Robustness of Se

Laurent Doyen

LSV, ENS Cachan, France IST Austria, Austria

Abstract—Digital components play a central role in the
design of complex embedded systems. These components are
interconnected with other, possibly analog, devices and the
physical environment. This environment cannot be entirely
captured and can provide inaccurate input data to the com-
ponent. It is thus important for digital components to have a
robust behavior, i.e. the presence of a small change in the input
sequences should not result in a drastic change in the output
sequences.

In this paper, we study a notion of robustness for sequential
circuits. However, since sequential circuits may have parts
that are naturally discontinuous (e.g., digital controllers with
switching behavior), we need a flexible framework that ac-
commodates this fact and leaves discontinuous parts of the
circuit out from the robustness analysis. As a consequence,
we consider sequential circuits that have their input variables
partitioned into two disjoint sets: control and disturbance
variables. Our contributions are (1) a definition of robustness
for sequential circuits as a form of continuity with respect to
disturbance variables, (2) the characterization of the exact clas
of sequential circuits that are robust according to our definition,
(3) an algorithm to decide whether a sequential circuit is robust
or not.
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Traditionally, robustness and stability of systems are
mainly studied in a continuous setting. Robustness of con-
tinuous systems is usually expressed as a formraform
continuity A system is uniformly continuous if for every
positive reale, there exists a positive redl such that any
change smaller thahin the input results in a change smaller
thane in the output. In control theory, it is also common to
distinguish betweelinput and disturbancevariables, and to
study robustness only with respect to disturbance vasable

In this paper, we extend the study of robustnessetquen-
tial circuits, i.e., discrete input/output finite-state systems
composed of logic gates and delay elements interconnected
by wires. Such circuits are a standard model for the design
of complex digital hardware and finite-state transducers
in general. Finite-state transducers have been integsivel
studied in the field of computer science and lead to some
of the most fundamental results in the field. Adapting the
techniques for robustness analysis from the continuouseto t
discrete setting is not straightforward and, however steahd

the notion of uniform continuity is not directly applicakile

| digital systems:

In embedded systems, digital components play a central
role in the overall system. The external environment of
digital components can be other digital or analog compo-
nents, software, or the actual physical world. This is in
contrast with the traditional (computer science) view of
digital components, where the system is often considered to
be either closed or to interact with an idealized environimen
that can be accurately modeled by a finite-state machine. In
embedded systems, the environment cannot be always cap-
tured and precisely described in such a model. It follows tha
the input assumptions often remain inaccurate or incoraplet
Additionally, the input data provided to the component Iy it
environment can contain errors and imprecisions, either du
to external perturbations, to the poor accuracy of sensors,
or to unpredictable delays in communication links. As a
consequence, a well-designed system needs to deal with
such unexpected inputs. Therefore, it is important that the The main contributions of this paper are twofold. First, we
output behavior of such systems remains robust in presengeopose a new framework for studying robustness of sequen-
of small disturbances in the input sequence. For criticalial circuits based on simple and clean concepts that asldres
applications, such as the flight controllers, it is essémbia the above-mentioned problems resulting from the undeglyin
design systems that guarantee robust behavior even wheliscrete setting. Inspired by the notion of robustness in
the input is correct, to guarantee smooth control actiore Thcontrol theory, we first make a distinction between two
design of robust components has been identified as one of thgpes ofinput alphabetscontrol and disturbancealphabets.
main challenges in the design of embedded systems [Hen08T.ontrol alphabet encodes the control actions and distagban

INTRODUCTION
1) Digital systems can be naturally discontinuous. More-
over, the discontinuity may often be a wanted property
for some sub-components in a digital systems. This
is true, in particular, if the component implements a
discrete controller with switching functionality. On the
other hand, we would like to guarantee that other com-
ponents, such as critical systems, exhibit continuous
behavior.

Another difference with respect to the continuous
setting is that the changes in inputs and outputs of
a digital system are more naturally quantified using
integers instead of reals. The definition of uniform
continuity combined with distance functions taking
integer values results in every discrete system being
uniformly continuous, simply by choosing smaller
thanl.
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alphabet encodes the environment actions. The distinctiom the circuit behavior. Howevek;tr is a control variable
between control and disturbance alphabets is essential fand as such does not affect the -robustness analysis, and
providing a flexible framework for robustness analysis ofthe circuit does remairt p-robust with respect tel; and
sequential circuits. In particular, it allows to identifags  do. This example is a simplified version of a more detailed
of the circuit that are wanted to be discontinuous and taexample described in Section VI.
eliminate them from the robustness analysis. This is becaus

control actions are expected to cause discontinuities, (@.g L sum
controllers that exhibit switching behavior), and as a eens Half —
guence, we want to have a framework that only considers

d j sum d2 Adder
the effect of small changes in the disturbance actions. Due = D [ j:)i””/

to their inherent discontinuous nature, the correctness of

i i i a t
control inputs needs to be provided by using other methods j:)ﬂ”/ %

that are outside of the scope of this paper, such as the error
codes or input replication.
The main challenge for defining robustness as a form of

continuity is to choose an appropriate notion of distance in (a) (0)
the discrete setting. We identify such a metric, that we call
common suffix distanc&he common suffix distance gives Figure 1. (a) 2-bit half-adder (b) Controlled 2-bit halfetd
the last position in which two sequences mismatch.
Finally, we define what we call p-robustnes®f sequen- Our definition of X p-robustness relates pairs of input

tial circuits as a form of continuity with respect to distur- sequences that a sequential circuit consumes to the pairs of
bance actions in the common suffix topology. Intuitively, output sequences that it generates, without explicit esies
Y p-robustness can be viewed as bounded propagation @b the underlying structure of the circuit. We give an altern
changes in disturbance inputs: a finite number of changetve structure-less characterization Bf,-robust sequential
in the disturbance values results in a bounded number dfircuits that is expressed in terms of the internal memory
changes in the computed outputs. requirements for the storage of previous inputs in ordeeto b
We illustrate our notion obp-robustness for sequential able to compute the output. Given a sequential circuit with a
circuits with the example of a 2-bit half-adder, which is partition of control¥- and disturbanc&  input alphabets,
depicted in Figure | (a). A 2-bit half-adder implements awe define the class of circuits that hafirite disturbance
simple arithmetic function that takes as inputs two boolearhorizon A circuit has finite disturbance horizon if it has a
data valuesd; and d, and computes theisumand carry  boundb such that the output at any time is computed as a
values. We modetl; andd, as disturbance variables. This function of, possibly, all previous control inputs, but yuip
circuit is clearly X p-robust with respect tad; and do to b previous disturbance inputs. We show that-robust
because at any timg the outputssum and carry depend  sequential circuits coincide exactly with circuits thatvéa
only on values ofd; andd, att. It follows that the effect finite disturbance horizon.
of a change in input datad{ and d;) at some point in Another contribution of the paper is the characterizatibn o
time, is only limited to the computation of output values atthe class of p-robust sequential circuits in the form of their
that time without being propagated further in the future. Instructural properties. This result is obtained by studying
Figure I (b), the half-adder is connected to a small corgroll robustness for Mealy machines — a model that corresponds
that operates as follows: (1) as long@s remains low, the to the class of deterministic and synchronous finite-state
half-adder is inactive andum and carry remain low, (2) transducers. We define a class %f,-synchronizedViealy
when ctr is set to high for the first time, the half-adder machines and show that is equivalent to corresponglipg
is irreversibly activated and from then on, the controlledrobust sequential circuit&:p-synchronization is an explicit
circuit copies the output values of the half-adder. Switghi state-based property of Mealy machines. Intuitively, a ylea
ctr to high has the qualitative effect on the behavior of themachine is X p-synchronized if after reading two finite
circuit. For instance, a sequen@e of ctr values causes the words of the same length with the same control, but possibly
half-adder to remains inactive forever. As a consequencdiffering disturbance components, the machine is guagante
the output values ofum and carry do not depend o, to reach a “reset” state after reading any sufficiently long
and d, and always remain low by default. For a sequencecontinuation) sequence.
1.0, that differs from0“ only in the value ofctr at The above characterization &f,-robust Mealy machines
the first position, the output behavior of the circuit chage is operational and results in an effective algorithm for
drastically. Now, the values ofum andcarry represent the checking theX p-robustness of arbitrary Mealy machines.
result of the half-adder computation on inputs and ds. The time complexity of the algorithm is quadratic in the
In this example, the controller clearly causes discontiesli number of states of the Mealy machine and the size of its



disturbance alphabet and linear in the size of its control ¢ ,
alphabet. b 2 w

Our results have potential for a variety of future work. In v I
this paper, we provide a detailed discussion for two of these;
directions: studying robustness of asynchronous systeahs a Y z
compositional design. @) (b) (©

Related work: Robustness of systems has been stud-
ied and formalized in many different ways. For example,Figure 2. Circuits: (a) combinatorial (b) acyclic with delég) sequential
in [CB02], [KCO4] robustness of hybrid systems (mixing
discrete and continuous behaviors) is studied as a form
of continuity in topologies induced by (extensions of) thefrom position m on. We denote byr;(o) = o - i1---
Skorokhod distance. The immunity of finite state automatghe projection of sequence to its i’ component, where
to noise from the external environment has been studied € {c,d}. We similarly definel-dimensional sequences
in [DM94], but this study is done in a probabilistic setting. ¥ € I'“ and 4 € I'*. Given the alphabet® and I', a
Robustness of finite-state systems has been studied mu#l@nsduceris a function” : ¢ — T'“ that maps infinite
less in the area of computer science. The work in [BGHJ09pequences over the alphaf¥etinto infinite sequences over
focuses on the synthesis of robust discrete controlleis-sat I'. In this paper, we restrict ourselves to sequential finite-
fying an extended temporal logic specification with quanti-state transducers. Such transducers can be seen as fibéte-st
tative (real-valued) constraints, which results in a défe  automata [Mea55] whose transitions are labeled by an input
model of robustness. In the context of real-time systemsand an output letter (see Section 1V).
robustness has been studied in [GHJ97]. This work differs
from ours in that (1) the authors study acceptors (automata)
instead of transducers and (2) pairs of timed sequences areln this section, we use sequential circuits [BW53] as an
compared using the Hausdorff distance with the limitationinstance of deterministic finite-state transducers witfitefin
that the perturbations are allowed only in the time delaysalphabet. First, we define their formal model and emphasize
between events, while the discrete part has to match exsome properties of this class of circuits (Section IlI-A).
actly. Robustness is also closely related to other researchhen, we consider standard distance functions for string
areas such as fault tolerance and error resiliation [SLM09]Jcomparison and we show that they do not induce a satis-
In [Mal93], the authors consider combinatorial circuitdtwi factory notion of robustness (Section IlI-B). We introduce
cycles, and study conditions under which such circuits carthe common suffix distance as a new metric (Section III-C)
be expressed as an equivalent acyclic circuit. This workeading to a definition of robustness for sequential cicuit
can be related to robustness questions since the presensiéh respect to a (disturbance) subset of its input vargble
of feedback loops in a circuit is a necessary condition forand we give necessary and sufficient conditions for a se-
generating non-robust behavior. Finally, we observe that t quential circuit to be robust (Section IlI-D).
problem of robustness can be seen as a dual of the problem . L
of coverage, where one expects that an input change dods Seduential Circuits
result in drastic output change [KLS08]. A combinatorial circuitis a logic circuit that computes a
Boolean function of its inputs. It consists of a setgaftes
and inputs interconnected by a set aefires without cycle.

We first recall the classical definitions of distance andThe gates are basic elements that compute simple Boolean
metric. A distanceon a setS is a functiond : S x S —  functions such asNOT, AND or OR gates. Combinatorial
R U {oo}. In general, one considers metrics that extendcircuits arememoryles®y definition, meaning that the value
the definition of distance with some natural properties. Theof the output at any (discrete) time instant is a function of

Ill. SEQUENTIAL CIRCUITS AND THEIR ROBUSTNESS

II. PRELIMINARIES

distanced is ametricif for all z,y,z € S (1) d(z,y) > 0,
(2) d(z,y) =0 if and only if z =y, (3) d(z,y) = d(y, ),
and (4)d(x,y) < d(z,z) +d(z,y).

Let Y = ¥¢ x Xp andI’ be 2- and1-dimensional) finite
alphabets. Ainite sequencé = (co,dp) - - (cn—1,dpn—1) IS
an element ino* where|s| = n denotes thdength of the
sequence. Annfinite sequencer = (co,dp) - (c1,dy) -+ IS
an element of“. We denote byr’ = (c;,d;) the (i +1)"
letter in a (finite or infinite) sequence. Given an infinite
sequencer € ¥¢, we denote by[*) the prefix ofo of
length m, and byo™ = oc™o™*! ... its infinite suffix

the values of its inputs at the same time instant. An example
of combinatorial circuit with thre&lAND gates is shown in
Figure 2(a).

A sequential circuitis an extension of combinatorial
circuits with additionalmemory devicescalleddelays The
delay element “shifts” the input values by one time step,
thus the output value of a memory device at time- 0
is equal to its input value at time — 1. If the circuit
contains no cycle (as in Figure 2(b)), we call it aoyclic
circuit with delay In general, sequential circuits can contain
cycles, as long as each cycle has at least one delay element.
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Figure 3. A generic sequential circuit

Cycles in sequential circuits are callégedback loopgas

in Figure 2(c)). Feedback loops in sequential circuits ar

used to compute the value of the output at titre 0 as a

e

fc the output equationof C. The next-state variables are
updated according to the following equations, wherend
z! denote the valuation of variablgs and z; at time step:
. 0 if t=0
Y = zf

1 fori=1...n

if t>0

The next lemma states that a sequential circuit can be
“unfolded” at any time instant to express the output value
as a function of its past and current (control and data) sput
without explicit reference to the state variables.

Lemma 1:Given a sequential circuit with £+m control
and disturbance input variables andlelay elements, and a
time instantt € N, the value of the output and state variables
in C at timet is a function of its past and current control
and disturbance values, that is, there exist functifhg! :

10, 1}(F+m)x (1), 10 1} for 4+ = 1...n such that

function of the current value of the inputs, but also of thew! = ff(u9,...,u2 29, ... 2%, ... ul,. .. ub, 2t ... 2l)
value of its output at the previous time stéep- 1 which

is fed back to the circuit through the cycle. Given that the?d

output of the memory devices at any tirhe- 0 may depend =gt .. ul, b, 2l ek et at)

itself on the inputs at time instant$ < ¢, the output of a
sequential circuit can be a function of both @srrent and

Sequential circuits can also be encoded as functions that

pastinputs. Therefore, sequential circuits are best viewedN@p input sequences to output sequences (i.e., transjlucers

as mappings of inpudequencesto outputsequencesNote

Consider a sequential circui# with k& + m control and

that the output of a memory device may not depend at a“jisturbancekinput variables 2” memory elements. Let
on any inputs, but be a function of only its own outputs >c = {0, 1}" andXp = {0, 1} be the correspondingpn-
in the previous time step. The set of output values of thdfol anddisturbance alphabet$Ve denote by = Yo x¥p

delay elements represent the currstdte of the circuit. A
sequential circuit withk memory devices has at mogt

the jointinput alphabet where each lettét, d) € ¥ denotes
a vector of assignments to the input variables, and by

states, or alternatively, a circuit with, states needs at least I = {0, 1} the output alphabetThe sequential behavior of

[logm] delay elements.

the circuitC is the functionF, : ¥* — I'“ and we denote

We now formally define a sequential circuit as a system oY 7 = Fc(o) the fact that the output sequenges I' is
equations that describe the relation between inputs, titpudenerated b oninputo € ¥¥. By Lemma 1, for alt > 0,
and memory elements, using a standard notation [LMK98]We can express® as a function of the previously consumed

[Brz62]. Our definition of sequential circuits differs frotine
standard one, in that we make a distinction betweantrol

input letterso%*+1) In the rest of the paper, we use this
sequence-oriented definition of the semantics of sequentia

and disturbanceinput variables. Figure 3 shows a generic Circuits.

sequential circuit.

Definition 1: A sequential circuitC with & + m control
and disturbance inputs and delay elements consists of
setsU = {uy,...,up} and X = {z1,...,x,} of control
and disturbance variables, a set” = {y;,...,y,} oOf
current-statevariables, a se = {z1, ..., z,} of next-state
variables, amoutputvariablew, and a relation between input,

output, and state variables expressed by a set of equatio

of the form
21 - fl(uly---;ukyxlw-wxmaylw'-7yn)
Zn = fn(ulv'"Juk7x17~-~7$m7y17“'7yn)
w = fC(ula"'7uk7xl7~--,$m7y17"'ayn)

where f; and f are Boolean functions, far=1...n. The
set{fi,..., fn} is called thetransition equation®f C and

B. Hamming and Levenshtein Distances

Hamming and Levenshtein distances are standard metrics
that have been proposed to measure the similarities between
pairs of sequences. In this section, we formally define
them and show that they are not appropriate for studying
robustness of sequential circuits.

Definition 2: Let X be a finite alphabet and;, a> € X.
rﬁe Hamming distancdetween two finite words, 55 €
¥* such that|g;| = |62, is defined inductively by

dp (e, ¢€) = 0
~ ~ o dH(é'l,a'Q) if a1 = a9
dH(a1 c01,02 " (72) - { 1 +dH<5'1»&2) if a1 75 a9

The Hamming distance between two infinite woedsos €
¥ is
d‘;[(0'170'2) = lim dH(Ugo’n)

n—oo

O,n)).

[
a02



ZD;{p,ﬁ} this circuit should not be considered as “robust” because
the mismatch occurring in the first position of the pair of
> input sequences becomes observable only in(2het 2)"

) w position in the pair of output sequences. Sincean be
arbitrarily large, it follows thatC can propagate “errors”
resulting from a noisy input arbitrarily far in the output.

P When considering critical systems, we believe that the effec
of an input error should be detected and become observable
as soon as possible in the output so that the system can
be (self) recovered in some predictable amount of time.

Figure 4. A sequential circuif that delays the mismatching input letter Therefore, unbounded delays in error propagation is not

noy: pep®pp? andoy : pp*"-p-p* arbitrarily far in the output. 5o ntanie in most applications and should not be considere

as a robust behavior.

The reason why neither of the Hamming and Levenshtein
distances defines a satisfactory metric for robustness of
sequential circuits is due to the fact that they just count
the absolute number of positions in which two sequences

Definition 3: Let > be a finite alphabet and,;, a; € X.
The Levenshtein distandeetween two finite words;, 65 €
¥* is defined inductively by

dL(f, G2) = |?2| mismatch. The information that is not captured by these
dr(61,€) = lal _ distances is the relativposition of the mismatches in the
dp(61,62) if a1 = a2 input and output sequences.
min{dL(ﬁh&z), if aq 7é az

dr(ay - 61,0z - 62) dr(ay - 61,65). C. Common suffix distance

dr(61,a9-62)} +1 We propose an alternative metric that we call toenmon
The Levenshtein distance between two infinite wordsSuffix distanceand that is the last position in which two
01,09 € X iS sequences differ. We note that the common suffix distance
coincides with the inverse of the Cantor distance.
dy(oy,09) = inf{dL(ago’m),ago’")) | o" =0} Definition 4: Let ¥ be a finite alphabet. Theommon
suffix distancebetween two finite wordé, 5, € ¥* such

whereinf{(} = co. that 64| = || is defined inductively by

We argue that neither of the two standard distance
can be used to define a satisfactory notion of robustness d;(e,¢) =0
for sequential circuits. We illustrate this point with the ds(61,62) if a1 =as
sequential circuitC shown in Figure 4. This circuit has a { |61+ 1 if a1 # as
single disturbance variabje and an output varlab_la; and The common suffix distance between two infinite sequences
behaves as follows: (1 outputs1 wheneverp is true; o100 € 3¢ iS
(2) the first time that the inpyt becomedalse C outputs ’
either0 or 1, depending on whether the current value of the d%(o1,00) = lim dy(ol"™, o™
input sequence was preceded by an even or odd number T
of consecutivels (3) the output will bel no matter the The common suffix distance is an upper bound on the
subsequent inputs. Consider the following patterns of npuTfamming distance, as for all sequences o, < X,

sequences; andos, and the corresponding output sequenceg? (01,02) < ds(01,02). Although the common suffix
1 = fe(or) andys = fe(os) generated by, wheren > 0 distance does not count the number of relative differences

is some arbitrary integer .betweenal.and Iop) withi.n their prefi>.< where _the mismatch—
ing occur, it does provide enough information for checking
— om on w the robustness of a sequential circuit with respect to aetubs
gLipep cPePl i wew oW of its input variables.
G2 PrPcpopT o 2 Wowh-Wrw The following lemma states that the distance between two
As we can see, in the above examplg (o1,02) =  sequencesr;,o, € 3¢ is finite (and bounded by some
dr(o1,02) = 1 anddg(v1,72) = dr(11,72) = 1, for any  integerk) if and only if o; and oo have common suffixes
value ofn. It follows that for this particular pattern of inputs, from a position strictly smaller thah.
a mismatching in a pair of input sequences does not cause Lemma 2:For all 01,09 € ¢ andk > 0, d¥(01,02) <
C to increase the number of mismatches in the generated iff there existsO < m < k such thato{* = g4 .
outputs. This observation suggests that the circuit isustib We can show that the common suffix distance defines a
with respect to Hamming and Levenshtein distances, ametric.
least for this particular pair of input sequences. However, Lemma 3:The common suffix distance is a metric.

ds(f31 “ai, 02 'az)



D. ¥ p-Robustness as Finite Disturbance Horizon

In this section, we define robustness for sequential cscuit P ! |
as a form of continuity with respect to the disturbance subse | ~----—---- %D
of its input variables in the common suffix topology. Our | |
definition relates the positions of mismatching charadiers o |
the pairs of input and output sequences, where the two input | L w
sequences have the identical control, but possibly difere ik :y

disturbance components. In particular, we ask that there

exists a bound on the propagations of mismatches, namely, Jorooooe
that if the last mismatching in the input sequence occurs at | Cs %j )
positionk, then the last mismatching in the output sequence ! !
occurs before positiok + b. The addition is used in order """ 7777 tooooooooooooooooomoooos '
to make the definition of robustness invariant to the actual

positions in which mismatches happen.

Definition 5: A sequential circuitC with s and Xp
control and disturbance input alphabets 3is,-robust if
there existsb > 0 such that for allk > 0 and all
01,02 € (3¢ x ¥p)¥ such thatro(oy) = me(oz), if
d‘;(o’l,dg) < k, thend?(Fc(O'l),Fc(O'g)) < k+b.

We introduce the class of sequential circuits withite
disturbance horizonA circuit with control alphabeE~ and
disturbance alphabet, has the finite disturbance horizon

Figure 5. An example of a robust sequential circuit

not a disturbance variable.

Example 3:The circuit in Figure 5 has a disturbance vari-
ablep and a feedback loop and can be logically decomposed
into four components. The circut, implements a modul@
counter using a feedback loop and has no input. The circuits
C, andC; define two sequential functions that are dependent

o X only on the input value in the present and previous time step,
property if .'t has a f|x.ed bound on the number of C”rre”f[respectively. FinallyC, propagates the output of eithés
and past d|sturba_nce !nputs that are necessary to determ|6? Cs depending on the current value of the counfer
Its output at any time Instant. The output can be expressed a$ = p' if t is even,

Definition 6: Let Fc  : (X¢ x ¥p)¥ — ' be the  gnq,t — =1 if ¢ is odd. Therefore, the whole system
sequential function of a circuit, wherey = F¢(o). We say  jmplements a sample-and-hold function that propagates the
thatC hasfinite disturbance horizoif for some bound, for input value at every even time step, and holds it for two
all ime instants’ greater than or equal t it is sufficient  jngtants of time. Although the output at timeepends on the
to consider, together with all past control input symbols,¢rent state of the circuit, it can be computed as a function

the current and previous disturbance input symbols in ot some bounded portion of the past inputs. Therefore the
order to compute the value of’, i.e., there existd € N it has finite disturbance memory.

such that for all¢ tz b arggla € bgc x Xp)*, there We show in Theorem 1 that a sequential circuits-
exists a functionG* : X5 x ¥ — T, such that  opst if and only if it has finite disturbance horizon, that i
t = GO G where oe = me(o) and | i i

gl c ) ) c e if it always forgets about disturbance inputs older thanesom
op =7p(0). bounded amount of time. The intuition is that an “altered”

Note that the above definition considers time instants great disturbance input is forgotten by the circuit after sometdini
than or equal té. Fort < b, the number of previous (control time and consequently does not influence the computation
and disturbance) inputs needed to compute the output isf the circuit's output after that time.
trivially bounded byb. Theorem 1:A sequential circuit iS2 p-robust if and only
Example 1:Consider the circuit in Figure 2(b). It con- if it has finite disturbance horizon.
tains no feedback loop and the output function can be ex- The next result follows from the fact that combinatorial
pressed ag’ = 0 andw’ = 1—p'~! forall ¢ > 0. It follows  circuits are memoryless and that acyclic circuits with dela
that the circuit has finite disturbance horizon, indepetigen have finite disturbance horizon by definition.
on whetherp is a control or a disturbance input variable .  Corollary 1: Every combinatorial circuit and every
Indeed, its output function depends only on the value of theacyclic circuit with delay is© p-robust.
input in the previous step. It is easy to see that all acyclic
circuits with delay have finite disturbance horizon for any IV.  OPERATIONAL CHARACTERIZATION OF
control/disturbance partition of input variables. ¥ p-ROBUSTNESS FORSEQUENTIAL CIRCUITS
Example 2:The circuit shown in Figure 2 (c) contains a  Sequential circuits have an equivalent graphical repre-
feedback loop and! = \/fzopi for all ¢t > 0, that is the  sentation calledMealy machine§Mea55]. Such machines
output at timet depends on the value @l the previous consist of a finite humber of states (the internal memory
values ofp. This circuit is robust only ifp is a control and  of the circuit) and transitions between the states labeled b



k= 163] = |6v] b=15,| = 11 Sp = {p.p}
‘ﬂc([ﬁ) = 70(52) ) ) p/0

f’l/fn : \\\\\(}s/:ysl

c\?;/\“z\@/ /’//;’;;5’52 ; e
j p/1

Figure 7. X p-synchronization of Mealy machines: Example
Figure 6. X p-synchronization of Mealy machines: General case

inputp-pleads toA, p-pto B, p-pto C, andp-pto D.
input/output actions. Mealy machines can be used to model Definition 8: A Mealy machineM is X p-synchronized
the high-level behavior of the underlying circuit. We prepo if there exists a boun@ € N such that for allé, 62,65 €
an alternative characterization of robustness based on the&. x ¥p)* with |61| = |62|, 7c(61) = 7o (62) and|64| >
state-based properties of Mealy machines. Formally, Mealy3, we haved(qg, 61 - 65) = 6(qo, G2 - 6).
machines are deterministic input/output automata cangist It turns out that the class &f p-synchronized Mealy ma-
of a finite number of states and a transition relation. Eaclthines corresponds exactly to the one of sequential crcuit
transition consumes an input symbol and produces an outptiiat areX ,,-robust.
symbol. Theorem 2:A sequential circuit isC p-robust if and only

Definition 7: A Mealy machineis a tuple M = if its equivalent Mealy machine iX p-synchronized.
(@, 2¢,%p,T,qo,9,\) where@ is a finite set of states, Moreover, the robustness bourdin Definition 5 and
Yc and Xp are control and disturbance input alphabetsthe boundg in Definition 8 coincide. Finally, we show in
I' is the output alphabetgy € @ is the initial state, the proof of Theorem 2 in Appendix A that if the Mealy
d:Q x (¥c xXp) — Q is the state transition function machine of a sequential circuit i p-synchronized, then
and\ : @ x (¥¢ x ¥p) — I is the output function. we can take3 = M giving the same value for the
The state transition functio@ and the output func- (gbustness bound of the circuit.
tion \ are extended to sequences as follows (inductively):

3(q, (c,d) - 6) = 6(8(q,(c,d)),5) and X(q,6 - (c,d)) = V. CHECKING ¥ p-ROBUSTNESS ORMEALY MACHINES
A(6(q,0),(c,d)) for all (c,d) € (¥¢ x Xp) and s € In this section, we propose a two-step algorithm for check-
(e xXp)T. ing the ¥ p-robustness of minimal Mealy machines. The al-

A Mealy machineM defines a functionf,, : (Z¢ x gorithm is based on a standard graph analysis. Given an arbi-
¥p)“ — T'“ in the expected way. The machinel and trary minimal Mealy machine\ = (Q, %, 24,T, g0, d, \),
a sequential circuiC are equivalentif fr(oc) = Fe(o)  the first part of the algorithm is a graph exploration pro-
forall o € (X¢ x Xp)“. M is minimal if for all states cedure that computed ., the set that contains all distinct
¢,q¢ € Q such thatg # ¢/, there exists an input sequence pairs of states in\ that are reachable from the initial state
0a € (B¢ x Xp)T such that\(q,04) # A(¢',04). Mealy ¢, by reading two input words of the same length with the
machines can be minimized in ting&(n - logn) wheren = same control, but possibly differing disturbance comptsien
|Q| is the number of states [Hop71].

In the sequel, we define a class of Mealy machines (as O
in Figure 6) that we call>p-synchronized Intuitively, a
Mealy machines isXp-synchronized if from every pair _

; mc(04) = e (o)

of states reachable by two input sequences of the same andq = 6(qo, 74) andgs = (g, 0b)}
length and with the same control component, a “reset” ’ ’
state is reached after reading any sufficiently long wordWe have to check whether there exists a lengtsuch
Consider the maching in Figure 7 withX, = {p,p}, that onall input wordso, € (¥¢ x ¥p)* of length g,
implementing a delay of length. From the initial stated, ~ from every pair of stategqi,q2} in Qu, a single state
every state is reachable with some input of lengjttin this  is reached, i.e.f(q1,0,) = d(g2,0,). This is the case
particular example, in order to show that the machine isonly if there exists no words, of length w that
Y. p-synchronized, we need to check that from every paitinduces a loop through pairs @, (otherwise an arbitrarily
of its states, a single state is reached with every suffigient long word can be constructed that violates the condition of
long word. This holds since from every state, the disturbanc X »-synchronization), i.e., that{qi,q2} € Qs - Ao,

= {{a, @2} | a1, € Qst.qy # g2 and
doa,0p € (Ec X Bp)* s.tloa| = |owl,



g1 = 0(q1,05) and g2 = d(g2,05). It follows that the subtraction in the first step, and than switches to the amfditi
Y p-robustness of a Mealy machinet can be decided by operation in the next step and remains doing addition foreve
a cycle detection algorithm on the graghn(Qa, dam) On the other hand, the second input sequence makes the
where dp € Qam x Qua and ({q1, 42}, {d, ¢5}) € om circuit doing subtraction forever. As a consequence, the
iff ¢1 =d(q1,(c,d)) andgh = d(qq, (¢,d)) andq] # ¢4 for ~ common suffix distance between the two input sequences
some(c,d) € ¥¢ x Xp. The cycle detection can be done is 1, but the output sequences drastically differ, given that
on-the-fly with the generation af . they are computed using a different operation.

Theorem 3:The complexity of checking robustness of a  This circuit can be made:-robust with respect to
minimal Mealy machineM = (Q,X¢c,%Xp,I",q0,0,A) is  all inputs by changing the encoding of the control signal

@(M 1Sl 120]?). d. Instead of having the environment that provides the
information when to switch from addition to subtraction
VI. DETAILED EXAMPLE and vice versa, we can design a circuit that expects from

An adder-subtractoiis a sequential circuit that combines the environment explicit request about which operation to
addition or subtraction operations of binary numbers in aapply at each step. In this case, we do not need the switch
single unit. Adders and subtractors are usually part of theontrol unit and the control input can be directly fed to
arithmetic logic unit(ALU). There is an additionatontrol ~ the ALU. Any error in the control signal would then affect
unit that decides which operation the ALU should perform.only the computation of the output at the time step of the

error occurrence, but would not propagate to the future

ag by ay by a by ay by

computation of the output.
Yﬂ Yﬂ Yﬂ ﬂ S VII. DISCUSSION
:’ switch |

lﬁ N N N | Qﬁ This section briefly discusses two extensions of the results

: : : presented for sequential circuits. We first add insertioth an
o - o Lel Lo deletion operators to the common suffix distance and study
Adder Adder Adder Adder how it affects theX p-robustness of sequential circuits. We

\ \ \ \ observe that this distance is not adapted to synchronous
- ‘ systems. Second, we discuss about the preserving pof
robustness properties of individual sequential circuiys b
their composition.

Figure 8. A4-bit ripple carry adder-subtractor

. The 4-bit adder—subtra_ctor shown in Figure VI, the circyit A. Effect of the Edit Operations to tHe-Robustness of
is composed of fourl-bit full adders and a control unit Sequential Circuits

switch It combines the adding and subtracting capabilities ) ) o
by exploiting the fact that when the numbers are in two's [N Section 1Il-C, we introduced the common suffix dis-
complement, it is sufficient to invert each bit withnaT gate  tance that considers only the last substitution of charadte

and add1, to implement subtraction using the adders. The? Pair of sequences. In this section, we defineettié com-

circuit takes as inputs variables,, .. .,as; and by,...,b;  mon suffix distancenat extends the common suffix distance
s0,...,s3, together with a carry output;. extension is analogous to the Levenshtein extension of the

The function that is computed by the circuit depends oni@mming distance. Edit operations are natural to model the
the switch control unit that takes as input the signal  €ffect of the environment providing to the system sequences

Initially, the circuit is set to do addition. Wheneveris ~ With missing or redundant inputs.

set to high, the circuit switches to the other function. Definition 9: Let X be a finite alphabet. Thedit common
Intuitively, the input variables in this circuit are natliya Suffix distancebetween two finite wordsr,, o, € X" is

partitioned into seté/ = {d} and X = {ao,bo, ...,as,bs}  defined inductively by

of control and disturbance variables, respectively. Theudi . .

) . . . des(€702) = |U2|

is clearly X p-robust under this partition, becauseit full d,s(61,¢) — 6]

adders are combinatorial circuits without memory. However ~“** "7~ dos(61,62) it 0 —a

if we assume that the external environment is not fully des(ai - 61,as - 62) { H‘;;X{Télf oy +1 if ai 2 az
b

reliable, and may introduce errors in tleignal, we cannot
consider d anymore a control, but rather a disturbanceThe edit common suffix distance between two infinite words
variable. In that case, the circuit is nBt,-robust anymore. o1,0, € X¢ is

For this, consider two input sequencesdpfo, : 110¢ and . ) 0m) _[0m) . .

o), - 10, In the first case, the circuit switches to do the dés(o1,09) = inf{des(oy 7,05 77) | 0" = 05}



We note that the edit common suffix distance is an upper D
bound on the Levenshtein distance, as for all sequences
01,02 € ¥, d(01,02) < des(o1,02).
We first show that sequential circuits that do not have
feedback loops are not sensitive to insertion and deletion 4+
operations and remaii p-robust with respect to the edit (@) (b) ©
common suffix distance.
.Theorem 4:Acyclic F:IrCUItS with dglay are¥. p-robust Figure 9. Composition of sequential circuits; (a) basic g&bg > p-non-
with respect to the edit common suffix distance. robust circuitC and (c) S p-robust circuitC’
However, sequential circuits with feedback that arg-
robust with respect to common suffix distance may be very
sensitive to edit operations. We illustrate this point witile ~ OR gate with a delay element results in the circdithat
circuit C from Figure 5 that isX p-robust with respect to introduces a feedback loop and is depicted in Figure 9 (b).
the common suffix distance. We assume that = {p,p}. This circuit corresponds to Circui given in Figure 2 (c)
Consider the following input and output sequenegs=  and we have seen thdtis not ¥ p-robust. Finally,C can be
fe(or) and~y, = fe(oa), whereos = p - oy composed with an additionalND gate and a delay element
to obtain the sequential circud’, shown in Figure 9 (c),
G1: Bop-Pee- Ny WD that is equivalent to.a simple delay element, and is hence
Gy PP T i wew-w-w--- Y p-robust. .F.rom this example, we can observe that; (1)
the composition of twad: p-robust circuits may b& p-non-
As we can see, a simple insertion of a single letter arobust and (2) & p-non-robust circuit that is combined with
the beginning of the input sequence results in a comanother circuit may result in 8 p-robust composition. Thus,
pletely different output sequence, i€, (01,02) = 1 but  in general, the composition of sequential circuits preserv
d¥.(y1,7v2) = oo. In fact, sequential circuits are synchronous neither theX p-robustness nor thE p-non-robustness of its
systems with a global clock. While substituting an input with components. However, the acyclic composition of twg-
another one does not affect the clock of the circuit, inggrti robust component always results in a robust system, since
or deleting a letter in the input sequence of a sequentiahcyclic composition cannot introduce infinite input memory
circuit “shifts” the global clock of the system. Synchrosou horizon.
systems that compute their output as a function of their
disturbance input and internal clock value (the value of a
state-based modulo counter) are in general very sensitive We proposed a flexible framework for studying the ro-
to such clock shifts and result in producing nBp~robust  bustness of sequential circuits. Acknowledging the faat th
output behavior. some variables in the circuit are intended to be discontin-
We note that the edit common suffix distance may beuous, we partition input variables into two sets of control
well-adapted to the study of robustness of asynchronouand disturbance variables, and study robustness only with
systems that do not have a global clock. We believe thatespect to disturbance inputs. We defined the notioR of
such asynchronous systems should be less sensitive to thebustness for sequential circuits that allows to bound the
shifts caused by the insertions and deletions of distudancdifference between the distance of pairs of (disturbance)

VIII. CONCLUSION AND FUTURE WORK

values in the input sequence. input behaviors and their corresponding output behaviors.
» ] o Our notion relies on a metric that permits to distinguish
B. Composition of Sequential Circuits substitutions of data in sequences as well as their relative

In this paper, we studied thep-robustness of sequential positions, but does not consider suppression and insertion
circuits as individual components. However, several ¢iscu operations.
are generally composed in order to build more complex sys- We characterized a non-trivial class of sequential ciscuit
tems. This observation results in natural questions altaut t that are X p-robust and identified that th& p-robustness
preserving of¥p-robustness by composition of sequential property is dependent on the horizon of memory that is
circuits: (1) What are the conditions for the composition ofused within the circuit. An operational characterizatidn o
two X p-robust components to remaky,-robust? (2) What X p-robustness based on the analysis of Mealy machines
are the conditions for making 8p-robust composition out resulted in relating the notion oOE p-robust input/output
of two possibly>: p-non-robust components? finite-state transducers to the well-known problem of syn-

Consider the example shown in Figure 9. Figure 9 (a)chronizing sequences in deterministic automata. Further-
depicts anorR andAND gate and a delay element. It is easy more, this automata-based approach allowed designing a
to see that these basic gates are robust if all their inputpolynomial-time algorithm for checking the robustness of
are disturbance variables. A particular composition of theMealy machines.



We also study an extension of our distance that allows tgHam50] R. W. Hamming, Error detecting and error correcting
take insertion and suppression of information into account  codes. InBell System Technical Journd9 (2), 147160, 1950.
We ;how j[hat th|§ distance is not ngtgral for ?quemla[HenOS] T. A. Henzinger, Two challenges in embedded systems
circuits which are in general very ;gns!tlve t? shifts in the design: Predictability and robustness, Rhilosophical Trans-
synchronous global clock (the position in which events oc-  actions of the Royal Societ$66, 37273736, 2008.
cur). We believe this notion is more adapted to asynchronous
circuits, and we left this study for future work. [Hop71] J. E. Hopcroft, Amn - logn algorithm for minimizing

A natural extension of our work would be to study gate]? 'c? a finite aultggnlaton*TeCh”'ca' Report CS-71-190
the logical and algebraic characterization of robustness a tanford University, '
identify the subset ofv-regular languages that are robust [kco4] C. Kossentini and P. Caspi, Approximation, sampling and
with respect to the distance measures described in this voting in hybrid computing systems, IHSCC'04 363-376,
paper. Another important direction for future researchois t ~ 2004.
study quantitative extensions of sequential circuits sash

continuous-time sequential circuits [PRT04] or probatiidi [KLSO8] O.Kupferman, W.Li and S.A.Seshia, A theory of muta-

tions with applications to vacuity, coverage, and fault tolerance,

circuits,[PM75]. One could obtain a logical charactelizat In EMCAD '08, 1-9, 2008.
of such circuits by using the quantitative and probabdisti
languages introduced in [CDHO08], [CDHO09]. [Lev66] V. I. Levenshtein, Binary codes capable of correcting

It would be also interesting to be able to distinguish deletions, insertions, and reversalSoviet Physics Doklady
. 10, 707710, 1966.
between systems that are robust. As an example, consider
two robust circuitsC; andC,. Assume that the two circuits [Lev96] W. S. Levine, The Control HandboakNew York: CRC
generate the same behaviors for a given subsétexpected Press, 1996.
inputs, but may generate different behaviors for inputs tha _
are outside ofl. It could be that theb in the distance is [LMESE%%alGL-OLe}QgggI; ‘]'V'\-/;):Y'doggggt.’?é';anb‘f.elﬁ':f’n”ndfég’gs of
the same for botl€; andCs, but that thisb is only reached gl g sign 1entific FUbishing. '
when reading a few sequences outsidé af C, and all the  [mal93] S. Malik, Analysis of cyclic combinatorial circuits, In
sequences outside dfin Co. In this situation, one should ICCAD’93, 618-625, 1993.
conclude that it is better to ugg thanC,. Indeed, for input Meass] G. H. Mealy, A hod f hesini -
sequences that are outside [ofC; recovers faster thaf,. ea - H. Mealy, A method for synthesizing sequential
q e 0 ol lath. circuits, InBell Systems Technical Journdl045-1079, 1955.
The common suffix distance cannot make such distinctions
and should be further refined in order to be able to quantifypp7s) K. P. Parker and E. J. McCluskey, Analysis of Logic

the degree of robustness of such circuits. Circuits with Faults Using Input Signal Probabilisties,|IEEE
transaction in Computer Sciencg73-578, C-24, 1975.
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APPENDIX

Lemma 1:Given a sequential circu with & + m control and disturbance input variables amdielay elements, and a
time instantt € N, the value of the output and state variable€iat timet is a function of its past and current control and
disturbance values, that is, there exist functighsgy! : {0, 1}(++m)x(t+1) _ £0 1} for i = 1...n such that

t_ gt 0 0.0 0 ¢ t ot t
W= fEUT, e Uy By e ey Ty e ey Uy e ey Uy Ty e vy Tyy)
and
t_ t( 0 0 .0 0 t t ot t
Zi =g (UTy e UG, T e Ty e ey Uy ey Upy Ty e ey Ty

Proof: The proof proceeds by induction on the time stefror the base case, consider 0. By the definition of a
sequential circuity? = 0 for i = 1...n. It follows that in

0 _ 0 0 ..0 0 .0 0
W’ = fe(ugy oo U, Ty ey Ty Yly e v e s Yp)

, all Y can be replaced by the constaitand fo can be expressed in terms of an equivalent functfosuch that
w? = f(ul, ... u,29,...,2%). The proof is similar forz).
For the inductive hypothesis, assume that for an arbittasy0, there exists a functiorf such that

t_ p00 0.0 0 t tot t
W= (U], Uy Ty e ey Ty e ey Uy ey Upyy Ty vy Ty

and functionsg; for i = 1...n such that

t 0 0 .0 0 t t ot t
2i = Gi(U7y o Uy ]y ooy Ty ey ULy e ey Uy LYooy L)

By definition of a sequential circuit,

1 t+1 t+1 41 t+1 t+1 t+1
W' = felur, L a T Y )

and by inductive hypothesis

tHl ot 0 0 .0 0 ¢ ¢t ¢
Uit =2 = iU, U e Ty ey Uy ey Uy Ty ey D)

for i = 1...n. It follows that we can replace evepf ™" in fc by

0 0.0 0 t tot t
LG S P T P U V1 SRS 71 A 1 S )

fori=1...n. Hencefc att + 1 can be expressed by another functipsuch that

t+1 _ 4(,0 0 .0 0 t+1 t+1 41 t+1
W = U], U T, T Uy )

»m

. The proof is similar forz! . ]

Lemma 2:For anyoq,09 € ¢ andk > 0, d¥ (o1, 02) < k iff there existsO < m < k such thato]* = o4*.

Proof: Assume that for two arbitrary;, o, € X%, d¥(01,02) < k for somek > 0. Assume that there does not exist
0 < m < k such that* = 0", that is there exists > k — 1, such that! # o.. By the definition of the common suffix
distance, it follows thatl, (¢! ¢{’*") > k and consequentliim,, ... d,(c!"™, o{™) must be greater or equal then
k, hence a contradiction with the initial assumption. Theref there exist® < m < k such thato{* = o4 .

For the other direction of the proof, assume that for arbjtea , oo € 3, there exist) < m < k for somek > 0 such
thato?™ = o2, By the definition of the common suffix distance, @Yo\, ™) < m and (2)d* (o7, o7") = 0.
By combining (1) and (2), it follows thai¥ (o1, 02) < m, that isd¥ (o1, 02) < k and this concludes the proof. [ ]

Lemma 3:Common suffix distance is a metric.

Proof: We only show the fourth requirement of the definition of a neeffor arbitraryo;, o2, 05 € X, letd¥ (o1, 02) =

c1 andd¥(oq,03) = ¢ and ¢ = max(c1, c2). By Lemma 2, it follows that (' = o5' ando5? = o5*>". Combining
the two observations, we have thaf~ = o5 and by Lemma 2 thatl“(o1,03) = ¢ = max(cy,c2). It follows that
d¥(o1,03) < d¥(01,02) + d¥(o2,03) and this concludes the proof. [ |
Theorem 1:A sequential circuiC is ¥ p-robustif and only if it hasfinite disturbance horizan
Proof:

Assume that has finite disturbance horizon. Consider two arbitraryos € (X¢ x ¥p)“ such thatre(o1) = mo(02)
andd¥ (o1, 02) < k for somek > 0, and lety; = Fe (o) andvy, = F¢(02). Then by Lemma 2, there exists < & such that
o = oy, By the assumption that has finite disturbance horizon, we know that there existsesom 0 such that for

all n > m -+ b, A= Gn(o_[c(’)l,n—&-l)’o_gr)bl—b,n+l)) andvg _ Gn(ag;n—i-l)’a%;—b,n-&-l))’ Whereacl _ WC(Ul)a oD, = 71—D(0'1)1



oo, = mc(02) andop, = mp(oz). By assumption thatly (o1, 02) < k, it follows thato}, = o}, forn —b <i < n.
Furthermore, by the assumption that(o1) = mc(02), it follows thato}, = of, for 0 < < n. Therefore, by definition
of finite disturbance horizon, it follows that® = 4% for all n > m + b, that isy" 0+l = m+o+l- By | emma 2, we
can conclude thad¥ (F¢(o1), Fe(o2)) < k+ b and thatC is X p-robust.

For the other direction of the proof, we proceed by contrtémtic Assume that is ¥ p-robust and choose @> 0 such
that for allk > 0, 01,00 € ¥ with 7c(01) = 7c(02), d¥(01,02) < k implies d¥(F¢(o1), Fe(o2)) < k + b. Assume
that C does not have finite disturbance horizon, that is forcatf X there exists > 0 such thaty’ cannot be computed
with o2 and ol >0 input sequences, wherery = ¢ (o) andop = wp(o). It follows that~* must be computed
with o' and ag_"’t“ for somen > b, that is+* = G*(al0"") o7y for someG! ¢ (S x £ - T
Chooseal,ag € ¥* such thatr¢(6,) = 7o (6p) and ds (Ul,ag) =t—0b. Leto; = 610,09 =620, 11 = Fe(oy)
and~, = Fc¢(o2) whereo € X¢ is chosen such that! # ~%. Such ac can be chosen becau€eis deterministic and
we have fromd,(51,62) = t — b that ol =*~! £ ¢1=*=1 But in that case, we have that'(o1,02) < t — b+ 1 while
d¥(m,v2) > t+ 1 which is a contradiction with the assumption tidats ¥ ,-robust. It follows that ifC is X -robust, then
C has finite disturbance horizon.

[ |

Theorem 2:A sequential circuitC is X p-robust if and only if its equivalent Mealy machine! is X p-synchronized.

Proof:

To simplify the presentation, The state transition functio and the output functiom\ are extended to sequences as
follows (inductively):d(q, ((¢,d) - &) = 6(6(q, (¢,d)),5) and A(q, 6 - (¢,d)) = A(é(q, ), (c,d)) for all (¢,d) € (X X Xp)
andé € (X¢ x ¥p)*. Assume that is ¥ p-robust. Consider arbitrary!, 62 € (X x ¥p)* such that|s,| = |62| and
mc(61) = mo(62). We have by definition of the common suffix distance a6, 62) < k wherek = |51|+1. By Lemma 2,
it follows that for anyo € 3¢, d¥(6; - 0,02 - 0) < k. The assumption that is X p-robust and the previous observation
imply that there exists > 0, such that for alb € ¢, d¥(61-0,62-0) < k andd¥ (Fe(61-0), Fe(d2-0)) < k+b. Consider
an arbitrarys, € ¥* such thatls,| > b. Let ¢; = 6(qo, 61 - 65) andga = 5(qo, 62 - 65) and assume thag; # ¢2. Since M
is minimal, it follows that there exists, € ¥+ such that\(q1,5.) # A(g2, 6.). Combining the previous observations, we
construct two sequences, o, € X¢ such thatr; = 61 -6, 6.0’ andoy = 64 -6, - 6. -0’ whereg’ € X is an arbitrary
infinite sequence. Lety = A(qo, 01) and~y2 = A(qo, o2). It follows thatd¥ (o1, 02) < k butd¥(y1,72) > k + b becausey,
and~ differ at a position greater tha#,| + |5,|, hence a contradiction with the assumption that~ ¢. It follows that
if M is ¥p-robust, there exists > 0 such that for anysy, 65,65 € £* with |61 = |62|, 7c(61) = 7c(62) and || > b,
8(qo,01 - 65) = 6(qo, b2 - G5).

What remains to be shown is that fart with |Q]| states, it is sufficient thdt = w.
1) Letq; = 6(qo, 1) andgs = §(q0702) for arbitrary 6,62 € (3¢ x Xp)* such thatls| = |62| andrc(61) = 7 (62).
2) For M with |Q| states, there arM pairs of states{qz,qj) such thaty; # ¢; and (¢, ¢;) = (¢j, ¢:)-

3) Leté, € (NS¢ x ¥p)* be an arbitrary word with,| = 122191 we denote
Gs = (co,do) -+ (cs,1-1,d|5,-1)

where(c¢;,d;) € X X Xp.
4) Letq)”' = 8(q1,6.) andgy™! = 3(go. 5.) where

(co,do) 1 (e1,dr) (clos|-1d1651-1)  |6,]
q1 91 T a1
and
(co.do) 1 (c1,d1) (Clos|-1:dj6s1-1) |6
q2 42 T qs

5) Assume that]"’s| # q“’S‘ Then there exists < m < n < |d,] such that(q”, ¢5*) = (¢}, ¢%).

6) It follows thatg}” = 6(q1, 6™ - (6™™)i) and ¢ = 6(qo, 5™ - (61™ ")) ) for anyi > 0.

7) Then for anyb > 0, one can construct a worg, = 61" - (aLm’")) with i > [-—£_7, that is|6.| > b such that

5(qo, 61 - 6.) # 0(qo, 02 - 6¢), hence a contradiction with the previous result.

It follows that if C is X p-robust, then for any, 62,65 € (¢ x Xp)* with |61| = |62|, m7c(61) = mc(62) and |65 >
WQEZCL (g, 61 - 6) = blao, 52 - &),

For the other direction of the proof, assume thdtis ¥ p-synchronized. Consider two arbitrary sequeneesr, € ¢
and assume thatc(o1) = o (02) andd¥ (o1, 02) < k for somek > 0. Then by Lemma 2, there exists< m < k such
that o’ = o4 . It follows that we can decompossg ando into sequences; = 6, -6, -0 andoy = 62 - 65 - © where



6’1 = U£O7m), 5'2 = 0'£077n); OA_s = yn/?b)l g = 0-11) andb = m + w Let :}/1 = A(qu&l : 6—3>l ’3/2 = )\((]0,6'2 : 5—5)1

ag
v = Mqo, 1) andvys = A(qo, 02). By the definition of the common suffix distance,(%1,4%2) < |61| + 65| + 1, that is
ds(Y1,%2) < ds(61,02) + w By the assumption that1 is X p-synchronized, it follows thai(qo, 51 -65) = 0(qo, 02 -
2
Gs). Since M is deterministic, it follows thatl¥' (y1,v2) = ds(%1,42), concluding thatl® (1, v2) < d¥ (o1, 02) + M.
|
Theorem 3:The complexity of checking robustness of a minimal Mealy hise M = (Q,X¢,Xp,T,q0,9,A) is
2
O(IQI 2-HQI . ‘ch . ‘2D|2)_
i i Q| i inli
Proof: Follows from the fact that Algorithm 1 has to consider at m'&g— states and pairs of states multiplied
by [Ycl|-|Ep|? transmons/paws of transitions to compute the @gi;, which is added to the run time of Algorithm 2 which
explores at mosii pairs of states in\1 and from each explored pair of states has to compite|- |~ | transitions.
]
Theorem 4:Acyclic circuits with delay arep-robust with respect to the edit common suffix distance.
Proof: Let C be an acyclic circuit with delay. Sinezdoes not have feedback loops, it must define a sequentiaidanc
that at any timet depends only on its current and previous control and diahgb inputs bounded by, the number of

delay elements. It follows that there exisis : (3%, x b)) — T, such that for allt € N, v = G(ol;7 "+ o010y,

Consider two arbitraryo;,0, € X“ such thatdes(0'1,o’2) < k for somek > 0. It follows from Definition 9 that
there existm,n < k such thato* = o4 Then, for everyt’ > b, we haveyb o= G(o b’f”*’”, Lol ™) and
Ay — G(ag “btn 6% T, Given thatab “bm o _ bt l{’*" — o4+, it follows that~"’ m =74+, that
is 7{”“’ =yt and by Definition 9,des(71,72) <k + b and this concludes the proof. [ |

The setQ A, contains all distinct states and pairs of states\ihthat are reachable from the initial stajg by applying
to M two input words of the same length with the same control, lmssibly different disturbance component. This set is
computed with Algorithm 1. The algorithm explores the stgpiace ofM as follows; it starts from the initial staig and
explores all the neighboring states and pairs of statehatde by the applying lettelg, d1), (¢, ds2) € ¥ x X p. From each
neighboring state/pair of states the procedure is repeated computing all reachable states/pairs of stategvin Every
state and pair of states il is explored at most once. It is not hard to see that the algorigxplores at mogt)| states
and 19°~1<l |Q| distinct pairs of states ioV, while from any visited state/pair of states one needs teiden|Sc| - |Sp|?
outgomg transitions, corresponding to all possible caratons of pairs of ¢, d;), (¢, d2) wherec € ¢ andd;,ds € Xp.

Algorithm 1 ComputeQ  : COMPQM(M)
1: QM — 0
22V —{qo}
3 F «— ¢, E.enqg({q})
4: while (IE.isEmpty()) do

50 {q1,q2} = E.deq()

6: forall ceXs do

7 for all dy,ds € ¥p do

8: qi = 5((]1, (Cv dl)) and ql2 = 5((]27 (Ca d2))
o: if {q1,d5} ¢V then

10: E.enq({q1,45})

11 V= VU{q, gt

12: end if

13: if q1 # ¢; and{q}, g5} & Qrq then
14: Qm — QmU{d), a5}

15: end if

16: end for

17:  end for

18: end while
19: return  Q aq

Algorithm 2 first computes the s&p . using the procedure @1PUTEQM defined above. Than it genere;tes on-the-fly

the graphG ,( defined in Section V and checks for cycles between pairs tésia@ . It explores at mosw pairs
of states and from each state/pair of states has to condider |~ | transitions.



Algorithm 2 Checking the robustness @¢#f : ROBUST(M)

1V«

2. F—¢

3 Qm — COMPUTEQM (M)

4: for all {q1,92} € Qa doO
E.enq({q1,q2})

V<Vu {(ha q2}

. end for

- while (IE.isEmpty()) do
{q1, 2} = E.deq()

10: forall (¢,d) € ¢ x Xp do
11 ¢y = 6(q1, (c,d)) and gy = d(qz, (¢, d))

©® N g

12: if ¢} = ¢, then

13: skip

14: else if {¢, ¢4} € V then

15: return NON-ROBUST

16: else if {¢},q5} ¢ V and¢| # ¢, then
17 Ve VU{d). a5}

18: E.eng({q1,45})

19: end if

20: end for

21: end while

22: return ROBUST




