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Abstract—Digital components play a central role in the
design of complex embedded systems. These components are
interconnected with other, possibly analog, devices and the
physical environment. This environment cannot be entirely
captured and can provide inaccurate input data to the com-
ponent. It is thus important for digital components to have a
robust behavior, i.e. the presence of a small change in the input
sequences should not result in a drastic change in the output
sequences.

In this paper, we study a notion of robustness for sequential
circuits. However, since sequential circuits may have parts
that are naturally discontinuous (e.g., digital controllers with
switching behavior), we need a flexible framework that ac-
commodates this fact and leaves discontinuous parts of the
circuit out from the robustness analysis. As a consequence,
we consider sequential circuits that have their input variables
partitioned into two disjoint sets: control and disturbance
variables. Our contributions are (1) a definition of robustness
for sequential circuits as a form of continuity with respect to
disturbance variables, (2) the characterization of the exact class
of sequential circuits that are robust according to our definition,
(3) an algorithm to decide whether a sequential circuit is robust
or not.

I. I NTRODUCTION

In embedded systems, digital components play a central
role in the overall system. The external environment of
digital components can be other digital or analog compo-
nents, software, or the actual physical world. This is in
contrast with the traditional (computer science) view of
digital components, where the system is often considered to
be either closed or to interact with an idealized environment
that can be accurately modeled by a finite-state machine. In
embedded systems, the environment cannot be always cap-
tured and precisely described in such a model. It follows that
the input assumptions often remain inaccurate or incomplete.
Additionally, the input data provided to the component by its
environment can contain errors and imprecisions, either due
to external perturbations, to the poor accuracy of sensors,
or to unpredictable delays in communication links. As a
consequence, a well-designed system needs to deal with
such unexpected inputs. Therefore, it is important that the
output behavior of such systems remains robust in presence
of small disturbances in the input sequence. For critical
applications, such as the flight controllers, it is essential to
design systems that guarantee robust behavior even when
the input is correct, to guarantee smooth control action. The
design of robust components has been identified as one of the
main challenges in the design of embedded systems [Hen08].

Traditionally, robustness and stability of systems are
mainly studied in a continuous setting. Robustness of con-
tinuous systems is usually expressed as a form ofuniform
continuity. A system is uniformly continuous if for every
positive realǫ, there exists a positive realδ, such that any
change smaller thanδ in the input results in a change smaller
thanǫ in the output. In control theory, it is also common to
distinguish betweeninput anddisturbancevariables, and to
study robustness only with respect to disturbance variables.

In this paper, we extend the study of robustness tosequen-
tial circuits, i.e., discrete input/output finite-state systems
composed of logic gates and delay elements interconnected
by wires. Such circuits are a standard model for the design
of complex digital hardware and finite-state transducers
in general. Finite-state transducers have been intensively
studied in the field of computer science and lead to some
of the most fundamental results in the field. Adapting the
techniques for robustness analysis from the continuous to the
discrete setting is not straightforward and, however standard,
the notion of uniform continuity is not directly applicableto
digital systems:

1) Digital systems can be naturally discontinuous. More-
over, the discontinuity may often be a wanted property
for some sub-components in a digital systems. This
is true, in particular, if the component implements a
discrete controller with switching functionality. On the
other hand, we would like to guarantee that other com-
ponents, such as critical systems, exhibit continuous
behavior.

2) Another difference with respect to the continuous
setting is that the changes in inputs and outputs of
a digital system are more naturally quantified using
integers instead of reals. The definition of uniform
continuity combined with distance functions taking
integer values results in every discrete system being
uniformly continuous, simply by choosingδ smaller
than1.

The main contributions of this paper are twofold. First, we
propose a new framework for studying robustness of sequen-
tial circuits based on simple and clean concepts that address
the above-mentioned problems resulting from the underlying
discrete setting. Inspired by the notion of robustness in
control theory, we first make a distinction between two
types ofinput alphabets:control anddisturbancealphabets.
Control alphabet encodes the control actions and disturbance



alphabet encodes the environment actions. The distinction
between control and disturbance alphabets is essential for
providing a flexible framework for robustness analysis of
sequential circuits. In particular, it allows to identify parts
of the circuit that are wanted to be discontinuous and to
eliminate them from the robustness analysis. This is because
control actions are expected to cause discontinuities (e.g., in
controllers that exhibit switching behavior), and as a conse-
quence, we want to have a framework that only considers
the effect of small changes in the disturbance actions. Due
to their inherent discontinuous nature, the correctness of
control inputs needs to be provided by using other methods
that are outside of the scope of this paper, such as the error
codes or input replication.

The main challenge for defining robustness as a form of
continuity is to choose an appropriate notion of distance in
the discrete setting. We identify such a metric, that we call
common suffix distance. The common suffix distance gives
the last position in which two sequences mismatch.

Finally, we define what we callΣD-robustnessof sequen-
tial circuits as a form of continuity with respect to distur-
bance actions in the common suffix topology. Intuitively,
ΣD-robustness can be viewed as bounded propagation of
changes in disturbance inputs: a finite number of changes
in the disturbance values results in a bounded number of
changes in the computed outputs.

We illustrate our notion ofΣD-robustness for sequential
circuits with the example of a 2-bit half-adder, which is
depicted in Figure I (a). A 2-bit half-adder implements a
simple arithmetic function that takes as inputs two boolean
data valuesd1 and d2 and computes theirsum and carry
values. We modeld1 andd2 as disturbance variables. This
circuit is clearly ΣD-robust with respect tod1 and d2

because at any timet, the outputssum and carry depend
only on values ofd1 and d2 at t. It follows that the effect
of a change in input data (d1 and d2) at some point in
time, is only limited to the computation of output values at
that time without being propagated further in the future. In
Figure I (b), the half-adder is connected to a small controller
that operates as follows: (1) as long asctr remains low, the
half-adder is inactive andsum and carry remain low, (2)
when ctr is set to high for the first time, the half-adder
is irreversibly activated and from then on, the controlled
circuit copies the output values of the half-adder. Switching
ctr to high has the qualitative effect on the behavior of the
circuit. For instance, a sequence0ω of ctr values causes the
half-adder to remains inactive forever. As a consequence,
the output values ofsum and carry do not depend ond1

and d2 and always remain low by default. For a sequence
1 · 0ω, that differs from 0ω only in the value ofctr at
the first position, the output behavior of the circuit changes
drastically. Now, the values ofsum andcarry represent the
result of the half-adder computation on inputsd1 and d2.
In this example, the controller clearly causes discontinuities

in the circuit behavior. However,ctr is a control variable
and as such does not affect theΣD-robustness analysis, and
the circuit does remainΣD-robust with respect tod1 and
d2. This example is a simplified version of a more detailed
example described in Section VI.
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Figure 1. (a) 2-bit half-adder (b) Controlled 2-bit half-adder

Our definition of ΣD-robustness relates pairs of input
sequences that a sequential circuit consumes to the pairs of
output sequences that it generates, without explicit reference
to the underlying structure of the circuit. We give an alterna-
tive structure-less characterization ofΣD-robust sequential
circuits that is expressed in terms of the internal memory
requirements for the storage of previous inputs in order to be
able to compute the output. Given a sequential circuit with a
partition of controlΣC and disturbanceΣD input alphabets,
we define the class of circuits that havefinite disturbance
horizon. A circuit has finite disturbance horizon if it has a
boundb such that the output at any time is computed as a
function of, possibly, all previous control inputs, but only up
to b previous disturbance inputs. We show thatΣD-robust
sequential circuits coincide exactly with circuits that have
finite disturbance horizon.

Another contribution of the paper is the characterization of
the class ofΣD-robust sequential circuits in the form of their
structural properties. This result is obtained by studyingΣD-
robustness for Mealy machines – a model that corresponds
to the class of deterministic and synchronous finite-state
transducers. We define a class ofΣD-synchronizedMealy
machines and show that is equivalent to correspondingΣD-
robust sequential circuits.ΣD-synchronization is an explicit
state-based property of Mealy machines. Intuitively, a Mealy
machine is ΣD-synchronized if after reading two finite
words of the same length with the same control, but possibly
differing disturbance components, the machine is guaranteed
to reach a “reset” state after reading any sufficiently long
(continuation) sequence.

The above characterization ofΣD-robust Mealy machines
is operational and results in an effective algorithm for
checking theΣD-robustness of arbitrary Mealy machines.
The time complexity of the algorithm is quadratic in the
number of states of the Mealy machine and the size of its



disturbance alphabet and linear in the size of its control
alphabet.

Our results have potential for a variety of future work. In
this paper, we provide a detailed discussion for two of these
directions: studying robustness of asynchronous systems and
compositional design.

Related work: Robustness of systems has been stud-
ied and formalized in many different ways. For example,
in [CB02], [KC04] robustness of hybrid systems (mixing
discrete and continuous behaviors) is studied as a form
of continuity in topologies induced by (extensions of) the
Skorokhod distance. The immunity of finite state automata
to noise from the external environment has been studied
in [DM94], but this study is done in a probabilistic setting.
Robustness of finite-state systems has been studied much
less in the area of computer science. The work in [BGHJ09]
focuses on the synthesis of robust discrete controllers satis-
fying an extended temporal logic specification with quanti-
tative (real-valued) constraints, which results in a different
model of robustness. In the context of real-time systems,
robustness has been studied in [GHJ97]. This work differs
from ours in that (1) the authors study acceptors (automata)
instead of transducers and (2) pairs of timed sequences are
compared using the Hausdorff distance with the limitation
that the perturbations are allowed only in the time delays
between events, while the discrete part has to match ex-
actly. Robustness is also closely related to other research
areas such as fault tolerance and error resiliation [SLM09].
In [Mal93], the authors consider combinatorial circuits with
cycles, and study conditions under which such circuits can
be expressed as an equivalent acyclic circuit. This work
can be related to robustness questions since the presence
of feedback loops in a circuit is a necessary condition for
generating non-robust behavior. Finally, we observe that the
problem of robustness can be seen as a dual of the problem
of coverage, where one expects that an input change does
result in drastic output change [KLS08].

II. PRELIMINARIES

We first recall the classical definitions of distance and
metric. A distanceon a setS is a functiond : S × S →
R ∪ {∞}. In general, one considers metrics that extend
the definition of distance with some natural properties. The
distanced is a metric if for all x, y, z ∈ S (1) d(x, y) ≥ 0,
(2) d(x, y) = 0 if and only if x = y, (3) d(x, y) = d(y, x),
and (4)d(x, y) ≤ d(x, z) + d(z, y).

Let Σ = ΣC×ΣD andΓ be (2- and1-dimensional) finite
alphabets. Afinite sequencêσ = (c0, d0) · · · (cn−1, dn−1) is
an element inΣ∗ where |σ̂| = n denotes thelength of the
sequence. Aninfinite sequenceσ = (c0, d0) · (c1, d1) · · · is
an element ofΣω. We denote byσi = (ci, di) the (i + 1)th

letter in a (finite or infinite) sequenceσ. Given an infinite
sequenceσ ∈ Σω, we denote byσ[0,m) the prefix ofσ of
length m, and by σm... = σmσm+1 . . . its infinite suffix
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Figure 2. Circuits: (a) combinatorial (b) acyclic with delay(c) sequential

from position m on. We denote byπi(σ) = i0 · i1 · · ·
the projection of sequenceσ to its ith component, where
i ∈ {c, d}. We similarly define1-dimensional sequences
γ ∈ Γω and γ̂ ∈ Γ∗. Given the alphabetsΣ and Γ, a
transduceris a functionF : Σω → Γω that maps infinite
sequences over the alphabetΣ into infinite sequences over
Γ. In this paper, we restrict ourselves to sequential finite-
state transducers. Such transducers can be seen as finite-state
automata [Mea55] whose transitions are labeled by an input
and an output letter (see Section IV).

III. SEQUENTIAL CIRCUITS AND THEIR ROBUSTNESS

In this section, we use sequential circuits [BW53] as an
instance of deterministic finite-state transducers with finite
alphabet. First, we define their formal model and emphasize
some properties of this class of circuits (Section III-A).
Then, we consider standard distance functions for string
comparison and we show that they do not induce a satis-
factory notion of robustness (Section III-B). We introduce
the common suffix distance as a new metric (Section III-C)
leading to a definition of robustness for sequential circuits
with respect to a (disturbance) subset of its input variables,
and we give necessary and sufficient conditions for a se-
quential circuit to be robust (Section III-D).

A. Sequential Circuits

A combinatorial circuitis a logic circuit that computes a
Boolean function of its inputs. It consists of a set ofgates
and inputs interconnected by a set ofwires without cycle.
The gates are basic elements that compute simple Boolean
functions such asNOT, AND or OR gates. Combinatorial
circuits arememorylessby definition, meaning that the value
of the output at any (discrete) time instant is a function of
the values of its inputs at the same time instant. An example
of combinatorial circuit with threeNAND gates is shown in
Figure 2(a).

A sequential circuit is an extension of combinatorial
circuits with additionalmemory devices, calleddelays. The
delay element “shifts” the input values by one time step,
thus the output value of a memory device at timet > 0
is equal to its input value at timet − 1. If the circuit
contains no cycle (as in Figure 2(b)), we call it anacyclic
circuit with delay. In general, sequential circuits can contain
cycles, as long as each cycle has at least one delay element.
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Figure 3. A generic sequential circuitC.

Cycles in sequential circuits are calledfeedback loops(as
in Figure 2(c)). Feedback loops in sequential circuits are
used to compute the value of the output at timet > 0 as a
function of the current value of the inputs, but also of the
value of its output at the previous time stept − 1 which
is fed back to the circuit through the cycle. Given that the
output of the memory devices at any timet > 0 may depend
itself on the inputs at time instantst′ < t, the output of a
sequential circuit can be a function of both itscurrent and
past inputs. Therefore, sequential circuits are best viewed
as mappings of inputsequencesinto outputsequences. Note
that the output of a memory device may not depend at all
on any inputs, but be a function of only its own outputs
in the previous time step. The set of output values of the
delay elements represent the currentstateof the circuit. A
sequential circuit withk memory devices has at most2k

states, or alternatively, a circuit withm states needs at least
⌈log m⌉ delay elements.

We now formally define a sequential circuit as a system of
equations that describe the relation between inputs, outputs
and memory elements, using a standard notation [LMK98],
[Brz62]. Our definition of sequential circuits differs fromthe
standard one, in that we make a distinction betweencontrol
and disturbanceinput variables. Figure 3 shows a generic
sequential circuit.

Definition 1: A sequential circuitC with k + m control
and disturbance inputs andn delay elements consists of
setsU = {u1, . . . , uk} and X = {x1, . . . , xm} of control
and disturbance variables, a setY = {y1, . . . , yn} of
current-statevariables, a setZ = {z1, . . . , zn} of next-state
variables, anoutputvariablew, and a relation between input,
output, and state variables expressed by a set of equations
of the form















z1 = f1(u1, . . . , uk, x1, . . . , xm, y1, . . . , yn)
. . .

zn = fn(u1, . . . , uk, x1, . . . , xm, y1, . . . , yn)
w = fC(u1, . . . , uk, x1, . . . , xm, y1, . . . , yn)

wherefi andfC are Boolean functions, fori = 1 . . . n. The
set{f1, . . . , fn} is called thetransition equationsof C and

fC the output equationof C. The next-state variables are
updated according to the following equations, whereyt

i and
zt
i denote the valuation of variablesyi andzi at time stept:

yt
i =

{

0 if t = 0
zt−1
i if t > 0

for i = 1 . . . n

The next lemma states that a sequential circuit can be
“unfolded” at any time instant to express the output value
as a function of its past and current (control and data) inputs,
without explicit reference to the state variables.

Lemma 1:Given a sequential circuitC with k+m control
and disturbance input variables andn delay elements, and a
time instantt ∈ N, the value of the output and state variables
in C at time t is a function of its past and current control
and disturbance values, that is, there exist functionsf t, gt

i :
{0, 1}(k+m)×(t+1) → {0, 1} for i = 1 . . . n such that

wt = f t(u0
1, . . . , u

0
k, x0

1, . . . , x
0
m, . . . , ut

1, . . . , u
t
k, xt

1, . . . , x
t
m)

and

zt
i = gt

i(u
0
1, . . . , u

0
k, x0

1, . . . , x
0
m, . . . , ut

1, . . . , u
t
k, xt

1, . . . , x
t
m)

Sequential circuits can also be encoded as functions that
map input sequences to output sequences (i.e., transducers).
Consider a sequential circuitC with k + m control and
disturbance input variables andn memory elements. Let
ΣC = {0, 1}k andΣD = {0, 1}m be the correspondingcon-
trol anddisturbance alphabets. We denote byΣ = ΣC×ΣD

the joint input alphabet where each letter(c, d) ∈ Σ denotes
a vector of assignments to the input variables, and by
Γ = {0, 1} the output alphabet. The sequential behavior of
the circuitC is the functionFC : Σω → Γω and we denote
by γ = FC(σ) the fact that the output sequenceγ ∈ Γω is
generated byC on inputσ ∈ Σω. By Lemma 1, for allt ≥ 0,
we can expressγt as a function of the previously consumed
input lettersσ[0,t+1). In the rest of the paper, we use this
sequence-oriented definition of the semantics of sequential
circuits.

B. Hamming and Levenshtein Distances

Hamming and Levenshtein distances are standard metrics
that have been proposed to measure the similarities between
pairs of sequences. In this section, we formally define
them and show that they are not appropriate for studying
robustness of sequential circuits.

Definition 2: Let Σ be a finite alphabet anda1, a2 ∈ Σ.
The Hamming distancebetween two finite wordŝσ1, σ̂2 ∈
Σ∗ such that|σ̂1| = |σ̂2|, is defined inductively by

dH(ǫ, ǫ) = 0

dH(a1 · σ̂1, a2 · σ̂2) =

{

dH(σ̂1, σ̂2) if a1 = a2

1 + dH(σ̂1, σ̂2) if a1 6= a2

The Hamming distance between two infinite wordsσ1, σ2 ∈
Σω is

dω
H(σ1, σ2) = lim

n→∞
dH(σ

[0,n)
1 , σ

[0,n)
2 ).
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Figure 4. A sequential circuitC that delays the mismatching input letter
in σ1 : p ·p2n ·p ·pω andσ2 : p ·p2n ·p ·pω arbitrarily far in the output.

Definition 3: Let Σ be a finite alphabet anda1, a2 ∈ Σ.
TheLevenshtein distancebetween two finite wordŝσ1, σ̂2 ∈
Σ∗ is defined inductively by

dL(ǫ, σ̂2) = |σ̂2|
dL(σ̂1, ǫ) = |σ̂1|

dL(a1 · σ̂1, a2 · σ̂2) =















dL(σ̂1, σ̂2) if a1 = a2

min{dL(σ̂1, σ̂2), if a1 6= a2

dL(a1 · σ̂1, σ̂2),
dL(σ̂1, a2 · σ̂2)}+ 1

The Levenshtein distance between two infinite words
σ1, σ2 ∈ Σω is

dω
L(σ1, σ2) = inf{dL(σ

[0,m)
1 , σ

[0,n)
2 ) | σm...

1 = σn...
2 }

whereinf{∅} =∞.
We argue that neither of the two standard distances

can be used to define a satisfactory notion of robustness
for sequential circuits. We illustrate this point with the
sequential circuitC shown in Figure 4. This circuit has a
single disturbance variablep and an output variablew and
behaves as follows: (1)C outputs 1 wheneverp is true;
(2) the first time that the inputp becomesfalse, C outputs
either0 or 1, depending on whether the current value of the
input sequencep was preceded by an even or odd number
of consecutive1s (3) the output will be1 no matter the
subsequent inputs. Consider the following patterns of input
sequencesσ1 andσ2 and the corresponding output sequences
γ1 = fC(σ1) andγ2 = fC(σ2) generated byC, wheren ≥ 0
is some arbitrary integer

σ1 : p · p2n · p · pω γ1 : w · w2n ·w · wω

σ2 : p · p2n · p · pω γ2 : w · w2n ·w · wω

As we can see, in the above exampledH(σ1, σ2) =
dL(σ1, σ2) = 1 and dH(γ1, γ2) = dL(γ1, γ2) = 1, for any
value ofn. It follows that for this particular pattern of inputs,
a mismatching in a pair of input sequences does not cause
C to increase the number of mismatches in the generated
outputs. This observation suggests that the circuit is “robust”
with respect to Hamming and Levenshtein distances, at
least for this particular pair of input sequences. However,

this circuit should not be considered as “robust” because
the mismatch occurring in the first position of the pair of
input sequences becomes observable only in the(2n + 2)th

position in the pair of output sequences. Sincen can be
arbitrarily large, it follows thatC can propagate “errors”
resulting from a noisy input arbitrarily far in the output.
When considering critical systems, we believe that the effect
of an input error should be detected and become observable
as soon as possible in the output so that the system can
be (self) recovered in some predictable amount of time.
Therefore, unbounded delays in error propagation is not
acceptable in most applications and should not be considered
as a robust behavior.

The reason why neither of the Hamming and Levenshtein
distances defines a satisfactory metric for robustness of
sequential circuits is due to the fact that they just count
the absolute number of positions in which two sequences
mismatch. The information that is not captured by these
distances is the relativeposition of the mismatches in the
input and output sequences.

C. Common suffix distance

We propose an alternative metric that we call thecommon
suffix distanceand that is the last position in which two
sequences differ. We note that the common suffix distance
coincides with the inverse of the Cantor distance.

Definition 4: Let Σ be a finite alphabet. Thecommon
suffix distancebetween two finite wordŝσ1, σ̂2 ∈ Σ∗ such
that |σ̂1| = |σ̂2| is defined inductively by

ds(ǫ, ǫ) = 0

ds(σ̂1 · a1, σ̂2 · a2) =

{

ds(σ̂1, σ̂2) if a1 = a2

|σ̂1|+ 1 if a1 6= a2

The common suffix distance between two infinite sequences
σ1, σ2 ∈ Σω is

dω
s (σ1, σ2) = lim

n→∞
ds(σ

[0,n)
1 , σ

[0,n)
2 ).

The common suffix distance is an upper bound on the
Hamming distance, as for all sequencesσ1, σ2 ∈ Σω,
dH(σ1, σ2) ≤ ds(σ1, σ2). Although the common suffix
distance does not count the number of relative differences
betweenσ1 andσ2 within their prefix where the mismatch-
ing occur, it does provide enough information for checking
the robustness of a sequential circuit with respect to a subset
of its input variables.

The following lemma states that the distance between two
sequencesσ1, σ2 ∈ Σω is finite (and bounded by some
integerk) if and only if σ1 and σ2 have common suffixes
from a position strictly smaller thank.

Lemma 2:For all σ1, σ2 ∈ Σω andk > 0, dω
s (σ1, σ2) <

k iff there exists0 ≤ m < k such thatσm...
1 = σm...

2 .
We can show that the common suffix distance defines a

metric.
Lemma 3:The common suffix distance is a metric.



D. ΣD-Robustness as Finite Disturbance Horizon

In this section, we define robustness for sequential circuits
as a form of continuity with respect to the disturbance subset
of its input variables in the common suffix topology. Our
definition relates the positions of mismatching charactersin
the pairs of input and output sequences, where the two input
sequences have the identical control, but possibly different
disturbance components. In particular, we ask that there
exists a boundb on the propagations of mismatches, namely,
that if the last mismatching in the input sequence occurs at
positionk, then the last mismatching in the output sequence
occurs before positionk + b. The addition is used in order
to make the definition of robustness invariant to the actual
positions in which mismatches happen.

Definition 5: A sequential circuitC with ΣC and ΣD

control and disturbance input alphabets isΣD-robust if
there existsb ≥ 0 such that for all k > 0 and all
σ1, σ2 ∈ (ΣC × ΣD)ω such thatπC(σ1) = πC(σ2), if
dω

s (σ1, σ2) < k, thendω
s (FC(σ1), FC(σ2)) < k + b.

We introduce the class of sequential circuits withfinite
disturbance horizon. A circuit with control alphabetΣC and
disturbance alphabetΣD has the finite disturbance horizon
property if it has a fixed bound on the number of current
and past disturbance inputs that are necessary to determine
its output at any time instant.

Definition 6: Let FC : (ΣC × ΣD)ω → Γω be the
sequential function of a circuitC, whereγ = FC(σ). We say
thatC hasfinite disturbance horizonif for some boundb, for
all time instantst greater than or equal tob, it is sufficient
to consider, together with all past control input symbols,
the current and previousb disturbance input symbols in
order to compute the value ofγt, i.e., there existsb ∈ N
such that for all t ≥ b and σ ∈ (ΣC × ΣD)ω, there
exists a functionGt : Σt+1

C × Σb+1
D → Γ, such that

γt = Gt(σ
[0,t+1)
C , σ

[t−b,t+1)
D ), where σC = πC(σ) and

σD = πD(σ).
Note that the above definition considers time instants greater
than or equal tob. For t < b, the number of previous (control
and disturbance) inputs needed to compute the output is
trivially bounded byb.

Example 1:Consider the circuit in Figure 2(b). It con-
tains no feedback loop and the output function can be ex-
pressed asw0 = 0 andwt = 1−pt−1 for all t > 0. It follows
that the circuit has finite disturbance horizon, independently
on whetherp is a control or a disturbance input variable .
Indeed, its output function depends only on the value of the
input in the previous step. It is easy to see that all acyclic
circuits with delay have finite disturbance horizon for any
control/disturbance partition of input variables.

Example 2:The circuit shown in Figure 2 (c) contains a
feedback loop andut =

∨t

i=0 pi for all t ≥ 0, that is the
output at timet depends on the value ofall the previous
values ofp. This circuit is robust only ifp is a control and

C2

C1

C3

C4
p

w

ΣD = {p, p}

Figure 5. An example of a robust sequential circuit

not a disturbance variable.
Example 3:The circuit in Figure 5 has a disturbance vari-

ablep and a feedback loop and can be logically decomposed
into four components. The circuitC1 implements a modulo2
counter using a feedback loop and has no input. The circuits
C2 andC3 define two sequential functions that are dependent
only on the input value in the present and previous time step,
respectively. Finally,C4 propagates the output of eitherC2
or C3 depending on the current value of the counterC1.
The output can be expressed aswt = pt if t is even,
and wt = pt−1 if t is odd. Therefore, the whole system
implements a sample-and-hold function that propagates the
input value at every even time step, and holds it for two
instants of time. Although the output at timet depends on the
current state of the circuit, it can be computed as a function
of some bounded portion of the past inputs. Therefore the
circuit has finite disturbance memory.

We show in Theorem 1 that a sequential circuit isΣD-
robust if and only if it has finite disturbance horizon, that is
if it always forgets about disturbance inputs older than some
bounded amount of time. The intuition is that an “altered”
disturbance input is forgotten by the circuit after some finite
time and consequently does not influence the computation
of the circuit’s output after that time.

Theorem 1:A sequential circuit isΣD-robust if and only
if it has finite disturbance horizon.

The next result follows from the fact that combinatorial
circuits are memoryless and that acyclic circuits with delay
have finite disturbance horizon by definition.

Corollary 1: Every combinatorial circuit and every
acyclic circuit with delay isΣD-robust.

IV. OPERATIONAL CHARACTERIZATION OF

ΣD-ROBUSTNESS FORSEQUENTIAL CIRCUITS

Sequential circuits have an equivalent graphical repre-
sentation calledMealy machines[Mea55]. Such machines
consist of a finite number of states (the internal memory
of the circuit) and transitions between the states labeled by
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Figure 6. ΣD-synchronization of Mealy machines: General case

input/output actions. Mealy machines can be used to model
the high-level behavior of the underlying circuit. We propose
an alternative characterization of robustness based on the
state-based properties of Mealy machines. Formally, Mealy
machines are deterministic input/output automata consisting
of a finite number of states and a transition relation. Each
transition consumes an input symbol and produces an output
symbol.

Definition 7: A Mealy machine is a tuple M =
(Q,ΣC ,ΣD,Γ, q0, δ, λ) where Q is a finite set of states,
ΣC and ΣD are control and disturbance input alphabets,
Γ is the output alphabet,q0 ∈ Q is the initial state,
δ : Q × (ΣC × ΣD) → Q is the state transition function
andλ : Q× (ΣC × ΣD)→ Γ is the output function.

The state transition functionδ and the output func-
tion λ are extended to sequences as follows (inductively):
δ(q, (c, d) · σ̂) = δ(δ(q, (c, d)), σ̂) and λ(q, σ̂ · (c, d)) =
λ(δ(q, σ̂), (c, d)) for all (c, d) ∈ (ΣC × ΣD) and σ̂ ∈
(ΣC × ΣD)+.

A Mealy machineM defines a functionfM : (ΣC ×
ΣD)ω → Γω in the expected way. The machineM and
a sequential circuitC are equivalent if fM(σ) = FC(σ)
for all σ ∈ (ΣC × ΣD)ω. M is minimal if for all states
q, q′ ∈ Q such thatq 6= q′, there exists an input sequence
σa ∈ (ΣC × ΣD)+ such thatλ(q, σa) 6= λ(q′, σa). Mealy
machines can be minimized in timeO(n · log n) wheren =
|Q| is the number of states [Hop71].

In the sequel, we define a class of Mealy machines (as
in Figure 6) that we callΣD-synchronized. Intuitively, a
Mealy machines isΣD-synchronized if from every pair
of states reachable by two input sequences of the same
length and with the same control component, a “reset”
state is reached after reading any sufficiently long word.
Consider the machineM in Figure 7 with ΣD = {p, p},
implementing a delay of length2. From the initial stateA,
every state is reachable with some input of length3. In this
particular example, in order to show that the machine is
ΣD-synchronized, we need to check that from every pair
of its states, a single state is reached with every sufficiently
long word. This holds since from every state, the disturbance

p/0

p/0

p/1

p/1

p/1

p/1
p/0

p/0

A B

CD

ΣD = {p, p}

Figure 7. ΣD-synchronization of Mealy machines: Example

input p · p leads toA, p · p to B, p · p to C, andp · p to D.
Definition 8: A Mealy machineM is ΣD-synchronized

if there exists a boundβ ∈ N such that for all̂σ1, σ̂2, σ̂s ∈
(ΣC×ΣD)∗ with |σ̂1| = |σ̂2|, πC(σ̂1) = πC(σ̂2) and|σ̂s| ≥
β, we haveδ(q0, σ̂1 · σ̂s) = δ(q0, σ̂2 · σ̂s).

It turns out that the class ofΣD-synchronized Mealy ma-
chines corresponds exactly to the one of sequential circuits
that areΣD-robust.

Theorem 2:A sequential circuit isΣD-robust if and only
if its equivalent Mealy machine isΣD-synchronized.

Moreover, the robustness boundb in Definition 5 and
the boundβ in Definition 8 coincide. Finally, we show in
the proof of Theorem 2 in Appendix A that if the Mealy
machine of a sequential circuit isΣD-synchronized, then
we can takeβ = |Q|2−|Q|

2 giving the same value for the
robustness boundb of the circuit.

V. CHECKING ΣD-ROBUSTNESS OFMEALY MACHINES

In this section, we propose a two-step algorithm for check-
ing theΣD-robustness of minimal Mealy machines. The al-
gorithm is based on a standard graph analysis. Given an arbi-
trary minimal Mealy machineM = (Q,Σc,Σd,Γ, q0, δ, λ),
the first part of the algorithm is a graph exploration pro-
cedure that computesQM, the set that contains all distinct
pairs of states inM that are reachable from the initial state
q0 by reading two input words of the same length with the
same control, but possibly differing disturbance components.

QM = {{q1, q2} | q1, q2 ∈ Q s.t.q1 6= q2 and
∃σa, σb ∈ (ΣC × ΣD)∗ s.t.|σa| = |σb|,
πC(σa) = πC(σb)
andq1 = δ(q0, σa) andq2 = δ(q0, σb)}

We have to check whether there exists a lengthβ such
that on all input words σs ∈ (ΣC × ΣD)∗ of length β,
from every pair of states{q1, q2} in QM, a single state
is reached, i.e.,δ(q1, σs) = δ(q2, σs). This is the case
only if there exists no wordσs of length |Q|2−|Q|

2 that
induces a loop through pairs inQM (otherwise an arbitrarily
long word can be constructed that violates the condition of
ΣD-synchronization), i.e., that∀{q1, q2} ∈ QM · ∄ σs :



q1 = δ(q1, σs) and q2 = δ(q2, σs). It follows that the
ΣD-robustness of a Mealy machineM can be decided by
a cycle detection algorithm on the graphGM(QM, δM)
where δM ⊆ QM × QM and ({q1, q2}, {q

′
1, q

′
2}) ∈ δM

iff q′1 = δ(q1, (c, d)) and q′2 = δ(q2, (c, d)) and q′1 6= q′2 for
some(c, d) ∈ ΣC × ΣD. The cycle detection can be done
on-the-fly with the generation ofGM.

Theorem 3:The complexity of checking robustness of a
minimal Mealy machineM = (Q,ΣC ,ΣD,Γ, q0, δ, λ) is
O( |Q|2+|Q|

2 · |ΣC | · |ΣD|
2).

VI. D ETAILED EXAMPLE

An adder-subtractoris a sequential circuit that combines
addition or subtraction operations of binary numbers in a
single unit. Adders and subtractors are usually part of the
arithmetic logic unit(ALU). There is an additionalcontrol
unit that decides which operation the ALU should perform.

1 0

1−bit
Full

Adder

1 0

1−bit
Full

Adder

1 0

1−bit
Full

Adder

1 0

1−bit
Full

Adder

switch

a3 b3 a2 b2 a1 b1 a0 b0

s3 s2 s1 s0

d

c1 c0c4 c3 c2

Figure 8. A4-bit ripple carry adder-subtractor

The4-bit adder-subtractor shown in Figure VI, the circuit
is composed of four1-bit full adders and a control unit
switch. It combines the adding and subtracting capabilities
by exploiting the fact that when the numbers are in two’s
complement, it is sufficient to invert each bit with aNOT gate
and add1, to implement subtraction using the adders. The
circuit takes as inputs variablesa0, . . . , a3 and b0, . . . , b3

and outputs their sum or difference in the output variables
s0, . . . , s3, together with a carry outputc4.

The function that is computed by the circuit depends on
the switch control unit that takes as input the signald.
Initially, the circuit is set to do addition. Wheneverd is
set to high, the circuit switches to the other function.

Intuitively, the input variables in this circuit are naturally
partitioned into setsU = {d} andX = {a0, b0, . . . , a3, b3}
of control and disturbance variables, respectively. The circuit
is clearlyΣD-robust under this partition, because1-bit full
adders are combinatorial circuits without memory. However,
if we assume that the external environment is not fully
reliable, and may introduce errors in thed signal, we cannot
consider d anymore a control, but rather a disturbance
variable. In that case, the circuit is notΣD-robust anymore.
For this, consider two input sequences ofd, σd : 110ω and
σ′

d : 10ω. In the first case, the circuit switches to do the

subtraction in the first step, and than switches to the addition
operation in the next step and remains doing addition forever.
On the other hand, the second input sequence makes the
circuit doing subtraction forever. As a consequence, the
common suffix distance between the two input sequences
is 1, but the output sequences drastically differ, given that
they are computed using a different operation.

This circuit can be madeΣD-robust with respect to
all inputs by changing the encoding of the control signal
d. Instead of having the environment that provides the
information when to switch from addition to subtraction
and vice versa, we can design a circuit that expects from
the environment explicit request about which operation to
apply at each step. In this case, we do not need the switch
control unit and the control input can be directly fed to
the ALU. Any error in the control signal would then affect
only the computation of the output at the time step of the
error occurrence, but would not propagate to the future
computation of the output.

VII. D ISCUSSION

This section briefly discusses two extensions of the results
presented for sequential circuits. We first add insertion and
deletion operators to the common suffix distance and study
how it affects theΣD-robustness of sequential circuits. We
observe that this distance is not adapted to synchronous
systems. Second, we discuss about the preserving ofΣD-
robustness properties of individual sequential circuits by
their composition.

A. Effect of the Edit Operations to theΣD-Robustness of
Sequential Circuits

In Section III-C, we introduced the common suffix dis-
tance that considers only the last substitution of characters in
a pair of sequences. In this section, we define theedit com-
mon suffix distancethat extends the common suffix distance
with additional edit operations (insertion and deletion).This
extension is analogous to the Levenshtein extension of the
Hamming distance. Edit operations are natural to model the
effect of the environment providing to the system sequences
with missing or redundant inputs.

Definition 9: Let Σ be a finite alphabet. Theedit common
suffix distancebetween two finite wordŝσ1, σ̂2 ∈ Σ∗ is
defined inductively by

des(ǫ, σ̂2) = |σ̂2|
des(σ̂1, ǫ) = |σ̂1|

des(a1 · σ̂1, a2 · σ̂2) =

{

des(σ̂1, σ̂2) if a1 = a2

max{|σ̂1|, |σ̂2|}+ 1 if a1 6= a2

The edit common suffix distance between two infinite words
σ1, σ2 ∈ Σω is

dω
es(σ1, σ2) = inf{des(σ

[0,m)
1 , σ

[0,n)
2 ) | σm...

1 = σn...
2 }.



We note that the edit common suffix distance is an upper
bound on the Levenshtein distance, as for all sequences
σ1, σ2 ∈ Σω, dL(σ1, σ2) ≤ des(σ1, σ2).

We first show that sequential circuits that do not have
feedback loops are not sensitive to insertion and deletion
operations and remainΣD-robust with respect to the edit
common suffix distance.

Theorem 4:Acyclic circuits with delay areΣD-robust
with respect to the edit common suffix distance.

However, sequential circuits with feedback that areΣD-
robust with respect to common suffix distance may be very
sensitive to edit operations. We illustrate this point withthe
circuit C from Figure 5 that isΣD-robust with respect to
the common suffix distance. We assume thatΣD = {p, p}.
Consider the following input and output sequencesγ1 =
fC(σ1) andγ2 = fC(σ2), whereσ2 = p · σ1

σ1 : p · p · p · · · γ1 : w · w · w · · ·

σ2 : p · p · p · p · · · γ2 : w · w · w · w · · ·

As we can see, a simple insertion of a single letter at
the beginning of the input sequence results in a com-
pletely different output sequence, i.e.dω

es(σ1, σ2) = 1 but
dω

es(γ1, γ2) =∞. In fact, sequential circuits are synchronous
systems with a global clock. While substituting an input with
another one does not affect the clock of the circuit, inserting
or deleting a letter in the input sequence of a sequential
circuit “shifts” the global clock of the system. Synchronous
systems that compute their output as a function of their
disturbance input and internal clock value (the value of a
state-based modulo counter) are in general very sensitive
to such clock shifts and result in producing non-ΣD-robust
output behavior.

We note that the edit common suffix distance may be
well-adapted to the study of robustness of asynchronous
systems that do not have a global clock. We believe that
such asynchronous systems should be less sensitive to the
shifts caused by the insertions and deletions of disturbance
values in the input sequence.

B. Composition of Sequential Circuits

In this paper, we studied theΣD-robustness of sequential
circuits as individual components. However, several circuits
are generally composed in order to build more complex sys-
tems. This observation results in natural questions about the
preserving ofΣD-robustness by composition of sequential
circuits: (1) What are the conditions for the composition of
two ΣD-robust components to remainΣD-robust? (2) What
are the conditions for making aΣD-robust composition out
of two possiblyΣD-non-robust components?

Consider the example shown in Figure 9. Figure 9 (a)
depicts anOR and AND gate and a delay element. It is easy
to see that these basic gates are robust if all their inputs
are disturbance variables. A particular composition of the

(a) (b) (c)

C C

C′

Figure 9. Composition of sequential circuits; (a) basic gates (b)ΣD-non-
robust circuitC and (c)ΣD-robust circuitC′

OR gate with a delay element results in the circuitC that
introduces a feedback loop and is depicted in Figure 9 (b).
This circuit corresponds to CircuitC given in Figure 2 (c)
and we have seen thatC is notΣD-robust. Finally,C can be
composed with an additionalAND gate and a delay element
to obtain the sequential circuitC′, shown in Figure 9 (c),
that is equivalent to a simple delay element, and is hence
ΣD-robust. From this example, we can observe that; (1)
the composition of twoΣD-robust circuits may beΣD-non-
robust and (2) aΣD-non-robust circuit that is combined with
another circuit may result in aΣD-robust composition. Thus,
in general, the composition of sequential circuits preserves
neither theΣD-robustness nor theΣD-non-robustness of its
components. However, the acyclic composition of twoΣD-
robust component always results in a robust system, since
acyclic composition cannot introduce infinite input memory
horizon.

VIII. C ONCLUSION AND FUTURE WORK

We proposed a flexible framework for studying the ro-
bustness of sequential circuits. Acknowledging the fact that
some variables in the circuit are intended to be discontin-
uous, we partition input variables into two sets of control
and disturbance variables, and study robustness only with
respect to disturbance inputs. We defined the notion ofΣD-
robustness for sequential circuits that allows to bound the
difference between the distance of pairs of (disturbance)
input behaviors and their corresponding output behaviors.
Our notion relies on a metric that permits to distinguish
substitutions of data in sequences as well as their relative
positions, but does not consider suppression and insertion
operations.

We characterized a non-trivial class of sequential circuits
that areΣD-robust and identified that theΣD-robustness
property is dependent on the horizon of memory that is
used within the circuit. An operational characterization of
ΣD-robustness based on the analysis of Mealy machines
resulted in relating the notion ofΣD-robust input/output
finite-state transducers to the well-known problem of syn-
chronizing sequences in deterministic automata. Further-
more, this automata-based approach allowed designing a
polynomial-time algorithm for checking the robustness of
Mealy machines.



We also study an extension of our distance that allows to
take insertion and suppression of information into account.
We show that this distance is not natural for sequential
circuits which are in general very sensitive to shifts in the
synchronous global clock (the position in which events oc-
cur). We believe this notion is more adapted to asynchronous
circuits, and we left this study for future work.

A natural extension of our work would be to study
the logical and algebraic characterization of robustness and
identify the subset ofω-regular languages that are robust
with respect to the distance measures described in this
paper. Another important direction for future research is to
study quantitative extensions of sequential circuits suchas
continuous-time sequential circuits [PRT04] or probabilistic
circuits,[PM75]. One could obtain a logical characterization
of such circuits by using the quantitative and probabilistic
languages introduced in [CDH08], [CDH09].

It would be also interesting to be able to distinguish
between systems that are robust. As an example, consider
two robust circuitsC1 andC2. Assume that the two circuits
generate the same behaviors for a given subsetI of expected
inputs, but may generate different behaviors for inputs that
are outside ofI. It could be that theb in the distance is
the same for bothC1 andC2, but that thisb is only reached
when reading a few sequences outside ofI in C1 and all the
sequences outside ofI in C2. In this situation, one should
conclude that it is better to useC1 thanC2. Indeed, for input
sequences that are outside ofI, C1 recovers faster thanC2.
The common suffix distance cannot make such distinctions
and should be further refined in order to be able to quantify
the degree of robustness of such circuits.
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APPENDIX

Lemma 1:Given a sequential circuitC with k + m control and disturbance input variables andn delay elements, and a
time instantt ∈ N, the value of the output and state variables inC at timet is a function of its past and current control and
disturbance values, that is, there exist functionsf t, gt

i : {0, 1}(k+m)×(t+1) → {0, 1} for i = 1 . . . n such that

wt = f t(u0
1, . . . , u

0
k, x0

1, . . . , x
0
m, . . . , ut

1, . . . , u
t
k, xt

1, . . . , x
t
m)

and
zt
i = gt(u0

1, . . . , u
0
k, x0

1, . . . , x
0
m, . . . , ut

1, . . . , u
t
k, xt

1, . . . , x
t
m)

Proof: The proof proceeds by induction on the time stept. For the base case, considert = 0. By the definition of a
sequential circuit,y0

i = 0 for i = 1 . . . n. It follows that in

w0 = fC(u0
1, . . . , u

0
k, x0

1, . . . , x
0
m, y0

1 , . . . , y0
n)

, all y0
i can be replaced by the constant0, and fC can be expressed in terms of an equivalent functionf such that

w0 = f(u0
1, . . . , uk, x0

1, . . . , x
0
m). The proof is similar forz0

i .
For the inductive hypothesis, assume that for an arbitraryt > 0, there exists a functionf such that

wt = f(u0
1, . . . , u

0
k, x0

1, . . . , x
0
m, . . . , ut

1, . . . , u
t
k, xt

1, . . . , x
t
m)

and functionsgi for i = 1 . . . n such that

zt
i = gi(u

0
1, . . . , u

0
k, x0

1, . . . , x
0
m, . . . , ut

1, . . . , u
t
k, xt

1, . . . , x
t
m)

By definition of a sequential circuit,

wt+1 = fC(ut+1
1 , . . . , ut+1

k , xt+1
1 , . . . , xt+1

m , . . . , yt+1
1 , . . . , yt+1

n )

and by inductive hypothesis

yt+1
i = zt

i = gi(u
0
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0
k, x0

1, . . . , x
0
m, . . . , ut

1, . . . , u
t
k, xt

1, . . . , x
t
m)

for i = 1 . . . n. It follows that we can replace everyyt+1
i in fC by

gi(u
0
1, . . . , u

0
k, x0

1, . . . , x
0
m, . . . , ut

1, . . . , u
t
k, xt

1, . . . , x
t
m)

for i = 1 . . . n. HencefC at t + 1 can be expressed by another functionf such that

wt+1 = f(u0
1, . . . , u

0
k, x0

1, . . . , x
0
m, . . . , ut+1

1 , . . . , ut+1
k , xt+1

1 , . . . xt+1
m )

. The proof is similar forzt+1
i .

Lemma 2:For anyσ1, σ2 ∈ Σω andk > 0, dω
s (σ1, σ2) < k iff there exists0 ≤ m < k such thatσm...

1 = σm...
2 .

Proof: Assume that for two arbitraryσ1, σ2 ∈ Σω, dω
s (σ1, σ2) < k for somek > 0. Assume that there does not exist

0 ≤ m < k such thatσm...
1 = σm...

2 , that is there existsl ≥ k−1, such thatσl
1 6= σl

2. By the definition of the common suffix
distance, it follows thatds(σ

[0,l+1)
1 , σ

[0,l+1)
2 ) ≥ k and consequentlylimn→∞ ds(σ

[0,n)
1 , σ

[0,n)
2 ) must be greater or equal then

k, hence a contradiction with the initial assumption. Therefore, there exists0 ≤ m < k such thatσm...
1 = σm...

2 .
For the other direction of the proof, assume that for arbitrary σ1, σ2 ∈ Σω, there exist0 ≤ m < k for somek > 0 such

thatσm...
1 = σm...

2 . By the definition of the common suffix distance, (1)ds(σ
[0,m)
1 , σ

[0,m)
2 ) ≤ m and (2)dω

s (σm...
1 , σm...

2 ) = 0.
By combining (1) and (2), it follows thatdω

s (σ1, σ2) ≤ m, that isdω
s (σ1, σ2) < k and this concludes the proof.

Lemma 3:Common suffix distance is a metric.
Proof: We only show the fourth requirement of the definition of a metric. For arbitraryσ1, σ2, σ3 ∈ Σω, let dω

s (σ1, σ2) =
c1 and dω

s (σ2, σ3) = c2 and c = max(c1, c2). By Lemma 2, it follows thatσc1...
1 = σc1...

2 and σc2...
2 = σc2...

3 . Combining
the two observations, we have thatσc...

1 = σc...
3 and by Lemma 2 thatdω

s (σ1, σ3) = c = max(c1, c2). It follows that
dω

s (σ1, σ3) ≤ dω
s (σ1, σ2) + dω

s (σ2, σ3) and this concludes the proof.
Theorem 1:A sequential circuitC is ΣD-robust if and only if it hasfinite disturbance horizon.

Proof:
Assume thatC has finite disturbance horizon. Consider two arbitraryσ1, σ2 ∈ (ΣC × ΣD)ω such thatπC(σ1) = πC(σ2)

anddω
s (σ1, σ2) < k for somek > 0, and letγ1 = FC(σ1) andγ2 = FC(σ2). Then by Lemma 2, there existsm < k such that

σm...
1 = σm...

2 . By the assumption thatC has finite disturbance horizon, we know that there exists some b ≥ 0 such that for
all n > m + b, γn

1 = Gn(σ
[0,n+1)
C1

, σ
[n−b,n+1)
D1

) andγn
2 = Gn(σ

[0,n+1)
C2

, σ
[n−b,n+1)
D2

), whereσC1
= πC(σ1), σD1

= πD(σ1),



σC2
= πC(σ2) and σD2

= πD(σ2). By assumption thatdω
s (σ1, σ2) < k, it follows that σi

D1
= σi

D2
for n − b ≤ i ≤ n.

Furthermore, by the assumption thatπC(σ1) = πC(σ2), it follows that σi
C1

= σi
C2

for 0 ≤ i ≤ n. Therefore, by definition
of finite disturbance horizon, it follows thatγn

1 = γn
2 for all n > m + b, that isγm+b+1...

1 = γm+b+1...
2 . By Lemma 2, we

can conclude thatdω
s (FC(σ1), FC(σ2)) < k + b and thatC is ΣD-robust.

For the other direction of the proof, we proceed by contradiction. Assume thatC is ΣD-robust and choose ab ≥ 0 such
that for all k > 0, σ1, σ2 ∈ Σω with πC(σ1) = πC(σ2), dω

s (σ1, σ2) < k implies dω
s (FC(σ1), FC(σ2)) < k + b. Assume

that C does not have finite disturbance horizon, that is for allσ ∈ Σω there existst ≥ 0 such thatγt cannot be computed
with σ

[0,t+1)
C and σ

[t−b,t+1)
D input sequences, whereσC = πC(σ) and σD = πD(σ). It follows that γt must be computed

with σ
[0,t+1)
C and σ

[t−n,t+1)
D , for somen > b, that isγt = Gt(σ

[0,t+1)
C , σ

[t−n,t+1)
D ) for someGt : (Σt+1

C × Σn+1
D ) → Γ.

Chooseσ̂1, σ̂2 ∈ Σ∗ such thatπC(σ̂a) = πC(σ̂b) and ds(σ̂1, σ̂2) = t − b. Let σ1 = σ̂1 · σ, σ2 = σ̂2 · σ, γ1 = FC(σ1)
and γ2 = FC(σ2) whereσ ∈ Σω is chosen such thatγt

1 6= γt
2. Such aσ can be chosen becauseC is deterministic and

we have fromds(σ̂1, σ̂2) = t − b that σt−b−1
1 6= σt−b−1

2 . But in that case, we have thatdω
s (σ1, σ2) < t − b + 1 while

dω
s (γ1, γ2) ≥ t + 1 which is a contradiction with the assumption thatC is ΣD-robust. It follows that ifC is ΣD-robust, then
C has finite disturbance horizon.

Theorem 2:A sequential circuitC is ΣD-robust if and only if its equivalent Mealy machineM is ΣD-synchronized.
Proof:

To simplify the presentation, The state transition function δ and the output functionλ are extended to sequences as
follows (inductively):δ(q, ((c, d) · σ̂) = δ(δ(q, (c, d)), σ̂) andλ(q, σ̂ · (c, d)) = λ(δ(q, σ̂), (c, d)) for all (c, d) ∈ (ΣC ×ΣD)
and σ̂ ∈ (ΣC × ΣD)+. Assume thatC is ΣD-robust. Consider arbitrarŷσ1, σ̂2 ∈ (ΣC × ΣD)∗ such that|σ̂1| = |σ̂2| and
πC(σ̂1) = πC(σ̂2). We have by definition of the common suffix distance thatds(σ̂1, σ̂2) < k wherek = |σ̂1|+1. By Lemma 2,
it follows that for anyσ ∈ Σω, dω

s (σ̂1 · σ, σ̂2 · σ) < k. The assumption thatC is ΣD-robust and the previous observation
imply that there existsb ≥ 0, such that for allσ ∈ Σω, dω

s (σ̂1 ·σ, σ̂2 ·σ) < k anddω
s (FC(σ̂1 ·σ), FC(σ̂2 ·σ)) < k+b. Consider

an arbitraryσ̂s ∈ Σ∗ such that|σ̂s| ≥ b. Let q1 = δ(q0, σ̂1 · σ̂s) andq2 = δ(q0, σ̂2 · σ̂s) and assume thatq1 6= q2. SinceM
is minimal, it follows that there existŝσc ∈ Σ+ such thatλ(q1, σ̂c) 6= λ(q2, σ̂c). Combining the previous observations, we
construct two sequencesσ1, σ2 ∈ Σω such thatσ1 = σ̂1 · σ̂s · σ̂c · σ

′ andσ2 = σ̂2 · σ̂s · σ̂c · σ
′ whereσ′ ∈ Σω is an arbitrary

infinite sequence. Letγ1 = λ(q0, σ1) andγ2 = λ(q0, σ2). It follows thatdω
s (σ1, σ2) < k but dω

s (γ1, γ2) ≥ k + b becauseγ1

andγ2 differ at a position greater that|σ̂1| + |σ̂s|, hence a contradiction with the assumption thatq1 6= q2. It follows that
if M is ΣD-robust, there existsb ≥ 0 such that for anŷσ1, σ̂2, σ̂s ∈ Σ∗ with |σ̂1| = |σ̂2|, πC(σ̂1) = πC(σ̂2) and |σ̂s| ≥ b,
δ(q0, σ̂1 · σ̂s) = δ(q0, σ̂2 · σ̂s).
What remains to be shown is that forM with |Q| states, it is sufficient thatb = |Q|2−|Q|

2 .

1) Let q1 = δ(q0, σ̂1) andq2 = δ(q0, σ̂2) for arbitraryσ̂1, σ̂2 ∈ (ΣC×ΣD)∗ such that|σ̂1| = |σ̂2| andπC(σ̂1) = πC(σ̂2).
2) ForM with |Q| states, there are|Q|2−|Q|

2 pairs of states(qi, qj) such thatqi 6= qj and (qi, qj) = (qj , qi).

3) Let σ̂s ∈ (ΣC × ΣD)∗ be an arbitrary word with|σ̂s| =
|Q|2−|Q|

2 . We denote

σ̂s = (c0, d0) · · · (c|σ̂s|−1, d|σ̂s|−1)

where(ci, di) ∈ ΣC × ΣD.
4) Let q

|σ̂s|
1 = δ(q1, σ̂s) andq

|σ̂s|
2 = δ(q2, σ̂s) where

q1
(c0,d0)
−−−−→ q1

1

(c1,d1)
−−−−→ · · ·

(c|σ̂s|−1,d|σ̂s|−1)
−−−−−−−−−−−→ q

|σ̂s|
1

and

q2
(c0,d0)
−−−−→ q1

2

(c1,d1)
−−−−→ · · ·

(c|σ̂s|−1,d|σ̂s|−1)
−−−−−−−−−−−→ q

|σ̂s|
2

5) Assume thatq|σ̂s|
1 6= q

|σ̂s|
2 . Then there exists0 < m < n ≤ |σ̂s| such that(qm

1 , qm
2 ) = (qn

1 , qn
2 ).

6) It follows thatqm
1 = δ(q1, σ̂

[0,m)
s · (σ̂

[m,n)
s )i) andqm

2 = δ(q2, σ̂
[0,m)
s · (σ̂

[m,n)
s )i) for any i > 0.

7) Then for anyb ≥ 0, one can construct a word̂σc = σ̂
[0,m)
s · (σ̂

[m,n)
s )i with i ≥ ⌈ b

n−m
⌉, that is |σ̂c| ≥ b such that

δ(q0, σ̂1 · σ̂c) 6= δ(q0, σ̂2 · σ̂c), hence a contradiction with the previous result.

It follows that if C is ΣD-robust, then for anŷσ1, σ̂2, σ̂s ∈ (ΣC × ΣD)∗ with |σ̂1| = |σ̂2|, πC(σ̂1) = πC(σ̂2) and |σ̂s| ≥
|Q|2−|Q|

2 , δ(q0, σ̂1 · σ̂s) = δ(q0, σ̂2 · σ̂s).
For the other direction of the proof, assume thatM is ΣD-synchronized. Consider two arbitrary sequencesσ1, σ2 ∈ Σω

and assume thatπC(σ1) = πC(σ2) anddω
s (σ1, σ2) < k for somek > 0. Then by Lemma 2, there exists0 ≤ m < k such

that σm...
1 = σm...

2 . It follows that we can decomposeσ1 andσ2 into sequencesσ1 = σ̂1 · σ̂s · σ andσ2 = σ̂2 · σ̂s · σ where



σ̂1 = σ
[0,m)
1 , σ̂2 = σ

[0,m)
2 , σ̂s = σ

[m,b)
1 , σ = σb...

1 and b = m + |Q|2−|Q|
2 . Let γ̂1 = λ(q0, σ̂1 · σ̂s), γ̂2 = λ(q0, σ̂2 · σ̂s),

γ1 = λ(q0, σ1) and γ2 = λ(q0, σ2). By the definition of the common suffix distance,ds(γ̂1, γ̂2) < |σ̂1| + |σ̂s| + 1, that is
ds(γ̂1, γ̂2) < ds(σ̂1, σ̂2)+ |Q|2−|Q|

2 . By the assumption thatM is ΣD-synchronized, it follows thatδ(q0, σ̂1 · σ̂s) = δ(q0, σ̂2 ·

σ̂s). SinceM is deterministic, it follows thatdω
s (γ1, γ2) = ds(γ̂1, γ̂2), concluding thatdω

s (γ1, γ2) < dω
s (σ1, σ2) + |Q|2−|Q|

2 .

Theorem 3:The complexity of checking robustness of a minimal Mealy machine M = (Q,ΣC ,ΣD,Γ, q0, δ, λ) is
O( |Q|2+|Q|

2 · |ΣC | · |ΣD|
2).

Proof: Follows from the fact that Algorithm 1 has to consider at most|Q|2+|Q|
2 states and pairs of states inM multiplied

by |ΣC | · |ΣD|
2 transitions/pairs of transitions to compute the setQM, which is added to the run time of Algorithm 2 which

explores at most|Q|2−|Q|
2 pairs of states inM and from each explored pair of states has to computei|ΣC | · |ΣD| transitions.

Theorem 4:Acyclic circuits with delay areΣD-robust with respect to the edit common suffix distance.
Proof: Let C be an acyclic circuit with delay. SinceC does not have feedback loops, it must define a sequential function

that at any timet depends only on its current and previous control and disturbance inputs bounded byb, the number of
delay elements. It follows that there existsG : (Σb

C × Σb
D) → Γ, such that for allt ∈ N, γt = G(σ

[t−b,t+1)
C , σ

[t−b,t+1)
D ).

Consider two arbitraryσ1, σ2 ∈ Σω such thatdes(σ1, σ2) < k for some k > 0. It follows from Definition 9 that
there existm,n < k such thatσm...

1 = σn...
2 . Then, for everyb′ ≥ b, we haveγb′+m

1 = G(σb′−b+m
1 , . . . , σb′+m

1 ) and
γb′+n
2 = G(σb′−b+n

2 , . . . , σb′+n
2 ). Given thatσb′−b+m

1 = σb′−b+n
2 , . . . , σb′+n

1 = σb′+n
2 , it follows that γb′+m

1 = γb′+n
2 , that

is γm+b...
1 = γn+b...

2 and by Definition 9,des(γ1, γ2) < k + b and this concludes the proof.
The setQM contains all distinct states and pairs of states inM that are reachable from the initial stateq0 by applying

toM two input words of the same length with the same control, but possibly different disturbance component. This set is
computed with Algorithm 1. The algorithm explores the state-space ofM as follows; it starts from the initial stateq0 and
explores all the neighboring states and pairs of states reachable by the applying letters(c, d1), (c, d2) ∈ ΣC×ΣD. From each
neighboring state/pair of states the procedure is repeated, until computing all reachable states/pairs of states inM. Every
state and pair of states inM is explored at most once. It is not hard to see that the algorithm explores at most|Q| states
and |Q|2−|Q|

2 distinct pairs of states inM, while from any visited state/pair of states one needs to consider |ΣC | · |ΣD|
2

outgoing transitions, corresponding to all possible combinations of pairs of(c, d1), (c, d2) wherec ∈ ΣC andd1, d2 ∈ ΣD.

Algorithm 1 ComputeQM : COMPQM(M)

1: QM ← ∅
2: V ← {q0}
3: E ← ǫ, E.enq({q0})
4: while (!E.isEmpty()) do
5: {q1, q2} = E.deq()
6: for all c ∈ ΣC do
7: for all d1, d2 ∈ ΣD do
8: q′1 = δ(q1, (c, d1)) andq′2 = δ(q2, (c, d2))
9: if {q′1, q

′
2} 6∈ V then

10: E.enq({q′1, q
′
2})

11: V ← V ∪ {q′1, q
′
2}

12: end if
13: if q′1 6= q′2 and{q′1, q

′
2} 6∈ QM then

14: QM ← QM ∪ {q
′
1, q

′
2}

15: end if
16: end for
17: end for
18: end while
19: return QM

Algorithm 2 first computes the setQM using the procedure COMPUTEQM defined above. Than it generates on-the-fly
the graphGM defined in Section V and checks for cycles between pairs of states inQM. It explores at most|Q|2−|Q|

2 pairs
of states and from each state/pair of states has to consider|ΣC | · |ΣD| transitions.



Algorithm 2 Checking the robustness ofM : ROBUST(M)

1: V ← ∅
2: E ← ǫ

3: QM ← COMPUTEQM(M)
4: for all {q1, q2} ∈ QM do
5: E.enq({q1, q2})
6: V ← V ∪ {q1, q2}
7: end for
8: while (!E.isEmpty()) do
9: {q1, q2} = E.deq()

10: for all (c, d) ∈ ΣC × ΣD do
11: q′1 = δ(q1, (c, d)) andq′2 = δ(q2, (c, d))
12: if q′1 = q′2 then
13: skip
14: else if {q′1, q

′
2} ∈ V then

15: return NON-ROBUST

16: else if {q′1, q
′
2} 6∈ V andq′1 6= q′2 then

17: V ← V ∪ {q′1, q
′
2}

18: E.enq({q′1, q
′
2})

19: end if
20: end for
21: end while
22: return ROBUST


