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2 Jérémy Dubut et al.

1 Introduction

We aim at defining and studying thoroughly a new homology theory, well
adapted to directed algebraic topology. Directed algebraic topology [20,14] is a
variant of algebraic topology in which the object of study is directed topological
spaces, i.e. topological spaces with a preferred direction (“time”), which cannot
be reversed. The concepts were introduced originally in concurrency theory [7,
42], but they are pervasive to many areas: categorically speaking, directed
algebraic topology is deeply linked to the study of (∞, 1)-categories.

Although the theory has now matured, there is still no satisfactory notion
of directed homology. The first attempt in that direction was made by Goubault
[21,22]. Unfortunately, the abelian character of the homology which he defined
made the invariants too weak to be useful for characterizing directed spaces
modulo directed homotopy. In particular, there is no hope for having Hurewicz-
like theorems, linking (directed) homology to (directed) homotopy. There are
in particular simple directed spaces which are not dihomotopic, and which
have the same (directed) homology, in all further (directed) homology theories
defined since [21], among which [19,10,31].

In order to tackle these problems, while keeping the computationally tracta-
ble character of homology, we need to define some form of non-abelian homol-
ogy theory, as put forward in recent work by Krishnan [33]. Our approach
is based on a form of Baues-Wirshing homology theory [38,39]: we define a
natural system of abelian groups, which accounts for the variation of the ho-
mology of the so-called trace spaces [43], the topological space of directed
paths modulo reparametrization from one point to another, when the start
and end points change. This was suggested first in [43] and studied in [9].

In this paper, we give an in-depth account of the first notions defined
in [9] and carry on the study of this “natural homology”, with a particular
focus on Eilenberg-Steenrod axioms, in particular exactness properties, and
also Hurewicz types of theorems. This paves the way for practical (directed)
homological calculations of concrete directed spaces. Exactness properties are
dealt with following the approach for defining generalized homology theories
put forward by Grandis [16,17].

Contents We first recap the central notion of trace space, originally intro-
duced by Martin Raussen [43], and give some simple examples, in Section 2.1.
Trace spaces contain the essential (directed) homotopical and homological in-
formation, but only when a start and end point are fixed. In Section 2.2, we
introduce an algebraic structure, of diagrams, which accounts for the change
of start and end points, and collect all trace spaces with varying end points.
We then compose these diagrams of spaces with the homotopy, respectively
homology, functor, to derive our notion of “natural homotopy” and “natural
homology”. The name comes from the fact that these actually form natural
systems (of abelian groups for natural homology) in the sense of Baues and
Wirshing [38,39].
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In Section 2.3 we recap the notion of precubical set, and of the classical
geometric realization of precubical sets (in topological spaces). In order to
have a geometric realization which maps onto partially ordered spaces, which
are the only types of directed spaces we have been considering in Section 2,
we restrict ourselves to particular “geometric” complexes, see Section 2.3. We
can then define a notion of natural homology, on these “discrete” spaces, in
Section 2.4.

Still, geometric realization does not quite map isomorphically discrete (or
combinatorial) natural homology onto the continuous one, at least, not on the
nose. In order to relate them, we have to use a notion of bisimulation, which
comes originally from concurrency theory [41,37]. We begin by recapping the
notion of bisimilarity via open maps in Section 3.1, and define a notion of open
map for natural homology. We give other characterizations of bisimilarity in
Section 3.2, and show in particular that this is equivalent with the notion
of bisimulation of Definition 17, which is simpler to apprehend. We prove in
Section 3.3 that indeed, with this notion of bisimilarity, combinatorial and
topological homology theories are bisimilar.

Bisimilarity also relates our natural homology, which is a Baues-Wirsing
homology theory, with a simpler Hochschild-Mitchell homology theory. This
interesting result, both for theoretical and computational purposes, is proved
in Section 3.4.

The last part of the paper is dedicated to proving that most of the proper-
ties of classical homology theories, such as Hurewicz theorems, or Eilenberg-
Steenrod axioms, which are so convenient for practical calculations in many
cases, hold, see Section 4. In this section, we have to use a refined notion of
exactness, see Section 4.2.2, following the theory of Grandis [16]. We show
that our natural homology theory is homological but not modular in general,
which is the main difference between our notion of directed homology with
standard homology theories. Still, the (relative homology) exactness axiom
of Eilenberg-Steenrod is valid, as shown in Section 4.2.5. The dimension, ho-
motopy and additivity axioms are simpler to prove, this is done in Section
4.2.1.

We conclude by sketching some possible future work.

2 Homology of pospaces

Our aim is to define a notion of homology of so-called directed topological
spaces, and more precisely, for the purpose of this paper, of partially-ordered
topological spaces, or pospaces [40] (see Definition 1). The main ingredient of
our homological theories will be the notion of the trace space of a pospace,
between two points [43] i.e. the topological space of directed paths modulo
reparametrization, see Definition 4.
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2.1 Trace spaces

In full generality, directed topology is about d-spaces [20], (pre-)cubical sets
[11] or streams [32]. Most of the homological theories we are going to construct
can be generalized to such spaces, but we will only prove important proper-
ties about these homological theories in some interesting particular cases. In
the topological setting, we will restrict ourselves to partially-ordered spaces,
whereas in the combinatorial setting, we will restrict our study to particular
pre-cubical sets. We indicate in all constructions and theorems whether these
are only valid in these particular cases or if this can be generalized.

Partially-ordered spaces, or pospaces, are topological spaces with a simple
notion of flow of time:

Definition 1 ([40]) Let ≤ be a partial order (reflexive, transitive, antisym-
metric relation) on X, a topological space. We say that (X,≤) is a pospace if
≤ is a closed subspace of X×X. We note PoTop the category of pospace and
monotonic continuous functions.

Of course, as for ordinary topological spaces, we are interested in deter-
mining whether two pospaces are isomorphic, i.e. when there exists an home-
omorphism f : X → Y , such that f and f−1 are monotonic maps. This is the
classification problem of pospaces. And as for ordinary topological spaces, this
is a very hard problem, this actually includes it as a particular case, when ≤
is taken to be equality.

We are looking for algebraic invariants of pospaces modulo directed home-
omorphisms, in the form of directed homotopical and homological structures.
For defining these structures, we need first to construct paths, and spaces of
such. In pospaces, we have the classical notion of (continuous) path, but also
the new notion of directed path, i.e. a path which agrees with the flow of time,
in a pospace:

Definition 2 Let X be a topological space, a, b ∈ X. A path from a to b is
a continuous function f : [0, 1] −→ X such that f(0) = a and f(1) = b. If
moreover X is a pospace, a dipath from a to b is a path from a to b which is
monotonic (when [0, 1] is equipped with the usual order).

Let f be a (di)path from a to b and g a (di)path from b to c. We define
the concatenation f ? g : [0, 1] −→ X by: for all t ∈ [0, 1/2], (f ? g)(t) = f(2t)
and for all t ∈ [1/2, 1], (f ? g)(t) = g(2t− 1). It is a (di)path from a to c.

As usual in algebraic topology, paths are a bit crude - for instance, when it
comes to composing them and getting an interesting algebraic structure, i.e.
at least associativity of composition, it is necessary to consider them up to
reparametrization, at the very least1:

Definition 3 ([43]) A monotonic reparametrization r is a monotonic contin-
uous surjection from [0, 1] to [0, 1].

1 Or to consider another class of paths, such as Moore paths.
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Let X be a pospace and p and q two dipaths from a to b in X. We say
that p is reparametrized in q if there exists a monotonic reparametrization γ
such that p ◦γ = q. The trace of p, written 〈p〉 is the equivalence class modulo
monotonic reparametrization.

Now we can put together all dipaths from point a to point b, modulo
monotonic reparametrization in a topological space:

Definition 4 ([43]) Let X be a pospace and a and b ∈ X. We topologize
the set of traces of dipaths from a to b, with the compact-open topology. Its

quotient
−→
T (X)(a, b) by reparametrization, with the quotient topology is called

the trace space in X from a to b.

Trace spaces have good theoretical properties (see for instance [43]) but
also computational ones. For instance, it is possible to compute a finite repre-
sentation of the trace space of the hypercube In in Rn minus a set of isothetic
hypercubes [44].

This construction can be further generalized to non-looping pre-cubical
sets, see e.g. [45], with applications to static analysis of concurrent programs
[13].

Example 1 Let us start with simple examples of trace spaces, pictured in Fig-
ure 1: these are subspaces X1 = [0, 1]× [0, 1]\

[
1
3 ,

2
3

]
×
[
1
3 ,

2
3

]
of R2, respectively

X2 = [0, 1]× [0, 1]× [0, 1]\
[
1
3 ,

2
3

]
×
[
1
3 ,

2
3

]
×
[
1
3 ,

2
3

]
of R3, with componentwise

ordering, i.e. (x, y) ≤ (x′, y′), respectively (x, y, z) ≤ (x′, y′, z′) if x ≤ x′ and
y ≤ y′ with the standard ordering in R, respectively if x ≤ x′, y ≤ y′ and
z ≤ z′ in R.

As shown in [43],
−→
T (X1)((0, 0), (1, 1)) is a topological space with two con-

nected components, one is composed of the traces which have dihomotopy
type of the path going up to the left of, then above the hole, the other com-
ponent is composed of the traces which have the dihomotopy type of the path
going along the bottom of the hole then up on its right. Moreover, the two

connected components of
−→
T (X1)((0, 0), (1, 1)) are contractible ; it is thus ho-

motopy equivalent to two points.

As shown again in [43],
−→
T (X2)((0, 0, 0), (1, 1, 1)) is homotopy equivalent

to the circle S1: there is a unique path up to dihomotopy, hence the trace

space
−→
T (X2)((0, 0, 0), (1, 1, 1)) is connected, but there is a finer structure

of dihomotopies which accounts for the non simple-connectness character of−→
T (X2)((0, 0, 0), (1, 1, 1)).

2.2 Homological and homotopical diagrams

The study of the shape of such spaces of dipaths, when moving a and b, will
be the essential ingredient of invariants under directed homeomorphisms.
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(0, 0)

(1, 1)

(0, 0, 0)

(1, 1, 1)

Fig. 1 Two simple partially-ordered subspaces of R2 and R
3 with componentwise ordering

which have non-homotopic trace spaces.

S

U

U S

U

S

S

U

S

U

Fig. 2 Examples of pospaces coming from non-equivalent concurrent programs.

S

U

U S

U

S

•

•

α

β

Fig. 3 Changing the base points for exhibiting a particular trace space.

Example 2 In Figure 2, we have depicted two spaces, which are built as the
gluing of squares (the white ones), each of which is equipped with the product
ordering of R2. They will come as the geometric realization of some precubi-
cal sets, see Section 2.3. They are not dihomeomorphic spaces since they are
already non homotopy equivalent: the fundamental group of the leftmost one,
that we call X, is the free abelian group on three generators, whereas the fun-
damental group of the rightmost one, that we call Y , is the free abelian group
on four generators. Consider now our construction of trace space, for X and
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Y , from the lowest point of X (resp. Y ), that we call αX (resp. αY ), to the
highest point of X (resp. Y ), that we call βX (resp. αY ). We can see easily that
−→
T (X)(αX , βX) is homotopy equivalent to a six point space (corresponding to

the six dihomotopy classes of dipaths pictured in 2), and that
−→
T (Y )(αY , βY )

is also homotopy equivalent to a six point space (corresponding again to the
six dihomotopy classes of dipaths pictured in Figure 2).

It can be shown that those two programs are not equivalent in the sense
that they do not act the same way. But their trace spaces have the homotopy
type, the one of a discrete space with six points.

Our main idea is then to see how homotopy type of trace spaces vary when
we move the points between which we take the traces.

With the possibility to consider all the trace spaces, we can distinguish the
two former pospaces because if we consider the trace space between α and β,
as in Figure 3, it has the homotopy type of a discrete space with four points
but we can show that, in Y , there is no pair of points between which we have
a trace space with the same homotopy type.

Let X be a pospace, we first define the “base” category on which to vary
the end points of traces, and on top of which we will observe the variation of
topology of trace spaces.

Definition 5 We define TX to be the category whose:

– objects are traces of X
– morphisms (also called extensions) from 〈p〉 to 〈q〉 with p, a dipath from
x to y and q, one from x′ to y′ are pairs of traces (〈α〉, 〈β〉) such that
〈q〉 = 〈α ? p ? β〉

We then define
−→
T ∗(X) : TX −→ Top∗ which maps:

– every trace 〈p〉 with p from x to y to the pointed space (
−→
T (X)(x, y), 〈p〉)

– every extension (〈α〉, 〈β〉) with α dipath from x′ to x and β dipath from

y to y′ to the continuous map 〈α ? ? β〉 :
−→
T (X)(x, y) −→

−→
T (X)(x′, y′)

which maps 〈p〉 to 〈α ? p ? β〉.

Diagrams in a category themselves form a category, which we make explicit
below:

Definition 6 (The category of diagrams) LetM be a category. We define
Diag(M) the category whose:

– objects are diagrams i.e. functors from any small category C to M
– morphisms from F : C −→M to G : D −→M are pairs (Φ, σ) where

– Φ is a functor from C to D
– σ is a natural transformation from F to G ◦ Φ

– the identity on F : C −→M is idF = (idC , 1F ) where
– idC is the identity functor on C
– 1F is the identity natural transformation on F
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– the composition is defined as follows: (Ψ, τ)◦(Φ, σ) where (Φ, σ) : (F : C −→
M) −→ (G : D −→M) and (Ψ, τ) : (G : D −→M) −→ (H : E −→M) is
(Ψ ◦ Φ, (τΦ(c) ◦ σc)c∈Ob(M))

Now, trace diagrams can be seen as a functor into diagrams in Top∗:

Proposition 1
−→
T extends to a functor from PoTop to Diag(Top∗).

Proof

If f : X −→ Y is a dimap, we define
−→
T (f) = (Φ, σ) :

−→
T (X) −→

−→
T (Y ) as

follows:

– Φ : TX −→ TY such that Φ(〈p〉) = 〈f ◦p〉 and Φ(〈α〉, 〈β〉) = (〈f ◦α〉, 〈f ◦β〉)
– if p is a dipath from x to y, σ〈p〉 :

−→
T (X)(x, y) −→

−→
T (Y )(f(x), f(y))

〈p〉 7→ 〈f ◦ p〉
ut

From trace diagrams in Top∗ we can derive relevant homological and homo-
topical information by composing with the classical singular homology (resp.
homotopy) functor in the category Ab of abelian groups (resp. Grp)

Definition 7 (Natural homotopy) We define for n ≥ 1,
−→
Πn(X) : TX −→

M (whereM is either Set, Grp or Ab) composing
−→
T ∗(X) with the (n−1)th

homotopy group (set if n = 1) functor πn−1.

Definition 8 (Natural homology) We define for n ≥ 1,
−→
Hn(X) : TX −→

M (where M is Ab) composing
−→
T ∗(X) with the (n − 1)th homology group

functor Hn−1.

Remark 1 TX is actually the category of factorization (or twisted arrow cat-
egory [34]) of the category whose objects are points of X and morphisms are

traces and this makes
−→
T ∗(X) into a natural system in the sense of [1].

Example 3 We consider the following pospace, denoted a + b, which is made
up of two directed segments a and b where there initial points are identified,
and their final points are identified too. In the following picture, we distinguish
two particular points x and y on a, with x < y (respectively x′ and y′ on b,
with x′ < y′), which we will use to describe the category of factorization Ta+b
as well as the natural homology

−→
Hn(a+ b).

0 1

a

b

x y

x′ y′

The description of Ta+b is now as follows. Objects of Ta+b are dipaths,
which can be either:
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– constant dipaths, 0, x, y, x′, y′, 1, for all points x, y, x′, y′ that we chose
to distinguish in the picture of a+ b.

– non constant and non maximal dipaths of the form [0, x], [x, y], [y, 1] etc.
– maximal dipaths a and b

We chose below to draw a picture of a subcategory of Ta+b, where x, y,
x′ and y′ are any distinguished points of a and b as discussed before. The
extension morphisms in Ta+b are pictured below as arrows ; for instance, there
is an extension morphism from dipath [x, y] to [0, y] and to [x, 1], among other
extension morphisms:

0 x y

[0, x] [y, 1][x, y]

[0, y] [x, 1]

a

1x′ y′

[0, x′] [y′, 1][x′, y′]

[0, y′] [x′, 1]

b

Now, we can picture a subdiagram of
−→
H 1(a+b), by applying the homology

functor on the trace spaces from the starting point to the end point of the

dipaths, objects of Ta+b. For instance, the trace space
−→
T (a+ b)(x, y) (respec-

tively
−→
T (a+ b)(0, y)) corresponding to dipath [x, y] (respectively [0, y]) in the

diagram above, is just a point, hence has zeroth homology group equal to Z (re-
spectively Z). All other zeroth homology groups are trivial with the exception
of the ones corresponding to the two maximal dipaths (up to reparametriza-

tion) a and b, going from 0 to 1. In that case,
−→
T (a + b)(0, 1) is composed of

two points, that we can identify with a and b, and has Z2 (or Z[a, b] with the
identification we just made) as zeroth homology. Now the extension morphism
from [0, y] to a induces a map in homology which maps the only generator of

H0(
−→
T (a+ b)(0, y)) to generator a in Z[a, b] as indicated in the picture below:

Z Z Z

Z ZZ

Z Z

Z[a, b] ' Z2

ZZ Z

Z ZZ

Z Z

Z[a, b] ' Z2

1 7→ a 1 7→ b

2.3 Pre-cubical sets, cubical complexes

Now, we turn to an alternative definition of natural homology and homotopy,
on a combinatorial version of pospaces. As in the classical case, we want to ex-
press that our combinatorial and topological homology and homotopy theories
are strongly related. This will be Theorem 1.
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Definition 9 A pre-cubical set K is a graded set (Kn)n∈N together with (face)
maps ∂αi : Kn −→ Kn−1 with 1 ≤ i ≤ n and α ∈ {0, 1} satisfying:

∂αi ◦ ∂
β
j = ∂βj−1 ◦ ∂

α
i

In order to relate (some) pre-cubical sets with pospaces, we need to define
a geometric realization, hence first, topological “models” for abstract n-cubes :

Definition 10 Let �n = {(t1, ..., tn) ∈ R
n | ∀1 ≤ i ≤ n, 0 ≤ ti ≤ 1} the

standard n-cube in Rn.
We define for α ∈ {0, 1}, n ∈ N, 1 ≤ i ≤ n+ 1, ραi : �n → �n+1 by:

ραi (t1, ..., tn) = (t1, ..., ti−1, α, ti, ..., tn)

Let K be a pre-cubical set. We note R(K) =
⊔
n∈N

Kn × �n, the topological

space constructed as the disjoint union (with disjoint topology) of the product
(with the product topology) of Kn (with the discrete topology) and �n (with
the topology of Rn).
The elements of R(K) are pairs (e,a) where e is an n-dimensional cube in K
and a ∈ [0, 1]n, for some n.
The geometric realization Geom(K) of K is the quotient of R(K) by the least
equivalence relation ≡ such that:

∀α ∈ {0, 1}, n ∈ N, 1 ≤ i ≤ n, x ∈ Kn, t ∈ �n−1, (∂αi (x), t) ≡ (x, ραi (t))

with the quotient topology.
We shall write [e,a] for the point obtained as the equivalence class of (e,a).

Geometric realizations of pre-cubical sets are directed spaces of a much
more general type than the pospaces we have been considering up to now. We
restrict our study to particular “geometric” complexes, which are realizations
of specific pre-cubical sets and form pospaces:

Definition 11 A (d-dimensional) cubical complex K is a finite set of cubes
(D,x), where D ⊆ {1, 2, · · · , d} and x ∈ Z

d, which is closed under taking
past and future faces (to be defined below). The cardinality |D| of D is the
dimension of the cube (D,x). Let 1k be the d-tuple whose kth component
is 1, all others being 0. Each cube (D,x) is realized as the geometric cube
ι(D,x) = I1 × I2 × · · · × Id where Ik = [xk, xk + 1] if k ∈ D, Ik = [xk, xk]
otherwise, matching the definition of [30].

When |D| = n, we write D[i] for the ith element of D. For example, if
D = {3, 4, 7}, then D[1] = 3, D[2] = 4, D[3] = 7. We also write ∂iD for D
minus D[i]. Every n-dimensional cube (D,x) has n past faces ∂0i (D,x), defined
as (∂iD,x), and n future faces ∂1i (D,x), defined as (∂iD,x+1D[i]), 1 ≤ i ≤ n.

Proposition 2 A cubical complex is a pre-cubical set. Moreover,

ε : Geom(K)→
⊔

(D,x)∈K
ι(D,x)

[(D,x), a] 7→ x +
∑n
i=1 ai1D[i]
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is a homeomorphism and thus induces a pospace structure on Geom(K) by

[(D,x), a] ≤ [(D′,x′), a′] iff ε([(D,x), a]) ≤ ε([(D,x), a]). We note
−−−→
Geom(K)

this pospace.

2.4 Combinatorial natural homology

Let K be a pre-cubical set. In this section, we define the analogue of (con-
tinuous) traces in the (discrete) setting of pre-cubical set, so that to build a
factorization category (Definition 14) and then a natural homology (Definition
15).

Definition 12 Let x and y ∈ K. We say that x is a future boundary (resp. a
past boundary) of y if there exist k ≥ 0 and i0, ..., ik such that x = ∂1ik ◦ · · · ◦
∂1i0(y) (resp. x = ∂0ik ◦ · · · ◦ ∂

0
i0

(y)). We note x � y when:

– either x is a past boundary of y
– either y is a future boundary of x

Definition 13 A discrete trace from x to y in K is a sequence c0, ..., cn of
K (with n ≥ 0) such that c0 = x, cn = y and for all i ∈ {1, ..., n} ci−1 � ci.
An extension of a discrete trace c0, ..., cn is a pair ((d0, ..., dm), (e0, ..., ep)) of
discrete traces such that dm = c0 and cn = e0.

Similarly as for pospaces (Definition 5), discrete traces of a pre-cubical set
K form a category T dK whose objects are discrete traces, and whose morphisms
are extensions of discrete traces which are discrete traces.

We note first that when K is a cubical complex, a discrete trace can be

realized as a trace in the geometric realization
−−−→
Geom(K). For x in K, write x̂

the point [x, •] of Geom(K) where • = ( 1
2 , . . . ,

1
2 ). When x is a past boundary

of y, i.e. x = ∂0ik ◦ · · · ◦ ∂
0
i0

(y), write x̂y the path in Geom(K) from x̂ to ŷ
defined by

x̂y(t) = [y, t •+(1− t)ρ0i0 ◦ . . . ◦ ρ
0
ik

(•)]

When y is a future boundary of x, i.e. y = ∂1ik ◦ · · · ◦ ∂
1
i0

(x), write x̂y the path
in Geom(K) from x̂ to ŷ defined by

x̂y(t) = [x, (1− t) •+tρ1i0 ◦ . . . ◦ ρ
1
ik

(•)]

x̂y is uniquely defined when K is a non-self linked pre-cubical set [12] and is
a dipath when K is a cubical complex.
Then, a discrete trace c0, ..., cn can be realized as the trace 〈ĉ0c1 ?. . .? ĉn−1cn〉
in
−−−→
Geom(K), noted ̂c0, ..., cn.

Definition 14 We define T dK the category whose:

– objects are discrete traces of K
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– morphisms from c0, ..., cn (discrete trace from x to y) to d0, ..., dm (discrete
trace from x′ to y′) are pairs of discrete traces ((e0, ..., ep), (f0, ..., fk)) from
(x′, y) to (x, y′) (so c0 = ep = x and cn = f0 = y) such that d0, ..., dm =
e0, ..., ep−1, c0, ..., cn, f1, ..., fk.

Then ̂ extends to a functor from T dK to T−−−→
Geom(K)

.

Definition 15 Let K be a cubical complex. For n ≥ 1, we define the n-th

natural homology of K or discrete natural homology
−→
h n(K) : T dK −→ Ab as

−→
h n(K) =

−→
Hn(
−−−→
Geom(K)) ◦ .̂

But natural homology in the combinatorial version does not quite corre-
spond to natural homology in the topological case, as we exemplify now:

Example 4 We continue with Example 3. The space we called a+ b is dihome-
omorphic to the digeometric realization of the following 2-dimensional cubical
complex Ka+b:

{α = (∅, (0, 0)), β1 = (∅, (0, 1)), β2 = (∅, (1, 0)), γ = (∅, (1, 1)),

a1 = ({2}, (0, 0)), b1 = ({1}, (0, 1)), a2 = ({1}, (0, 0)), b2 = ({2}, (1, 0))}

which can be geometrically depicted like this:

α

β1

β2

γ

a1

b1

a2

b2

The category T dKa+b
is:

α a1 β1 b1 a2 β2 b2 γ

α, a1 a1, β1 β1, b1 b1, γ α, a2 a2, β2 β2, b2 b2, γ

α, a1, β1 a1, β1, b1 β1, b1, γ α, a2, β2 a2, β2, b2 β2, b2, γ

α, a1, β1, b1 a1, β1, b1, γ α, a2, β2, b2 a2, β2, b2, γ

α, a1, β1, b1, γ α, a2, β2, b2, γ

The image of
−→
h 1(Ka+b) is:
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Z Z Z Z Z Z Z Z

Z Z Z Z Z Z Z Z

Z Z Z Z Z Z

Z Z Z Z

Z
2

Z
2

Still, the difference between this (discrete) natural homology with what
we had in the continuous case, in Example 3, is somehow inessential. We now
define an weaker equivalence than isomophism of diagrams that abstract away
this difference. This is based on the notion of bisimulation, which has been
introduced in concurrency theory [41,37]. We will see in Section 3.1 that this
equivalence can be seen as a bisimulation equivalence defined by a notion of
open maps [29].

3 Bisimulation of diagrams

3.1 P-bisimilarity of diagrams

First, we recap the general construction of bisimulations with open maps [29],
we then apply it to our category of diagrams.

Definition 16 Given a category N and a subcategory P (called the category
of paths), we say that a morphism f : X −→ Y of N is P-open if for every
diagram:

P X

Q Y

p

g f

q

where g : P −→ Q is a morphism of P, then there exists r : Q −→ X making
the following diagram commutative:

P X

Q Y

p

g f
r

q
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In other words, f has the right lifting property with respect to morphisms of
P.
We then say that two objects X and Z of N are P-bisimilar if there exists a
span of open maps between them:

X

Z

Y

f g

We consider now the category N = Diagiso(M), which is the subcategory
of Diag(M) whose morphisms are of the form (Φ, σ) where σ is a natural
isomorphism. We consider P the following subcategory of N : its objects are
the functors of n in M for any n ∈ N (we will call them paths of length n)
where n is the category induced by the natural total order on {1, ..., n}, i.e.:

1 2 · · · n

and its morphisms are the morphisms of Diagiso(M) of the form (extn,m, id)
with n ≤ m where extn,m : n −→ m is the functor induced by the increasing
function (i 7→ i). We will also note those morphisms extn,m.

Lemma 1 A morphism (Φ, σ) : (F : C −→ M) −→ (G : D −→ M) ∈
Diagiso(M) is P-open iff it has the right lifting property for extn,n+1 for all
n ∈ N.

Proof

⇒ by definition of open maps
⇐ we show that it has the right lifting property with respect to extn,m, using

the fact that extn,m = extm−1,m ◦ . . . ◦ extn,n+1.
ut

3.2 Equivalent definitions of P-bisimilarity of diagrams

3.2.1 Via a simpler notion of open maps

Proposition 3 A morphism (Φ, σ) : (F : C −→ M) −→ (G : D −→ M) ∈
Diagiso(M) is P-open iff it has the right lifting property for ext0,1 and ext1,2
i.e. iff:

– Φ is surjective on objects
– for every morphism j : d −→ d′ of D and every c of C such that Φ(c) = d

there exists i : c −→ c′ such that Φ(i) = j.
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Proof

⇒ by definition of open maps
⇐ Let us show that (Φ, σ) as the right lifting property with respect to extn,n+1.

The case 0 is by hypothesis. Assume n ≥ 1 and given a commutative dia-
gram:

P : n −→M F : C −→M

Q : n+1 −→M G : D −→M

(p, ρ)

(extn,n+1, id) (Φ, σ)

(q, η)

We want (r, θ) such that:

P : n −→M F : C −→M

Q : n+1 −→M G : D −→M

(p, ρ)

(extn,n+1, id) (Φ, σ)

(q, η)

(r, θ)

commutes.
r : n+1 −→ C is constructed this way:
– for 1 ≤ i ≤ n, r(i) = p(i) and for all j ≤ i, r(j ≤ i) = p(j ≤ i)
– it remains to construct r(n ≤ n + 1) (which will determine r(n + 1)).

We know that q(n ≤ n+1) : q(n) −→ q(n+1) and that q(n) = Φ(p(n)).
Thus by the second property of Φ, there exists a morphism i : p(n) =
r(n) −→ c of C such that Φ(i) = q(n ≤ n+1). We pose r(n ≤ n+1) = i.

First, it is easy to see that p = r ◦ extn,n+1 and Φ ◦ r = q.
θ = (θi)i≤n+1 : Q −→ F ◦ r is define this way:
– for all i ≤ n, θi = ρi = σq(i) ◦ ηi which is an isomorphism
– θn+1 = σq(n+1) ◦ ηn+1 which is an isomorphism
θ is natural because it is the composition of two natural transformations.
By construction, it makes the diagram commutes. ut

By abuse of notation, we will say that a morphism (Φ, σ) of Diag(M)
is open if σ is a natural isomorphism and Φ satisfies the conditions of the
previous proposition.

3.2.2 A relational characterization of bisimilarity

We now turn to a more classical characterization of bisimulation for our dia-
grams, that relates to theoretical computer science and concurrency theory :

Definition 17 A bisimulation R between two diagrams F : C −→ M and
G : D −→M is a set of triples (c, f, d) where c is an object of C, d is an object
of D and f : F (c) −→ G(d) is an isomorphism of M such that for all (c, f, d)
in R:



16 Jérémy Dubut et al.

– if there exists i : c −→ c′ ∈ C then there exists j : d −→ d′ ∈ D and
g : F (c′) −→ G(d′) ∈M such that g ◦ F (i) = G(j) ◦ f and (c′, g, d′) ∈ R

– if there exists j : d −→ d′ ∈ D then there exists i : c −→ c′ ∈ C and
g : F (c′) −→ G(d′) ∈M such that g ◦ F (i) = G(j) ◦ f and (c′, g, d′) ∈ R

c′

c

Fc′

Fc

Gd′

Gd

d′

d

i jF i Gj

f

g

and such that:

– for all c ∈ C, there exists d and f such that (c, f, d) ∈ R
– for all d ∈ D, there exists c and f such that (c, f, s) ∈ R

Proposition 4 Two functors F : C −→M and G : D −→M are P-bisimilar
iff there exists a bisimulation between them.

Proof

⇒ Assume that there is a span:

F : C −→M

H : E −→M

G : D −→M

(Φ, σ) (Ψ, τ)

of open maps (here in the sense of the previous proposition). We define R =
{(Φ(e), τe ◦σ−1Φ(e), Ψe) | e ∈ E} and show that this is a bisimulation. First, it

is well defined because τ and σ are isomorphisms. The third condition of a
bisimulation comes from the surjectivity of Φ. Idem for the forth and the
surjectivity of Ψ . The first condition comes from the second condition on
Φ of an open map: let (Φ(e), τe ◦ σ−1Φ(e), Ψe) in R and i : Φ(e) −→ c′ ∈ C. By

the condition on Φ there exists k : e −→ e′ in E such that Φ(k) = i. Then
define j = Ψ(k), d′ = Ψ(e′) and g = τe′ ◦ σ−1Φ(e′). (Φ(e′), g, d′) belongs to R

by construction and g ◦ F (i) = G(j) ◦ τe ◦ σ−1Φ(e) by naturality of σ and τ .

Idem for the second condition of a bisimulation.
⇐ Assume now that there is a bisimulation R between F and G. We will

construct a span of open maps. Let E be the small category whose objects
are elements of R, and whose morphisms from (c, f, d) to (c′, f ′, d′) are
pairs (i, j) of a morphism i : c −→ c′ in C and of a morphism j : d −→ d′

in D, such that the following diagram commutes:

F (c′)

F (c)

G(d′)

G(d)

F (i) G(j)

f

f ′
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Define the tip H of the span between F and G as the functor H : E −→M
that maps every object (c, f, d) ∈ R to F (c), and every morphism (i, j) :
(c, f, d) −→ (c′, f ′, d′) to F (i) : F (c) −→ F (c′).
We now build a morphism (Φ, σ) from H to F . We start by building Φ :
E −→ C. We define Φ as the functor that maps every object (c, f, d) to c
and every morphism (i, j) : (c, f, d) −→ (c′, f ′, d′) to i : c −→ c′. We verify
that Φ satisfies the condition of the previous proposition:
1. Φ is surjective on objects: this is third condition of the definition of R

as a bisimulation.
2. Let i : Φ(e) −→ c′ be a morphism of X. The object e must be a triple

(c, f, d) ∈ R, and i is a morphism from c to c′ in C. By the first condition
of the definition of R as a bisimulation, there is a triple (c′, f ′, d′) ∈ R
and a morphism j : d −→ d′ of D such that the following diagram
commutes:

F (c′)

F (c)

G(d′)

G(d)

F (i) G(j)

f

f ′

In particular, (i, j) is a morphism of E, from (c, f, d) to (c′, f ′, d′).
Moreover, H(i, j) = i.

For every (c, f, d) ∈ R, let σ(c,f,d) = idF (c) : H(c, f, d) = F (c) −→
F ◦ Φ(c, f, d) = F (c). Those are isomorphisms, and define a natural trans-
formation σ : H −→ F ◦ Φ. It follows that (Φ, σ) is an open map from H
to F .
We define the open map (Ψ, τ) from H to G similarly.

ut

3.3 Combinatorial and topological homology theories are bisimilar

We are now in a position to prove that, at least for cubical complexes, the ho-
mology theories we have defined combinatorially, and topologically, are equiv-
alent. This is to be regarded as similar to the equivalence between simplicial
homology and singular homology composed with geometric realization:

Theorem 1 If K is a cubical complex, then there exists an open map

(C, σ) :
−→
Hn(
−−−→
Geom(K)) −→

−→
h n(K)

In particular
−→
Hn(
−−−→
Geom(K)) and

−→
h n(K) are bisimilar.

First, let us define C : T−−−→
Geom(K)

−→ TK . If b is a point of
−−−→
Geom(K), it

can uniquely be written as [e,a] where a ∈]0, 1[k for a certain k. We note
C(b) = e ∈ K and call it carrier of b. For a dipath, we can intuitively define
the sequence of all the cubes that are the carriers of points of this. Formally,



18 Jérémy Dubut et al.

Proposition 5 ([11]) Given a dipath π of
−−−→
Geom(K), there is a unique se-

quence c0, c1, · · · , ck of elements of K and a unique sequence of real numbers
0 = t0 ≤ t1 ≤ · · · ≤ tk ≤ tk+1 = 1 (call them the times of change) such that:

– for every 1 ≤ i ≤ k, ci−1 6= ci,
– for every 0 ≤ i ≤ k, for every t ∈ [ti, ti+1], π(t) is a point of the form [c,a]

with c = ci,
– for every 0 ≤ i ≤ k, for every t ∈ (ti, ti+1), C(π(t)) = ci,
– C(π(0)) = c0 and C(π(1)) = ck,
– for every 1 ≤ i ≤ k, C(π(ti)) ∈ {ci−1, ci} and if furthermore ti = ti+1 then
C(π(ti)) = ci.

The sequence c0, c1, · · · , ck is a discrete trace and is called the carrier sequence
of π. Two dipaths that are equivalent modulo reparametrization have the same
carrier sequence, so it is legitimate to call carrier sequence of a trace 〈π〉 the
carrier sequence C(π) of π.

This induces a functor C : T−−−→
Geom(K)

−→ TK which has the property of the

functorial part of an open map. For the lifting property, this a consequence of
the following lemma:

Lemma 2 Let 〈π〉 be a trace in
−−−→
Geom(K) with carrier sequence c0 � c1 �

· · · � ck.

– For every cube c−1 � c0, there is a dipath α in X such that C(〈α ? π〉) =
c−1 � c0 � c1 � · · · � ck.

– For every cube ck+1 such that ck � ck+1, there is a dipath β in X such
that C(〈π ? β〉) = c0 � c1 � · · · � ck � ck+1.

Proof We examine the second case only: the other case is symmetric. Since
ck � ck+1, ck can be a past boundary of ck+1, or ck+1 can be a future boundary
of ck. We examine both cases:

– If ck is a past boundary of ck+1, say ck = ∂0ip · · · ∂
0
i0
ck+1, then by using the

precubical equations we may require i0 > . . . > ip. Writing π(1) as [ck,a],
we also have π(1) = [ck+1, δ

0
i0
· · · δ0ipa] by the definition of the geometric

realization. Since C(π(1)) = ck, no component ai of a is equal to 0 or
1. Let b = δ0i0 · · · δ

0
ip

a: it follows that the components bi of b that are

equal to 0 are exactly those such that i ∈ {i0, · · · , ip}. Let a′ be the tuple
whose ith component a′i is 1/2 if bi = 0, and bi otherwise. We define
the dipath β by β(t) = [ck+1, (1 − t)b + ta′)], t ∈ [0, 1]. Note that β is
indeed monotonic, because bi ≤ a′i for every i. One easily checks that
β(0) = π(1), and that the carrier sequence of 〈β〉 is ck � ck+1: for t = 0,
C(β(0)) = (π(1)) = ck, and, for t 6= 0, β(t) = [ck+1, (1 − t)b + ta′)] where
no component of (1 − t)b + ta′ is equal to 0 or 1, so its carrier C(β(t)) is
ck+1. It follows that C(〈π ? β〉) = c0 � c1 � · · · � ck � ck+1.

– If ck+1 is a future boundary of ck, then ck+1 is of the form ∂1ip . . . ∂
1
i0
ck with

i0 > . . . > ip, and π(1) = [ck,a] for some tuple a whose components ai are
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all different from 0 or 1 (because C(π(1)) = ck). Let b be the tuple obtained
from a by changing the ith component into 1 if and only if i ∈ {i0, · · · , ip}.
In other words, let bi = 1 if i ∈ {i0, · · · , ip}, bi = ai otherwise. One
can therefore write b as δ1i0 · · · δ

1
ip

b′, where b′ is the tuple obtained from
b by removing its components of indices i0, . . . , ip. Define the dipath
β by β(t) = [ck, (1 − t)a + tb]. This is monotonic because ai ≤ bi for
every i. For t 6= 1, no component of (1 − t)a + tb is equal to 0 or 1, so
C(β(t)) = ck, and for t = 1, β(1) = [ck,b] = [ck+1,b

′], which shows that
C(β(1)) = ck+1 since no component of b′ is equal to 0 or 1. Again, it follows
that C(〈π ? β〉) = c0 � c1 � · · · � ck � ck+1. ut

Proof (C is the functorial part of an open map)

– C is surjective on objects: given a discrete trace c0, ..., ck ofK, C( ̂c0, ..., ck) =
c0, ..., ck

– C has the lifting property: let (α, β) be a morphism of TK i.e. a pair of a
discrete trace α from x′ to x and of a discrete trace β from y to y′ such
that there is a discrete trace from x to y. Given a pair (s, t) of points of
−−−→
Geom(K) such that C(s) = x and C(t) = y. Then using the previous lemma
and an induction, we can find traces α′ from s′ to s and β′ from t to t′

such that C(α′) = α and C(β′) = β, which is what is required.
ut

We now need to build a natural isomorphism

σ :
−→
Hn(
−−−→
Geom(K)) −→

−→
h n(K) ◦ C

In other words, we need to build for every a, b in
−−−→
Geom(K) such that there is

a dipath from a to b a group isomorphism

σa,b :
−→
Hn(
−−−→
Geom(K))(a, b) −→

−→
h n(K)(C(a), C(b))

that is natural, in the sense that, for every extension (〈α〉, 〈β〉) from (a, b) to
(a′, b′), the following square commutes:

−→
Hn(
−−−→
Geom(K))(a′, b′)

−→
Hn(
−−−→
Geom(K))(a, b)

−→
h n(K)(C(a′), C(b′))

−→
h n(K)(C(a), C(b))

−→
Hn(
−−−→
Geom(K))(〈α〉, 〈β〉)

−→
h n(K)(C(〈α〉), C(〈β〉))

σa,b

σa′,b′

Let x and y such that there is a dipath from x to y. Every cube Ik has a
lattice structure whose meet ∧ is pointwise min and whose join ∨ is pointwise
max. Write x as [C(x),a], and let x− = [C(x),a∧•]. Recall that • = ( 1

2 , · · · ,
1
2 ),

and that Ĉ(x) = [C(x), •]. Similarly, let Ĉ(y) = [C(y), •], and we define y+ =
[C(y),b ∨ •], where y = [C(y),b]. The situation is illustrated here:
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• y+•y

•Ĉ(y)

µy

ρy

•
x−

• x

• Ĉ(x)
λx

ηx

There are obvious dipaths ηx, λx, µy, ρy as displayed there, too. Let us
make formal the construction of the dipath ηx. The other three are similar.
This is a dipath from x− = [C(x),a ∧ •] to x = [C(x),a], and so we just
let ηx(t) = [C(x), (1 − t)(a ∧ •) + ta]. Those dipaths induce continuous maps
between trace spaces by concatenation. For example, there is a continuous

map η∗x :
−→
T (
−−−→
Geom(K))(x, y) −→

−→
T (
−−−→
Geom(K))(x−, y) that sends each trace

〈π〉 to 〈ηx ? π〉. Similarly, for the other three.

Lemma 3 The map η∗x is a homotopy equivalence.

Proof By abuse of language, write η∗x(π) for the dipath ηx?π as well—we reason
on spaces of dipaths first, then take a reparametrization quotient. Accordingly,

let P (X;x, y) denote the space of dipaths from x to y in X =
−−−→
Geom(K), with

the usual compact-open topology. (The space
−→
T (X)(x, y) is a quotient of this

space.)
Observe that η∗x maps P (X;x, y) to P (X;x−, y). We need to build a map

ν : P (X;x−, y) −→ P (X;x, y) such that η∗x ◦ ν and ν ◦ η∗x are homotopic to
the identity.

For every dipath π from x to y, the carrier sequence c0, c1, · · · , ck of η∗x(π)
is equal to that of π. In the other direction, we shall define ν so that it also
preserves the carrier sequence. This will turn out to be the crucial property
that will allow us to conclude.

For every dipath π from x− to y, with carrier sequence c0, c1, · · · , ck, and
with times of change 0 = t0 ≤ t1 ≤ · · · ≤ tk ≤ tk+1 = 1, we define ν(π) as
follows. We abuse the notation ∨, and write [c,a]∨c [c,b] for [c,a∨b]. The three
occurrences of c must be the same for this notation to make sense, but our
intuition is best served by ignoring the c subscript to ∨, and to understand this
as taking maxes, componentwise, in a local cube c. We then define ν(π)(u) for
increasing values of u, inductively, as x∨c0 π(u) for u ∈ [t0, t1], as ν(π)(t1)∨c1
π(u) for u ∈ [t1, t2], . . . , and finally as ν(π)(tk) ∨ck π(u) for u ∈ [tk, tk+1].

On [t0, t1], ν(π) is a continuous monotonic map, with value ν(π)(0) =
x ∨c0 x− = x at u = t0 = 0, and with value ν(π)(t1) = x ∨c0 π(t1) at u = t1.

Let us show by induction on j that for every u with 0 ≤ u ≤ tj , C(ν(π)(u)) =
C(π(u)). For j = 0, this says that C(x) = C(x−), which is by construction of x−.
Otherwise, by induction hypothesis, for every u with 0 ≤ u ≤ tj , C(ν(π)(u)) =
C(π(u)). Let tj < u ≤ tj+1. We can write π(tj) as [cj , (b1, . . . , bm)] and π(u)
as [cj , (a1, . . . , am)], where bi ≤ ai for every i.

– If u < tj+1, by the properties of the carrier sequence, C(π(u)) = cj , so
with 0 < ai < 1 for every i. Since bi ≤ ai, bi < 1 for every i. Let us
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write ν(π)(tj) as [cj , (b
′
1, . . . , b

′
m)]. Since C(ν(π)(tj)) = C(π(tj)), bi = 1 iff

b′i = 1. It follows that b′i < 1 for every i. Therefore 0 < max(ai, b
′
i) < 1, so

C(ν(π)(u)) = ck.
– If u = tj+1, we observe that max(ai, b

′
i) is equal to 1, resp. to 0, resp. in

(0, 1), if and only if ai is. This observation is enough to conclude that
C(ν(π)(tj+1)) = C(π(tj+1)), and is proved as follows. If ai = 1, then
max(ai, b

′
i) = 1. If ai = 0 then bi = 0; moreover, since C(ν(π)(tj)) =

C(π(tj)), bi = 0 iff b′i = 0, so b′i = 0, from which we obtain max(ai, b
′
i) = 0.

Finally, if 0 < ai < 1 then bi < 1, and b′i < 1 (since C(ν(π)(tj)) = C(π(tj)),
bi = 1 iff b′i = 1), so 0 < max(ai, b

′
i) < 1.

This finishes our argument that c0, . . . , ck is the carrier sequence of ν(π), with
times of change 0 = t0 ≤ . . . ≤ tk+1 = 1.

It remains to show that ν(π)(1) = y. This is the only place where we
need the ε mapping. The above argument works in general precubical sets, not
just cubical complexes. Here, however, we need the specific features of cubical
complexes to show that ν(π)(1) = y.

We know that C(y) = C(ν(π)(1)) = ck. Moreover, y is below ν(π)(1) in

the ordering ≤ of the pospace
−−−→
Geom(K), because ν(π)(1) = ν(π)(tk) ∨ck

π(1) = ν(π)(tk) ∨ck y. Suppose that ν(π)(1) 6≤ y. Because K is a cubical
complex, we can make use of the ε isomorphism. From ν(π)(1) 6≤ y, we obtain
ε(ν(π)(1)) 6≤ ε(y). Let us write ε(ν(π)(tj)) as (xj1, . . . , x

j
d) and ε(π(tj)) as

(yj1, . . . , y
j
d). We show that ε(ν(π)(tj)) 6≤ ε(y) by decreasing induction on j.

The case j = k+1 is by assumption. Suppose ε(ν(π)(tj+1)) 6≤ ε(t). There must
be an index m ∈ {1, 2, · · · , d} such that xj+1

m > yk+1
m . It is easy to see that the

identity ε([c,a] ∨c [c,b]) = ε([c,a]) ∨ ε([c,b]) holds, where the right-hand ∨ is
componentwise max in Rd (a property that is not usually implied by the mere
fact that ε is an isomorphism). From that and ν(π)(tj+1) = ν(π)(tj)∨cjπ(tj+1),
we infer that xj+1

m = max(xjm, y
j+1
m ), hence yj+1

m ≤ xj+1
m . But π restricts to

a dipath from tj to y, so ε(π(tj)) ≤ ε(t), and therefore yj+1
m ≤ yk+1

m < xj+1
m .

From yj+1
m < xj+1

m and xj+1
m = max(xjm, y

j+1
m ), we obtain xj+1

m = xjm, whence
xjm > yk+1

m . In particular, ε(ν(π)(tj)) 6≤ ε(y).
Taking j = 0, this implies that ε(x) 6≤ ε(y). This is impossible, since there

is a dipath from x to y.
We have constructed a map ν such that π and ν(π) have same carrier

sequence. We can now conclude by the following lemma:

Lemma 4 Let F,G : P (X; s, t) −→ P (X; s′, t′) such that:

– for every pair of dipaths p, q that are equivalent modulo reparametrization,
F (p) and F (q) are equivalent modulo reparametrization—so F induces F̃ :
−→
T (X)(s, t) −→

−→
T (X)(s′, t′), and similarly for G.

– for every π, F (π) and G(π) have the same carrier sequence.

Then F̃ and G̃ are homotopic.

Proof Let C(X; s′, t′) be the subspace of P (X; s′, t′)×P (X; s′, t′) that consists
of pairs of dipaths that have the same carrier sequence. The key ingredient
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consists in constructing a continuous map Γ : I × C(X; s′, t′) −→ P (X; s′, t′)
in such a way that Γ (0, (p, q)) = p and Γ (1, (p, q)) = q. Let c0, c1, · · · , ck be
the common carrier sequence to p and q, let t0 ≤ t1 ≤ · · · ≤ tk+1 be the
times of change for p, and s0 ≤ s1 ≤ · · · ≤ sk+1 be the times of change
for q. Define ui(t) = tsi + (1 − t)ti for t ∈ [0, 1], 0 ≤ i ≤ k + 1. For every

u ∈ [ui(t), ui+1(t)], define v as u−ui(t)
ui+1(t)−ui(t)

. (This is defined provided ui(t) 6=
ui+1(t); if this is not the case, let v = 0.) Then p(v(ti+1 − ti) + ti) is of the
form [ci, (a

u
1 , . . . , a

u
m)] and q(v(si+1 − si) + si) is of the form [ci, (b

u
1 , . . . , b

u
m)].

We then define Γ (t, p, q)(u) = [ci, (1− t)auj + tbuj ].

We have to define a homotopy H : I ×
−→
T (X)(s, t) −→

−→
T (X)(s′, t′). It will

be defined as the composition of:

– id × κ : I ×
−→
T (X)(s, t) −→ I × P (X; s, t), where κ is a continuous map

from
−→
T (X)(s, t) to P (X; s, t), defined in such a way that 〈κ(〈π〉)〉 = 〈π〉

for every trace 〈π〉, therefore defining a canonical dipath representing a
given trace. The existence of such a map is shown by Raussen in [43], as
the composition norm ◦ −→s of two more elementary maps.

– id × (F,G) : I × P (X; s, t) −→ I × C(X; s′, t′), where (F,G) maps π to
(F (π), G(π)).

– Γ : I × C(X; s′, t′) −→ P (X; s′, t′), as defined above.

– and 〈 〉 : P (X; s′, t′) −→
−→
T (X)(s′, t′), which maps each dipath to its trace.

We compute:H(0, 〈π〉) = 〈Γ (0, (F (κ(〈π〉)), G(κ(〈π〉)))〉 = 〈F (κ(〈π〉))〉 = F̃ (〈π〉).
Similarly, H(1, ) = G̃ and therefore H is an homotopy from F̃ to G̃. ut

It only remains to prove that the construction is natural. The following
diagram:

−→
T (X)(x′, y′)

−→
T (X)(x, y)

−→
T (X)(C(x′), C(y′))

−→
T (X)(C(x), C(y))

〈α ? ? β〉 〈γ̂ ? ? δ̂〉

(∗µy)−1 ◦ ∗ρy ◦ (λ∗x)−1 ◦ η∗x

(∗µy)−1 ◦ ∗ρy′ ◦ (λ∗x′)
−1 ◦ ρ∗x′

where γ = C(α) and δ = C(β) is commutative modulo homotopy because of
the previous lemma and so the same diagram is commutative in homology,
which proves the naturality. ut

Corollary 1 Let K be a cubical complex, and K ′ be a subdivision of K. Then−→
h n(K), and

−→
h n(K ′) are bisimilar.

Proof K and K ′ have isomorphic (in the category of pospaces) geometric
realization, then by functoriality of natural homology, they have isomorphic
(then bisimilar) natural homology then their discrete natural homology are
bisimilar. ut
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3.4 Hochschild-Mitchell homology theories and natural systems

Instead of taking as a base space the category of factorization of a trace cate-
gory, i.e. the category TX of Definition 5, we can take the “smaller” category of
pairs of base points (initial, final, see Definition 18), together with extensions
(in the past, in the future). We will see that the homological information we
can construct on this base space is akin to a Hochschild-Mitchell homology
theory [38,39] and that the comparison functor from Baues-Wirshing homol-
ogy (our homological diagrams, i.e. natural systems of Definition 8) actually
induces an equivalence under bisimilarity.

Definition 18 We define � the preorder on X defined as x � y iff there exists
a dipath from x to y. We define the category PX whose:

– objects are pairs of points (x, y) of X such that x � y
– morphisms (called extensions) from (x, y) to (x′, y′) are pairs (〈α〉, 〈β〉) of

trace of X with α dipath from x′ to x and β dipath from y to y′

We have a functor κX : TX −→ PX which maps each trace to its end points.

Definition 19 We define the trace diagram as the functor
−→
T (X) : PX −→

Top which maps:

– every pair (x, y) with x � y to
−→
T (X)(x, y)

– every extension (〈α〉, 〈β〉) from (x, y) to (x′, y′) to the continuous function

〈α ? ? β〉 :
−→
T (X)(x, y) −→

−→
T (X)(x′, y′) 〈p〉 7→ 〈α ? p ? β〉

As in definition 8, we can define a diagram of abelian groups:

Definition 20 We define for n ≥ 1,
−→
HHM
n (X) : PX −→ Ab composing

−→
T (X)

with the functor (n − 1)th homology group functor. In particular,
−→
Hn(X) =

−→
HHM
n (X) ◦ κX .

As in pospaces, we can define the category PK whose objects are pairs
(x, y) of elements of K such that there exists a discrete trace from x to y and
morphisms from (x, y) to (x′, y′) are pairs (α, β) of a discrete trace α from x′

to x and another, β, from y to y′. We have a functor κK : TK −→ PK which
maps each discrete trace to its end points. When K is a cubical complex,
previous remarks define a functor .̂HM : PK −→ P−−−→Geom(K)

. As previously, we

can then define a notion of natural homology of a cubical complex:

Definition 21 Let K be a cubical complex. For n ≥ 1, we define the n-th

natural homology of K or discrete natural homology
−→
h HMn (K) : T dK −→ Ab

as −→
h HMn (K) =

−→
HHM
n (
−−−→
Geom(K)) ◦ .̂HM

In particular,
−→
h n(X) =

−→
h HMn (X) ◦ κX .

All those definitions coincide up-to bisimulation:
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Proposition 6

– for every pospace X, (κX ,1) :
−→
HHM
n (X) −→

−→
Hn(X) is an open map

– for every cubical complex K, (κK ,1) :
−→
HHM
n (K) −→

−→
Hn(K) is an open

map
– for every cubical complex K, like in Theorem 1, there is an open map

(C, σ) :
−→
HHM
n (
−−−→
Geom(K)) −→

−→
h HMn (K)

4 Diagrammatic properties of natural homology

We are now in a position to study the diagrammatic properties of our natural
homology. By diagrammatic properties, we mean Eilenberg-Steenrod [5] ax-
ioms for homology theories, and in particular, exactness properties. We first
begin by classical Hurewicz theorems in Section 4.1 and then proceed by look-
ing at the dimension, homotopy and additivity axioms. Finally, we define and
study exactness of diagrams in natural systems, in Sections 4.2.2, 4.2.3 and
4.2.4. Many properties of classical homology hold true, but not quite the ex-
actness axiom of Eilenberg-Steenrod. Looking for some form of an excision
axiom is also very intricate for natural homology, and is left for future work.

4.1 Hurewicz theorems

Definition 22
We say that X is 1-connected if for every trace 〈p〉,

−→
Π 1(X)(〈p〉) is a singleton.

We say that X is n-connected with n ≥ 2 if it is n − 1-connected and if for

every trace 〈p〉,
−→
Πn(X)(〈p〉) is a trivial group.

Now, we have for free a Hurewitz theorem between natural homotopy and
natural homology:

Theorem 2
Free◦

−→
Π 1(X) is isomorphic in Diag(Ab) to

−→
H 1(X) where Free : Set −→ Ab

is the functor which gives the free group.

If X is 1-connected, Ab ◦
−→
Π 2(X) is isomorphic in Diag(Ab) to

−→
H 2(X) where

Ab : Grp −→ Ab is the functor which gives the abelianization.

If X is n − 1 connected with n ≥ 3,
−→
Πn(X) is isomorphic in Diag(Ab) to

−→
Hn(X).

Proof
This is just a consequence of the naturality in the classical Hurewicz theorem.

ut

We can refine this result to our Hochschild-Mitchell [38,39] form of homol-
ogy below:
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Theorem 3 Free ◦
−→
Π 1(X) is bisimilar to

−→
HHM

1 (X) where Free : Set −→
Ab is the functor which gives the free group.

If X is 1-connected, Ab◦
−→
Π 2(X) is bisimilar to

−→
HHM

2 (X) where Ab : Grp −→
Ab is the functor which gives the abelianization.

If X is n− 1 connected with n ≥ 3,
−→
Πn(X) is bisimilar to

−→
HHM
n (X).

Proof Consequence of theorem 2 and proposition 6.

4.2 The homological category of diagrams

Another important ingredient of classical homology theories is that they all
satisfy the Eilenberg-Steenrod axioms [5].

We first examine the simpler axioms: the dimension, homotopy and ad-
ditivity axioms. The dimension axiom, in abelian homology theories, states
that the homology Hn of a point is the object zero for all n > 0. The homo-
topy axiom states that a weak homotopy equivalence induces an isomorphism
in homology. Finally, the additivity axiom states that the homology of a co-
product is the coproduct of the homologies. We will see in Section 4.2.1 that
all three are trivial in our setting, if of course we interpret everything up to
bisimulation.

The exactness axiom states that the so-called relative homology long se-
quence is exact. We will first ask ourselves whether natural homology functors
transform short exact sequences (as e.g. the ones defining quotients and rela-
tive pairs of spaces) into long exact sequences, as standard homology functors
do, as this is particularly useful for making actual homological calculations.

Exactness of diagrams as well as exact functors are generally defined in
abelian categories [34]. Unfortunately, Diag(Ab) is not abelian: for example,
it does not have a zero object.

In order to be able to consider some sort of exactness property, we will con-
sider the theory of homology in a non-abelian setting of [16,17]. In Section 4.2.2
we recap the notions of semi-exact and exact categories from Grandis’ work,
and show that natural homology lives in a semi-exact category (Diag(Ab)).
This allows for defining exact sequences and exact functors, as well as do a
certain amount of diagram chasing. Then in Section 4.2.3, we recap the notion
of a homological category, in which we can do more, we can define quotients,
hence homology functors, abstractly, and still carry on diagram chasing. We
show that Diag(Ab) is homological. In Section 4.2.4 we go one step further
and introduce modular categories. Homological categories only map short ex-
act sequences in a sequence of order 2, whereas modular categories map them
onto long exact sequences. We show that unfortunately, Diag(Ab) is not mod-
ular. Still, we can prove that the relative homology long sequence is exact, in
Section 4.2.5.

4.2.1 Dimension, homotopy and additivity axioms

We first have, trivially:
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Proposition 7 (Dimension axiom) The nth natural homology (for n 6= 0)
of a point is trivial, i.e. it is the functor from the category with one object and
one morphism which maps this object to the trivial group.

Then the homotopy axiom is easy to prove, with natural homology:

Proposition 8 (Homotopy axiom) Let f : X −→ Y be a monotonic con-

tinuous function such that for all n ≤ 1,
−→
Πn(f) :

−→
Πn(X) −→

−→
Πn(Y ) is an

open map then for all n ≤ 1,
−→
Hn(f) :

−→
Hn(X) −→

−→
Hn(Y ) is an open map.

Proof The functorial part of
−→
Hn(f) is the same as of

−→
Πn(f) and the isomor-

phism in homology comes from the homotopy axiom in singular homology.

This trivially implies that if f induces a bisimulation equivalence between
the homotopy functors for X and Y , which is the natural weak-equivalence we
have in our directed homotopy theory, then f induces a bisimulation equiva-
lence between the homology functors for X and Y .

Finally, we consider the additivity axiom. First, we make explicit the co-
product construction in Diag(M) (although much more can be said about
limits and colimits, see Appendix 5):

Lemma 5 (Coproducts in Diag(M)) The coproducts of diagrams is the
disjoint union i.e. let (Fi : Ci −→M)i∈I be a family of diagrams then the its
coproduct is

∐
i∈I

Fi :
∐
i∈I
Ci −→M which maps c ∈ Ci to Fi(c).

Proposition 9 (Additivity axiom) If X is the disjoint union of Xi, i ∈ I,

then for all n ∈ N,
−→
Hn(X) =

∐
i∈I

−→
Hn(Xi).

4.2.2 Semi-exact categories

We now want to be able to talk about exact sequences. Let A be a category.
An ideal of A is a set of morphisms stable under left and right compositions
by any (composable) morphism of A.

Let N be an ideal of A. We call the morphisms in N , the null morphisms.
A null object is an object of A whose identity is null.

We say that N is closed if every null morphism factorises through a null
object i.e. for every f : A → B ∈ N , there exists a null object C and two
morphisms g : A→ C and h : C → B such that f = h ◦ g.
The kernel (with respect to N) of a morphism f : A→ B of A is characterized
(if it exists) up to isomorphism by the following property:

– ker f : Ker f → A such that f ◦ kerf ∈ N
– for all g : C → A such that f ◦ g ∈ N , there exists a unique h : C → ker f

such that g = Ker f ◦ h
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We define dually, the cokernel.

A semi-exact category is a pair (A, N) where N is a closed ideal of the
category A such that every morphism of A has a kernel and a cokernel with
respect to N .

We call normal mono (resp. normal epi), a morphism which is the kernel
(resp. the cokernel) of a morphism.

We call image of a morphism f , im f = ker cok f and coimage, coim f =
cok ker f .

Definition 23 ([16]) The sequence

A B C
f g

is said to be of order two (resp. short exact, exact) if g ◦ f is null (resp. if
f = ker g and g = cok f , if im f = ker g).

Lemma 6 If (M, N) is semi-exact then L = {(Φ, τ) | ∀f, τf ∈ N} is a closed
ideal of Diag(M) and Diag(M) has kernels with respect to L.

Proof

– L is an ideal because N is
– L closed: we know by 3.7 of [16] that in M, f : A −→ B is null iff f

factorizes through ker 1B : Ker 1B −→ B and that ker 1B is a null ob-
ject. So, if (Φ, σ) : (F : C −→ M) −→ (G : D −→ M) is null then it
factorizes through 0G where 0G : D −→ M with 0G(d) = ker 1G(d) and
0G(f) : 0G(d) −→ 0G(d′) the unique morphism which makes this square
commutative:

ker 1G(d) G(d)

ker 1G(d′) G(d′)

Ker 1G(d)

0G(f) G(f)

Ker 1G(d′)

coming from the universal property of Ker 1G(d′).
– kernels: if (Φ, σ) : (F : C −→M) −→ (G : D −→M), we construct
Ker (Φ, σ) = (Φker, σker) : ker (Φ, σ) = (Fker : Cker −→ M) −→ (F :
C −→M) as follows :
• Cker = C
• Φker = idC
• Fker : C −→ M with Fker(c) = ker σc and Fker(f) the unique mor-

phism which makes the left square commutative:
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ker σc F (c)

ker σc′ F (c′) G(Φ(c′))

G(Φ(c))

G(Φ(f))

Ker σc

Fker(f) F (f)

Ker σc′

σc

σc′

coming from the universal property of Ker σc′

• (σker)c = Ker σc
ut

Corollary 2 Normal monos in (Diag(M), L) are the (Φ, σ) where Φ is an
isofunctor and every σc is a normal mono in (M, N).

Lemma 7 Diag(Ab) has cokernels with respect to L.

Proof If (Φ, σ) : (F : C −→ Ab) −→ (G : D −→ Ab), we construct
Cok (Φ, σ) = (Φcok, σcok) : (G : D −→ Ab) −→ cok (Φ, σ) = (Gcok : Dcok −→
Ab) as follow:

– Dcok = D
– Φcok = idD
– Let Γ = {(Rd)d∈Ob(D) | Rd subgroup of G(d) containing all the elements of
Imσc with Φ(c) = d and such that if f : d −→ d′ then G(f)(Rd) ⊆ Rd′}.
Γ contains (G(d))d∈Ob(D) and is stable under intersection. Define then
(Hd)d∈Ob(D) as the intersection of all the elements of Γ . Then (Hd)d∈Ob(D) ∈
Γ .
We also defineGcok : D −→ Ab withGcok(d) = G(d)/Hd andGcok(f)([x]) =
[G(f)(x)]. This is well defined because (Hd)d∈Ob(D) ∈ Γ .

– (σcok)d(x) = [x]

You can observe that this is the coequalizer of (Φ, σ) and (Φ, (0 : F (c) −→
G(Φ(c)))c∈Ob(C)). ut

Corollary 3 Normal epis in (Diag(Ab), L) are (Φ, σ) where Φ is an isofunc-
tor and every σc is surjective.

Theorem 4 (Diag(Ab), L) is semi-exact.

4.2.3 Homological categories

Now, to define homology, we have to be able to talk about sub-quotient as
in the case of abelian groups i.e. if K ⊆ H ⊆ G are abelian groups, we can
define H/K. This is not the case in general groups even if H and K are normal
sub-groups of G.

Definition 24 ([16]) We say that a morphism is exact if it factories as n ◦ q
with q, a normal epi and n, a normal mono.
A semi-exact category (A, N) is said to be homological if:
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– normal monos and normal epis are stable under composition
– if m : B → A is a normal mono and q : A → C is a normal epi with
m ≥ ker q in Sub(A) (i.e. there exists k, which is unique and monic, such
that ker q = m ◦ k) then q ◦m is exact.

If m : M → A and n : N → A are two normal monos with m ≥ n, and
if q = cok n, the object coim q ◦ m (isomorph to im q ◦ m) defined up to
isomorphism will be called a sub-quotient of A induced by m ≥ n and written
M/N .

Proposition 10 Diag(Ab) is homological.

Proof

– the normal monos (resp. epis) are stable under composition by Corollaries
2 and 3.

– let (Φ, σ) : (F : C −→ Ab) −→ (G : D −→ Ab) be a normal mono. Thus Φ
is an isofunctor. As normal mono/epi are stable under composition by an
isomorphism, we can suppose, without loss of generality, that Φ = idC and
D = C. The same way we can take (Ψ, τ) : (G : C −→ Ab) −→ (H : E −→
Ab) a normal epi with Ψ = idC and C = E and so, (Ψ, τ)◦(Φ, σ) = (idC , (τc◦
σc)c∈Ob(C)). In Ab, τc ◦σc = ιc ◦ ηc where ηc = τc ◦σc : F (c) −→ Im τc ◦σc
which is surjective and ιc : Im τc ◦ σc −→ H(c) the inclusion, which is
injective. Since (ηc)c∈Ob(C) and (ιc)c∈Ob(C) are natural and so (idC , η) is a
normal epi, (idC , ι) is a normal mono and (Ψ, τ)◦ (Φ, σ) = (idC , ι)◦ (idC , η).

ut

Definition 25 ([17]) Chain complexes in a semi-exact category M are de-
fined the same way as in abelian groups requiring that the sequence of mor-

phisms Cn+1
∂n+1−−−−→ Cn

∂n−−−−→ Cn−1 be of order two. A morphism of chain
complexes (fn)n : (Cn, ∂n) −→ (C ′n, ∂

′
n) is the data of morphisms fn : Cn −→

C ′n such that ∂′n ◦ fn+1 = fn ◦ ∂n. We define this way a semi-exact category
C•(M) which is homological when M is.
We can define for a chain complex A• = (An, ∂n):

– Zn(A•) = ker ∂n−1
– Bn(A•) = im ∂n
– Hn(A•) = Zn(A•)/Bn(A•)

and those constructions are functorial.

Definition 26 We define
−→
C : PoTop −→ C•(Diag(Ab)) composing

−→
T with

the functor which maps a topological space to its singular chain complex. We
can define its homology as in Section 2.2.

Proposition 11 For every n ≤ 0, Hn ◦
−→
C =

−→
Hn+1.

Proof A chain complex of diagram is the same as a diagram of chain complexes.
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4.2.4 Modularity and long exact sequences in homology

In the theory of Grandis, we have the following theorem:

Theorem 5 ([17]) Let M be a homological category.
For each short exact sequence in C•(M):

U V W
m p

there exists a sequence of order two in M:

· · · Hn(V ) Hn(W ) Hn−1(U) Hn−1(V ) · · ·
Hn(p) ∂n Hn−1(m)

which is natural in the short exact sequence.
Moreover, [17] gives some conditions for this sequence to be exact. In partic-
ular, those conditions are always satisfied iff M is modular.

A normal subobject of F : C −→ Ab ∈ Diag(Ab) is a morphism of the
form (idC , σ) where every σc is an inclusion into F (c). The set of all normal
subobjects of F is a lattice whose order is inclusion, meet is intersection, join
is union, ⊥ is σc = 0 and > is idF (c). Moreover, it is a modular lattice that is
if X ≤ B then X ∨ (A∧B) = (X ∨A)∧B. We denote this lattice by Nsb(F ).
If f : F −→ G is a morphism in Diag(Ab), we can define a Galois connection
(f∗, f

∗) where:

– f∗ : Nsb(F ) −→ Nsb(G) with f∗(m) = im(f ◦m) = kercok(f ◦m)
– f∗ : Nsb(G) −→ Nsb(F ) with f∗(n) = ker((cokn) ◦ f)

The condition of modularity can be expressed as every morphism f : F −→ G
satisfies:

1) for every x ∈ Nsb(F ), f∗ ◦ f∗(x) = x ∨ f∗(⊥)
2) for every y ∈ Nsb(G), f∗ ◦ f∗(y) = y ∧ f∗(>)

Theorem 6 In Diag(Ab), 1) and 2) fail and so Diag(Ab) is not modular.

Proof

1) Let:
– F the functor from the discrete category 2 with two objects to Ab

which sends each object to Z
– G the functor from the discrete category 1 with one object to Ab which

sends this object to Z
– f : F −→ G the morphism (Φ, σ) where Φ sends each object of 2 to the

unique object of 1 and σ is the natural transformation from F to G ◦Φ
which is only composed of identities

– x the normal subobject of F which is the functor from 2 to Ab which
sends each object to 0 (identifying the object with the inclusion in F ,
which is formally the normal subobject)
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In this case,
x ∨ f∗(⊥) = x 6= F = f∗ ◦ f∗(x)

2) Let:
– F the functor from 1 to Ab which this object to Z
– G the functor from the category 2’ with two objects {a, b} and one

non-identity morphism which goes from a to b to Ab which sends each
object to Z and the morphism to identity

– f : F −→ G the morphism (Φ, σ) where Φ sends the unique object of 1
to a and σ is the natural transformation from F to G ◦Φ which is only
composed of identities

– y the normal subobject of G which is the functor from 2’ to Ab which
sends a to 0, b to Z and the morphism to 0

In this case,
y ∧ f∗(>) = y 6= 0G = f∗ ◦ f∗(y)

where 0G : 2’ −→ Ab which maps each object to 0 and the morphism to
0.

ut

4.2.5 Relative homology and the exactness axiom

We denote by PoTop2 the category of pairs (X,A) with X a pospace and
A ⊆ X considered as a pospace by restricting the order of X (we call them
potopological pairs). A morphism of potopological pairs from (X,A) to (Y,B)
is a map f : X −→ Y with f(A) ⊆ B.

Let (X,A) be a potopological pair. As the category Diag(Ab) is homo-

logical, so is C•(Diag(Ab)), we can define
−→
C •(X,A) = cok(inj :

−→
C •(A) −→

−→
C •(X)). We could also have defined it as the complex obtained by taking

cok(inj :
−→
C n(A) −→

−→
C n(X)) in Diag(Ab) in each dimension. We have nat-

urally a sequence:

−→
C •(A)

−→
C •(X)

−→
C •(X,A)

inj Cok(inj)

which is exact but not short exact. However, if we define

−→
CX
• (A) = ker(Cok(inj))

we have that cok(Ker(Cok(inj)) :
−→
CX
• (A) −→

−→
C •(X)) =

−→
C •(X,A) because

Ker and Cok are inverse to each other on normal sub-objects and normal
quotients and the sequence:

−→
CX
• (A)

−→
C •(X)

−→
C •(X,A)

Ker(Cok(inj)) Cok(inj)

is short exact in C•(Diag(Ab)) and so in C•(Cat(TX ,Ab)), where Cat(TX ,Ab)
is abelian. We thus have a long exact sequence:



32 Jérémy Dubut et al.

. . . Hn(
−→
C •(X)) Hn(

−→
C •(X,A)) Hn−1(

−→
CX
• (A)) Hn−1(

−→
C •(X)) . . .

in Cat(TX ,Ab) and so in Diag(Ab).
If f : (X,A) −→ (Y,B) is a morphism of potopological pairs, we can define

f• :
−→
C •(X,A) −→

−→
C •(Y,B) (resp. f• :

−→
CX
• (A) −→

−→
C Y
• (B)) as the unique

morphism which makes commutative the right square of the first diagram
(resp. the left square of the second):

−→
C •(A)

−→
C •(X)

−→
C •(B)

−→
C •(Y )

−→
C •(Y,B)

−→
C •(X,A)

inj

f• f•

inj

Cok(inj)

Cok(inj)

f•

−→
CX
• (A)

−→
C •(X)

−→
C Y
• (B)

−→
C •(Y )

−→
C •(Y,B)

−→
C •(X,A)

Ker(Cok(inj))

f•

Ker(Cok(inj))

Cok(inj)

Cok(inj)

f•f•

coming from the universal property of
−→
C •(X,A) (resp.

−→
C Y
• (B)). This defines

two functors from PoTop2 to Diag(Ab). From this, and from Theorem 5, we
deduce that the long exact sequence of relative homology is natural in (X,A).

5 Conclusion and future work

We defined in this paper a notion of directed homology which enjoys many
good properties: there are natural homology theories for a large class of pre-
cubical sets and for a large class of directed spaces, which agree through geo-
metric realization “modulo bisimulation”, and natural homology distinguishes
between non-equivalent directed spaces which would not be distinguished us-
ing ordinary homology theories (see also [9]). Also, the natural homology of a
subdivided pre-cubical set is bisimilar to the natural homology of the original
one. We do have Hurewicz theorems linking directed homotopy with natural
homology closely,and natural homology enjoys most of Eilenberg-Steenrod ax-
ioms for homology theories: dimension, homotopy, additivity and exactness
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axioms in particular. Generally speaking, natural homology maps short exact
sequences into some sequences. Unfortunately, they are only order 2 sequences
and not long exact sequences, which make calculations slightly more compli-
cated than with ordinary topology. There is nevertheless the hope that some
variations of natural homology may agree with modularity, which implies that
short exact sequences are mapped onto long exact sequences, for instance
some form of natural homology modulo bisimulation may be a good basis for
that. This is left for future work, as are some form of the excision axiom,
the potentially interesting relationships with persistence homology [6] and the
Baues-Wirshing homology theories defined in [27] for studying term rewriting
systems, and formalism for describing computations which has some links with
the concurrency models which were originally at the basis of this work.

Appendix : Limits and colimits in the category of diagrams

As is well known [34], Cat is complete.
If C is a small category and F : C −→ Cat a diagram in Cat, the limit of

F is the category LF whose:

– objects are the families (xc)c∈Ob(C) where xc ∈ Ob(F (c)) and for every
morphism f : c −→ c′ of C, F (f)(xc) = xc′

– morphisms from (xc)c∈Ob(C) to (yc)c∈Ob(C) are the families (gc)c∈Ob(C) where
gc : xc −→ yc and for every morphism f : c −→ c′ of C, F (f)(gc) = gc′

– composition (hc)c∈Ob(C) ◦ (gc)c∈Ob(C) is (hc ◦ gc)c∈Ob(C)
– identity of (xc)c∈Ob(C) is (idxc)c∈Ob(C)

together with the projection maps.
We are now ready to define limits in Diag(M).

Definition 27 (C-diagram, C-limit) A C-diagram of M is a functor from
C to M. We say that a category M has C-limits if every C-diagram of M has
a limit.

Now, C-limits of diagrams in M are fully determined by C-limits in M:

Theorem 7 (Preservation of limits) Let C be a small category. Diag(M)
has C-limits iff M has C-limits.

Proof First, suppose that Diag(M) has C-limits. Let F : C −→ M. We
consider G : C −→ Diag(M) the following C-diagram:

• for every object c of C, G(c) is the diagram from the category 1 with one
object and one morphism to M which maps this object to F (c)

• for every morphism f : c −→ c′ of C, G(f) is the morphism

(id1, (F (f))∗∈Ob(1))
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As Diag(M) has C-limits, G has a limit (L,Πc : L −→ G(c)). Necessarily, L
is from 1 toM and so is just an object K ofM and the Πc are just morphism
πc : K −→ F (c). It is easy to see that (K,πc) is the limit of F .

Now, suppose that M has C-limits. Let F : C −→ Diag(M). F induces a
C-diagram in Cat GF : C −→ Cat in the following way:

• GF (c) is the domain of F (c)
• GF (f) is the first component of F (f)

As Cat is complete, GF has a limit (LGF
, πc : LGF

−→ G(c)). Now, the limit
of F is the functor LF : LGF

−→M such that:

• LF ((xc)c∈Ob(C)) is the limit of the functor which maps
∗ every c ∈ Ob(C) to F (c)(xc)
∗ every f : c −→ c′ of C to the component of xc in the second component

of F (f) (which is a natural transformation).
Such a limit exists because M has C-limits.

• LF ((gc)c∈Ob(C)) (where gc : xc −→ yc) is the unique morphism of M
defined below. As LF ((yc)c∈Ob(C)) is a limit in M, it makes every such
diagram:

LF ((xd)d) LF ((yd)d)

F (c)(xc) F (c)(yc)

∃!

F (c)(gc)

commutative, together with the projection maps

(πc, (σc,(xd)d)(xd)d∈Ob(LGF
)) : LF −→ F (c)

where σc,(xd)d : LF ((xd)d) −→ F (c)(xc) is the projection map coming from
the fact that LF ((xd)d) is a limit.

ut

Therefore, a direct consequence is that Diag(M) is complete iff M is
complete.

Similarly, we know that Cat is cocomplete [34].
We briefly recap the construction below. We need first to define congruences

on categories.
If f : c −→ c′, we note dom(f) = c and cod(f) = c′. If ∼ is an equivalence

relation on the set Ob(C) of a small category C, we denote by Mor+(C), the
set of non-empty finite sequences of morphisms of C (f1, ..., fn).
A congruence on the small category C is a pair (∼o,∼m) of an equivalence
relation ∼0 on Ob(C) and a partial equivalence relation ∼m on Mor+(C) sat-
isfying:

– if (f0, ..., fn) ∼m (g1, ..., gp) then for all i ≤ n, dom(fi) ∼o dom(fi−1)
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– (f0, ..., fn) ∼m (g0, ..., gp) implies dom(f0) ∼o dom(g0) and cod(fn) ∼o
cod(gp)

– c ∼0 c
′ implies idc ∼m idc′

– (f0, ..., fn) ∼m (g0, ..., gp), (fn+1, ..., fn′) ∼m (gp+1, ..., gp′) and cod(fn) ∼o
dom(fn+1) then (f0, ..., fn′) ∼m (g0, ..., gp′)

– if cod(f) = dom(g) then (f, g) ∼m (g ◦ f)

Proposition 12 ([2]) If (∼0,∼m) is a congruence on C, the category C/(∼o
,∼m) whose:

– objects are equivalence class of objects of C modulo ∼o, written [ ]
– morphisms from [c] to [c′] are equivalence class of elements (f1, ..., fn) of
Mor+(C) such that dom(f1) ∼o c and cod(fn) ∼0 c

′, written [f1, ..., fn]
– composition [g1, ..., gp] ◦ [f1, ..., fn] is [f1, ..., fn, g1, ..., gp]
– identity on [c] is [idc]

is well defined and is called the quotient of C by (∼o,∼m)

Proof (of Proposition 5) First, it is known [2] that if Ro is a relation on Ob(C)
and Rm is a relation on Mor+(C) then there exists a least congruence on C
that contains (Ro, Rm).

Now, let C be a small category and F : C −→ Cat a diagram in Cat. The
colimit ΓF of F is the quotient of the disjoint union of all the F (c) by the least
congruence (∼o,∼m) such that:

– if f : c −→ c′ is a morphism of C, then for every object xc of F (c),
F (f)(xc) ∼o xc

– if f : c −→ c′ is a morphism of C, then for every morphism gc of F (c),
(F (f)(gc)) ∼m (gc)

ut

As in the case of limits, a colimit of a diagram in Diag(M) is defined as
a functor from the colimit of the diagram induced in Cat. The functor maps
each object of this colimit to the colimit in M of a diagram which depends
of this object and is much more complicated than the initial diagram. We can
then derive similarly as in the case of limits:

Theorem 8 If M is cocomplete then Diag(M) is cocomplete.
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