using TirM _CreateWrapKey command),
the attacker can create new keys and again make the propeésiht fail. Hence, when
we consider a scenario in which new keys can be loaded, wédaurike following for-
malization:

1. Tme($1,$2,$371’471’5) = UserRequestsC(xl,xg, IE3,$4,$5) vV (l(l’l) A |(l’3))
2. UserConsidersC(x1, 29, 3, 24, x5) = TpmC(z1, 22, 3, 24, 25) V (I(x1) Al(x3)).

wherel is the attacker knowledge predicate. Hence, we allow thpepty to fail if the
commands are executed with keys for which the attacker kilogvauthdata.

4 Analysing the TPM with ProVerif

All the files for our experiments described below are avédam line at:
http://ww. | sv. ens-cachan. fr/ ~del aune/ TPM

In the figures describing attacks, for the sake of claritysametimes omit some parts
of the messages, especially session handles that we dom&tleoin our model and
key handles when they are clear from the other messages.

Our methodology was to first study some core key managememhends in isola-
tion to analyse the weakness of each command. This leadspusggose some fixes for
these commands. Then, we carried out an experiment whereng@er the commands
TPM_CertifyKey, TPM_CreateWrapKey, TPM_LoadKey2, and TPM_UnBind to-
gether. We consider the fixed version of each of these comsnamdl we show in Ex-
periment 10 that the security properties are satisfied foeaario that allows:

— an attacker to load his own keys inside M, and
— an honest user to use the same authdata for different keys.

In our first six experiments, we model the commarieM_CertifyKey in isola-
tion. Then, in Experiments 7-9, we model the commaRriM_CreateWrapKey only.
Lastly, in Experiment 10, we consider a model where the contsi@aPM_CertifyKey,
TPM_CreateWrapKey, TPM_LoadKey2, and TPM_UnBind are taken into account.
In all experiments, the security properties under testlaecbrrespondence properties
explained above.

Experiment 1. In our first two experiments, we consider a configuration with keys
loaded inside th&PM. The attacker knows the two handlesndle(authq, sk1) and
handle(auths, sk2). From the handléandle(authq, sk1), the attacker can obtain the
corresponding public keyk(sk;). However, he can obtain neither the private key,

nor the authdatauth, required to manipulate the key through the device. For the mo
ment, we assume that the attacker does not have his own kdsdamto the device.

ProVerif immediately discovers an attack, described in Figure 3,dbmes from
the fact that the command involved two keys. The attackerezamily swap the role
of these two keys: he swaps the two HMACSs, the two key handled,the rolling
nonces provided in input of the command. Hence, TTR& will output the certificate
cert(sko, pk(sky)) whereas the user asked for obtaining the certificate sk 1, pk(skz)).

By performing also the swap on the answer provided byTibI, the attacker can
provide two valid HMACs to the user who will accept the wroregtdicate. Hence, the
second correspondence property is not satisfied. Noteftthegt user chooses to verify
the certificate he received with tledeckcert algorithm, then this attack is not valid
anymore andProVerif is able to verify that this second correspondence propaitgsh

Initial knowledge of Charlie: handle(auth1, sk1), handle(authz, sk2).
Trace: Charlie swaps the two authorisation HMACs, and swaps theésponse HMACS.

USER — TPM :requestto open two OIAP sessions
TPM — USER : nei, ne2

USER requests key certification to obtadart(sk1, pk(sk2))

USER — Charlie : n, no1, noa,

hmac(authi, (cfk,n,nei, no1)),hmac(auths, (cfk, n, nea, nos))
Charlie — TPM : n, nos, no1,

hmac(authz, (cfk, n, nes, no2)),hmac(authq, (cfk, n, ne1, no1))

TPM — Charlie : nel, neb, cert(sks, pk(sk1)),

hmac(authz, (cfk, n, nej, no2)), hmac(authi, (cfk, n, ney, no1))
Charlie — USER : neb, nel, cert(ska, pk(sk1)),

hmac(authi, (cfk, n, ney, no1)), hmac(auths, (cfk, n, nel, nos))

USER checks the HMACs and accepts the certificate (sk2, pk(sk1)).

Fig. 3. Attack trace for Experiment 1.

Experiment 2. We patch the commantPM_CertifyKey by considering two different
tags for the two different HMACs. More precisely, we repldbe constantfk with

cfky (resp.cfks) in the first (resp. second) HMAC provided by the user and #igo
one provided by th&PM. The attacks reported in our first experiment are prevented.
ProVerif is now able to verify the two correspondence properties.

Experiment 3. We add in the initial configuration another key for Alice and as-
sume that this new keyk;, has the same authdata as a previous key of Alice al-

10

ready loaded onto th€PM. Hence, in our model, we have thigindle(authy, sk1),
handle(auths, sks), andhandle(auths, ski) are terms known by the attacker Charlie.

ProVerif immediately discovers another attack, described in Figuighe attacker
can exchange the key handilendle(auths, sk) provided by the honest user in entry of
the command with another handle having the same authdatdaindle(auths, sks).
The TPM will answer by sending the certificatert(sk, pk(sks)) together with the
two HMACs. After verifying the HMACSs, the user will acceptishcertificate which
is not the right one. Indeed, the user was expecting to recert(sk1, pk(sks)). The
trace described in Figure 4 shows that none of the two coorefgnce properties holds.

Initial knowledge of Charlie: handle(auth1, sk1), handle(auths, sk2), handle(auths, sk5).
Trace: Charlie swaps a key handle for another one that has the saimasal

USER — TPM :request to open twOIAP sessions
TPM — USER : nei, nes

USER requests key certification to obtadart(sk1, pk(skz))

USER — Charlie : n, no1, handle(auth1, sk1), hmac(auth1, (cfk, n, ne1, no1)),
noz, handle(authz, sk2), hmac(auths, (cfk, n, nes, noz2))
Charlie — TPM : n, no1, handle(auth1, sk1), hmac(auth1, (cfk, n, ne1, no1))
nos, handle(auths, sky), hmac(auths, (cfk, n, nes, nos))

)

TPM — USER : nel, ne, cert(sk1, pk(sks)),
hmac(auth1, (cfk, n, nel, no1)), hmac(auths, (cfk, n, ney, nos))

USER checks the HMACs and accepts the certificate (sk1, pk(sks)).

Fig. 4. Attack trace for Experiment 3.

Experiment 4. The attack described in the previous experiment comes fhanfact
that the HMAC is only linked to the key via the authdata. Thas soon as two keys
share the same authdata, this leads to some confusion. Aovliaythiis would be to add
the key handle inside the HMAC, but ti&°M designers chose not to do this because
they wanted to allow middleware to unload and reload keys therefore possibly
change key handles) without the knowledge of applicatidtwswoe that produces the
HMACs. A more satisfactory solution that has been proposeélture versions of the
TPM is to add (the digest of) the public key inside the HMAC. Herioeinstance, the
HMAC built by the user is now of the forrhmac(auth, (cfkl, pk(sk),n,ney,noy)).
The same transformation is done on all the HMACs.

The previous attacks do not exist anymdpeoVerif is able to verify that the two
correspondence properties hold.

Experiment 5. We now assume that the attacker has his own key loaded onto the
device. This means that he knows a key hardiedle(auth;, sk;) and the authdata
auth; that allows him to manipulatet; through the device. He has also access to the
public keypk(sk;). However, he does not knowk; that is stored inside thEPM.

11

We immediately rediscover the attack of [12], showing thneg attacker can ma-
nipulate the messages exchanged betweel8teR and theTPM in such a way that
the TPM will provide the certificatecert(sk, pk(sk;)) to a user that has requested the
certificatecert(sky, pk(skz)).

Initial knowledge of Charlie: handle(auth, sk1), handle(authz, sk2), handle(auth;, sk;),
auth;.

Trace: Charlie replaces they key to be certified his own key.

USER — TPM :requestto open twOIAP sessions
TPM — USER : nei, nea

USER requests key certification to obtadart(sk1, pk(sk2))

USER — Charlie : n, no1, hmac(auth1, (cfk, pk(sk1),n,nei,no1)),
noz, hmac(auths, (cfk, pk(skz2), n, nez, noz))

Charlie — TPM : n, noi, hmac(authi, (cfk, pk(sk1), n, nei, no1)),
noz, hmac(auth;, (cfk, pk(sk;), n, nez, noz))

TPM — Charlie : nel, neh, cert(sk1, pk(sk;)), ...

Fig. 5. Attack trace for Experiment 5

ProVerif succeeds in proving the other correspondence property that in the
trace described in Figure 5, Charlie is not able to build théA€s expected by the
user in order to accept the wrong certificate.

Experiment 6. The attack of [12] comes from the fact that the attacker catace
the user's HMAC with one of his own (pertaining to his own keyhe TPM will not
detect this change since the only link between the two HMACQH& nonce: known
by the attacker. To fix this, it seems important that each HMAGtains something that
depends on the two keys involved in the certificate. So, weaadidest of each public
key inside each HMAC. For instance, the first HMAC built by treer will be now of
the form:

hmac(authy, (cfkl, pk(sky), pk(ska), n, nei, noy)).

The attack described in Experiment 5 is not possible anynitine TPM will only
accept two HMACSs that refer to the same pair of public keys.

ProVerif is now able to verify that the two correspondence propett@d. How-
ever, it does not succeed in proving injectivity for the pdp expressing authentication
of the user. This is due to a limitation of the tool and doescootespond to a real attack.

Experiment 7. We now study the commantPM_CreateWrapKey in isolation. For
this command, we need aDSAP session. We consider a configuration with 2 keys
pairs(sky, pk(sk1)) and(sks, pk(skz)) loaded inside th&PM. The attacker knows the
handleshandle(authy, sk1) andhandle(auths, sko). He has access to the public part
of these two keys but he does not know the private part of tlys ked the authdata

12

associated to these keys that allows one to manipulate ttsetikough the device. For
the moment, the intruder does not have his own key loadedtbatdevice.

For this simple configuratiofroVerif is able to verify that the two correspondence
properties hold. Note that this command involves only ong #eus the kind of con-
fusion that exists for th& PM_CertifyKey command is not possible on the command
TPM_CreateWrapKey.

Experiment 8. We add another key for Alice in the initial configuration aresame
that this new kewk’, has the same authdata as a previous key of Alice alreadydoade
in the TPM.

We discover an attack of the same type as the one presentegénient 3. When
the user opens th@SAP session orhandle(auths, sks), the attacker can replace this
handle byhandle(auths, skb). Similarly, when the user requests to create a wrap with
handle(auths, sk2) the attacker replaces this handlemndle(auths, skb). Hence, at
the end, the user will obtain a wrap that is not the expectedidate that the user cannot
detect that the wrap he received has been performedpkitkk},) instead ofpk(sk>)
since he does not have access to the private part of the kageta trace similar to the
one presented in Figure 4 allows one to falsify both corredpace security properties.

Experiment 9. As in the case of th&PM_CertifyKey command, a way to fix this, is to
addpk(sk) inside the HMAC. TherProVerif is able to verify the two correspondence
properties even if we load a ‘dishonest’ key inside 1M, i.e. a key for which the
attacker knows the authdata.

Experiment 10. We now consider a much richer scenario. We consider the comsna

— TPM_CertifyKey (the version described in Experiment 6 in order to avoid ttee p
vious attacks),

— TPM_CreateWrapKey, TPM_LoadKey2, and TPM_UnBind for which we add
the public key inside the HMAC (again to avoid the kind of ekis that we de-
scribed in Experiment 3 and Experiment 8).

We consider a scenario where an honest key and a dishonesrd&ejready loaded
inside theTPM. Note that by usingPM_CreateWrapKey andTPM_LoadKey?2, the
honest user and the attacker will be able to create and loadkegs into the device.
Hence, having only two keys loaded in th@®M in the initial configuration is not a
restriction. An honest user is allowed to use the same at#tidadifferent keys.

ProVerif is able to establish the 8 correspondence security pregetiowever, in
one case, as in Experiment 6, it is not able to verify the thjewersion of the property.

5 Related Work

Several papers have appeared describing systems thadevisreTPM to create se-
cure applications, but most of these assume thaT&M API correctly functions and
provides the high-level security properties required |9, Lower level analyses of the

13

TPM API are more rare. Cokeat al. discuss such work, but the details of the model
remain classified [8]. Lin described an analysis of varicag/ients of th@PM API
using Otter and Alloy. He modelled several subsets of the @Phmands in a model
which omits details such as sessions, HMACs and authdataldas include (mono-
tonic) state. His results included a possible attack on élegation model of th&PM
[14]. However, experiments with a reBPM have shown that the attack is not possible
[2]. GUrgenset al.[12] describe an analysis of tié®M API using finite state automata.
Details of their model are difficult to infer from the papeutlis seems to include a fi-
nite number of fresh nonces and handles, and HMACs. Theyfaistalise security
as secrecy of certain terms in the model, giving example®ofiete scenarios where
these secrets must be protected. They show how an attackar same circumstances
illegitimately obtain a certificate on'BPM key of his choice (see Experiment 5).

In our work, we have proposed correspondence propertiesaseageneral security
goal for the API, and shown how attacks such as the attack pefixent 5 are in fact
an instance of a violation of these goals. We have also vérifiese properties on a
patched API for unbounded numbers of command invocatioseshfnonces, keys and
handles. We have only treated one small subset of commarfds ®oit runtimes with
ProVerif are just a few seconds, and we are optimistic about extermdingpproach to
cover more of the API.

Other attacks on th&PM found without the aid of formal methods include offline
dictionary attacks on the passwords or authdata used toesacuess to keys [7], and
attacks exploiting the fact that the same authdata can hegbatween users [6]. Both
of these can be detected in our formal model by small adjussné&lowever, for the
moment we deliberately omit these, since fixes have already proposed, and we are
interested in analysis of the underlying API. There is afeirknown attack whereby an
attacker intercepts a message, aiming to cause the letgtimsar to issue another one,
and then causes both to be received, resulting in the mebsageprocessed twice [5].
This is not a violation of our correspondence property, kemar formal model does
not consider it as an attack.

6 Conclusion and Future Work

We presented a detailed modelling of a fragment oftR& in the applied pi calculus.
We model core security properties as correspondence piepand use th€roVerif
tool to automate our security analysis. We were able to ceslex several known attacks
and some new variants of these attacks.

As future work, we foresee extending our model with more c@mds such as those
involved in key migration. We also plan to model th@M'’s platform configuration
registers(PCRs) which allow one to condition some commands on thesnuxalue of
aregister. PCRs are crucial when using T for checking the integrity of a system.
Modelling the PCRs and the commands for manipulating thegisters for automated
verification seems to be a challenging task, because of raetanicity of state.

AcknowledgmentsMark Ryan gratefully thanks Microsoft and Hewlett-Packéwd
interesting discussions and financial support that cangibto this research.

14

References

1.

10.

11.

12.

13.

14.

15.
16.

M. Abadi and C. Fournet. Mobile values, new names, andreecommunication. In
Proc. 28th Symposium on Principles of Programming Langad§®©PL’'01) pages 104—
115. ACM Press, 2001.

. K. Ables. An attack on key delegation in the Trusted Ptatfdlodule (first semester mini-

project in computer security). Master’s thesis, School ofmputer Science, University of
Birmingham, 2009.

. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagd. C&llar, P. Drielsma, P.-C.

Héam, O. Kouchnarenko, J. Mantovani, Sodérsheim, D. von Oheimb, M. Rusinowitch,
J. Santiago, M. Turuani, L. Vigan and L. Vigneron. The AVISPA tool for the automated
validation of internet security protocols and applicasiomn Proc. 17th International Con-
ference on Computer Aided Verification (CAV’0pages 281285, 2005.

. B. Blanchet. Automatic verification of correspondena@ssecurity protocolsJournal of

Computer Securityl 7(4):363—-434, 2009.

. D. Bruschi, L. Cavallaro, A. Lanzi, and M. Monga. Replataek in TCG specification and

solution. InProc. 21st Annual Computer Security Applications ConfeeefACSAC’05)
pages 127-137. IEEE Computer Society, 2005.

. L. Chen and M. Ryan. Attack, solution and verification foased authorisation data in

TCG TPM. InProc. 6th International Workshop on Formal Aspects in Sigand Trust
(FAST’09) pages 201-216, 2009.

. L. Chen and M. D. Ryan. Offline dictionary attack on TCG TPMak authorisation data,

and solution. IrFuture of Trust in Computing/ieweg & Teubner, 2008.

. G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen,BHanlon, J. Ramsdell,

A. Segall, J. Sheehy, and B. Sniffen. Principles of remadtestdtion.International Journal
of Information SecurityTo Appear, 2010.

. A. Datta, J. Franklin, D. Garg, and D. Kaynar. A logic of sexsystems and its application

to trusted computing. IProc. 30th IEEE Symposium on Security and Privacy (S&R’09)
pages 221-236, 2009.

S. Fbschle and G. Steel. Analysing PKCS#11 key management AlfHambounded fresh
data. InProc. Joint Workshop on Automated Reasoning for Securityoeol Analysis and
Issues in the Theory of Security (ARSPA-WITS'08)lume 5511 ofLNCS pages 92-106,
York, UK, 2009. Springer.

Y. Gasmi, A.-R. Sadeghi, P. Stewin, M. Unger, and N. Asoleyond secure channels. In
Scalable Trusted Computing (STC'0pages 30—40, November 2007.

S. @irgens, C. Rudolph, D. Scheuermann, M. Atts, and R. PlagacurBe evaluation
of scenarios based on the TCG’s TPM specification.Pioc. 12th European Symposium
On Research In Computer Security (ESORICS'0@ume 4734 oLNCS pages 438-453.
Springer, 2007.

ISO/IEC PAS DIS 11889: Information technology — Seguethniques — Trusted Platform
Module.

A. H. Lin. Automated Analysis of Security APIs. Mastetfgesis, MIT, 2005. ht t p:
//sdg.csail.mt.edul/ pubs/theses/anerson- mast ers. pdf.

L. Sarmenta. TPM/J developer’s guide. Massachussstituite of Technology.

Trusted Computing Group. TPM Specification version 1Parts 1-3, revision
103. http://ww. trustedconputi nggroup. org/resources/tpmnai n_
speci fication, 2007.

15

