
LIPIcs Leibniz International Proceedings in Informatics

Simulation based security in the
applied pi calculus∗

Stéphanie Delaune1, Steve Kremer1, and Olivier Pereira2

1LSV, ENS Cachan & CNRS & INRIA, France

2Université catholique de Louvain, B-1348 Belgium

ABSTRACT. We present a symbolic framework for refinement and composition of security protocols.
The framework uses the notion of ideal functionalities. These are abstract systems which are secure
by construction and which can be combined into larger systems. They can be separately refined in
order to obtain concrete protocols implementing them. Our work builds on ideas from the “trusted
party paradigm” used in computational cryptography models. The underlying language we use is
the applied pi calculus which is a general language for specifying security protocols. In our frame-
work we can express the different standard flavours of simulation-based security which happen to
all coincide. We illustrate our framework on an authentication functionality which can be realized
using the Needham-Schroeder-Lowe protocol. For this we need to define an ideal functionality for
asymmetric encryption and its realization. We show a joint state result for this functionality which
allows composition (even though the same key material is reused) using a tagging mechanism.

1 Introduction
Symbolic techniques showed to be a very useful approach for the modeling and analysis of
security protocols: for twenty years, they improved our understanding of security proto-
cols, allowed discovering flaws [17], and provided support for protocol design [9]. These
techniques also resulted in the creation of powerful automated analysis tools (e.g. [3]), and
impacted on several protocol standards used every day, e.g., [8].

Until now, symbolic techniques mostly concentrated on specifying and proving confi-
dentiality and correspondence properties, i.e., showing which symbols are kept secret, and
on which session parameters participants agree when a protocol session completes. How-
ever, such specifications do not provide any information about the behavior of protocols
when they are used in composition with other protocols, and surprising behaviors are well
know to happen in such contexts [7]. Moreover, protocols are often expected to provide
more sophisticated security guarantees, which may be difficult to formalize.

In this paper, we present a symbolic framework for refinement and composition of se-
curity protocols, in which protocols are defined in terms of the behavior of trusted parties,
or ideal functionalities, following the general outline of simulation-based security [5, 12, 4].
A lower-level protocol is said to securely emulate a higher-level protocol, or ideal function-
ality, if any behavior that can be observed from the interaction of an adversary with the
lower-level protocol can also be observed from the interaction of another adversary (called

∗This work has been supported by the ANR-07-SESU-002 project. O. Pereira is a Research Associate of the
Belgian Fund for Scientific Research FRS-FNRS. Part of this work was done when he was visiting ENS Cachan.

c© Delaune, Kremer, Pereira; licensed under Creative Commons License-NC-ND.
Foundations of Software Technology and Theoretical Computer Science (Kanpur) 2009.
Editors: Ravi Kannan and K. Narayan Kumar; pp 169–180
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany.
Digital Object Identifier: 10.4230/LIPIcs.FSTTCS.2009.2316

170 SIMULATION BASED SECURITY IN THE APPLIED PI CALCULUS

the simulator) with the higher-level protocol. As a result, ideal functionalities can be suc-
cessively refined into more concrete protocols, but also composed to build more complex
protocols. Functionalities have been proposed for a wide range of protocol tasks, including
general secure multi-party computation [5]. In the spi-calculus [2], Abadi and Gordon also
present the idea of a protocol being equivalent to an idealized version. This is however
more restrictive as they do not have the notion of a simulator.

Simulation-based security frameworks can typically be decomposed into two “layers”:
(i) a foundational layer that provides a general model for concurrent computation, and (ii) a
security layer that provides general security definitions, most importantly the notion of
secure protocol emulation to be used. While the security layer is essentially common to all
frameworks [4, 5, 6, 14, 18], including this paper, the foundational layer varies widely. Those
variations typically lie in the concurrency model (from the most common token-passing
mechanism to the use of schedulers with various powers) and in the definition of computa-
tional bounds. These differences typically result in incomparable security notions.

Defining simulation-based security while choosing the applied pi calculus [1] as the
foundational layer brings the main benefits of this approach into the symbolic world:
• it provides a powerful machinery that can be used to specify a wide range of sophisti-

cated protocol tasks in terms of the behavior of functionalities, and
• general composition theorems guarantee that protocols keep behaving as expected

when executed in arbitrary contexts.
While we tried to stick to the common definitions from the security layer of simulation-
based security frameworks, the use of the applied pi calculus as foundational layer raised
interesting challenges.

First, at the most fundamental level, one has to adopt a notion of indistinguishability
of processes. While the symmetric notions of computational indistinguishability and ob-
servational equivalence are commonly used in the cryptographic and symbolic worlds, the
symmetry of such relations appeared to be too restrictive for our purpose. For instance, a
symmetric equivalence relation makes the addition of an adversary that simply acts as a
relay visible. The resulting undesired behaviors motivate the introduction of new notions
of observational preorder and labelled simulation relations in the applied pi calculus.

Next, our attempts at translating ideal functionalities from the computational world
into the symbolic world showed to be a non immediate task. For instance, traditional
ideal functionalities for asymmetric encryption produce ciphertexts by encrypting random
strings. An association table (plaintext/ciphertext) is then necessary to perform decryption.
In our symbolic setting we avoid such a table by using two layers of encryption and a secure
key.

Eventually, we investigate the statement of general composition theorems, and of a
specific joint state composition theorem for our asymmetric encryption functionality, as this
functionality is typically expected to be used in several protocol sessions. While these the-
orems appear to be the natural counterpart of their computational versions [4, 5, 6, 16], the
joint state composition theorem brings message tagging constraints that, interestingly, are
consistent with those obtained by using a completely different symbolic approach (e.g. [13]).

Because of lack of space the proofs are omitted, but can be found in [10].

DELAUNE, KREMER, PEREIRA FSTTCS 2009 171

2 The applied pi calculus

2.1 Syntax and informal semantics

To describe processes, one starts with a set of names (which are used to name communica-
tion channels or other atomic data), a set of variables, and a signature Σ which consists of
the function symbols which will be used to define terms. In the case of security protocols,
typical function symbols will include enc for encryption, and dec for decryption. Terms are
defined as names, variables, and function symbols applied to other terms. Terms and func-
tion symbols are sorted. While the details of the sort systems are not essential it is important
to distinguish sorts of base types and sorts of channel type. Function symbols can only be
applied and return terms of base type. By the means of an equational theory E we describe
the equations which hold on terms. We denote =E the equivalence relation induced by E.
Example 1 In the equational theory {dec(enc(x, k), k) = x, test(enc(x, y), y) = ok}, we have that
test(dec(enc(enc(n, k1), k2), k2), k1) =E ok.

In the applied pi calculus, one has plain processes and extended processes. Plain processes
(P, Q, R) are built up in a similar way to processes in the pi calculus, except that messages
can contain terms (rather than just names). Extended processes add active substitutions and
restriction on variables. Below, M is a term, n is a name, and x a variable.

A, B, C := P | A | B | νn.A | νx.A | {M/x}
Active substitutions generalise “let”. The process νx.({M/x} | P) corresponds exactly

to the process “let x = M in P”. As usual, names and variables have scopes, which are
delimited by restrictions and by inputs. We write fv(A), bv(A), fn(A) and bn(A) for the sets
of free and bound variables and free and bound names of A, respectively. We also assume
that, in an extended process, there is at most one substitution for each variable, and there is
exactly one when the variable is restricted. We say that an extended process is closed if all its
variables are either bound or defined by an active substitution.

Active substitutions are useful because they allow us to map an extended process A
to its frame φ(A) by replacing every plain process in A with 0. A frame is an extended
process built up from 0 and active substitutions by parallel composition and restriction.
The frame φ(A) can be viewed as an approximation of A that accounts for the static knowl-
edge A exposes to its environment, but not A’s dynamic behaviour. The domain of a frame ϕ,
denoted by dom(ϕ), is the set of variables for which ϕ defines a substitution (those variables
that are not under a restriction). An evaluation context C[] is an extended process with a hole
instead of an extended process. A context C[] closes A when C[A] is closed.

2.2 Semantics

The operational semantics of processes in the applied pi calculus is defined by structural
rules defining two relations: structural equivalence, denoted ≡, and internal reduction, de-
noted →. Structural equivalence takes into account some basic structural rules, e.g. asso-
ciativity and commutativity of the parallel operator. Internal reduction → is the smallest
relation on extended processes closed under structural equivalence and application of eval-
uation contexts such that:

172 SIMULATION BASED SECURITY IN THE APPLIED PI CALCULUS

COMM out(a, M).P | in(a, x).Q → P | Q{M/x}
THEN if M = N then P else Q → P where M =E N
ELSE if M = N then P else Q → Q

for any terms M and N without variable such that M 6=E N
The operational semantics is extended by a labelled operational semantics enabling us to

reason about processes that interact with their environment. Labelled operational semantics
defines the relation α−→ where α is either an input in(a, M) (a is a channel name and M is a
term that can contain names and variables), or νx.out(a, x) (x is a variable of base type), or
out(a, c) or νc.out(a, c) (c is a channel name).

IN in(a, x).P
in(a,M)−−−−→ P{M/x}

OUT-CH out(a, c).P
out(a,c)−−−−→ P

OPEN-CH
A

out(a,c)−−−−→ A′ c 6= a

νc.A
νc.out(a,c)−−−−−→ A′

OUT-T out(a, M).P
νx.out(a,x)−−−−−→ P | {M/x}

x 6∈ fv(P) ∪ fv(M)

SCOPE
A α−→ A′ u does not occur in α

νu.A α−→ νu.A′

bn(α) ∩ fn(B) = ∅

PAR
A α−→ A′ bv(α) ∩ fv(B) = ∅

A | B α−→ A′ | B

STRUCT
A ≡ B B α−→ B′ A′ ≡ B′

A α−→ A′

Our rules differ slightly from those described in [1]. It is proved in [11] that labelled bisim-
ulation (see Section 2.3) in our system coincides with labelled bisimulation in [1].
Example 2 Consider the following process P:
νk. (in(io1, x).out(net, enc(x, k)) | in(net, y). if test(y, k) = ok then out(io2, dec(y, k)) else 0).

The first component receives a message x on the channel io1 and sends its encryption with the
key k on the channel net. The second one is waiting for an input y on net, uses the secret key k to
decrypt it. If the decryption succeeds, then it forwards the resulting plaintext on io2. We have that:

P
in(io1,s)−−−−→ νk.(out(net, enc(s, k)) | in(net, y). if test(y, k) = ok then out(io2, dec(y, k)) else 0)

−→∗ νk.out(io2, s)
νx.out(io2,x)−−−−−−→ νk.{s/x}

Let A be the resulting process. We have that φ(A) ≡ νk.{s/x}.

2.3 Indistinguishability relations

In [1], it is shown that observational equivalence coincides with labelled bisimilarity. This
relation is like the usual definition of bisimilarity, except that at each step one additionally
requires that the processes are statically equivalent.

DEFINITION 1.Two terms M and N are equal in the frame φ, written (M =E N)φ, if, and
only if there exists ñ and a substitution σ such that φ ≡ νñ.σ, Mσ =E Nσ, and ñ ∩ (fn(M) ∪
fn(N)) = ∅. Two frames φ1 and φ2 are statically equivalent, φ1 ≈s φ2, when dom(φ1) =
dom(φ2), and for all terms M, N we have that (M =E N)φ1 if and only if (M =E N)φ2.

Example 3 Let ϕ0 = νs.{enc(s,k)/x} and ϕ1 = νr.{r/x} where k, s and r are names and E be the
theory given in Example 1. We have that (test(x, k) =E ok)ϕ0 but not (test(x, k) =E ok)ϕ1, thus
ϕ0 6≈s ϕ1. However, we have that νk.ϕ0 ≈s ϕ1.

Now, we introduce the notion of a barb. Given an extended process A and a channel
name a, we write A ⇓ a when A →∗ C[out(a, M).P] for some term M, plain process P, and

DELAUNE, KREMER, PEREIRA FSTTCS 2009 173

evaluation context C[] that does not bind a.

DEFINITION 2. Observational preorder (�) (resp. equivalence (≈)) is the largest (resp.
largest symmetric) relation on extended processes with same domain s.t. A R B implies

1. if A ⇓ a then B ⇓ a;
2. if A→∗ A′, then B→∗ B′ and A′ R B′ for some B′;
3. C[A] R C[B] for all closing evaluation contexts C[].

DEFINITION 3. A relationR on closed extended processes is a simulation if A R B implies
1. φ(A) ≈s φ(B),
2. if A→ A′, then B→∗ B′ and A′ R B′ for some B′,
3. if A α→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B →∗ α→→∗ B′ and

A′ R B′ for some B′.
IfR andR−1 are both simulations we say thatR is a bisimulation. Labelled similarity (�`),
resp. labelled bisimilarity (≈`), is the largest simulation, resp. bisimulation relation.

Observational preorder and similarity were not introduced in [1]. However, these def-
initions seem natural for our purposes. Obviously we have that ≈ ⊂ � and ≈` ⊂ �`. We
now show that labelled similarity is a precongruence.

PROPOSITION 4. Let A and B be two extended processes such that A �` B. We have that
C[A] �` C[B] for all closing evaluation context C[].

From this proposition it follows that�` ⊆ �. Hence, we can use labelled similarity as a
convenient proof technique for observational preorder. We actually expect the two relations
to coincide but did not prove it as we did not need it. We have also the following lemma:

LEMMA 5. Let P and Q be two closed plain processes. We have that: (i) if P �` Q then
!P �` !Q; (ii) !(P | Q) �` !P |!Q and !P |!Q �` !(P | Q).

3 Simulation based security
3.1 Basic definitions

The simulation-based security approach classically distinguishes between input-output chan-
nels, which yield the internal interface of a protocol or functionality to its environment and
network channels, which allow the adversary to interact with the functionality. We suppose
that all channels are of one of these two sorts: IO or NET. Moreover the sort system ensures
that names of sort NET can never be conveyed as data on a channel, i.e. these channels can
never be transmitted. We write fnet(P) for fn(P) ∩NET.

DEFINITION 6. A functionality F is a closed plain process. An adversary for F is an eval-
uation contextA[] of the form: νñet1.(A1 | νñet2.(A2 | . . . |νñetk.(Ak |) . . .)) where each Ai
(1 ≤ i ≤ k) is a closed plain process, fnet(F) ⊆ ⋃

1≤i≤k ñeti ⊆ NET, and fn(A[]) ∩ IO = ∅.

One may note that the nested form of the adversary process allows to express any
arbitrary context while expliciting the restricted names whose scope ranges on the hole.
We also note that if A[] is an adversary for F then fnet(A[]) = fnet(A[F]).

174 SIMULATION BASED SECURITY IN THE APPLIED PI CALCULUS

LEMMA 7. Let F be a functionality and A1[] be an adversary for F . Then A1[F] is a
functionality. If A2[] is an adversary for A1[F], then A2[A1[]] is an adversary for F .

While adversaries control the communication of functionalities on NET channels, IO
contexts model the environment of functionalities, providing inputs and collecting outputs.

DEFINITION 8. An IO context is an evaluation context Cio[] of the form νĩo1.(C1 | νĩo2.(C2 |
. . . |νĩok.(Ck |) . . .)) where each Ci (1 ≤ i ≤ k) is a closed plain process, and

⋃
1≤i≤k ĩoi ⊆ IO

Note that if F is a functionality and Cio[] is an IO context, then Cio[F] is a functionality.

3.2 Strong simulatability

The notion of strong simulatability [15], which is probably the simplest secure emulation
notion used in simulation-based security, can be formulated in our setting.

DEFINITION 9.Let F1 and F2 be two functionalities. F1 emulates F2 in the sense of strong
simulatability, written F1 ≤SS F2, if there exists an adversary S for F2 (the simulator) such
that fnet(F1) = fnet(S [F2]) and F1 � S [F2].

The definition ensures that any behavior of F1 can be matched by F2 executed in the
presence of a specific adversary S . Hence, there are no more attacks on F1 than attacks
onF2. Moreover, the presence of S allows abstract definitions of higher-level functionalities,
which are independent of a specific realization. One may also note that 0 ≤SS F for any
functionality F . This seems natural in a simulation based framework which only aims at
preserving security. Non-triviality conditions may be imposed independently [5].
Example 4 Let Fcc = in(io1, xs).out(netcc, ok).in(netcc, x). if x = ok then out(io2, xs). The func-
tionality models a confidential channel and takes a potentially secret value s as input on channel io1.
The adversary is notified via channel netcc that this value is to be transmitted. If the adversary agrees
the value is output on channel io2. This functionality can be realized by the process described in Ex-
ample 2. Let S = νnetcc.in(netcc, x).νr.out(net, r).in(net, x). if x = r then out(netcc, ok) |). We
indeed have that P �` S [Fcc] and fnet(P) = fnet(S [Fcc]).

In order to examine the properties of strong simulatability in our specific setting, we
now define a particular adversary D[] which is called a dummy adversary: intuitively, it acts
as a relay which forwards all messages. The formal definition is technical because D[] needs
to both restrict all names in fnet(F) and ensure that fnet(F) = fnet(D[F]). It therefore relies
on two internal channels simi/o

j for inputs, resp. outputs, for each channel in fnet(F).

DEFINITION 10. Let F be a functionality. The dummy adversary for F is the adver-
sary D[] = νs̃im.(D1 | νñet.(D2 |)) where ñet = fnet(F) = {net1, . . . , netn}; s̃im =
{simi

1, . . . , simi
n, simo

1, . . . , simo
n} ⊆ NET; and

• D1 = !in(net1, x).out(simi
1, x) | . . . |!in(netn, x).out(simi

n, x) |
!in(simo

1, x).out(net1, x) | . . . |!in(simo
n, x).out(netn, x);

• D2 = !in(simi
1, x).out(net1, x) | . . . |!in(simi

n, x).out(netn, x) |
!in(net1, x).out(simo

1, x) | . . . |!in(netn, x).out(simo
n, x).

By construction we have that fnet(D[F]) = fnet(F).

LEMMA 11. Let F be a functionality and D[] be the dummy adversary for F : F � D[F].

DELAUNE, KREMER, PEREIRA FSTTCS 2009 175

However, we do not have that F ≈ D[F], since D[F] has more non-determinism
than F . A direct consequence of this lemma is that F1 � F2 and fnet(F1) = fnet(F2)
implies that F1 ≤SS F2: as F2 � D[F2] we have by transitivity that F1 � D[F2]. We
use these observations to show that ≤SS is a preorder (Lemma 12) , which is closed under
application of IO contexts (Proposition 13) and parallel composition (Proposition 14).

LEMMA 12. (i) F1 ≤SS F1; (ii) F1 ≤SS F2 and F2 ≤SS F3 ⇒ F1 ≤SS F3.

PROPOSITION 13. Let F1, F2 be two functionalities and Cio be an IO context.

F1 ≤SS F2 =⇒ Cio[F1] ≤SS Cio[F2].

PROPOSITION 14. Let F1, F2 and F3 be three functionalities. We have that:
(i) F1 ≤SS F2 ⇒ F1 | F3 ≤SS F2 | F3; and (ii) F1 ≤SS F2 ⇒ !F1 ≤SS !F2.

While, (i) is a direct consequence of Proposition 13 (notice that | F3 is an IO-context) the
proof of (ii) is more involved and given in [10].

3.3 Other notions of simulation based security

Several other notions of simulation based security appear in the literature. We present them,
and show that they all coincide in our setting. This coincidence is regarded as highly desir-
able [15, 14], while it does not hold in most simulation-based security frameworks [5, 4].

DEFINITION 15. Let F1 and F2 be two functionalities and A be any adversary for F1.
• F1 emulates F2 in the sense of black box simulatability, F1 ≤BB F2, iff
∃S . ∀A.A[F1] � A[S [F2]] where S is an adversary forF2 with fnet(S[F2]) = fnet(F1).

• F1 emulates F2 in the sense of universally composable simulatability, F1 ≤UC F2, iff
∀A. ∃S .A[F1] � S [F2] where S is an adversary for F2 s.t. fnet(A[F1]) = fnet(S [F2]).

• F1 emulates F2 in the sense of universally composable simulatability with dummy
adversary, F1 ≤UCDA F2, iff ∃S . D[F1] � S [F2] where D is the dummy adversary
for F1 and S is an adversary for F2 such that fnet(S [F2]) = fnet(D[F1]).

THEOREM 16. We have that ≤SS = ≤BB = ≤UC = ≤UCDA.

The above security notions can also be defined replacing observational preorder by ob-
servational equivalence denoted ≤SS

≈ ,≤BB
≈ ,≤UC

≈ and ≤UCDA
≈ . Surprisingly, the use of obser-

vational equivalence turns out to be too strong, ruling out natural secure emulation cases:
for instance, the ≤SS

≈ relation is not reflexive, due to the extra non-determinism that the
simulator introduces. While symbolic analysis techniques typically rely on bisimulation
relations, this is however consistent with the definitions proposed in the task-PIOA frame-
work [6], which also allows non-deterministic executions for simulation based security.

4 Applications
We illustrate our framework by showing the secure emulation of a mutual authentication
functionality by the Needham-Shroeder-Lowe (NSL) protocol [17]. As the NSL protocol
uses public key encryption we first introduce in Section 4.1 functionalities for asymmetric

176 SIMULATION BASED SECURITY IN THE APPLIED PI CALCULUS

Ppke := in(iopke, io1
pke).νsk.out(io1

pke, 〈KEY, pk(sk)〉).
(let ioi

pke = io1
pke in !Penc | let ioi

pke = io2
pke in !Penc | !Pdec)

Penc := in(ioi
pke, 〈= ENC, m〉).

νr2. let menc = aenc(〈TAG0, m〉, pk(sk), r2) in out(ioi
pke, 〈CIPHER, menc〉)

Pdec := in(io1
pke, 〈= DEC, m〉).

let 〈= TAG0, m1〉 = adec(m, sk) in out(io1
pke, 〈PLAIN, m〉)

Figure 1: Real encryption functionality

encryption. Then, we briefly present the mutual authentication functionality and its realiza-
tion through the NSL protocol. Finally we use the joint state composition result in Section 4.3
to obtain a result for an unbounded number of concurrent sessions.

4.1 Asymmetric encryption with joint state

We introduce a functionality for asymmetric encryption together with a joint state composi-
tion result which is crucial for composition of protocols that share key material. Even though
encryption in a Dolev-Yao model is already idealized we will see that by introducing an ideal
functionality for encryption we are able to obtain a joint state composition result. Throughout
this section we rely on the following equational theory allowing us to model randomized
asymmetric encryption:

adec(aenc(x, pk(y), z), y) = x testdec(aenc(x, pk(y), z), y) = ok.
Real encryption. This functionality (decribed in Figure 1) receives a channel name io1

pke,
which will be used for all sensitive information exchanges. A fresh private key sk is gen-
erated and the corresponding public key, i.e. pk(sk), is sent on io1

pke. Then the process is
ready to receive encryption or decryption requests. Note that encryption requests can be
sent on the sensitive channel io1

pke or on the public channel io2
pke which is the channel the en-

vironment will typically use. Decryption requests are only available through the sensitive
channel io1

pke and thus will not be used by the attacker. Each time a decryption request is
received on the channel io1

pke, it tries to decrypt the ciphertext and checks whether the tag
is TAG0. If so, it outputs the plaintext on the channel io1

pke. Otherwise, it does nothing.

Ideal functionality. We now propose, in Figure 2, an idealized version Fpke of the real
encryption functionality, which guarantees that the confidentiality of messages is preserved
independently of any cryptanalytic effort that could be performed on ciphertexts from the
knowledge of public keys. In various cryptographic settings [4, 5, 16], this is achieved by
computing ciphertexts as the encryption of random messages instead of the actual plaintext.
To be able to perform decryption, a table for plaintext/ciphertext associations is maintained.
The burden of this association table is avoided in our symbolic specification by using two
layers of encryption: messages are first encrypted using a secure key pk(ssk), then tagged
and encrypted with the public key pk(sk) that is published during the initialization step.
We stress that neither pk(ssk) nor ssk are ever transmitted by Fpke, guaranteeing that it
is impossible to decrypt such a ciphertext outside the functionality, even if the key sk is
adversarially chosen, which will be a crucial feature for our joint state composition theorem.

DELAUNE, KREMER, PEREIRA FSTTCS 2009 177

Fpke := in(iopke, io1
pke).out(net, INIT).in(net, 〈= ALGO, sk, tag〉).out(io1

pke, 〈KEY, pk(sk)〉).
νssk. (let ioi

pke = io1
pke in !Fenc | let ioi

pke = io2
pke in !Fenc | !Fdec)

Fenc := in(ioi
pke, 〈= ENC, m〉).νr1.νr2.

let alea = aenc(m, pk(ssk), r1) in let menc = aenc(〈tag, alea〉, pk(sk), r2) in
out(ioi

pke, 〈CIPHER, menc〉)
Fdec := in(io1

pke, 〈= DEC, m〉). let 〈= tag, m1〉 = adec(m, sk) in
if testdec(m1, ssk) = ok then out(io1

pke, 〈PLAIN, adec(m1, ssk)〉)
else out(io1

pke, 〈PLAIN, m1〉)
Figure 2: Ideal encryption functionality

During the initialization, the attacker chooses the secret key sk and the tag that will
be added in each encryption. Then a secure key ssk is generated and now the process is
ready to receive encryption or decryption requests. Each time the process receives an en-
cryption request, it computes the corresponding ciphertext and outputs the corresponding
ciphertext. As explained above, the plaintext m is first encrypted using pk(ssk) before be-
ing tagged and encrypted with pk(sk). When the process receives a decryption request, it
tries to decrypt the ciphertext and checks if the tag is the tag provided during the initializa-
tion. Then, it checks if the resulting plaintext is encrypted under pk(ssk). If so, this means
that this ciphertext has been produced by the encryption functionality and thus has to be
decrypted twice. Otherwise, the ciphertext has been produced by the attacker.

Realization. The real encryption functionality realizes the ideal one, i.e., Ppke ≤SS Fpke.
This is witnessed by Apke = νnet.(in(net, = INIT). νsk. out(net, (ALGO, sk, TAG0)) |).

Composition with joint state. While ≤SS is stable under replication this is not always suf-
ficient to obtain composition guarantees. Indeed replication of a process also replicates all
key generation operations. In order to obtain self-composition and inter-protocol compo-
sition with common key material we need a joint state functionality, i.e. a functionality that
realizes !Fpke while reusing the same key material. We actually consider the functional-
ity Fpke, which is a variant of Fpke in which each message is tagged. More precisely, the
process Fpke is defined as Fpke, except that: (i) the functionality begins with the instruc-

tions in(iopke, io1
pke).in(io1

pke, sid) instead of in(iopke, io1
pke), (ii) each input of the form in(c, m)

is replaced by in(c, 〈= sid, m〉), and (iii) each output of the form out(c, m) is replaced by
out(c, 〈sid, m〉).

The joint state functionality Pjs[Fpke] (see Figure 3) uses a single instance of Fpke for all
protocol sessions. All the requests to the joint state functionality are received on the public
channel iopke in processP1

js. They are then forwarded using the private IO channel cont toP2
js.

The process P2
js shares the private channel iopke with Fpke and forwards all the requests after

concatenating the session identifier to the plaintext. Then the response is again forwarded
to the process P1

js which outputs the result on the public channel iopke.
We now observe that the following joint state composition result holds. One instance of

the encryption functionality can be used to emulate an unbounded number of such instances
using the joint state process: Pjs[Fpke] ≤SS !Fpke.

178 SIMULATION BASED SECURITY IN THE APPLIED PI CALCULUS

Pjs := νcont.(P1
js | νiopke, io2

pke.(P2
js |))

P1
js := in(iopke, io1

pke).in(io1, sid).out(cont, 〈sid, INIT〉).
in(cont, (= KEY, pk)).out(io1

pke, 〈sid, KEY, pk〉).
(let ioi

pke = io1
pke in !P1

js−enc | let ioi
pke = io2

pke in !P1
js−enc | !P1

js−dec |
!in(iopke, io1

pke).in(io1, sid).out(io1
pke, 〈sid, KEY, pk〉).

(let ioi
pke = io1

pke in !P1
js−enc | let ioi

pke = io2
pke in !P1

js−enc | !P1
js−dec))

P1
js−enc := in(ioi

pke, 〈= sid, = ENC, m〉). out(cont, 〈sid, ENC, m〉).
in(cont, 〈= CIPHER, c〉). out(ioi

pke, 〈sid, CIPHER, c〉)
P1

js−dec := in(io1
pke, 〈= sid, = DEC, c〉). out(cont, 〈sid, dec, c〉).

in(cont, 〈= PLAIN, m〉). out(iopke, 〈sid, PLAIN, m〉)

P2
js := in(cont, 〈sid, = INIT〉).νio′pke.out(iopke, io′pke).

in(io′pke, 〈= KEY, pk〉).out(cont, 〈KEY, pk〉). (!P2
js−enc | !P2

js−dec)
P2

js−enc := in(cont, 〈= sid, = ENC, m〉). out(io′pke, 〈ENC, 〈sid, m〉〉).
in(io′pke, 〈= CIPHER, c〉). out(cont, 〈CIPHER, c〉)

P2
js−dec := in(cont, 〈= sid, = DEC, c〉). out(io′pke, 〈DEC, c〉).

in(io′pke, 〈= PLAIN, m〉). out(cont, 〈PLAIN, m〉)
Figure 3: Joint state IO-context

Ajs := νcs.(A1
js | νnet.(A2

js |))

A1
js := in(cs, INIT).out(net, INIT).in(net, 〈= ALGO, sk, tag〉).out(cs, 〈ALGO, sk, tag〉)
A2

js := in(net, 〈sid, = INIT〉). out(cs, INIT).
in(cs, 〈= ALGO, sk, tag〉). out(net, 〈sid, ALGO, sk, 〈sid, tag〉〉).
!in(net, 〈sid′, = INIT〉).out(net, 〈sid′, ALGO, sk, 〈sid′, tag〉〉)

Figure 4: Joint state adversary

This relation is witnessed by the adversary Ajs described in Figure 4 as we have that:
Pjs[Fpke] � Ajs[!Fpke]. This adversary launches several functionalities with the same
key sk. However, note that the session identifier sid used to tag each encryption associated
could be different. The value of these session identifiers is selected by the attacker.

Note that it is crucial to introduce an ideal encryption functionality. We indeed have
that Pjs[Ppke] ≤SS Pjs[Fpke] ≤SS !Fpke as well as !Ppke ≤SS!Fpke (where Ppke is defined
from Ppke in the same way as Fpke from Fpke). However, Pjs[Ppke] 6≤SS !Ppke. In particular
!Ppke will provide multiple public keys while Pjs[Ppke] only provides a single one. Taking
the more abstract ideal functionality allows this to be avoided by a simulator that chooses
the same secret key for each instance of the functionality.

4.2 Mutual authentication

Because of lack of space we only briefly sketch the mutual authentication functionality. The
details of the functionalities and the simulator are given in [10].

DELAUNE, KREMER, PEREIRA FSTTCS 2009 179

Ideal functionality for mutual authentication. The functionality Fauth roughly works as
follows. Both the initiator (Finit) and the responder (Fresp) receive a request for mutual
authentication on their io channel. They forward this request to the adversary and, if both
parties are honest, to a trusted hostFth which compares these requests and authorizes going
further if they match. Eventually, when the adversary asks to finish the protocol, then both
participants complete the protocol session.

Realization of mutual authentication. The functionality Fauth can be realized by a func-
tionality Pnsl implementing the well-known Needham-Schroeder-Lowe protocol [17]. We
have that Pnsl ≤SS Fauth by showing that Pnsl � S [Fauth] for some S .

4.3 From one to many sessions

We have that Pnsl ≤SS Fauth. This result only shows that Pnsl is as secure as Fauth for a single
session of the protocol. By Proposition 14 we have that !Pnsl ≤SS!Fauth but this does not
correspond to the expected security for an unbounded number of sessions, as each session
uses a different key. To show that !Fauth can be realized with shared key material we use our
joint state result. To apply this result we need the following technical lemma which allows
pushing the replication under the restricted channel c.

LEMMA 17. Let n be a name and c be a channel name such that c 6∈ fn(P) ∪ fn(Q).

νc. ![νn.(out(c, n) | P) | in(c, x).Q] �` ! νc.[νn.(out(c, n) | P) | in(c, x).Q].

This lemma allows us to apply the joint state result and obtain a result for an unbounded
number of sessions sharing keys. Note that the joint state context uses a tagging mechanism.

5 Conclusions
This paper proposes a symbolic framework for the analysis of security protocols along the
lines of the simulation based security approach, while adopting the applied pi calculus as its
basic layer. We state central definitions and security notions, show general composition the-
orems and specific joint-state composition results for asymmetric encryption, and illustrate
their use in the analysis of a mutual authentication protocol.

This framework brings the benefits of the secure composition theorems associated to
simulation based security into the symbolic world, and opens the path to the analysis of
more sophisticated protocols that can naturally be specified by the behavior of an ideal
functionality. At a more fundamental level, we use preorder notions, which can be estab-
lished by labeled simulation. While the use of labeled bisimulations is quite common in
the applied pi calculus and has been integrated in automatic provers, the automation of
proofs relying on labeled simulation appears as an interesting challenge for future works.
Another direction for future work is to give a precise characterization of what properties are
preserved by strong simulatability.

References
[1] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In

Proc. 28th ACM Symp. on Principles of Programming Languages (POPL’01). ACM, 2001.

180 SIMULATION BASED SECURITY IN THE APPLIED PI CALCULUS

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.
Technical Report 149, SRC, 1998.

[3] A. Armando et al. The AVISPA Tool for the automated validation of internet security
protocols and applications. In Proc. 17th Int. Conference on Computer Aided Verification
(CAV’05), LNCS. Springer, 2005.

[4] M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability (RSIM) frame-
work for asynchronous systems. Information and Computation, 205(12):1685–1720, 2007.

[5] R. Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In Proc. 42nd IEEE Symp. on Foundations of Computer Science (FOCS’01), 2001.

[6] R. Canetti, L. Cheung, D. Kaynar, N. Lynch, and O. Pereira. Compositional security for
Task-PIOAs. In Proc. 20th Computer Security Foundations Symposium (CSF’07), 2007.

[7] R. Canetti and J. Herzog. Universally composable symbolic analysis of mutual authen-
tication and key exchange protocols. In Proc. Theory of Cryptography Conference (TCC’06),
LNCS. Springer, 2006.

[8] I. Cervesato, A. Jaggard, A. Scedrov, J.-K. Tsay, and C. Walstad. Breaking and fixing
public-key kerberos. Information and Computation, 206(2-4):402–424, 2008.

[9] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. Abstraction and refinement in
protocol derivation. In Proc. 17th Comp. Security Foundations Workshop (CSFW’04), 2004.

[10] S. Delaune, S. Kremer, and O. Pereira. Simulation based security in the applied pi cal-
culus. Cryptology ePrint Archive, Report 2009/267. http://eprint.iacr.org/.

[11] S. Delaune, S. Kremer, and M. D. Ryan. Symbolic bisimulation for the applied pi-
calculus. In Proc. 27th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’07), LNCS. Springer, 2007.

[12] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game: A complete-
ness theorem for protocols with honest majority. In Proc. 19th ACM Symposium on the
Theory of Computing (STOC’87). ACM Press, 1987.

[13] J. D. Guttman and F. J. Thayer. Protocol independence through disjoint encryption. In
Proc. 13th IEEE Computer Security Foundations Workshop (CSFW’00), 2000.

[14] R. Küsters. Simulation-Based Security with Inexhaustible Interactive Turing Machines.
In Proc. 19th IEEE Computer Security Foundations Workshop (CSFW’06), 2006.

[15] R. Küsters, A. Datta, J. C. Mitchell, and A. Ramanathan. On the relationships between
notions of simulation-based security. Journal of Cryptology, 21(4):492–546, 2008.

[16] R. Küsters and M. Tuengerthal. Joint State Theorems for Public-Key Encryption and
Digitial Signature Functionalities with Local Computation. In Proc. 21st IEEE Computer
Security Foundations Symposium (CSF’08), 2008.

[17] G. Lowe. An attack on the Needham-Schroeder public key authentication protocol.
Information Processing Letters, 56(3):131–133, 1995.

[18] P. Mateus, J. Mitchell, and A. Scedrov. Composition of cryptographic protocols in a
probabilistic polynomial-time calculus. In Proc. 14th Conference on Concurrency Theory
(CONCUR’03), LNCS. Springer, 2003.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

