
A Formal Analysis of Authentication
in the TPM

St́ephanie Delaune1, Steve Kremer1, Mark D. Ryan2, and Graham Steel1

1 LSV, ENS Cachan & CNRS & INRIA SaclaŷIle-de-France, France
2 School of Computer Science, University of Birmingham, UK

Abstract. The Trusted Platform Module (TPM) is a hardware chip designed to
enable computers to achieve a greater level of security thanis possible in software
alone. To this end, theTPM provides a way to store cryptographic keys and other
sensitive data in its shielded memory. Through its API, one can use those keys to
achieve some security goals. TheTPM is a complex security component, whose
specification consists of more than 700 pages.
We model a collection of fourTPM commands, and we identify and formalise
their security properties. Using the toolProVerif, we rediscover some known
attacks and some new variations on them. We propose modifications to the API
and verify our properties for the modified API.

1 Introduction

The Trusted Platform Module (TPM) is a hardware chip designed to enable commodity
computers to achieve greater levels of security than is possible in software alone. There
are 300 million TPMs currently in existence, mostly in high-end laptops, but now in-
creasingly in desktops and servers. Application software such as Microsoft’s BitLocker
and HP’s HP ProtectTools use theTPM in order to guarantee security properties. The
TPM specification is an industry standard [16] and an ISO/IEC standard [13] coordi-
nated by the Trusted Computing Group.

In the last few years, several vulnerabilities in theTPM API have been discovered,
particularly in relation to secrecy and authentication properties (we detail a few of them
in Section 5). These attacks highlight the necessity of formal analysis of the API spec-
ification. We perform such an analysis in this paper, focussing on the mechanisms for
authentication and authorisation.

Formal analysis of security APIs involves many of the tools and techniques used in
the analysis of security protocols, but the long-term stateinformation held by theTPM
presents an additional challenge. Tools such asProVerif are not optimised to reason
with stateful protocols. There is no easy solution to this problem, although we show
how to alleviate it in this case with suitable abstractions.

In this paper, we model a collection of fourTPM commands, concentrating on the
authentication mechanisms. We identify security properties which we will argue are
central to correct and coherent design of the API. We formalise these properties for
our fragment, and usingProVerif, we rediscover some known attacks on the API and
some new variations on them. We discuss some fixes to the API, and prove our security
properties for the modified API.



2 An overview of theTPM

The TPM stores cryptographic keys and other sensitive data in its shielded memory,
and provides ways for platform software to use those keys to achieve security goals.
TheTPM offers three kinds of functionality:

– Secure storage.User processes can store content that is encrypted by keys only
available to theTPM.

– Platform authentication.A platform can obtain keys by which it can authenticate
itself reliably.

– Platform measurement and reporting.A platform can create reports of its integrity
and configuration state that can be relied on by a remote verifier.

To store data using aTPM, one createsTPM keys and uses them to encrypt the data.
TPM keys are arranged in a tree structure, with thestorage root key(SRK) at its root.
To eachTPM key is associated a 160-bit string calledauthdata, which is analogous
to a password that authorises use of the key. A user can use a key loaded in theTPM
through the interface provided by the device. This interface is actually a collection of
commands that (for example) allow one to load a new key insidethe device, or to
certify a key by another one. All the commands have as an argument an authorisation
HMAC that requires the user to provide a proof of knowledge ofthe relevant authdata.
Each command has to be called inside anauthorisation session. We first describe this
mechanism before we explain some commands in more detail.

2.1 Sessions

TheTPM provides two kinds of authorisation sessions:

– Object Independent Authorisation Protocol(OIAP), which creates a session that
can manipulate any object, but works only for certain commands.

– Object Specific Authorisation Protocol(OSAP), which creates a session that ma-
nipulates a specific object specified when the session is set up.

An authorisation session begins when the commandTPM OIAP or TPM OSAP is
successfully executed.

OIAP authorisation session.To set up anOIAP session, the user process sends the com-
mandTPM OIAP to theTPM. Then, the user receives back asession handle, together
with a nonce. Each command within the session sends the session handle as part of its
arguments, and also a new nonce. Nonces from the user processare calledodd nonces,
and nonces from theTPM are calledeven nonces. This system of rotating nonces guar-
antees freshness of the commands and responses. All authorisation HMACs include
the most recent odd and even nonce. In anOIAP session, the authorisation HMACs
required to execute a command are keyed on the authdata for the resource (e.g.key)
requiring authorisation.

2



OSAP authorisation session.For anOSAP session, the user process sends the com-
mandTPM OSAP to theTPM, together with the name of the object (e.g.key handle),
and anOSAP odd nonceNo

OSAP. The response includes a session handle, an even
nonce for the rolling nonces, and anOSAP even nonceNe

OSAP. Then, the user process
and theTPM both compute theOSAP shared secrethmac(auth, 〈Ne

OSAP,No
OSAP〉),

i.e. an HMAC of the oddOSAP nonce and the evenOSAP nonce, keyed on the ob-
ject’s authdata. Now commands within such a session may be executed. In anOSAP
session, the authorisation HMACs are keyed on theOSAP shared secret. The purpose
of this arrangement is to permit the user process to cache thesession key for a possibly
extended session duration, without compromising the security of the authdata on which
it is based.

2.2 Commands

TheTPM provides a collection of commands that allow one to create some new keys
and to manipulate them. These commands are described in [16]. Here, we explain only
a few of them in order to illustrate how theTPM works.

To store data using aTPM, one creates aTPM key and uses it to encrypt the data.
TPM keys are arranged in a tree structure. TheStorage Root Key(SRK) is created by
a command calledTPM TakeOwnership. At any time afterwards, a user process can
call TPM CreateWrapKey to create a child key of an existing key. Once a key has been
created, it may be loaded usingTPM LoadKey2, and then can be used in an operation
requiring a key (e.g.TPM CertifyKey, TPM UnBind).

TPM CreateWrapKey. The command creates the key but does not store it; it simply
returns it to the user process (protected by an encryption).Assume that the parent key
pair (sk , pk(sk)) under which we want to create a new key is already loaded inside the
device with the authdataauth. Assume also that anOSAP session has been established
on this key, withss = hmac(auth, 〈neOSAP, noOSAP〉) as the OSAP shared secret and
assume the current even rolling nonce associated to this session isne. The command
can be informally described as follows:

handle(auth, sk), no, cipher,
→

new SK , new Ne · Ne, pk(SK ), wrp,

hmac(ss, 〈cwk, cipher, ne, no〉) hmac(ss, 〈cwk, wrp, pk(SK ), Ne, no〉)

where:

– cipher = senc(NewAuth , hash(ss, ne)), and
– wrp = wrap(pk(sk), 〈SK ,NewAuth , tpmproof〉).

The intuitive meaning of such a rule is: if an agent (possiblythe attacker) has the
data items on the left, then, by means of the command, he can obtain the data items on
the right. Thenew keyword indicates that data,e.g.nonces or keys, is freshly generated.

TheTPM CreateWrapKey command takes arguments that include the handle for
the parent key of the key to be created, an odd rolling nonce that is a priori freshly
generated by the user, the new encrypted authdata of the key to be created, and the
authorisation HMAC based on the authdata of the parent key. It returns the public part

3



pk(SK ) of the new key and an encrypted package; the package containsthe private part
and the authdata of the new key, as well as the constanttpmproof (a private constant
only known by theTPM). This package is encrypted with the parent keypk(sk). An
authentication HMAC is also constructed by theTPM to accompany the response. The
newly created key is not yet available to theTPM for use.

Note that this command introduced a new authdata that is encrypted with theOSAP
secret. Because this arrangement could expose theOSAP shared secret to cryptanalytic
attacks if used multiple times, anOSAP session that is used to introduce new authdata
is subsequently terminated by theTPM. Commands that want to continue to manipulate
the object have to create a new session.

TPM LoadKey2. To use aTPM key, it must be loaded.TPM LoadKey2 takes as ar-
gument a wrap created by the commandTPM CreateWrapKey, and returns a handle,
that is, a pointer to the key stored in theTPM memory. Commands that use the loaded
key refer to it by this handle. SinceTPM LoadKey2 involves a decryption by the par-
ent key, it requires the parent key to be loaded and it requires an authorisation HMAC
based on the parent key authdata. The root keySRK is permanently loaded and has a
well-known handle value, and therefore never needs to be loaded.

Once loaded, a key can be used, for example to encrypt or decrypt data, or to sign
data. As an illustrative example, we describe the commandTPM CertifyKey in more
detail.

TPM CertifyKey. This command requires two key handle arguments, representing the
certifying key and the key to be certified, and two corresponding authorisation HMACs.
It returns the certificate.

Assume that twoOIAP sessions are already established with their current even
rolling noncene1 and ne2 respectively, and that two keyshandle(auth1 , sk1 ) and
handle(auth2 , sk2 ) are already loaded inside theTPM. The TPM CertifyKey com-
mand can be informally described as follows:

n, no1, no2,

→

new Ne1, new Ne2 ·
hmac(auth1 , 〈cfk, n, ne1, no1〉) Ne1,Ne2, certif
hmac(auth2 , 〈cfk, n, ne2, no2〉) hmac(auth1 , 〈cfk, n,Ne1, no1, certif〉)

handle(auth1 , sk1 ), handle(auth2 , sk2 ) hmac(auth2 , 〈cfk, n,Ne2, no2, certif〉)

wherecertif = cert(sk1 , pk(sk2 )).
The user requests to certify the keypk(sk2 ) with the keysk1 . For this, he generates

a noncen and two odd rolling noncesno1 andno2 that he gives to theTPM together
with the two authorisation HMACs. TheTPM returns the certificatecertif. Two au-
thentication HMACs are also constructed by theTPM to accompany the response. The
TPM also generates two new even rolling nonces to continue the session.

3 Modelling the TPM

In this section, we first give a short introduction to the toolProVerif that we used to
perform our analysis. We choseProVerif after first experimenting with the AVISPA

4



toolsuite [3], which provides support for mutable global state. However, of the AVISPA
backends that support state, OFMC and CL-AtSe require concrete bounds on the num-
ber of command invocations and fresh nonces to be given. It ispossible to avoid this
restriction using SATMC [10], but SATMC performed poorly inour experiments due to
the relatively large message length, a known weakness of SATMC. We therefore opted
for ProVerif using abstractions to model state, as we explain below. We will explain
how theTPM commands as well as its security properties can be formalized in our
framework.

3.1 The toolProVerif

ProVerif takes as input a process written in a syntax close to the one used in the applied
pi calculus [1], a modelling language for security protocols. In particular, it allows pro-
cesses to send first-order terms built over a signature, names and variables. These terms
model the messages that are exchanged during a protocol.

Example 1.Consider for example the signatureΣ = {senc, sdec, hmac} which con-
tains three binary function symbols. The signature is equipped with an equational theory
and we interpret equality up to this theory. For instance thetheorysdec(senc(x, y), y) =
x models that decryption and encryption cancel out whenever the same key is used. We
do not need to consider any equations for modelling an HMAC function.

ProcessesP, Q, R, . . . are constructed as follows. The process0 is the empty pro-
cess which does nothing.new a.P restricts the namea in P and can for instance be
used to model thata is a fresh random number.in(c, x).P models the input of a term on
a channelc, which is then substituted forx in processP . out(c, t) outputs a termt on a
channelc. P | Q models the parallel composition of processesP andQ. In particular,
an input and an output on the same channel in parallel can synchronize and perform
a communication. The conditionalif M = N then P else Q behaves asP whenM

andN are equal modulo the equational theory and behaves asQ otherwise.!P is the
replication ofP , modelling an unbounded number of copies of the processP . More-
over we annotate processes with eventsev(t1, . . . , tn) which are useful for modelling
correspondence properties, discussed below.ProVerif can automatically check security
properties assuming that an arbitrary adversary process isrun in parallel.

Example 2.Consider the processnew k.(!P |!Q) where

P =̂ new nP .begin1(nP ).
out(c, senc(nP , k)).in(c, x).
let (xP , xQ) = sdec(x, k) in

if xP = nP then end2(nP , xQ)

Q =̂ in(c, y);
if y = senc(sdec(y, k), k) then

let yP = sdec(y, k) in end1(yP ).new nQ.

begin2(yP , nQ); out(c, senc((yP , nQ), k))

The processesP andQ share a long term symmetric keyk which they use to perform
a handshake protocol. Note that we use some syntactic sugar of the ProVerif syntax
for readability: final0 andelse 0 are omitted, we use alet construct to introduce local
variables and use a variadic tuple operator(t1, . . . , tn) for concatenating terms. For the
moment we ignore thebegin andend events. The processP first generates a noncenP

5



which is encrypted with the keyk. This ciphertext is sent toQ over a channelc. In Q,
the testy = senc(sdec(y, k), k) is used to check whether decryption succeeds. If it
does, then the processQ generates a fresh noncenQ and sends the encryption of both
nonces back toP . Lastly, the processP checks that the received nonce matches the
previously generated noncenP .

We now discuss correspondence properties, which can be automatically verified by
ProVerif [4]. A correspondence propertyev2(x1, . . . , xn) ⇒ ev1(y1, . . . , yn) holds if
on every execution trace each occurrence ofev2(x1, . . . , xn)σ is preceded by an occur-
rence ofev1(y1, . . . , yn)σ whereσ is a substitution mapping thexis andyis to terms.
An injectivecorrespondence property holds if each occurrence ofev2(x1, . . . , xn)σ is
preceded by a different occurrence ofev1(y1, . . . , yn)σ. Intuitively, injective correspon-
dence avoids replay attacks.

Example 3.Coming back to Example 2, the propertyend1(x) ⇒ begin1(x) mod-
els that whenever the processQ receives a correctly encrypted message with keyk

(end1(x) occurs) it must have originated fromP (begin1(x) occurs). Moreover, the
processesP andQ agree on the value ofx. This correspondence property indeed holds.
However, the stronger injective version does not hold, as the first message ofP can be
replayed toQ. The second correspondence propertyend2(x1, x2) ⇒ begin1(x1, x2)
models that whenever the processP finishes a session successfully, it must have inter-
acted with the processQ. This property holds injectively.

3.2 Modelling commands of the TPM

One of the difficulties in reasoning about security APIs suchas that of theTPM is non-
monotonic state. If the TPM is in a certain states, and then a command is successfully
executed, then typically theTPM ends up in a states′ 6= s. Commands that require it to
be in the previous states will no longer work. Some of the over-approximations made
by tools such asProVerif do not work well with non-monotonic state. For example,
although private channels could be used to represent the state changes, the abstraction of
private channels thatProVerif makes prevents it from being able to verify correctness of
the resulting specification. Moreover,ProVerif does not model a state transition system,
but rather a set of derivable facts representing attacker knowledge, together with the
assumption that the attacker never forgets any fact.

We address these restrictions by introducing the assumption that only one command
is executed in eachOIAP or OSAP session. This assumption appears to be quite reason-
able. Indeed, theTPM imposes the assumption itself whenever a command introduces
new authdata. Moreover, tools like TPM/J [15] that provide software-level APIs also
implement this assumption. Again to avoid non-monotonicity, we do not allow keys to
be deleted from the memory of theTPM; instead, we allow an unbounded number of
keys to be loaded.

An important aspect of theTPM is its key table that allows one to store crypto-
graphic keys and other sensitive data in its shielded memory. Our aim is to allow the
key table to contain dishonest keys,i.e.keys for which the attacker knows the authdata,
as well as honest keys. Some of these keys may also share the same authdata. Indeed,

6



User CertifyKey =̂
in(c, h1).in(c, h2).in(c, ne1).in(c, ne2).
new N.new No1.new No2.

let (auth1, pk1) = (getAuth(h1), getPK(h1)) in

let (auth2, pk2) = (getAuth(h2), getPK(h2)) in

let hmac1 = hmac(auth1, (cfk, N, ne1, No1)) in

let hmac2 = hmac(auth2, (cfk, N, ne2, No2)) in

UserRequestsC(auth1, pk1, auth2, pk2).
out(c, (N,No1, hmac1, No2, hmac2)).
in(c, (xcert, ne′1, ne′2, hm1, hm2)).
if hm1 = hmac(auth1, (cfk, N, ne′1, No1, xcert)) then

if hm2 = hmac(auth2, (cfk, N, ne′2, No2, xcert)) then

UserConsidersC(auth1, pk1, auth2, pk2, xcert).

Fig. 1. ProcessUser CertifyKey

it would be incorrect to suppose that all keys have distinct authdata, as the authdata
may be derived from user chosen passwords. Our first idea was to use a binary function
symbolhandle(auth, sk) to model a handle to the secret keysk with authdataauth. We
use private functions,i.e. functions which may not be applied by the attacker, to allow
theTPM process to extract the authdata and the secret key from a handle. This models
a lookup in the key table where each handle can indeed be associated to its authdata
and private key. Unfortunately, with this encodingProVerif does not succeed in prov-
ing some expected properties. The tool outputs a false attack based on the hypothesis
that the attacker knows two handleshandle(auth1, sk) andhandle(auth2, sk) which are
built over two distinct authdata but the same secret key (which is impossible). We there-
fore use a slightly more involved encoding where the handle depends on the authdata
and aseed; the secret key is now obtained by applying a binary private function symbol
(denotedhsk hereafter) to both the authdata and the seed. Hence,handle(auth1, s) and
handle(auth2, s) will now point to two different private keys, namelyhsk(auth1, s)
andhsk(auth2, s). This modelling avoids false attacks.

In our modelling we have two processes for each command: a user process and
a TPM process. The user process (e.g.User CertifyKey) models an honest user who
makes a call to theTPM while theTPM process (e.g.TPM CertifyKey) models the
TPM itself. The user process first takes parameters, such as the key handles used for
the given command, and can be invoked by the adversary. This allows the adversary to
schedule honest user actions in an arbitrary way without knowing himself the authdata
corresponding to the keys used in these commands.

Our model assumes that the attacker can intercept, inject and modify commands sent
by applications to the TPM, and the responses sent by the TPM.While this might not be
the case in all situations, it seems to be what the TPM designers had in mind; otherwise,
neither the authentication HMACs keyed on existing authdata, nor the encryption of
new authdata described in section 2.2 would be necessary.

7



TPM CertifyKey =̂
new Ne1.new Ne2.out(c, Ne1).out(c,Ne2).
in(c, n).in(c, (h1, no1, hm1)).in(c, (h2, no2, hm2)).
let (auth1, sk1, pk1) = (getAuth(h1), getSK(h1), getPK(h1)) in

let (auth2, sk2, pk2) = (getAuth(h2), getSK(h2), getPK(h2)) in

if hm1 = hmac(auth1 , (cfk,n, Ne1 ,no1 )) then

if hm2 = hmac(auth2 , (cfk,n, Ne2 ,no2 )) then

let certif = cert(sk1 , pk2 )in
out(c, certif ).
TpmC(auth1 , pk1 , auth2 , pk2 , certif ).
new Ne ′

1.new Ne ′

2.

let hmac1 = hmac(auth1 , (cfk,n, Ne′

1 ,no1 , certif )) in

let hmac2 = hmac(auth2 , (cfk,n, Ne′

2 ,no2 , certif )) in

out(c, (Ne′

1, Ne ′

2, hmac1, hmac2)).

Fig. 2. ProcessTPM CertifyKey

We now illustrate our modelling on theTPM CertifyKey command in anOIAP
session. The processUser CertifyKey is detailed in Figure 1. This process starts by
inputing two handlesh1, h2 which are provided by the attacker. In this way the at-
tacker can schedule with which keys this command is executed. The user also inputs
two even nonces which are supposed to come from theTPM. Then the user constructs
the two authorisation HMACs for the corresponding nonces using the authdata and
public keys extracted out of the handles and outputs these HMACs together with the
nonces. The eventUserRequestsC is used to declare that the user requested the com-
mand with the given parameters. When receiving the reply theuser checks the received
HMACs. If all checks go through the user triggers the eventUserConsidersC. The pro-
cessTPM CertifyKey is detailed in Figure 2 and does the complementary actions tothe
user process. We may note that when the attacker knows the authdata corresponding to
a handle he can directly interact with this process without the user process.

3.3 Security Properties of theTPM

TheTPM specification does not detail explicitly which security properties are intended
to be guaranteed, although it provides some hints. The specification [16, Part I, p.60]
states that: “The design criterion of the protocols is to allow for ownership authentica-
tion, command and parameter authentication and prevent replay and man in the middle
attacks.” We will formalise these security properties ascorrespondence properties:

1. If theTPM has executed a certain command, then a user in possession of the rele-
vant authdata has previously requested the command.

2. If a user considers that theTPM has executed a certain command, then either the
TPM really has executed the command, or an attacker is in possession of the rele-
vant authdata.

The first property expresses authentication of user commands, and is achieved by
the authorisation HMACs that accompany the commands. The second one expresses

8



authentication of theTPM, and is achieved by the HMACs provided by theTPM with
its answer. We argue that theTPM certainly aims at achieving these properties, as oth-
erwise there would be no need for the HMAC mechanism. Going back to the example
of the TPM CertifyKey command (Figures 1 and 2) the above mentioned properties
can be expressed by the injective correspondence properties:

1. TpmC(x1, x2, x3, x4, x5) ⇒ UserRequestsC(x1, x2, x3, x4), and
2. UserConsidersC(x1, x2, x3, x4, x5) ⇒ TpmC(x1, x2, x3, x4, x5).

These properties, however, cannot hold if we provide the attacker with a dishonest
key, i.e. a handle for which he knows the corresponding authdata. Indeed, the attacker
can simply execute the command without the user process. Hence, if we provide the at-
tacker with a handlehandle(authi, seed i) and the authdataauthi, we weaken the prop-
erty to avoid the trivial failure of the property. We cannot expect the property to hold
whenx1 andx3 are both instantiated withauthi. However, as soon as we give the at-
tacker the possibility to create new keys (using theTPM CreateWrapKey command),
the attacker can create new keys and again make the property trivially fail. Hence, when
we consider a scenario in which new keys can be loaded, we consider the following for-
malization:

1. TpmC(x1, x2, x3, x4, x5) ⇒ UserRequestsC(x1, x2, x3, x4, x5) ∨ (I(x1) ∧ I(x3))
2. UserConsidersC(x1, x2, x3, x4, x5) ⇒ TpmC(x1, x2, x3, x4, x5)∨ (I(x1)∧ I(x3)).

whereI is the attacker knowledge predicate. Hence, we allow the property to fail if the
commands are executed with keys for which the attacker knowsthe authdata.

4 Analysing theTPM with ProVerif

All the files for our experiments described below are available on line at:

http://www.lsv.ens-cachan.fr/∼delaune/TPM/

In the figures describing attacks, for the sake of clarity, wesometimes omit some parts
of the messages, especially session handles that we do not consider in our model and
key handles when they are clear from the other messages.

Our methodology was to first study some core key management commands in isola-
tion to analyse the weakness of each command. This leads us topropose some fixes for
these commands. Then, we carried out an experiment where we consider the commands
TPM CertifyKey, TPM CreateWrapKey, TPM LoadKey2, and TPM UnBind to-
gether. We consider the fixed version of each of these commands and we show in Ex-
periment 10 that the security properties are satisfied for a scenario that allows:

– an attacker to load his own keys inside theTPM, and
– an honest user to use the same authdata for different keys.

In our first six experiments, we model the commandTPM CertifyKey in isola-
tion. Then, in Experiments 7-9, we model the commandTPM CreateWrapKey only.
Lastly, in Experiment 10, we consider a model where the commandsTPM CertifyKey,
TPM CreateWrapKey, TPM LoadKey2, andTPM UnBind are taken into account.
In all experiments, the security properties under test are the correspondence properties
explained above.

9



Experiment 1. In our first two experiments, we consider a configuration withtwo keys
loaded inside theTPM. The attacker knows the two handleshandle(auth1, sk1) and
handle(auth2, sk2). From the handlehandle(auth1, sk1), the attacker can obtain the
corresponding public keypk(sk1). However, he can obtain neither the private keysk1,
nor the authdataauth1 required to manipulate the key through the device. For the mo-
ment, we assume that the attacker does not have his own key loaded onto the device.

ProVerif immediately discovers an attack, described in Figure 3, that comes from
the fact that the command involved two keys. The attacker caneasily swap the role
of these two keys: he swaps the two HMACs, the two key handles,and the rolling
nonces provided in input of the command. Hence, theTPM will output the certificate
cert(sk2, pk(sk1)) whereas the user asked for obtaining the certificatecert(sk1, pk(sk2)).

By performing also the swap on the answer provided by theTPM, the attacker can
provide two valid HMACs to the user who will accept the wrong certificate. Hence, the
second correspondence property is not satisfied. Note that if the user chooses to verify
the certificate he received with thecheckcert algorithm, then this attack is not valid
anymore andProVerif is able to verify that this second correspondence property holds.

Initial knowledge of Charlie: handle(auth1, sk1), handle(auth2, sk2).

Trace: Charlie swaps the two authorisation HMACs, and swaps the tworesponse HMACs.

USER → TPM : request to open two OIAP sessions
TPM → USER : ne1, ne2

USER requests key certification to obtaincert(sk1, pk(sk2))

USER → Charlie : n, no1, no2,
hmac(auth1, 〈cfk, n, ne1, no1〉),hmac(auth2, 〈cfk, n, ne2, no2〉)

Charlie → TPM : n, no2, no1,
hmac(auth2, 〈cfk, n, ne2, no2〉),hmac(auth1, 〈cfk, n, ne1, no1〉)

TPM → Charlie : ne′1, ne′2, cert(sk2, pk(sk1)),
hmac(auth2, 〈cfk, n, ne′1, no2〉), hmac(auth1, 〈cfk, n, ne′2, no1〉)

Charlie → USER : ne′2, ne′1, cert(sk2, pk(sk1)),
hmac(auth1, 〈cfk, n, ne′2, no1〉), hmac(auth2, 〈cfk, n, ne′1, no2〉)

USER checks the HMACs and accepts the certificatecert(sk2, pk(sk1)).

Fig. 3. Attack trace for Experiment 1.

Experiment 2. We patch the commandTPM CertifyKey by considering two different
tags for the two different HMACs. More precisely, we replacethe constantcfk with
cfk1 (resp.cfk2) in the first (resp. second) HMAC provided by the user and alsothe
one provided by theTPM. The attacks reported in our first experiment are prevented.
ProVerif is now able to verify the two correspondence properties.

Experiment 3. We add in the initial configuration another key for Alice and we as-
sume that this new keysk ′

2
has the same authdata as a previous key of Alice al-

10



ready loaded onto theTPM. Hence, in our model, we have thathandle(auth1, sk1),
handle(auth2, sk2), andhandle(auth2, sk

′

2
) are terms known by the attacker Charlie.

ProVerif immediately discovers another attack, described in Figure4. The attacker
can exchange the key handlehandle(auth2, sk2) provided by the honest user in entry of
the command with another handle having the same authdata, i.e. handle(auth2, sk

′

2
).

The TPM will answer by sending the certificatecert(sk1, pk(sk ′

2
)) together with the

two HMACs. After verifying the HMACs, the user will accept this certificate which
is not the right one. Indeed, the user was expecting to receive cert(sk1, pk(sk2)). The
trace described in Figure 4 shows that none of the two correspondence properties holds.

Initial knowledge of Charlie: handle(auth1, sk1), handle(auth2, sk2), handle(auth2, sk
′

2).

Trace: Charlie swaps a key handle for another one that has the same authdata.

USER → TPM : request to open twoOIAP sessions
TPM → USER : ne1, ne2

USER requests key certification to obtaincert(sk1, pk(sk2))

USER → Charlie : n, no1, handle(auth1, sk1), hmac(auth1, 〈cfk, n, ne1, no1〉),
no2, handle(auth2, sk2), hmac(auth2, 〈cfk, n, ne2, no2〉)

Charlie → TPM : n, no1, handle(auth1, sk1), hmac(auth1, 〈cfk, n, ne1, no1〉),
no2, handle(auth2, sk

′

2), hmac(auth2, 〈cfk, n, ne2, no2〉)

TPM → USER : ne′1, ne′2, cert(sk1, pk(sk ′

2)),
hmac(auth1, 〈cfk, n, ne′1, no1〉), hmac(auth2, 〈cfk, n, ne′2, no2〉)

USER checks the HMACs and accepts the certificatecert(sk1, pk(sk ′

2)).

Fig. 4. Attack trace for Experiment 3.

Experiment 4. The attack described in the previous experiment comes from the fact
that the HMAC is only linked to the key via the authdata. Thus,as soon as two keys
share the same authdata, this leads to some confusion. A way to fix this would be to add
the key handle inside the HMAC, but theTPM designers chose not to do this because
they wanted to allow middleware to unload and reload keys (and therefore possibly
change key handles) without the knowledge of application software that produces the
HMACs. A more satisfactory solution that has been proposed for future versions of the
TPM is to add (the digest of) the public key inside the HMAC. Hence, for instance, the
HMAC built by the user is now of the formhmac(auth, 〈cfk1, pk(sk), n, ne1, no1〉).
The same transformation is done on all the HMACs.

The previous attacks do not exist anymore.ProVerif is able to verify that the two
correspondence properties hold.

Experiment 5. We now assume that the attacker has his own key loaded onto the
device. This means that he knows a key handlehandle(authi, sk i) and the authdata
authi that allows him to manipulatesk i through the device. He has also access to the
public keypk(sk i). However, he does not knowsk i that is stored inside theTPM.

11



We immediately rediscover the attack of [12], showing that the attacker can ma-
nipulate the messages exchanged between theUSER and theTPM in such a way that
theTPM will provide the certificatecert(sk1, pk(sk i)) to a user that has requested the
certificatecert(sk1, pk(sk2)).

Initial knowledge of Charlie: handle(auth1, sk1), handle(auth2, sk2), handle(authi, sk
′

i),
authi.

Trace: Charlie replaces they key to be certified his own key.

USER → TPM : request to open twoOIAP sessions
TPM → USER : ne1, ne2

USER requests key certification to obtaincert(sk1, pk(sk2))

USER → Charlie : n, no1, hmac(auth1, 〈cfk, pk(sk1), n, ne1, no1〉),
no2, hmac(auth2, 〈cfk, pk(sk2), n, ne2, no2〉)

Charlie → TPM : n, no1, hmac(auth1, 〈cfk, pk(sk1), n, ne1, no1〉),
no2, hmac(authi, 〈cfk, pk(sk i), n, ne2, no2〉)

TPM → Charlie : ne′1, ne′2, cert(sk1, pk(sk i)), . . .

Fig. 5.Attack trace for Experiment 5

ProVerif succeeds in proving the other correspondence property. Note that in the
trace described in Figure 5, Charlie is not able to build the HMACs expected by the
user in order to accept the wrong certificate.

Experiment 6. The attack of [12] comes from the fact that the attacker can replace
the user’s HMAC with one of his own (pertaining to his own key). TheTPM will not
detect this change since the only link between the two HMACs is the noncen known
by the attacker. To fix this, it seems important that each HMACcontains something that
depends on the two keys involved in the certificate. So, we adda digest of each public
key inside each HMAC. For instance, the first HMAC built by theuser will be now of
the form:

hmac(auth1, 〈cfk1, pk(sk1), pk(sk2), n, ne1, no1〉).

The attack described in Experiment 5 is not possible anymore. The TPM will only
accept two HMACs that refer to the same pair of public keys.

ProVerif is now able to verify that the two correspondence propertieshold. How-
ever, it does not succeed in proving injectivity for the property expressing authentication
of the user. This is due to a limitation of the tool and does notcorrespond to a real attack.

Experiment 7. We now study the commandTPM CreateWrapKey in isolation. For
this command, we need anOSAP session. We consider a configuration with 2 keys
pairs(sk1, pk(sk1)) and(sk2, pk(sk2)) loaded inside theTPM. The attacker knows the
handleshandle(auth1, sk1) andhandle(auth2, sk2). He has access to the public part
of these two keys but he does not know the private part of the keys and the authdata

12



associated to these keys that allows one to manipulate the keys through the device. For
the moment, the intruder does not have his own key loaded ontothe device.

For this simple configuration,ProVerif is able to verify that the two correspondence
properties hold. Note that this command involves only one key, thus the kind of con-
fusion that exists for theTPM CertifyKey command is not possible on the command
TPM CreateWrapKey.

Experiment 8. We add another key for Alice in the initial configuration and assume
that this new keysk ′

2
has the same authdata as a previous key of Alice already loaded

in theTPM.

We discover an attack of the same type as the one presented in Experiment 3. When
the user opens theOSAP session onhandle(auth2, sk2), the attacker can replace this
handle byhandle(auth2, sk

′

2
). Similarly, when the user requests to create a wrap with

handle(auth2, sk2) the attacker replaces this handle byhandle(auth2, sk
′

2
). Hence, at

the end, the user will obtain a wrap that is not the expected one. Note that the user cannot
detect that the wrap he received has been performed withpk(sk ′

2
) instead ofpk(sk2)

since he does not have access to the private part of the key. Hence, a trace similar to the
one presented in Figure 4 allows one to falsify both correspondence security properties.

Experiment 9. As in the case of theTPM CertifyKey command, a way to fix this, is to
addpk(sk) inside the HMAC. ThenProVerif is able to verify the two correspondence
properties even if we load a ‘dishonest’ key inside theTPM, i.e. a key for which the
attacker knows the authdata.

Experiment 10. We now consider a much richer scenario. We consider the commands:

– TPM CertifyKey (the version described in Experiment 6 in order to avoid the pre-
vious attacks),

– TPM CreateWrapKey, TPM LoadKey2, andTPM UnBind for which we add
the public key inside the HMAC (again to avoid the kind of attacks that we de-
scribed in Experiment 3 and Experiment 8).

We consider a scenario where an honest key and a dishonest keyare already loaded
inside theTPM. Note that by usingTPM CreateWrapKey andTPM LoadKey2, the
honest user and the attacker will be able to create and load new keys into the device.
Hence, having only two keys loaded in theTPM in the initial configuration is not a
restriction. An honest user is allowed to use the same authdata for different keys.

ProVerif is able to establish the 8 correspondence security properties. However, in
one case, as in Experiment 6, it is not able to verify the injective version of the property.

5 Related Work

Several papers have appeared describing systems that leverage theTPM to create se-
cure applications, but most of these assume that theTPM API correctly functions and
provides the high-level security properties required [9, 11]. Lower level analyses of the

13



TPM API are more rare. Cokeret al. discuss such work, but the details of the model
remain classified [8]. Lin described an analysis of various fragments of theTPM API
using Otter and Alloy. He modelled several subsets of the APIcommands in a model
which omits details such as sessions, HMACs and authdata, but does include (mono-
tonic) state. His results included a possible attack on the delegation model of theTPM
[14]. However, experiments with a realTPM have shown that the attack is not possible
[2]. Gürgenset al.[12] describe an analysis of theTPM API using finite state automata.
Details of their model are difficult to infer from the paper, but is seems to include a fi-
nite number of fresh nonces and handles, and HMACs. They alsoformalise security
as secrecy of certain terms in the model, giving examples of concrete scenarios where
these secrets must be protected. They show how an attacker can in some circumstances
illegitimately obtain a certificate on aTPM key of his choice (see Experiment 5).

In our work, we have proposed correspondence properties as amore general security
goal for the API, and shown how attacks such as the attack in Experiment 5 are in fact
an instance of a violation of these goals. We have also verified these properties on a
patched API for unbounded numbers of command invocations, fresh nonces, keys and
handles. We have only treated one small subset of commands sofar, but runtimes with
ProVerif are just a few seconds, and we are optimistic about extendingour approach to
cover more of the API.

Other attacks on theTPM found without the aid of formal methods include offline
dictionary attacks on the passwords or authdata used to secure access to keys [7], and
attacks exploiting the fact that the same authdata can be shared between users [6]. Both
of these can be detected in our formal model by small adjustments. However, for the
moment we deliberately omit these, since fixes have already been proposed, and we are
interested in analysis of the underlying API. There is a further known attack whereby an
attacker intercepts a message, aiming to cause the legitimate user to issue another one,
and then causes both to be received, resulting in the messagebeing processed twice [5].
This is not a violation of our correspondence property, hence our formal model does
not consider it as an attack.

6 Conclusion and Future Work

We presented a detailed modelling of a fragment of theTPM in the applied pi calculus.
We model core security properties as correspondence properties and use theProVerif
tool to automate our security analysis. We were able to rediscover several known attacks
and some new variants of these attacks.

As future work, we foresee extending our model with more commands such as those
involved in key migration. We also plan to model theTPM’s platform configuration
registers(PCRs) which allow one to condition some commands on the current value of
a register. PCRs are crucial when using theTPM for checking the integrity of a system.
Modelling the PCRs and the commands for manipulating these registers for automated
verification seems to be a challenging task, because of non-monotonicity of state.

Acknowledgments.Mark Ryan gratefully thanks Microsoft and Hewlett-Packardfor
interesting discussions and financial support that contributed to this research.

14



References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In
Proc. 28th Symposium on Principles of Programming Languages (POPL’01), pages 104–
115. ACM Press, 2001.

2. K. Ables. An attack on key delegation in the Trusted Platform Module (first semester mini-
project in computer security). Master’s thesis, School of Computer Science, University of
Birmingham, 2009.

3. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cúellar, P. Drielsma, P.-C.
Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch,
J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The AVISPA tool for the automated
validation of internet security protocols and applications. In Proc. 17th International Con-
ference on Computer Aided Verification (CAV’05), pages 281–285, 2005.

4. B. Blanchet. Automatic verification of correspondences for security protocols.Journal of
Computer Security, 17(4):363–434, 2009.

5. D. Bruschi, L. Cavallaro, A. Lanzi, and M. Monga. Replay attack in TCG specification and
solution. InProc. 21st Annual Computer Security Applications Conference (ACSAC’05),
pages 127–137. IEEE Computer Society, 2005.

6. L. Chen and M. Ryan. Attack, solution and verification for shared authorisation data in
TCG TPM. InProc. 6th International Workshop on Formal Aspects in Security and Trust
(FAST’09), pages 201–216, 2009.

7. L. Chen and M. D. Ryan. Offline dictionary attack on TCG TPM weak authorisation data,
and solution. InFuture of Trust in Computing. Vieweg & Teubner, 2008.

8. G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B.O’Hanlon, J. Ramsdell,
A. Segall, J. Sheehy, and B. Sniffen. Principles of remote attestation.International Journal
of Information Security, To Appear, 2010.

9. A. Datta, J. Franklin, D. Garg, and D. Kaynar. A logic of secure systems and its application
to trusted computing. InProc. 30th IEEE Symposium on Security and Privacy (S&P’09),
pages 221–236, 2009.

10. S. Fr̈oschle and G. Steel. Analysing PKCS#11 key management APIs with unbounded fresh
data. InProc. Joint Workshop on Automated Reasoning for Security Protocol Analysis and
Issues in the Theory of Security (ARSPA-WITS’09), volume 5511 ofLNCS, pages 92–106,
York, UK, 2009. Springer.

11. Y. Gasmi, A.-R. Sadeghi, P. Stewin, M. Unger, and N. Asokan. Beyond secure channels. In
Scalable Trusted Computing (STC’07), pages 30–40, November 2007.

12. S. G̈urgens, C. Rudolph, D. Scheuermann, M. Atts, and R. Plaga. Security evaluation
of scenarios based on the TCG’s TPM specification. InProc. 12th European Symposium
On Research In Computer Security (ESORICS’07), volume 4734 ofLNCS, pages 438–453.
Springer, 2007.

13. ISO/IEC PAS DIS 11889: Information technology – Security techniques – Trusted Platform
Module.

14. A. H. Lin. Automated Analysis of Security APIs. Master’sthesis, MIT, 2005. http:
//sdg.csail.mit.edu/pubs/theses/amerson-masters.pdf.

15. L. Sarmenta. TPM/J developer’s guide. Massachussetts Institute of Technology.
16. Trusted Computing Group. TPM Specification version 1.2.Parts 1–3, revision

103. http://www.trustedcomputinggroup.org/resources/tpm main
specification, 2007.

15


