
Synchronizing Words for
Weighted and Timed Automata ∗

Laurent Doyen1, Line Juhl2, Kim G. Larsen2, Nicolas Markey1, and
Mahsa Shirmohammadi1,3

1 Laboratoire Spécification & Vérification – CNRS & ENS Cachan, France
2 CISS – Aalborg University, Denmark
3 Dpt Informatique – Université Libre de Bruxelles, Belgium

Abstract
The problem of synchronizing automata is concerned with the existence of a word that sends all
states of the automaton to one and the same state. This problem has classically been studied for
complete deterministic finite automata, with the existence problem being NLOGSPACE-complete.

In this paper we consider synchronizing-word problems for weighted and timed automata.
We consider the synchronization problem in several variants and combinations of these, includ-
ing deterministic and non-deterministic timed and weighted automata, synchronization to unique
location with possibly different clock valuations or accumulated weights, as well as synchroniza-
tion with a safety condition forbidding the automaton to visit states outside a safety-set during
synchronization (e.g. energy constraints). For deterministic weighted automata, the synchroniz-
ation problem is proven PSPACE-complete under energy constraints, and in 3-EXPSPACE under
general safety constraints. For timed automata the synchronization problems are shown to be
PSPACE-complete in the deterministic case, and undecidable in the non-deterministic case.

1998 ACM Subject Classification "F.1.1 Models of Computation"; "F.4.3 Formal Languages"

Keywords and phrases Synchronizing words, weighted automata, timed automata

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

The notion of synchronizing automata is concerned with the following natural problem: how
can we regain control over a device if we do not know its current state? Since losing the
control over a device may happen due to missing the observation on the outputs produced
by the system, static strategies, which are finite sequences (or words) of input letters are
considered while synchronizing systems. As an example think of remote systems connected to
a wireless controller that emits the command via wireless waves but expects the observations
via physical connectors (it might be excessively expensive to mount wireless senders on the
remote systems), and consider that the physical connection to the controller is lost because
of some technical failure. The wireless controller can therefore not observe the current states
of distributed subsystems. In this setting, emitting a synchronizing word as the command
leaves the remote system (as a whole) in one particular state, no matter which state each
distributed subsystem started at; thus the controller can regain control. For synchronizing
automata, there are also applications e.g. in planning, control of discrete event systems,
bio-computing, and robotics [2, 8, 5].

∗ This work was partially supported by the Belgian Fonds National de la Recherche Scientifique (FNRS),
by FP7 projects Cassting (601148) and ERC EQualIS (308087).

© Laurent Doyen, Line Juhl, Kim G. Larsen, Nicolas Markey and Mahsa Shirmohammadi;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Synchronizing Words for Weighted and Timed Automata

`0 `1

`2 `3

a, b, c, d : 0 a, b : 0d : −2

c : 0

a, d : 0, c : −10
b : 1

a : 1, c, d : 0

b : −10

Figure 1 A complete deterministic WA with location-synchronizing word a10 · b · (c · b)2 · d under
non-negative safety condition.

Synchronizing automata have classically been studied in the setting of complete determin-
istic finite-state automata, with polynomial bounds on the length of the shortest synchronizing
word [3] and the existence problem being NLOGSPACE-complete. In this paper, we consider
synchronization in systems whose behavior depends on quantitative constraints. We study
two classes of such systems, weighted automata (WAs) and timed automata (TAs), and
introduce variants of synchronization to include the quantitative aspects as well as some
safety condition while synchronizing. The main challenge is that we are now facing automata
with infinite state-spaces and infinite branching (e.g. delays in a TA).

For WAs, states are composed of locations and quantitative weights. As weights are
merely accumulated in this setting, it is impossible to synchronize to a single state. Instead
we search for a location-synchronizing word, i.e., a word after which all states will agree on
the location. In addition, we add a safety condition insisting that during synchronization the
accumulated weight (energy) is safe, e.g. a non-negative safety condition that requires the
system to never run out of power while synchronizing. Considering the safety condition is
what distinguishes our setting from the one presented in [6]; moreover, in that work WAs are
restricted to have only non-negative weights on transitions. Figure 1 illustrates a WA with
four locations and four letters. We have to synchronize infinitely many states (`i, e) where `i

is one of the four locations and e ∈ R is the accumulated energy. The only way to location-
synchronize a state (`3, e) with states involving other locations is to input b. However, if b is
provided initially, this will drop the energy level by −10 violating the non-negative safety
condition for (`3, 0). Fortunately, the letter a recharges the energy level at `3 and has no
negative effect at other locations. After reading a10b, all states are synchronized in `0 and `1
with energy at least 0. Next, a d-input can location-synchronize states involving `0 and `1,
but it drops the energy level at `1 by −2. Again, we try to find a word that recharges
the energy at `1. Supplying c · b twice makes a d-transition safe to be taken to location-
synchronize safe states involving `0 and `1. So, the word a10 ·b ·(c ·b)2 ·d location-synchronizes
the automaton with non-negative safety condition.

For TAs, synchronizing the classical region abstraction is not sound. Figure 2 displays
a 1-letter TA with four locations. We have infinitely many states to synchronize using the
letter a and quantitative delays d(t) (t ∈ R≥0). We propose an algorithm which first reduces
the (uncountably) infinite set of configurations into a finite set (with at most the number of
locations in the TA), and then pairwise synchronizes the obtained finite set of states. The
word d(3) ·a ·a is a finitely synchronizing word that synchronizes the infinite set of states into
a finite set: whatever the initial state, inputting the word d(3) · a · a the TA ends up in one of
the states (`0, 0), (`1, 0) or (`3, 0). Moreover, since `3 cannot be escaped, any synchronizing
word in this automaton lead to a state involving `3. It then suffices to play a · d(1) · a · a · a
to end up in (`3, 0), whatever the initial state. A possible synchronizing word for this TA is
then d(3) · a3 · d(1) · a3, which always leads to the state (`3, 0).

L. Doyen, L. Juhl, K. G. Larsen, N. Markey, M. Shirmohammadi 3

`0 `1 `2 `3
a

x := 0
x ≥ 1
a

x := 0

x < 1, a x ≤ 2, a
1 ≤ x ≤ 2, a

x < 1 ∨ x > 2, ax > 2, a, x := 0

Figure 2 A complete deterministic 1-letter TA with synchronizing word d(3) · a3 · d(1) · a3.

In this paper we consider the synchronization problem for TAs and WAs in several
variants: including deterministic and non-deterministic TAs and WAs, synchronization to
unique location with possibly different clock valuations or accumulated weights, as well as
synchronization with a safety condition forbidding the automaton to visit states outside
a safety-set during synchronization (e.g. energy constraints). Our results can be seen in
Table 1. For TAs the synchronization problems are shown to be PSPACE-complete in the
deterministic case, and undecidable in the non-deterministic case. For deterministic WAs,
the synchronization problem is proven PSPACE-complete under energy constraints, and in
3-EXPSPACE under general safety constraints.

The detailed proofs of these results can be found in a full version of this paper [4].

2 Definitions

A labeled transition system over a (possibly infinite) alphabet Γ is a pair 〈Q,R〉 where
Q is a set of states and R ⊆ Q × Γ × Q is a transition relation. The labeled transition
systems we consider have state space Q = L × X consisting of a finite set L of locations
and a possibly infinite set X of quantitative values. Given a state q = (`, x), let loc(q) = `

be the location of q, and for a ∈ Γ, let post(q, a) = {q′ | (q, a, q′) ∈ R}. For P ⊆ Q,
let loc(P) = {loc(q) | q ∈ P} and post(P, a) =

⋃
q∈P post(q, a). For nonempty words

w ∈ Γ+, define inductively post(q, aw) = post(post(q, a), w). A run (or path) in a labeled
transition system 〈Q,R〉 over Γ is a finite sequence q0q1 · · · qn such that there exists a
word a0a1 · · · an−1 ∈ Γ∗ for which (qi, ai, qi+1) ∈ R for all 0 ≤ i < n.

Synchronizing words

A word w ∈ Γ+ is synchronizing in the labeled transition system 〈Q,R〉 if post(Q,w) is a
singleton, and it is location-synchronizing if loc(post(Q,w)) is a singleton. Given U ⊆ Q,
a word w is synchronizing (resp., location-synchronizing) in 〈Q,R〉 with safety condition U

if post(U,w) is a singleton (resp., loc(post(U,w)) is a singleton) and post(U, v) ⊆ U for all
prefixes v of w. Thus a synchronizing word can be read from every state and bring the
system to a single state, and a location-synchronizing word brings the system to a single
location, possibly with different quantitative values. The safety condition U requires that
the states in Q \ U are never visited while reading the word. In this paper, we specify the
safety condition U by a function Safe : L → X, then U = {(`, x) ∈ Q | x ∈ Safe(`)}. We
say that a system is (location-)synchronizing if it has a (location-)synchronizing word. The
(location-)synchronizing problem (under a safety condition) asks, given a system (and a
safety condition), whether the system is (location-)synchronizing.

A finite state automaton is a special kind of labeled transition systems where the alphabet
and the state space are finite. Synchronizing words of finite-state automata have already
been extensively studied. The synchronizing problem in a finite-state automaton A is easily
reduced to a reachability problem in the power-set automaton of A. This provides a PSPACE
algorithm for this problem, and the problem is proved PSPACE-complete [7]. When A is

4 Synchronizing Words for Weighted and Timed Automata

Timed Automata (TAs) Weighted Automata (WAs)
D
et
er
m
in
is
tic N

o
co
nd

iti
on Synchronization PSPACE-complete Trivial (always false)

Loc.-synchronization PSPACE-complete NLOGSPACE-complete
Sa

fe
ty

co
nd

iti
on Synchronization ? PSPACE-complete

Loc.-synchronization ? 3-EXPSPACE
energy cond.: PSPACE-c.

N
on

-d
et
er
m
in
is
tic

N
o

co
nd

iti
on Synchronization Undecidable Trivial (always false)

Loc.-synchronization Undecidable PSPACE-complete

Sa
fe
ty

co
nd

iti
on Synchronization Undecidable PSPACE-complete

Loc.-synchronization Undecidable ?

Table 1 Summary of obtained results

deterministic and complete, that means |post(q, a)| = 1 for all states q and letters a, a better
algorithm is obtained by iteratively synchronizing pairs of states [3, 8]: the existence of a
synchronizing word in A is indeed equivalent to the existence of synchronizing words for
each pair of states of A, which is reduced to polynomially-many reachability problems in the
product of two copies of A. The problem can then be proven NLOGSPACE-complete.

We consider labeled transition systems induced by WAs and TAs. We are interested in
(location-)synchronizing problem (with or without safety condition) in the labeled transition
systems induced by TAs and WAs, defined below.

Weighted automata (WAs)

A weighted automaton (WA) over a finite alphabet Σ is a tuple A = 〈L,E〉 consisting of a
finite set L of locations, and a set E ⊆ L× Σ× Z× L of edges. When E is clear from the
context, we denote by ` a:z−−→ `′ the edge (`, a, z, `′) ∈ E, which represents a transition on
letter a from location ` to `′ with weight z. We view the weights as the resource (or energy)
consumption of the system. The semantics of a WA A = 〈L,E〉 is the labeled transition
system JAK = 〈Q,R〉 on the alphabet Γ = Σ where Q ⊆ L× Z and ((`, e), a, (`′, e′)) ∈ R if
(`, a, e′ − e, `′) ∈ E. In a state (`, e), we call e the energy level. The WA A is deterministic if
for all edges (`, a, z1, `1), (`, b, z2, `2) ∈ E, if a = b, then z1 = z2 and `1 = `2; it is complete if
for all ` ∈ L and all a ∈ Σ, there exists an edge (`, a, z, `′) ∈ E.

Let I be the set of intervals with integer or infinite endpoints. For WAs, we consider
safety conditions of the form Safe : L→ I, and we denote an interval [y, z] by y ≤ e ≤ z, an
interval [z,+∞) by e ≥ z, etc. where e is an energy variable.

Timed automata (TAs)

Let C = {x1, . . . , x|C|} be a finite set of clocks. A (clock) valuation is a mapping v : C → R≥0
that assigns to each clock a non-negative real number. We denote by 0C (or 0 when the set
of clocks is clear from the context) the valuation that assigns 0 to every clock.

L. Doyen, L. Juhl, K. G. Larsen, N. Markey, M. Shirmohammadi 5

A guard g = (I1, . . . , I|C|) over C is a tuple of |C| intervals Ii ∈ I. A valuation v satisfies g,
denoted v |= g, if v(xi) ∈ Ii for all 1 ≤ i ≤ |C|. For t ∈ R≥0, we denote by v+ t the valuation
defined by (v+ t)(x) = v(x) + t for all x ∈ C, and for a set r ⊆ C of clocks, we denote by v[r]
the valuation such that v[r](x) = 0 for all x ∈ r, and v[r](x) = v(x) otherwise.

A timed automaton (TA) over a finite alphabet Σ is a tuple 〈L,C,E〉 consisting of a finite
set L of locations, a finite set C of clocks, and a set E ⊆ L × I |C| × Σ × 2C × L of edges.
When E is clear from the context, we denote by ` g,a,r−−−→ `′ the edge (`, g, a, r, `′) ∈ E, which
represents a transition on letter a from location ` to `′ with guard g and set r of clocks to
reset. The semantics of a TA A = 〈L,C,E〉 is the labeled transition system JAK = 〈Q,R〉
over the alphabet Γ = R≥0 ∪ Σ (assuming Σ ∩R≥0 = ∅) where Q = L× (C → R≥0), and
((`, v), γ, (`′, v′)) ∈ R if

either γ ∈ R≥0, and ` = `′ and v′ = v + γ;
or γ ∈ Σ, and there is an edge (`, g, γ, r, `′) ∈ E such that v |= g and v′ = v[r].

The TA A is deterministic if for all states (`, v) ∈ Q, for all edges (`, g1, a, r1, `1) and
(`, g2, b, r2, `2) in E, if a = b, and v |= g1 and v |= g2, then r1 = r2 and `1 = `2; it is complete
if for all (`, v) ∈ Q and all a ∈ Σ, there exists an edge (`, g, a, r, `′) ∈ E such that v |= g.

3 Synchronization in deterministic WAs

In this section, we prove that location-synchronizing problem for deterministic WAs is
decidable. In the absence of safety conditions, two states involving the same location but
different initial energy can never be synchronized (synchronizing problem is trivial); however
in that setting, location-synchronization is equivalent to synchronization of deterministic
finite-state automata (i.e. weights play no role). In the presence of safety conditions,
synchronization is also most-often impossible, for the same reason as above. The only
exception is when safety condition is punctual (at most one safe energy level for each
location), in which case the problem becomes equivalent to synchronizing partial (not-
complete) finite-state automata, which is PSPACE-complete [7]. We thus focus on location-
synchronization with safety conditions. We fix a complete deterministic WA A = 〈L,E〉 over
the alphabet Σ, where the maximum absolute value appearing as weight in transitions is Z.

3.1 Location-synchronization under lower-bounded safety condition
In this subsection we assume that all the locations have safety conditions of the form e ≥ n,
with n ∈ Z. This is equivalent to having only safety conditions of the form e ≥ 0: it suffices
to add −n to the weight of all incoming transitions and to add +n to the weight of outgoing
transitions. In the sequel, we consider safety conditions of the form e ≥ 0, which we call
non-negative safety conditions or energy condition.

I Theorem 1. The existence of a location-synchronizing word in A under non-negative
safety condition Safe is PSPACE-complete.

Proof. Runs starting from two states with same location but two different energy levels
e2 > e1, always go through the states involving the same locations and the energy levels
preserving the difference e2 − e1. Therefore, to decide whether A is location-synchronizing
under non-negative safety condition, it suffices to check if there is a word that synchronizes
all locations with the initial energy 0, into a single location. We show that deciding whether
such word w exists is in PSPACE by providing an upper bound for the length of w.

6 Synchronizing Words for Weighted and Timed Automata

Below, we assume that A has a location-synchronizing word. For all subsets S ⊆ L

with cardinality m > 2, there is a word that synchronizes S into some strictly smaller
set. To characterize the properties of such words, we consider the weighted digraph Gm

induced by the product between m copies of A, where all vertices in {(`, . . . , `) | ` ∈ L},
which are vertices with m identical locations, are replaced with a new vertex synch. All
ingoing transitions to some location in {(`, . . . , `) | ` ∈ L} are redirected to synch. There is
only a self-loop transition in synch. An edge with weight 〈z1, . . . , zm〉 is non-negative (resp.,
zero-effect) if zi ≥ 0 for all dimensions 1 ≤ i < m (resp., zi = 0); and it is negative otherwise.
A non-negative edge is positive if zi is positive for some dimension i. There is a one-to-one
correspondence between a path x0x1 · · ·xn in Gm and a group of m runs ρ1 . . . ρm in A
such that all runs ρi are in shape of ρi = `i

0 · · · `i
n where xj = (`1

j , . . . , `
m
j) for all 0 ≤ j ≤ n.

A path is safe if all corresponding m runs ρi starting from `i
0 with energy level 0, always

keep a non-negative energy level while going through all the locations `i
1 · · · `i

n along the run.
The following lemma is a key to compute an upper bound for the length of location-

synchronizing words. Roughly speaking, it states that for all subsets S of locations, either
there is a short word w that synchronizes S into a strictly smaller set, or there exists a family
of words w0 · (w1)i (i ∈ N) such that inputting the word w0 · (w1)i accumulates energy i for
the run starting in some location ` ∈ S, while having non-negative effects along the runs
starting from the other locations in S. Consider the WA depicted in Fig. 1. Since in the
digraph G2, there is no safe path from (`0, `2) to synch, there is a family of words (b · c)i

such that each iteration of b · c increase the energy level in `2 by 1.

I Lemma 2. For all 1 < m ≤ |L|, for all vertices x of the digraph Gm, there is either a
safe simple path from x to synch, or a simple cycle where all edges are non-negative and at
least one is positive, which is reachable from x via a safe path.

The next lemma states that A has a location-synchronizing word if it has a short one,
of length at most Z|L| × |L|3+|L|2 . Since this value can be stored in polynomial space,
an (N)PSPACE algorithm can decide whether the given WA is location-synchronizing.

I Lemma 3. For the synchronizing WA A, there exists a short location-synchronizing word.

To show PSPACE-hardness, we use a reduction from synchronizing word problem for
deterministic finite automata with partially defined transition function that is PSPACE-
complete [7]. From a partial finite state automaton A, we construct a WA A′. All defined
transitions of A are augmented with the weight 0 in A′. To complete A′, all non-defined
transitions are added but with weight −1. Since the safety condition is non-negative in all
locations, none of the transitions with weight −1 are allowed to be used along synchronization
in A′. So, A has a synchronizing word if, and only if, A′ has a location-synchronizing one. J

We generalize the synchronizing word problem to location-synchronization from a subset,
where the aim is to synchronize a given subset of locations. This variant is used to decide
location-synchronization under general safety condition. Given a subset S ⊆ L of locations,
we prove Lemma 4 using reductions from and to coverability in vector-addition systems.

I Lemma 4. Deciding the existence of a location-synchronizing word from S in A under
lower-bounded safety condition Safe is decidable in 2-EXPSPACE, and it is EXPSPACE-hard.

3.2 Location-synchronization under general safety condition
We now discuss location-synchronization under the general safety condition where the energy
constraint for each location can be a bounded interval, lower or upper-bounded, or trivial

L. Doyen, L. Juhl, K. G. Larsen, N. Markey, M. Shirmohammadi 7

`0

`2

`1 `3
a, b : 0

b : 0
a : 0

a, b : 0

b : 0

a : 0

Figure 3 To location-synchronize the automaton, taking the back-edge `3
b,0−−→ `2 is avoidable.

(always true). We proceed in two steps: first, we prove that the PSPACE-completeness
results in case of energy safety condition is preserved in location-synchronization under safety
condition with only lower-bounded or trivial constraints. Second, we extend our techniques
to establish results for general safety conditions. To obtain results for the general case, we
use the variant of location-synchronization from a subset, that is discussed in all cases too.

Location-synchronization under lower-bounded or trivial safety conditions

Let the safety condition Safe assign to each location of L either an interval of the form [n,+∞)
or true, and let us partition L into two classes L7→ and L↔ accordingly. A back-edge is
a transition that goes from a location in L↔ to a location in L7→. Consider the WA
drawn in Figure 3 with four locations and two letters. The safety condition is non-negative
in `0 and `2, and is trivial in `1 and `3: L 7→ = {`0, `2} and L↔ = {`1, `3}. Thus, the
transition `1

b:0−−→ `2 is a back-edge. The word abb is a location-synchronizing word that
takes the back-edge `1

b:0−−→ `2 in `1 (with non-negative energy levels). In this example, there
exists an alternative word aab that takes no back-edges and still location-synchronizes the
automaton. We prove, by Lemma 5, that such words always exist implying that taking
back-edge transitions while synchronizing is avoidable in deterministic WAs.

I Lemma 5. There is a location-synchronizing word in A under lower-bounded or trivial
safety condition Safe if, and only if, there is one in the automaton obtained from A by
removing all back-edge transitions.

Lemma 5 does not hold when synchronizing from a subset S of the locations. Indeed,
consider the one-letter automaton of Fig. 4: the locations `0 and `2 have non-negative safety
condition, while the location `1 has trivial safety condition. Obviously, it is possible to
location-synchronize from the set S = {`0, `2}, and this would not be possible without taking
the back-edge `1

a−→ `2. The result also fails for non-deterministic WAs. Consider the WA
depicted in Fig. 5, where L7→ = {1, 2} and L↔ = {3, 4}. We claim that the back-edge
3 b:+1−−−→ 2 is needed to location-synchronize. Initially, only letter a is available, because b
corresponds to a back-edge from 3 to 2 and would violate the safety condition there, while
the c-transition from 2 to 1 violates the condition in the location 1. After this step, inputting
more a’s is possible, but would not modify the set of states that have been reached, and in
particular would not help synchronizing. inputting c is still not an option (the same reason
as previously), so that only b is interesting, resulting in a back-edge. It remains to ensure
that there is indeed a way of synchronizing into the location 4, which is inputting c twice.

In the absence of back-edges and with non-empty L↔, location-synchronization can be
achieved in two steps: first location-synchronize all the states of L7→ to some location in L↔
using Theorem 1; then location-synchronize the states in L↔ where the weights play no role.

I Lemma 6. The existence of a location-synchronizing word in A under lower-bounded or
trivial safety condition Safe is PSPACE-complete.

8 Synchronizing Words for Weighted and Timed Automata

`0

`1

`2

a

a

a

Figure 4 Unavoidable
back-edges to synchron-
ize from a subset

1

2 3

4

a, b : 0

a : 0

a, b, c : 0

a : 0

c : 0

c : −1
b : 0 a, c : 0

b : +1

1
N

2
N

3
Z

4
Z

1
N

2
N

3
N

4
Z

1
N

2
N+ 1

4
Z

1
N

4
Z

4
Z

a

b

c

c

Figure 5 Unavoidable back-edges to synchronize non-deterministic WA

The proof of Lemma 6 carries on for synchronizing from a subset of locations, except
using Lemma 4 instead of Theorem 1, and requiring that the automaton has no back-edge.

I Lemma 7. Assume that A has no back-edge, and pick a set S of locations such that
L↔ ⊆ S. The existence of a location-synchronizing word in A from S under lower-bounded
or trivial safety condition Safe is decidable in 2-EXPSPACE, and it is EXPSPACE-hard.

Location-synchronization under general safety conditions

Let us relax the constraints on the safety condition Safe: some locations may have bounded
intervals to indicate the safe range of energy. The set L of locations is partitioned into L7− [, L7→
and L↔ where locations in L 7−[have safety conditions such as e ∈ [n1, n2] where n1, n2 ∈ Z.
In this setting, transitions from locations in L7→ or L↔ to locations in L7− [are considered
as back-edge too. Since taking back-edge transitions while synchronizing from a subset S
of locations is not avoidable, we can use bounded safety conditions to establish a reduction
from halting problem in Minsky machines to provide the following undecidability result.

I Lemma 8. The existence of a location-synchronizing word from a set S of locations in A
under general safety condition Safe is undecidable.

In the absence of back-edges, we get rid of bounded safety conditions, by explicitly
encoding the energy values in locations at the expense of an exponential blowup. We thus
assign non-negative safety condition to the encoded location and reduce to Lemma 6.

I Lemma 9. Assume that A has no back-edge. The existence of a location-synchronizing
word from S ⊆ L↔ in A under general safety condition Safe is decidable in 3-EXPSPACE,
and it is EXPSPACE-hard.

I Theorem 10. The existence of a location-synchronizing word in a WA A with general
safety condition Safe is decidable in 3-EXPSPACE, and it is PSPACE-hard.

4 Synchronization in TAs

This section focuses on deciding the existence of a synchronizing and location-synchronizing
word for TAs, proving PSPACE-completeness of the problems for deterministic TAs (without
safety conditions, i.e., no invariants), and proving undecidability for non-deterministic TAs.

L. Doyen, L. Juhl, K. G. Larsen, N. Markey, M. Shirmohammadi 9

p

q

x < 1 a

x ≥ 1, a, x := 0

a

p
x=0

p
0<x<1

p
x=1

p
x>1

q
x=0

q
0<x<1

q
x=1

q
x>1

a
a

a a

a a a a

d d d

d d d

d

d

Figure 6 A TA and its region automaton (d is a special letter indicating delay transitions). The
region automaton is synchronized by the word a · a · d · d · d, but the TA cannot be synchronized
(because there is no way to reset the clock when starting from location q).

4.1 Synchronization in deterministic TAs
We consider synchronizing words in TAs to be timed words that are sequences w = a0a1 · · · an

with ai ∈ Σ ∪R≥0 for all 0 ≤ i ≤ n. For a timed word, the length is the number of letters
in Σ it contains, and the granularity is infinite if the word involves non-rational delays, and
it is the largest denominator if the timed word only involves rational delays.

We assume that the reader is familiar with the classical notion of region equivalence: this
equivalence partitions the set of clock valuations into finitely many classes (called regions),
and two states in the same location and region are time-abstract bisimilar. The region
automaton is then a finite-state automaton obtained by quotienting the original TA with
the region equivalence. We refer to [1] for a detailed presentation of this concept. The TA
depicted in Figure 6 exemplifies the fact that the region equivalence is not sound to find a
synchronizing word. This is because region equivalence abstracts away the exact value of the
clocks, while synchronizing needs to keep track of them.

To establish a PSPACE algorithm for deciding the existence of a synchronizing word for
deterministic TAs, we first prove the existence of a short witness (in the sequel, a timed word
is short when its length and granularity are in O(2|C| × |L| × |R|)). The built short witness
starts with a finitely-synchronizing word, a word that brings the infinite set of states of the
automaton to a finite set, and continues by synchronizing the states of this finite set pairwise.

I Lemma 11. All synchronizing deterministic TAs have a short finitely-synchronizing word.

Proof. We fix a complete deterministic TA A = 〈L,C,E〉 with the maximal constant M .
We begin with two folklore remarks on TAs. For all locations `, we denote by L` = {(`, v) |
v(x) > M for all clocks x ∈ C} the set of states with location ` and where all clocks are
unbounded; L` is one of the states in the region automata of A.
I Remark. For all locations ` and for all timed words w, the set loc(post(L`, w)) is a singleton
and post(L`, w) is included in a single region.

Notice that above Remark is a special property of L`, and in general: elapsing the
same delay from two region-equivalent valuations may lead to non-equivalent valuations.
The second remark is technical and provides the length and granularity of timed words that
are needed for solving reachability in TAs.
I Remark. For all locations ` and all region r′ such that (`′, r′) is reachable from L` in the
region automaton of A, there exists a short timed word w of length at most |L| × |R| (where
R is the set of regions, whose size is exponential in the size of the automaton [1]) and two
valuations v ∈ r and v′ ∈ r′ such that post((`, v), w) = {(`′, v′)}.

10 Synchronizing Words for Weighted and Timed Automata

Now, assuming that A has a synchronizing word, we build a short finitely-synchronizing wf

word with a key property: for all clocks x ∈ C, irrespective of the starting state, the run
over wf takes some transition resetting x. We first argue that for all clocks x ∈ C, from all
states where v(x) 6= 0, there exists a reachable x-resetting transition. Towards contradiction,
assume that there exist some state (`, v) and clock x such that x will never be reset along
any run from (`, v). Runs starting from states with the same location ` but different clock
valuations, say (`, v′) with v′(x) 6= v(x), over a synchronizing word w, may either (1) reset x,
and thus the final values of x on two runs from (`, v) and (`, v′) are different, or (2) not
reset x, so that the difference between v(x) and v′(x) is preserved along the runs over w.
Both cases give contradiction, and thus for all clocks x ∈ C, from all states with v(x) 6= 0,
there exists a reachable x-resetting transition.

Pick a valuation ` and a clock x. Applying the argument above to an arbitrary state
of L` and clock x, we get a timed word w`,x. By first Remark, inputting the same timed
word from any state of L` always leads to the same transition resetting x. Moreover, all such
runs end up in the same region. Note that by second Remark, w`,x can be chosen to have
length and granularity at most |L| × |R|.

Below, we construct the short finitely synchronizing word wf for A where S is the infinite
set of states to be (finitely) synchronized (i.e., post(S,wf) must be a finite set). Repeat
the following procedure: pick a location ` such that there is an infinite set S` ⊆ S of states
with the location ` in S. For each clock x, iteratively, input a word that consists of a
(M + 1)-time-unit delay and the word w`,x. The timed word of M + 1 delay brings the
infinite set S` to the unbounded region L`. Next, following w`,x make the runs starting
from S` end up in a single region where clock x has the same value for all runs (since it has
been reset). The word w` = (d(M + 1) · w`,x)x∈C synchronizes the infinite set S` to a single
state by resetting all clocks, one-by-one, and it also shrinks S. We repeat the procedure for
next location `′ ∈ loc(post(S,w`)) until S is synchronized to a finite set. Note that for all
locations `, the word w` has length at most |C| × |L| × (|R|+ 1) and granularity at most
|L| × |R|. Thus the word wf , obtained by concatenating the successive words w`, has length
bounded by |C| × |L|2 × (|R| + 1) and granularity at most |L| × |R|, so that it is short.
By construction, it finitely-synchronizes A, which concludes our proof. J

From the proof of Lemma 11, we see that for all synchronizing TAs, there exists a
finitely-synchronizing word which, in a sense, synchronizes the clock valuations. Precisely:

I Corollary 12. For all synchronizing deterministic TAs, there exists a short finitely-
synchronizing word wf such that for all locations `, wf synchronizes the set {`}× (C → R≥0)
into a single state.

Lemma 13 uses Corollary 12 to construct a short synchronizing word for a synchroniz-
ing TA. A short synchronizing word consists of a finitely-synchronizing word followed by a
pairwise synchronizing word (i.e., a word that iteratively synchronizes pairs of states).

I Lemma 13. All synchronizing deterministic TAs have a short synchronizing word.

A naive algorithm for deciding the existence of a synchronizing word would consist in
non-deterministically picking a short timed word, and checking whether it is synchronizing.
However, the latter cannot be done easily, because we have infinitely many states to check,
and the region automaton is not sound for this.

I Theorem 14. Deciding the existence of a synchronizing word in a deterministic TA is
PSPACE-complete.

L. Doyen, L. Juhl, K. G. Larsen, N. Markey, M. Shirmohammadi 11

`i `f

`

`′

`0

α

α
α

Σ ∪ {α}

Σ ∪ {α}

Figure 7 (Schematic) reduction from reachability to synchronizing word

Proof. Given a complete deterministic TA A with the maximal constant M , we first consider
the set S0 = {(`,0) | ` ∈ L} and compute the successors post(S0, wf) reached from S0 by
a finitely-synchronizing word wf (built in the proof of Lemma 11). This can be achieved
using polynomial space, since S0 contains polynomially many states and wf can be guessed
on-the-fly. Moreover, since wf begins with a delay of M + 1 time unit, the set post(S0, wf)
is equal to the set post(Q,wf) where Q = L×RC

≥0 is the state space of the semantic JAK of
the TA A. The set post(S0, wf) contains at most |L| states, which can now be synchronized
pairwise. This phase can be achieved by computing the product automaton A2 and solving
reachability problems in that automaton. This algorithm runs in polynomial space, and
successfully terminates if, and only if, A has a synchronizing word.

The PSPACE-hardness proof is by a reduction from reachability in TA. The encoding is
rather direct: given a deterministic TA A (w.l.o.g. we assume that A is complete) and two
locations `i and `f , the existence of a run from (`i,0) to some state (`f , v) (with arbitrary v)
is encoded as follows (See Fig. 7):

add an extra letter α to the alphabet: Σ ∪ {α};
remove all outgoing edges from `f , and add a self-loop which is always available and
resets all the clocks;
add a self-loop on `i for α, which is always available and resets all the clocks;
add a location `0, with a transition to `i which is always available and resets all clocks;
for each location ` (except `0, `i and `f), add a transition (`, true, α, C, `0) to `0.

The resulting automaton A′ is deterministic and complete.

I Lemma 15. The automaton A′ has a synchronizing word if, and only if, there exists some
clock valuation v such that A has a run from (`i,0) to (`f , v). J

Using similar arguments, we obtain the following result:

I Theorem 16. Deciding the existence of a location-synchronizing word in a TA is PSPACE-
complete.

4.2 Synchronization in non-deterministic TAs
We now show the undecidability of the synchronizing-word problem for non-deterministic TAs.
The proof is by a reduction from the non-universality problem of timed language for non-
deterministic TAs, which is known to be undecidable [1].

I Theorem 17. The existence of a (location-)synchronizing word in a non-deterministic TA
is undecidable.

12 Synchronizing Words for Weighted and Timed Automata

`i `f

`

`′

d

s ?

?

?

??

Σ

Σ ∪ {#, ?}

#

#

#

Figure 8 (Schematic) reduction from non-universality to synchronizing word (the newly added
transitions are dashed; they all reset all the clocks. In this example: {`i, `f} ⊆ F .)

Proof. Let A = 〈L,C,E〉 be a non-deterministic TA over Σ, that we equip with an initial
location `i and a set F of accepting locations (w.l.o.g. we assume that A is complete).
From A, we construct another TA A′ over Σ′ as follows (see Fig. 8):

the alphabet is augmented with two new letters # and ?.
the set of locations of A′ is L ∪ {d, s} (assuming d, s /∈ L). Location s is a sink location,
carrying a self-loop for all letters of the alphabet. Location d is a “departure” location:
it also carries a self-loop for all letters, except for ?, which leads to `0. Those transitions
all reset all the clocks.
from all locations in L, there is a ?-transition to `i along which all the clocks are reset.
From the states not in F , there is a #-transition to s along which all clocks are reset.
From the states in F , the #-transition goes to d and reset all clocks.

I Lemma 18. The language of A is not universal if, and only if, A′ has a (location-)
synchronizing word.

The same reduction is used to show undecidability of the location-synchronizing problem;
note that all transitions going to s (the only possible location to synchronize) always reset all
clocks. Therefore, A′ is synchronizing if, and only if, it is location synchronizing. By taking
true safety condition for all locations (i.e., all states are safe), these two results also imply
the undecidability of (location-)synchronizing problem with safety condition. J

References
1 R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.
2 Y. Benenson, R. Adar, T. Paz-Elizur, Z. Livneh, and E. Shapiro. DNA molecule provides

a computing machine with both data and fuel. Proceedings of the National Academy of
Science of the USA, 100(5):2191–2196, 2003.

3 J. Černý. Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-
fyzikálny časopis, 14(3):208–216, 1964.

4 L. Doyen, L. Juhl, K. G. Larsen, N. Markey, and M. Shirmohammadi. Synchronizing words
for timed and weighted automata. Research Report LSV-13-15, Laboratoire Spécification
et Vérification, ENS Cachan, France, Oct. 2013.

5 L. Doyen, T. Massart, and M. Shirmohammadi. Infinite synchronizing words for probabil-
istic automata. In MFCS’11, LNCS 6907, p. 278–289. Springer, 2011.

6 F. M. Fominykh and M. V. Volkov. P(l)aying for synchronization. In CIAA’12, LNCS 7381,
p. 159–170. Springer, 2012.

7 P. V. Martyugin. Complexity of problems concerning carefully synchronizing words for
PFA and directing words for NFA. In CSR’10, LNCS 6072, p. 288–302. Springer, 2010.

8 M. V. Volkov. Synchronizing automata and the Černý conjecture. In LATA’08, LNCS 5196,
p. 11–27. Springer, 2008.

	Introduction
	Definitions
	Synchronization in deterministic WAs
	Location-synchronization under lower-bounded safety condition
	Location-synchronization under general safety condition

	Synchronization in TAs
	Synchronization in deterministic TAs
	Synchronization in non-deterministic TAs

