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Abstract. Recently, local logics for Mazurkiewicz traces are of increas-
ing interest. This is mainly due to the fact that the satisfiability problem
has the same complexity as in the word case. If we focus on a purely
local interpretation of formulae at vertices (or events) of a trace, then
the satisfiability problem of linear temporal logics over traces turns out
to be PSPACE–complete if the dependence alphabet is not part of the
input. But now the difficult problem is to obtain expressive completeness
results with respect to first order logic.

The main result of the paper shows such an expressive completeness
result, if the underlying dependence alphabet is a cograph, i.e., if all
traces are series parallel posets. Moreover, we show that this is the best
we can expect: If the dependence alphabet is not a cograph, then we
cannot express all first order properties in our setting.
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1 Introduction

Trace theory, initiated in computer science by Keller [19] and Mazurkiewicz [21],
is one of the most popular settings to study concurrency. The behavior of a
concurrent process is not represented by a string, but more accurately by some
labelled partial order.

A suitable way for a formal specification of concurrent systems is given by
temporal logic formulae which in turn have a direct (either global or local) in-
terpretation for Mazurkiewicz traces. It is therefore no surprise that temporal
logics for traces have received quite an attention, see [2, 23–25,27, 29]. In [30] it
was shown that the basic (global) linear temporal logic with future tense opera-
tors and with past tense constants is expressively complete with respect to the
first order theory of real traces (i.e. finite or infinite traces). In [6, 8] we have
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obtained the same result but without any past tense modalities by quite differ-
ent proof techniques (which will be used here again). This positive result has
solved a long standing open question [11, 30]. The price of this logic is an ex-
tremely difficult satisfiability problem, it has been shown to be non-elementary
by Walukiewicz [32]. The main reason for this difficulty is the global interpreta-
tion of a formula which makes it necessary to speak about configurations, i.e., we
give an interpretation of a formula for a trace with respect to some finite prefix
– and the prefix structure of a trace is much more complicated than in the case
of linear orders (words). If we give a local interpretation such that each formula
can be evaluated at a single vertex (or event), then we obtain logics where the
satisfiability problem is still in PSPACE. This is in particular the case for the
logic TLC, which has been introduced by Alur et al. in [2]. The logic has been
extended and studied in detail by Henriksen in [15, 16]. The logic TLC uses an
existential version of the until–operator, which is not expressible in first order, in
general (Section 5). On the other hand, it is not known whether one can express
in TLC all first order properties for all dependence alphabets.

In our paper, we shall use a universal version of the until–operator, which, by
its very definition, is first order definable. The main result of our paper shows
that we obtain a local logic which is expressively complete, if the underlying
dependence alphabet is a cograph, i.e., every trace is a series parallel poset (or
N–free). This result is robust, the same holds for TLC or other variants how
to define a semantics to the until–operator. Moreover, we show that cograph
dependence alphabets are in some sense the limit where we can expect such a
positive result. As long as we use no past tense modalities we cannot specify
all first order properties by our logic, whether or not the until is existential or
universal or whether we have both options. Our main theorems (Thms. 2, 3) are
therefore if-and-only-if statements.

In the final section we will see that a universal until does not change com-
plexity issues very much. The satisfiability problem of TLC augmented by this
operator can still be solved in PSPACE.

An extended abstract of this paper appeared in [7].

2 Preliminaries

We briefly recall some notions concerning Mazurkiewicz traces. For the back-
ground we refer to [10]. A dependence alphabet is a pair (Σ,D) where the alpha-
bet Σ is a finite set and the dependence relation D ⊆ Σ × Σ is reflexive and
symmetric. The independence relation I is the complement of D. For A ⊆ Σ, we
denote I(A) = {b ∈ Σ | (a, b) ∈ I for all a ∈ A} the set of letters independent
from A and we let D(A) = Σ \ I(A) be the set of letters depending on (some
action in) A.

A real trace is (an isomorphism class of) a labelled partial order t = [V,≤, λ]
where V is a set of vertices, λ : V → Σ is the labelling, ≤ is a partial order
over V satisfying the following conditions: For all x ∈ V , the downward set
{y ∈ V | y ≤ x} is finite, (λ(x), λ(y)) ∈ D implies x ≤ y or y ≤ x, and x l y
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implies (λ(x), λ(y)) ∈ D, where l = < \ <2 is the direct successor relation in
the Hasse diagram of t.

The alphabet of the trace t is the set alph(t) = λ(V ) ⊆ Σ and its alphabet at
infinity alphinf(t) is the set of letters occurring infinitely often in t. The set of
all traces is denoted by R(Σ,D) or simply by R. A trace t is called finite, if V
is finite. For t = [V,≤, λ] ∈ R, we define min(t) ⊆ V as the set of all minimal
vertices of t. We can read min(t) ⊆ Σ also as the set of labels of the minimal
vertices of t. It will always be clear from the context what we actually mean. If
t is finite, we define max(t) ⊆ V as the set of all maximal vertices of t and we
also use max(t) ⊆ Σ for the set of labels of the maximal vertices of t. Note that
max(t) is only defined when t is a finite trace, though the definition would make
sense also for infinite traces.

We define the concatenation of two traces t1 = [V1,≤1, λ1] ∈ R and t2 =
[V2,≤2, λ2] ∈ R satisfying alphinf(t1) × alph(t2) ⊆ I by t1 · t2 = [V,≤, λ] where
V = V1 ∪ V2 (assuming w.l.o.g. that V1 ∩ V2 = ∅), λ = λ1 ∪ λ2 and ≤ is the
transitive closure of the relation ≤1 ∪ ≤2 ∪ (V1 ×V2 ∩λ−1(D)). The set of finite
traces becomes a monoid which is denoted by M(Σ,D) or simply by M. The
empty trace 1 = (∅, ∅, ∅) is the unit element.

A trace r ∈ R is a prefix of a trace t = [V,≤, λ] ∈ R, denoted by r ≤ t, if
r = [U,≤, λ] for some lower set U of V (for all x ∈ V and y ∈ U , x ≤ y implies
x ∈ U). Equivalently, r is a prefix of t if t = r · s for some trace s ∈ R. If r ≤ t
then we denote by r−1t the unique trace s such that t = r · s.

If A ⊆ Σ, we let RA = {x ∈ R | alph(x) ⊆ A} and MA = M ∩ RA. We also
define M+ = M \ {1} and M+

A = M+ ∩ MA. We use other intuitive notations to
denote sets of traces that are defined by alphabetic conditions. For instance,

(a ∈ min) = {t ∈ R | a ∈ min(t)},

(max ⊆ A) = {t ∈ M | max(t) ⊆ A},

(alphinf ⊆ A) = {t ∈ R | alphinf(t) ⊆ A}.

We say that a trace t ∈ R(Σ,D) is connected, if the restriction of the graph
(Σ,D) to alph(t) is connected. A finite trace t ∈ M(Σ,D) is primitive, if t = xn

implies n = 1. The following result transfers from words to traces. It will be used
in the proof of Proposition 1 below.

Lemma 1. Let t ∈ M(Σ,D) be connected and primitive. Then, rts ∈ t∗ implies
r ∈ t∗.

Proof. Assume that rts = tn for some finite traces r, t, s ∈ M with t connected
and primitive. If r = 1 or s = 1, the result is clear. Let a, b ∈ alph(t) be such
that (a, b) ∈ D. Let u, v, w be the projections of r, s, t over {a, b}∗. We have
uwv = wn. It is well-known [20, Sect. 1.3] that an equation uwv = wn admits
only cyclic solutions over words, i.e., for some x 6= 1 we have u, v, w ∈ x∗. We
have {a, b} = alph(w) = alph(x). Hence, a ∈ alph(r) if and only if b ∈ alph(r)
and the same holds for s. Since t is connected and u 6= 1 6= v, we deduce that
alph(u) = alph(v) = alph(t). Since we have this alphabetic condition and since
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the equation rts = tn has only cyclic solutions over words, the same holds over
traces by [4, Prop. 3.2.5]. Thus, we have r, t, s ∈ y∗ for some nonempty trace y.
But then t = y since t is primitive. ut

The main result of the paper concerns dependence alphabets which are
cographs. According to standard graph theoretical notions, a dependence al-
phabet is called a cograph, if it belongs to the smallest class of undirected
graphs which contains singletons and which is closed under the operations of
disjoint union and complementation. Clearly, (Σ,D) is a cograph if and only
if the independence alphabet (Σ, I) is a cograph. Cographs form an important
and well-studied class of undirected graphs. A connected non-singleton cograph
has a canonical decomposition as complex product of smaller cographs. On the
algebraic side this corresponds to monoids which are obtained by direct and free
products starting with free monoids over a singleton alphabet. Thus, cographs
(and cograph monoids) are built in a strictly modular way. It is also well-known
that an undirected graph is a cograph if and only if it does not contain any
P4 (a line of 4 vertices) as an induced subgraph [3, Thm. 11.3.3]. It turns out
that (Σ,D) is a cograph if and only if all t ∈ M(Σ,D) are series parallel posets,
i.e., we can build up the trace starting with letters by taking serial and parallel
products. In particular, every such trace is N–free, i.e., whenever there are four
vertices a, b, c, d with a < b, c < b, and c < d, then there is at least one more
ordering between them.

Consider the following two traces t1 and t2 (given by their Hasse diagrams).
The first trace is not a series parallel poset, whereas the second one is due to
the additional dependency between a and d.

t1 =

(
a

c

b

d c

)
t2 =

(
a

c

b

d c

)

We shall use the algebraic notion for recognizability: Let h : M → S be a
morphism to some finite monoid S. For x, y ∈ R, we say that x and y are h-
similar, denoted by x ∼h y if either x, y ∈ M and h(x) = h(y) or x and y have
infinite factorizations in nonempty finite traces x = x1x2 · · ·, y = y1y2 · · · with
xi, yi ∈ M+ and h(xi) = h(yi) for all i. We denote by ≈h the transitive closure of
∼h which is therefore an equivalence relation. Since S is finite, this equivalence
relation is of finite index with at most |S|2 + |S| equivalence classes [26]. A real
trace language L ⊆ R is recognized by h if it is saturated by ∼h, i.e., x ∈ L
implies [x]≈h

⊆ L for all x ∈ R.

Let L ⊆ R be recognized by a morphism h : M → S and A ⊆ Σ. Then,
L ∩ MA and L ∩ RA are recognized by the restriction h|MA

.

A finite monoid S is aperiodic, if there is some n ≥ 0 such that sn = sn+1

for all s ∈ S. A real trace language L ⊆ R is aperiodic if it is recognized by
some morphism to some finite and aperiodic monoid. We denote by AP(Σ,D)
or simply by AP the set of aperiodic languages L ⊆ R(Σ,D). If A ⊆ Σ, we use
the notation APA for the aperiodic languages over RA.
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The first order theory of traces is given by the syntax of FOΣ(<):

ϕ ::= Pa(x) | x < y | ¬ϕ | ϕ ∨ ϕ | (∃x)ϕ,

where a ∈ Σ and x, y are first order variables. Given a trace t = [V,≤, λ] and
a valuation σ of the free variables to the vertices, the semantics is obtained
by interpreting the predicate Pa(x) by λ(σ(x)) = a and the relation < as the
strict partial order relation of the trace t. Then we can say whether or not
t, σ |= ϕ. If ϕ is a sentence, i.e., a closed formula, then we simply write t |= ϕ
(since there are no free variables in a closed formula) and we define the language
L(ϕ) = {t ∈ R | t |= ϕ}. We say that a trace language L ⊆ R is expressible
in FOΣ(<) if there exists some sentence ϕ ∈ FOΣ(<) such that L = L(ϕ). We
denote by FO(Σ,D)(<) the set of real trace languages L ⊆ R(Σ,D) such that for
some sentence ϕ ∈ FOΣ(<) we have L = L(ϕ)

We say that a first order formula is in FOn
Σ(<) if it uses at most n first order

variables (it may use each variable several times).
The following result states the equivalence between first-order definability

and aperiodic languages. So, we can switch between both notions.

Theorem 1 ([11, 12]). A language L ⊆ R(Σ,D) is expressible in FOΣ(<) if
and only if it is aperiodic, i.e., FO(Σ,D)(<) = AP(Σ,D).

In Section 5, in order to prove that an existential until modality is not first
order definable in general, we use the following characterization:

Proposition 1. Let 1 6= t ∈ M(Σ,D) be a nonempty finite trace. The language
t∗ = {tn | n ≥ 0} is expressible in FOΣ(<) (or aperiodic) if and only if the trace
t is connected and primitive.

Proof. It is well-known and easy to see that if t is not connected then t∗ is not
recognizable. If t 6= 1 is connected but non-primitive, then t∗ is recognizable
but not aperiodic. Indeed, assume that t = xn with n > 1 and consider the
morphism g : {a}∗ → M defined by g(a) = x. We have g−1(t∗) = (an)∗ which
is not aperiodic. Since aperiodic languages are closed under inverse morphisms,
we deduce that t∗ is not aperiodic.

For the other direction let w = [V,≤, λ] be a trace and let (x1, . . . , xm) ∈ V m

be a sequence of m vertices. The sequence defines a factor of w if and only
if xi ≤ y ≤ xj implies both i ≤ j and y ∈ {x1, . . . , xm} for all y ∈ V and
1 ≤ i, j ≤ m. Clearly, a factor (x1, . . . , xm) ∈ V m leads to a factorization
w = utv, where t is given by λ(x1) · · ·λ(xm). Thus, for each finite trace t ∈ M of
length m we can construct a first-order formula Ft(x1, . . . , xm) which becomes
true if and only if the interpretation of (x1, . . . , xm) in V m defines the factor
t. In particular, MtM is the language defined by ∃x1 · · · ∃xm Ft(x1, . . . , xm). We
may also define with a first order formula that all minimal vertices of V appear
in the set {x1, . . . , xm}.

Now let t be connected and primitive. We can express the language t+ ⊆ M

by some first-order formula as follows: We say that there exists some factor con-
taining all minimal elements and which defines t. Moreover for all (x1, . . . , xm)
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where {x1, . . . , xm} does not contain all maximal elements we demand the exis-
tence of (y1, . . . , ym) such that the following implication holds:

Ft(x1, . . . , xm) =⇒ Ft2(x1, . . . , xm, y1, . . . , ym).

By Lemma 1, we can show that each trace in t+ satisfies this first-order formula.
The converse is clear. ut

3 Local temporal logics for traces

In this section, we introduce the local temporal logic over traces and its seman-
tics. We introduce both future and past modalities. Our expressive completeness
results already hold for pure future logics. On the other hand, we can include
past modalities when we prove that a fragment is in FOΣ(<) or for the decision
procedure.

In the next sections we specialize the logics by considering various subsets of
the modalities. We say that a temporal logic over traces is local if it is evaluated
at the vertices of the trace as for first order formulae. This is in contrast with
global temporal logic formulae that are evaluated at global configurations of the
trace, i.e., at finite prefixes of the trace.

For global formulae, we say that a trace is a model of a formula if it sat-
isfies the formula at the empty configuration. There is no such canonical way
to interpret a formula at some trace without fixing some vertex since there is
no canonical vertex in the trace where to start the evaluation of the formula.
Natural vertices are the minimal ones but a trace may have several minimal
vertices. We have chosen to introduce initial formulae to address this problem.
There are other possibilities, like adding a unique minimal dummy, but then
the logic becomes more expressive and we are mainly interested in expressive
completeness (with respect to first-order) for a weak fragment of our logic.

We start with the definition of (local) formulae that are evaluated at vertices.
The syntax of LocTLΣ(EX,U,EU,EY, S,ES) is given by

ϕ ::= ⊥ | a ∈ Σ | ¬ϕ | ϕ ∨ ϕ | EXϕ | ϕ U ϕ | ϕ EU ϕ. | EYϕ | ϕ S ϕ | ϕ ES ϕ.

The symbol ⊥ means false, EXϕ claims that ϕ holds for some immediate suc-
cessor of the current vertex; ϕU ψ is a universal until claiming that ψ holds for
some vertex above the current one and that ϕ holds for all vertices in between;
on the contrary, ϕEUψ is an existential until claiming the existence of some path
in the Hasse diagram of the trace starting at the current vertex and where ϕ
holds until ψ does. The interpretation is similar for the past modalities. Above,
we have included some operators for comparison with other logics used in the
literature such as TLC [2]. The focus and our completeness result is upon the
basic pure future operators EX and U. For words this is just the standard logic
LTL.
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Formally, the semantics is inductively given as follows. Let t = [V,≤, λ] ∈ R

be a real trace and let x ∈ V be a vertex (we also write x ∈ t).

t, x |= a if λ(x) = a

t, x |= ¬ϕ if t, x 6|= ϕ

t, x |= ϕ ∨ ψ if t, x |= ϕ or t, x |= ψ

t, x |= EXϕ if ∃y, xl y and t, y |= ϕ

t, x |= ϕ U ψ if ∃z, x ≤ z and t, z |= ψ and t, y |= ϕ, ∀x ≤ y < z

t, x |= ϕ EU ψ if ∃x = y0 l · · · l yn, with t, yn |= ψ and t, yi |= ϕ, ∀0 ≤ i < n

t, x |= EYϕ if ∃y, y l x and t, y |= ϕ

t, x |= ϕ S ψ if ∃z, z ≤ x and t, z |= ψ and t, y |= ϕ, ∀z < y ≤ x.

t, x |= ϕ ES ψ if ∃yn l · · · l y0 = x, with t, yn |= ψ and t, yi |= ϕ, ∀0 ≤ i < n

We define > = ¬⊥, hence > means true. We derive some more operators
from the above ones. Eventually ϕ claims the existence of some vertex where ϕ
holds above the current one: Fϕ = > U ϕ = > EU ϕ. Its dual operator, always
ϕ, means that ϕ holds at all positions above the current one: Gϕ = ¬F¬ϕ.

The initial formulae LocTLinit
Σ (· · ·) are defined by the syntax

α ::= ⊥ | EMϕ | ¬α | α ∨ α

where ϕ ∈ LocTLΣ(· · ·). Intuitively, EMϕ means that ϕ holds at some minimal
vertex. Formally, the semantics is given by

t |= EMϕ if ∃x ∈ min(t) with t, x |= ϕ

t |= ¬α if t 6|= α

t |= α ∨ β if t |= α or t |= β

The dual AMϕ = ¬EM¬ϕ means that ϕ holds for all minimal vertices. The
following identity holds for all ϕ ∈ LocTLΣ(· · ·):

¬AMϕ =
∨

a∈Σ(EM a ∧ AM(¬a ∨ ¬ϕ))

Therefore, each initial formula is equivalent to a positive boolean combination
of formulae of the form EM a or AMϕ. Since AMϕ ∧ AMψ = AM(ϕ ∧ ψ), we
deduce that each initial formula is equivalent to a finite disjunction of formulae
of the form AMϕ ∧

∧
a∈A EM a with ϕ ∈ LocTLΣ(· · ·) and A ⊆ Σ.

An initial formula α ∈ LocTLinit
Σ (· · ·) defines the language L(α) = {t ∈ R |

t |= α} and we say that a trace language L ⊆ R is expressible in LocTLinit
Σ (· · ·) if

there exists an initial formula α ∈ LocTLinit
Σ (· · ·) such that L = L(α). We denote

by LocTLinit
(Σ,D)(· · ·) the set of languages over R(Σ,D) that are expressible by

some local temporal formula using the modalities (· · ·).
With local temporal formulae, we can express various alphabetic properties.

(a ∈ min) = L(EM a),

(a ∈ alph) = L(EMF a),

(a ∈ alphinf) = L(EM(F a ∧ G(a ⇒ EXF a))).
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To make formulae more intuitive, we use notations like (min ⊆ A), (alphinf ⊆ A)
also for formulae defining these languages. For instance, (min ⊆ A) = AMA
where A =

∨
a∈A a. Also, (alphinf ⊆ A) =

∧
a/∈A ¬EM(F a ∧ G(a⇒ EXF a)).

It is clear from the semantics of EX,U,EY and S that all trace languages
expressible in LocTLinit

Σ (EX,U,EY, S) are also expressible in FOΣ(<), and even
in FO3

Σ(<). This is however not true in general for the existential versions of
until and since (see Section 5).

We say that a formula ϕ ∈ LocTLΣ(· · ·) is pure future if for all t = t1t2 ∈ R

and all x ∈ t2, t, x |= ϕ if and only if t2, x |= ϕ. It is easy to see that all formulae
in LocTLΣ(EX,U,EU) are pure future.

Note that if two traces t1 and t2 have the same minimal letters and for all
minimal letters the corresponding upper sets in t1 and t2 are the same, then the
two traces cannot be distinguished by any formula from a future local tempo-
ral logic (e.g. LocTLinit

Σ (EX,U,EU)). Consider the following example which was
first used by Walukiewicz [33] in relation with the µ-calculus. The dependence
alphabet is (Σ,D) = a b c d and we let

t1 =

(
a

d

b

c

bc c · · ·
)

t2 =

(
a

d

b

c b c b · · ·

)

Since t1 and t2 are clearly distinguishable in FOΣ(<), we deduce that a pure
future local temporal logic cannot be expressively complete for FOΣ(<) as soon
as (Σ,D) is not a cograph. Note that it is easy to distinguish t1 from t2 if we
allow some past tense modalities. For instance, the formula EM(a U (b ∧ EY c))
is satisfied by t1 but not by t2.

Another possibility used in [5] is to introduce an additional minimal vertex
(labeled by some special character) and to evaluate a formula at this new minimal
vertex3. This amounts to consider a new letter # /∈ Σ which depends on all
letters in Σ. Then, we say that a trace t ∈ R(Σ,D) satisfies a local formula
ϕ ∈ LocTLΣ(· · ·) if ϕ holds at the initial vertex of the trace # · t. With this
definition, the formula (¬c) U b is satisfied by t2 but not by t1.

#t1 =

(
#

a

d

b

c

bc · · ·
)

#t2 =

(
#

a

d

b

c b c · · ·

)

The same results hold for finite trace languages. For instance, the language
ad(bc)+ ⊆ M of finite traces is first order by Proposition 1. One can also see this
directly with the star-free expression

(bc)+ = (bΣ∗ ∩Σ∗c) \ (Σ∗{a, d, bb, cc}Σ∗).

But it cannot be expressed in LocTLinit
Σ (EX,U,EU). Indeed, assume ad(bc)+ =

L(α) for some α ∈ LocTLinit
Σ (EX,U,EU). We have seen that α can be writ-

ten as a finite union of formulae AMϕA ∧ (
∧

a∈A EM a) for A ⊆ Σ and ϕA ∈

3 This is also the approach we have taken later in [9]
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LocTLΣ(EX,U,EU). The languages LA = dc(bc)∗ ∩ L(EMϕA) for A ⊆ Σ are
aperiodic (we restrict to dc(bc)∗ so that the modality EU is equivalent to the
modality U and is therefore first-order). Hence, we find some integer N such
that for all u, v ∈ M and n > N we have for all A ⊆ Σ, uvn−1 ∈ LA if and
only if uvn ∈ LA. Now, fix n > N and consider the traces t1 = adc(bc)n and
t2 = ad(bc)n. We have t2 |= α, hence t2 |= AMϕA for some A ⊆ Σ. Since the logic
is pure future, we deduce that a(bc)n |= EMϕA and dc(bc)n−1 |= EMϕA. Using
the aperiodicity of LA we get dc(bc)n |= EMϕA and we deduce that t1 |= AMϕA.
This is a contradiction since t1 /∈ ad(bc)+.

In this paper, we are interested in the expressive completeness of pure future
local temporal logics. The simple example above shows that we can restrict our
study to traces defined by a dependence alphabet that are cographs.

The following lemma shows that we can localize initial formulae.

Lemma 2. Let α ∈ LocTLinit
Σ (EX,U) be an initial formula. There exists a local

formula loc(α) ∈ LocTLΣ(EX,U) such that for all t = t1t2 ∈ R and x ∈ max(t1)
with min(t2) ⊆ D(λ(x)), we have t2 |= α if and only if t, x |= loc(α). The same
holds for the fragment LocTLinit

Σ (EX,U,EU).

Proof. Clearly, we have loc(α∨β) = loc(α)∨ loc(β) and loc(¬α) = ¬loc(α). The
interesting case is EMϕ where ϕ ∈ LocTL. We have,

t2 |= EMϕ iff ∃y ∈ min(t2), t2, y |= ϕ
iff ∃y ∈ min(t2), t, y |= ϕ since the logic is pure future
iff ∃y, xl y and t, y |= ϕ using the hypothesis on x
iff t, x |= EXϕ.

Therefore, loc(EMϕ) = EXϕ. ut

4 Universal until

In this section, we consider the fragment of the local temporal logic using next
and the universal until, only. We give the following characterization of the ex-
pressive completeness of LocTLinit

Σ (EX,U) with respect to FOΣ(<).

Theorem 2. Let (Σ,D) be a dependence alphabet. Then we have the equality
LocTLinit

(Σ,D)(EX,U) = FO(Σ,D)(<) if and only if (Σ,D) is a cograph.

We have seen in the previous section that LocTLinit
Σ (EX,U) is not expressively

complete, if (Σ,D) is not a cograph. Conversely, for all dependence alphabets,
we already know that LocTLinit

(Σ,D)(EX,U) ⊆ FO3
(Σ,D)(<) and that first order

languages coincide with aperiodic languages (Theorem 1). Hence, in order to get
the converse inclusion, we will prove that AP ⊆ LocTLinit

(Σ,D)(EX,U), if (Σ,D) is
a cograph.

For the proof of Theorem 2, we use an induction on |Σ|. If (Σ,D) is a
cograph, then either Σ is a singleton, or Σ is the disjoint union of two nonempty
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sets Σ = A ∪ B with either A ×B ⊆ I or A× B ⊆ D. We consider these three
cases in turn.

The base case is when Σ = {a}. Then, an aperiodic language L is either
a finite set or the union of a finite set and a set of the form ana∗, n ≥ 0. In
both cases, L is expressible in LocTLinit

Σ (EX,U). For instance, {aω} and {a2}
correspond to the formulae EMGEX> and EMEX¬EX>. Also, a3a∗ ∪ {aω} is
expressed by EMEXEX>.

Next, we consider the case where the alphabet is the disjoint union of two
independent subsets. This means R(Σ,D) = RA × RB is a direct product.

Proposition 2. Assume that Σ = A∪B with A×B ⊆ I and that we have both
APA ⊆ LocTLinit

(A,D∩A×A)(EX,U) and APB ⊆ LocTLinit
(B,D∩B×B)(EX,U). Then it

also holds APΣ ⊆ LocTLinit
(Σ,D)(EX,U).

Proof. Let L ⊆ R be recognized by some morphism h from M to some finite
aperiodic monoid S. We claim that L is a finite union of languages of the form
(L1 ∩ RA) · (L2 ∩ RB) where the languages Li ⊆ R are recognized by h.

Indeed, let x ∈ RA, y ∈ RB with xy ∈ L. We prove that ([x]≈h
∩RA)·([y]≈h

∩
RB) ⊆ L. Note that the claim follows from this fact since there are only finitely
many ≈h-classes.

let x′ ∈ RA and y′ ∈ RB with x ∼h x
′ and y ∼h y

′. The cases x or y finite are
simpler, hence we assume that both x and y are infinite. We have x = x1x2 · · ·,
x′ = x′1x

′
2 · · ·, y = y1y2 · · · and y′ = y′1y

′
2 · · · with h(xi) = h(x′i) and h(yi) = h(y′i)

for all i ≥ 1. Then, x′y′ = (x′1y
′
1)(x

′
2y

′
2) · · · ∼h (x1y1)(x2y2) · · · = xy ∈ L. Since

L is recognized by h, we deduce that x′y′ ∈ L which concludes the proof of the
claim.

Now, (L1∩RA) ·(L2∩RB) =
(
(L1∩RA) ·RB

)
∩
(
RA ·(L2∩RB)

)
. Therefore, it

remains to show that (L1∩RA) ·RB is expressible in LocTLinit
Σ (EX,U). Since L1

is recognized by h, the language L1 ∩ RA is recognized by the restriction h|MA
.

Hence, L1 ∩ RA ∈ APA ⊆ LocTLinit
(A,D∩A×A)(EX,U).

One can check by structural induction on the formula ϕ ∈ LocTLA(EX,U)
that for all t1 ∈ RA, x ∈ t1 and t2 ∈ RB, we have t1, x |= ϕ if and only if
t1t2, x |= ϕ. Moreover, t1 |= EMϕ if and only if t1t2 |= EM(A ∧ ϕ) (recall that
A stands for the formula

∨
a∈A a). Therefore, (L1 ∩ RA) · RB is expressible in

LocTLinit
Σ (EX,U). ut

The last case and the most interesting one is when the dependence alphabet
is the disjoint union of two fully dependent subsets: Σ = A ∪B with A ∩B = ∅
and A × B ⊆ D. In this case, the trace monoid M is the free product of the
monoids MA and MB.

Proposition 3. Assume that Σ = A ∪ B with A ∩ B = ∅ and A × B ⊆ D. If
we have APA ⊆ LocTLinit

(A,D∩A×A)(EX,U) and APB ⊆ LocTLinit
(B,D∩B×B)(EX,U),

then APΣ ⊆ LocTLinit
(Σ,D)(EX,U).

Our proof is inspired by a technique introduced by Wilke [34] in order to
show that aperiodic languages over words are expressible in LTL. Wilke used

10



both an induction on the size of the alphabet and on the size of the recognizing
semigroup. Here, we have chosen to skip the additional induction on the size
of the semigroup needed to get a direct proof. Instead, we appeal to Kamp’s
Theorem in Lemma 6. This allows to keep our proof as simple as possible.

We use several splittings of languages in products. We shall use the following
composition lemmas to get the expressibility of the products from the express-
ibility of their components. Note that, since aperiodic languages are closed under
product, a consequence of our theorem is that the product of two languages ex-
pressible in local temporal logic is again expressible. But we are not able to prove
this result directly and the following lemmas correspond to three very special
cases where an easy proof can be given. We assume until the end of this section
that Σ = A ∪B with A ∩B = ∅ and A×B ⊆ D.

Lemma 3. Let L ⊆ RA be a language expressible in LocTLinit
A (EX,U). Then,

the language (L ∩ M+
A) · (min ⊆ B) is expressible in LocTLinit

Σ (EX,U).

Proof. Note that M+
A · (min ⊆ B) = L(EMA) is expressible in LocTLinit

Σ (EX,U).
Hence, Lemma 3 follows from the

Claim: For all α ∈ LocTLinit
A (EX,U) and ϕ ∈ LocTLA(EX,U), there exist α̃ ∈

LocTLinit
Σ (EX,U) and ϕ̃ ∈ LocTLΣ(EX,U) such that for all t = t1t2 with t1 ∈ MA

and min(t2) ⊆ B and all x ∈ t1, we have t1 |= α if and only if t |= α̃ and t1, x |= ϕ
if and only if t, x |= ϕ̃.

We proceed by structural induction on the formulae. As usual, the cases for

disjunction and negation are trivial. Finally, it is easy to verify that ẼMϕ =

EM(A ∧ ϕ), ã = a for a ∈ A, ẼXϕ = EX(A ∧ ϕ̃) and ϕ̃ U ψ = (A ∧ ϕ̃) U (A ∧ ψ̃).
We use A in the formulae above to insure that we stay inside t1, even when
evaluating the formulae in t. ut

Lemma 4. Let α ∈ LocTLinit
A (EX,U). The language (max ⊆ B) · LA(α) is de-

finable in LocTLinit
Σ (EX,U) by the formula

(
RA ∧ α

)
∨ EMF

(
B ∧ ¬EXFB ∧ loc(α)

)
.

Proof. Note that (max ⊆ B)·RA = (alphinf ⊆ A). Let t = t1t2 with max(t1) ⊆ B
and t2 ∈ LA(α). If t1 = 1 then t = t2 ∈ RA and t = t2 ∈ LΣ(α). Now,
assume that t1 6= 1 and let y ∈ max(t1). Using Lemma 2 we deduce that t, y |=
B ∧ ¬EXFB ∧ loc(α) and then, t |= EMF(B ∧ ¬EXFB ∧ loc(α)).

Conversely, the case t ∈ RA and t ∈ LΣ(α) is simple. Next, assume that
t, x |= F(B ∧ ¬EXFB ∧ loc(α)) for some x ∈ min(t). Then, t = t1t2 with
max(t1) ⊆ B and t2 ∈ RA. Let y ≥ x be such that t, y |= B ∧ ¬EXFB ∧ loc(α),
we deduce that y ∈ max(t1) and from Lemma 2 we obtain t2 |= α. ut

Lemma 5. Let L ⊆ R be a language expressible in LocTLinit
Σ (EX,U). Then, the

language (L ∩ (max ⊆ B)) · RA is expressible in LocTLinit
Σ (EX,U).

Proof. Note first that (max ⊆ B) · RA = (alphinf ⊆ A) is expressible in
LocTLinit

Σ (EX,U). Hence, Lemma 5 follows from the
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Claim: For all α ∈ LocTLinit
Σ (EX,U) and all ϕ ∈ LocTLΣ(EX,U), there exist

α̃ ∈ LocTLinit
Σ (EX,U) and ϕ̃ ∈ LocTLΣ(EX,U) such that for all t = t1t2 with

max(t1) ⊆ B and t2 ∈ RA and all x ∈ t1, we have t1 |= α if and only if t |= α̃
and t1, x |= ϕ if and only if t, x |= ϕ̃. We proceed by structural induction on
the formulae. As usual, the cases for disjunction and negation are trivial. We

have ã = a for a ∈ Σ. Finally, it is easy to verify that ẼMϕ = EM(ϕ̃ ∧ FB),

ẼXϕ = EX(ϕ̃∧FB) and ϕ̃ U ψ = ϕ̃U(ψ̃∧FB). We use FB in the formulae above
to insure that we stay inside t1, even when evaluating the formulae in t. ut

We consider the set ∆ = M∪((alphinf 6⊆ A)∩(alphinf 6⊆ B)). Note that ∆ is
expressible in LocTLinit

Σ (EX,U) since it is characterized by alphabetic informa-
tion. Each trace x ∈ ∆ has a unique (finite or infinite) factorization x = x1x2 · · ·
in nonempty finite traces alternating M+

A and M+
B .

Let h : M → S be a morphism to some finite aperiodic monoid S. Let
T = h(M+) and let e : T ∗ → S be the evaluation morphism. Using the unique
factorization of elements x ∈ ∆, we can define a mapping σ : ∆ → T∞ by
σ(x) = h(x1)h(x2) · · ·. This mapping σ allows to reduce our problem to words
over the alphabet T .

Recall that the syntax of the linear temporal logics LTLT (XU) on words over
the alphabet T is given by

f ::= ⊥ | s ∈ T | ¬f | f ∨ f | f XU f.

The semantics is defined as follows. Let t = t0t1 · · · ∈ T∞ and let 0 ≤ i < |t|.
Then,

t, i |= s if ti = s

t, i |= ¬f if t, i 6|= f

t, i |= f ∨ g if t, x |= f or t, x |= g

t, i |= f XU g if ∃k, i < k < |t| and t, k |= g and t, j |= f, ∀i < j < k.

A formula f ∈ LTLT (XU) defines a language L(f) = {t ∈ T∞ | t, 0 |= f}. In
the next lemma, we use Kamp’s Theorem on words. More precisely, we use the
following equality APT = FOT (<) = LTLT (XU) ([18, 13, 22, 28]).

Lemma 6. Let L ⊆ R be recognized by h. Then, L ∩ ∆ = σ−1(K) for some
language K ∈ T∞ expressible in LTLT (XU).

Proof. Let K = [σ(L ∩∆)]≈e
. By definition, K is recognized by the evaluation

morphism e to the aperiodic monoid S. Hence K is an aperiodic word language
over T . Since APT = FOT (<) = LTLT (XU), we deduce that K is expressible in
LTLT (XU). Therefore, it remains to show that L ∩∆ = σ−1(K). The inclusion
L ∩∆ ⊆ σ−1(K) is clear.

For the converse inclusion, let y ∈ σ−1(K). There exists x ∈ L∩∆ such that
σ(x) ≈e σ(y). Note that x is finite if and only if σ(x) is finite if and only if σ(y)
is finite if and only if y is finite and in this case h(x) = e(σ(x)) = e(σ(y)) = h(y).

12



Therefore, y ≈h x ∈ L and we deduce y ∈ L. Assume now that x and y are both
infinite. Using the following claim we also have y ≈h x and we deduce as above
that y ∈ L.

Claim: Let x = x1x2 · · · ∈ R and y = y1y2 · · · ∈ R with xi, yi ∈ M+. If
h(x1)h(x2) · · · ≈e h(y1)h(y2) · · ·, then x ≈h y.

We have ≈e=
⋃

n>0 ∼n
e . We prove the claim by induction on n. For the

base case n = 1 we have h(x1)h(x2) · · · ∼e h(y1)h(y2) · · ·. Then, there ex-
ist two sequences 0 = i0 < i1 < · · · and 0 = j0 < j1 < · · · such that
e(h(x1+ik

) · · ·h(xik+1
)) = e(h(y1+jk

) · · ·h(yjk+1
)) for all k ≥ 0. We deduce that

h(x1+ik
· · ·xik+1

) = h(y1+jk
· · · yjk+1

) for all k ≥ 0. Therefore, x ∼h y.
For the induction step, assume that h(x1)h(x2) · · · ∼n

e t ∼e h(y1)h(y2) · · · for
some t = t1t2 · · · ∈ Tω. Since T = h(M+), we find z = z1z2 · · · ∈ R with zi ∈ M+

and h(zi) = ti for all i > 0. By induction, we get x ≈h z and using the case
n = 1 above we also have z ∼h y. It follows x ≈h y which proves the claim.

Note that, even if x, y ∈ ∆, the intermediary trace z may not be in ∆. This
is why our claim has a stronger statement that the one that is actually used and
which is simply σ(x) ≈e σ(y) ⇒ x ≈h y for all x, y ∈ ∆. ut

In order to make use of the previous lemma, we need to lift through σ−1 an
LTL formula over T to some local temporal formula. This is the purpose of the
next lemma.

Lemma 7. Let f ∈ LTLT (XU). Then, the trace language σ−1(L(f)) is express-
ible in LocTLinit

Σ (EX,U).

Proof. We show by structural induction on the formula f that there exists a
formula f̃ ∈ LocTLinit

Σ (EX,U) such that L(f̃) ∩ ∆ = σ−1(L(f)). Since ∆ is
expressible in LocTLinit

Σ (EX,U), the lemma follows.

First, ⊥̃ = ⊥, f̃ ∨ g = f̃ ∨ g̃, and ¬̃f = ¬f̃ . Now, we prove that

f̃ XU g = EM(Φ U Ψ)

where

Φ = (A ∧ EXA) ∨ (B ∧ EXB) ∨ loc(f̃)

Ψ = ((A ∧ EXB) ∨ (B ∧ EXA)) ∧ loc(g̃).

Let t ∈ σ−1(L(fXUg)). then, t ∈ ∆. Let t = t1t2 · · · be its canonical factorization.
There exists j > 1 such that σ(tjtj+1 · · ·) |= g and σ(titi+1 · · ·) |= f for all

1 < i < j. By induction, we deduce that tjtj+1 · · · |= g̃ and titi+1 · · · |= f̃ for all
1 < i < j.

Let x ∈ min(t1), z ∈ max(tj−1) and x ≤ y < z. Clearly, t, z |= (A ∧ EXB) ∨
(B∧EXA). Moreover from Lemma 2 we deduce that t, z |= loc(g̃). Also, either y is
not maximal in any tk and we have t, y |= (A∧EXA)∨(B∧EXB) or y ∈ max(tk)

for some 1 ≤ k < j−1 and by Lemma 2 we deduce that t, y |= loc(f̃). Therefore,
t, x |= Φ U Ψ and t |= EM(Φ U Ψ).
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Conversely, let t = t1t2 · · · ∈ ∆ and x ∈ min(t) be such that t, x |= ΦUΨ . Let
z ≥ x be such that t, z |= Ψ . Then, there exists j > 1 such that z ∈ max(tj−1) and
from Lemma 2, we deduce that tjtj+1 · · · |= g̃ and by induction σ(tjtj+1 · · ·) |= g.
Now, for all 1 < i < j, let y ∈ max(ti−1) with x ≤ y. We also have y < z and from

t, y |= Φ, we deduce that t, y |= loc(f̃). Using Lemma 2, we obtain titi+1 · · · |= f̃
and by induction σ(titi+1 · · ·) |= f . Therefore, σ(t) |= f XU g.

It remains to deal with the case f = s with s ∈ T . We have L(s) = sT∞ and

σ−1(sT∞) = ∆ ∩
(
(h−1(s) ∩ M+

A)(min ⊆ B) ∪ (h−1(s) ∩ M+
B)(min ⊆ A)

)
.

The language h−1(s) ∩ M+
A is recognized by h|MA

and is therefore an aperiodic

language over RA. Since we have assumed APA ⊆ LocTLinit
(A,D∩A×A)(EX,U),

the language h−1(s) ∩ M+
A is expressible in LocTLinit

A (EX,U). Using Lemma 3,

we deduce that (h−1(s) ∩ M+
A)(min ⊆ B) is expressible in LocTLinit

Σ (EX,U).

Similarly, (h−1(s) ∩ M+
B)(min ⊆ A) is expressible in LocTLinit

Σ (EX,U) and we

deduce that σ−1(sT∞) is expressible in LocTLinit
Σ (EX,U). ut

Now, we have all we need in hand to prove the main result of this section.

Proof of Proposition 3 Let L ⊆ R be recognized by the morphism h. Since
R = ∆ ∪ (alphinf ⊆ A) ∪ (alphinf ⊆ B), we have

L = (L ∩∆) ∪ (L ∩ (alphinf ⊆ A)) ∪ (L ∩ (alphinf ⊆ B)).

From Lemmas 6 and 7, we deduce that L∩∆ is expressible in LocTLinit
Σ (EX,U).

We claim that L ∩ (alphinf ⊆ A) is a finite union of products of the form
(L1 ∩ (max ⊆ B)) · (L2 ∩ RA) where the languages L1, L2 are recognized by h.

Let x ∈ (max ⊆ B) and y ∈ RA with xy ∈ L. We prove that

([x]≈h
∩ (max ⊆ B)) · ([y]≈h

∩ RA) ⊆ L.

Note that the claim follows from this fact since there are only finitely many
classes and L ∩ (alphinf ⊆ A) is therefore the finite union of those products.

let x′ ∈ (max ⊆ B) and y′ ∈ RA with x ∼h x
′ and y ∼h y

′. The case y finite
is simpler, hence we assume y infinite. We have y = y1y2 · · ·, y′ = y′1y

′
2 · · · with

h(yi) = h(y′i) for all i ≥ 1. Then, x′y′ = (x′y′1)y
′
2 · · · ∼h (xy1)y2 · · · = xy ∈ L.

Since L is recognized by h, we deduce that x′y′ ∈ L which concludes the proof
of the claim.

Since (max ⊆ B) ⊆ M ⊆ ∆, we have L1 ∩ (max ⊆ B) = (L1 ∩∆) ∩ (max ⊆
B). Now, L1 is recognized by h and using Lemmas 6 and 7, we deduce that
L1 ∩ ∆ is expressible in LocTLinit

Σ (EX,U). Finally, from Lemma 5 we deduce
that (L1 ∩ (max ⊆ B)) · RA is expressible in LocTLinit

Σ (EX,U).
Now, L2 is recognized by h. Hence, L2 ∩ RA is recognized by the restriction

h|MA
and is therefore an aperiodic language over RA. Since we have assumed

APA ⊆ LocTLinit
(A,D∩A×A)(EX,U), L2∩RA is also expressible in LocTLinit

A (EX,U).
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Using Lemma 4, we deduce that (max ⊆ B) · (L2 ∩ RA) is expressible in
LocTLinit

Σ (EX,U).
Finally, the product (max ⊆ B) · RA is unambiguous, hence we have

(L1 ∩ (max ⊆ B)) · (L2 ∩RA) = (L1 ∩ (max ⊆ B)) ·RA ∩ (max ⊆ B) · (L2 ∩RA).

We deduce that (L1 ∩ (max ⊆ B)) · (L2 ∩RA) is expressible in LocTLinit
Σ (EX,U).

Therefore, L ∩ (alphinf ⊆ A) is expressible in LocTLinit
Σ (EX,U). ut

5 Existential until

In this section, we consider the fragment of the local temporal logic using next
and the existential until only. We prove the following characterization.

Theorem 3. Let (Σ,D) be a dependence alphabet. Then we have the equality
LocTLinit

(Σ,D)(EX,EU) = FO(Σ,D)(<) if and only if (Σ,D) is a cograph.

We have seen in Section 3 that LocTLinit
Σ (EX,EU) is not expressively com-

plete, if (Σ,D) is not a cograph. Conversely, The proofs of Propositions 2 and 3
can be carried out with slight modifications using the existential until instead of
the universal until. Therefore, we get FO(Σ,D)(<) = AP ⊆ LocTLinit

(Σ,D)(EX,EU)
if (Σ,D) is a cograph. The difficulty with the existential until is that we do
not get the converse inclusion for free as with the universal until. Indeed, the
semantics of existential until is given by a monadic second order formula since
it claims the existence of some path in the trace. This MSO formula can be
expressed in first order, if (Σ,D) is a cograph. This is certainly not true for
arbitrary dependence alphabet:

Proposition 4. In general, LocTLinit
(Σ,D)(EU) 6⊆ FO(Σ,D)(<).

Proof. Let (Σ,D) be the dependence alphabet where Σ = {a, b, c, d, e, f, g, h}
and the dependence relation D is depicted in Figure 1. Let t = bdegachf ∈
M(Σ,D) as in Figure 1 and let ϕ = (a ∨ b ∨ c ∨ d) EU G b (Note that Gϕ =
¬(> EU ¬ϕ)). Following Figure 2 is easy to verify that ahtnbω |= EMϕ if and
only if n is even. Hence, we have aht∗bω ∩ L(EMϕ) = ah(t2)∗bω. Since t is
connected and primitive, by Proposition 1 the trace language t∗ is aperiodic.
Therefore, the language aht∗bω is aperiodic as well. Now, aperiodic languages
are closed under arbitrary quotients, hence using again Proposition 1 we de-
duce that the language ah(t2)∗bω is not aperiodic. Since aperiodic languages are
closed under intersection, it follows that L(EMϕ) is not aperiodic. Therefore,
LocTLinit

(Σ,D)(EU) 6⊆ FO(Σ,D)(<) for the dependence alphabet of Figure 1.
Note that, by considering traces of the form aht∗b, we get the same result

for finite traces. ut

The key result for showing that LocTLinit
(Σ,D)(EX,EU) ⊆ FO(Σ,D)(<), if the

dependence alphabet is a cograph, is to express in FOΣ(<) the existence of a
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Fig. 2. The traces ahtibω ∈ M(Σ,D) for i = 1, 2.

path satisfying some first order formula. Let ϕ(z) be a first order formula with
z as only free variable and let C ⊆ Σ. We define the second order formula
Pathϕ

C(x, y) which mainly claims the existence of a path from x to y satisfying
ϕ by

x ≤ y ∧ (∀z, x ≤ z ≤ y ⇒ λ(z) ∈ C) ∧ ∃X,
x ∈ X ∧ (∀z ∈ X,ϕ(z)) ∧ (∀z ∈ X, z < y ⇒ ∃z′ ∈ X, z l z′ ≤ y).

Lemma 8. Let (Σ,D) be a dependence alphabet and let C ⊆ Σ. If (C,D)
is a cograph, then there exists a first order formula semantically equivalent to
Pathϕ

C(x, y) on R(Σ,D).

Proof. If (C,D) is a cograph, then either C is a singleton, or C is the disjoint
union of two nonempty sets C = A ∪ B with either A × B ⊆ I or A × B ⊆ D.
We consider these three cases in turn. Note that for all subset A ⊆ C, (A,D) is
a cograph too.

First, assume that C × C ⊆ D, which is in particular the case when C is a
singleton. Then, Pathϕ

C(x, y) is semantically equivalent to the first order formula

x ≤ y ∧ (∀z, x ≤ z ≤ y ⇒ λ(z) ∈ C) ∧ (∀z, x ≤ z ≤ y ⇒ ϕ(z)).

Next, Assume that C = A ∪B with A×B ⊆ I. Then, we have

Pathϕ
C(x, y) = Pathϕ

A(x, y) ∨ Pathϕ
B(x, y).
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Finally, we consider the more interesting case C = A ∪ B with A ∩ B = ∅ and
A×B ⊆ D. Then, we have

Pathϕ
C(x, y) = Pathϕ

A(x, y) ∨ Pathϕ
B(x, y) ∨

(x ≤ y ∧ (∀z, x ≤ z ≤ y ⇒ λ(z) ∈ C) ∧ Φ1(x, y) ∧ Φ2(x, y) ∧ Φ3(x, y))

where the formulae Φi(x, y) are defined below. We give simultaneously pictures
that should help understanding the formulae. The vertical lines in the pictures
indicate a separation between factors from M+

A and factors from M+
B.

x
x′

y′
y· · ·

Φ1(x, y) = ∃x′,




x ≤ x′ < y,
∧ (Pathϕ

A(x, x′) ∨ Pathϕ
B(x, x′))

∧ ∃u, x′ l u ≤ y ∧ (λ(u) ∈ A⇔ λ(x′) /∈ A)




Φ2(x, y) = ∃y′,




x < y′ ≤ y,
∧ (Pathϕ

A(y′, y) ∨ Pathϕ
B(y′, y))

∧ ∃u, x ≤ ul y′ ∧ (λ(u) ∈ A⇔ λ(y′) /∈ A)




x
x′

x′′
y

y′

y′′

· · · · · ·

Φ3(x, y) = ∀x′∀y′,




(x ≤ x′ < y′ ≤ y) ∧ ¬(x′ l y′)
∧ (λ(x′) ∈ A⇔ λ(y′) ∈ A)
∧ (∀u, x′ < u < y′ ⇒ (λ(u) ∈ A⇔ λ(x′) /∈ A))




⇒
(
∃x′′∃y′′, x′ l x′′ ≤ y′′ l y′ ∧

(
Pathϕ

A(x′′, y′′) ∨ Pathϕ
B(x′′, y′′)

))
ut

From this lemma, we immediately deduce the desired result.

Proposition 5. If the dependence alphabet is a cograph, then the existential
modalities EU and ES can be expressed in FOΣ(<).

Proof. Follows directly from the Lemma 8 since we have

t, x |= ϕ EU ψ iff t, x |= ψ or ∃y,Pathϕ
Σ(x, y) and ∃z, y l z and t, z |= ψ

t, x |= ϕ ES ψ iff t, x |= ψ or ∃y,Pathϕ
Σ(y, x) and ∃z, z l y and t, z |= ψ ut

The logic TLC introduced in [2] uses EX, EY, the existential versions EU

and ES of until and since and two additional modalities Ecoϕ claiming that ϕ
holds for some vertex that is concurrent with the current one; and EGϕ claiming
the existence of some maximal path starting from the current vertex such that
ϕ holds everywhere along this path. EX, EY and Eco are clearly first order
modalities, while EU, ES and EG are in general only (monadic) second order.
But, using the technique of Lemma 8 and Proposition 5 one can show that EG

is expressible in first order, if the dependence alphabet is a cograph.
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Proposition 6. Let (Σ,D) be a dependence alphabet which is a cograph. Then,
TLC(Σ,D) ⊆ FO(Σ,D)(<).

6 Complexity

In this section, we show that the satisfiability problem for local temporal logics
is PSPACE-complete. The PSPACE-hardness is a consequence of the PSPACE-
hardness for words. For TLC the inclusion in PSPACE has been shown in [2]. In
order to prove that our problem is still in PSPACE, we have to deal with the uni-
versal until–operator which we have introduced here. For this, we associate with
each initial formula α an alternating automaton that accepts all linearizations
of finite and infinite traces that model α. Here, we describe the construction
for the pure future local temporal logic LocTLinit

Σ (EX,U). Basically we follow
the ideas for the usual translation from LTL formulae over words to alternating
automata [31].

Let α ∈ LocTLinit
Σ (EX,U). Without loss of generality, we assume that the

negations in α are only over formulae of the form EMϕ or b or EXϕ or ϕ U ψ.
We define Q = Q1 ∪ Q2 ∪ Q3 ∪ Q4 according to Table 1 and we let Q =

{¬p | p ∈ Q}. We construct an alternating automaton Aα where the state set is
Q′ ∪Q′ with Q′ = Q2 ∪Q3 ∪Q4. However, the larger set Q is used to define the
transition relation in a convenient way.

Q1 ={ξ | ξ is a subformula of α of the form EMϕ or b or EXϕ or ϕ U ψ}
Q2 ={(D(b),EMϕ) | EMϕ ∈ Q1 and b ∈ Σ}
Q3 ={(D(b), D(B),EXϕ) | EXϕ ∈ Q1 and b ∈ Σ, B ⊆ Σ, {b} ∪B connected }
Q4 ={(D(A),D(B), ϕ U ψ) | ϕ U ψ ∈ Q1 and A,B ⊆ Σ, A ∪B connected }

Table 1. States of the alternating automaton Aα.

For the states in Q2, Q3, and Q4 we give a global semantics by defining t |= q
for t = [V,≤, λ] ∈ R and q ∈ Q2 ∪Q3 ∪Q4 as follows.

t |= (D(b),EMϕ) if ∃x minimal, λ(x) = a, D(a) = D(b), t, x |= ϕ

t |= (D(b), D(B),EXϕ) if ∃x minimal, λ(x) = a, a ∈ D(b) \D(B), t, x |= ϕ

t |= (D(A), D(B), ϕ U ψ) if ∃z, t, z |= ψ, ∀y < z : t, y |= ϕ,
∃y ≤ z : λ(y) ∈ D(A), ∀y ≤ z : λ(y) 6∈ D(B)

It is clear that some states in Q3 and Q4 can never been satisfied. For exam-
ple, this happens if D(b) \D(B) = ∅ in Q3, and similarly, if D(A) \D(B) = ∅
in Q4. Thus, all these states can be replaced by the symbol ⊥. Moreover, some
states can also be identified. We have not done it explicitly since this would lead
to more case distinctions in the formulae below and hence to a more complicated
reading. We shall come to this point in Remark 1.
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The set of positive boolean combinations of elements in a set Z is denoted
B+(Z). Recall that α is a boolean combination of EM-formulae and, by the
semantics above, we have EMϕ =

∨
b∈Σ(D(b),EMϕ). Hence, α is equivalent to

some α′ ∈ B+(Q′ ∪Q′), which becomes the initial condition of Aα.

The extended transition function is a mapping δ : B+(Q∪Q)×Σ → B+(Q∪
Q). The actual transition function of Aα is the restriction of δ to (Q′ ∪Q′)×Σ.
As usual, we define δ inductively. For f, g ∈ B+(Q ∪ Q), p ∈ Q and a ∈ Σ we
define

δ(f ∨ g, a) = δ(f, a) ∨ δ(g, a)
δ(f ∧ g, a) = δ(f, a) ∧ δ(g, a)

δ(¬p, a) = δ̃(p, a)

where f̃ ∨ g = f̃ ∧ g̃ and f̃ ∧ g = f̃ ∨ g̃, for f, g ∈ B+(Q ∪ Q); and p̃ = ¬p and
¬̃p = p for p ∈ Q.

The simplest case for the transition function is when the state is a subformula
of the form b ∈ Σ and we read a letter a ∈ Σ:

δ(b, a) =

{
> if a = b,
⊥ if a 6= b.

Transitions for EMϕ and a ∈ Σ:

δ(EMϕ, a) =
∨

b∈Σ δ((D(b),EMϕ), a)

δ((D(b),EMϕ), a) =

{
δ(ϕ, a) if D(a) = D(b)
(D(b),EMϕ) if a /∈ D(b)
⊥ otherwise.

b � ϕ

I(b) (D(b),EMϕ)�

A transition from state EMϕ only occurs on the first position of the word and
looks for a minimal vertex x in the associated trace satisfying ϕ. Since this
minimal vertex needs not be the first letter of the word, we may have to skip
some letters independent from x before starting the verification of ϕ. For this,
we guess the set D(b) of letters that depend on x and we skip letters that are
not in D(b). When we start the verification of ϕ, we have to check that our guess
was correct (D(a) = D(b)).
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Transitions for EXϕ and a ∈ Σ:

δ(EXϕ, a) = (D(a), ∅,EXϕ).

δ((D(b), D(B),EXϕ), a) =



(D(b), D(B),EXϕ) if a /∈ D(b) ∪D(B),
δ(ϕ, a) ∨ (D(b), D(B) ∪D(a),EXϕ) if a ∈ D(b) \D(B),
(D(b), D(B) ∪D(a),EXϕ) otherwise.

b

B

EXϕ -

(D(b), D(B),EXϕ)�

�
�

�
��

A transition from state EXϕ looks in the associated trace for an immediate
successor of the current vertex satisfying ϕ. This immediate successor has to be
labeled with a letter dependent on the label (say b) of the current vertex. In
a state (D(b), D(B),EXϕ), the alphabetic components allow to check this fact.
Since this immediate successor needs not be the next letter in the word that is
dependent on b, we may have to skip some letters before starting the verification
of ϕ. Once some letters have been skipped, all dependent letters have to be
skipped as well. The second component of (D(b), D(B),EXϕ) remembers the
letters that have to be skipped.

Transitions for ϕ U ψ and a ∈ Σ:

δ(ϕ U ψ, a) = δ(ψ, a) ∨ δ(ϕ, a) ∧ (D(a), ∅, ϕ U ψ)

δ((D(A), D(B), ϕ U ψ), a) =



(D(A), D(B), ϕ U ψ) if a /∈ D(A ∪B),
(D(A), D(B) ∪D(a), ϕ U ψ) if a ∈ D(B),
δ(ψ, a)
∨ δ(ϕ, a) ∧ (D(A) ∪D(a), D(B), ϕ U ψ)
∨ (D(A), D(B) ∪D(a), ϕ U ψ) otherwise.

ϕ U ψ - x
��������

ψ�z
HHHHHH B

A

(D(A), D(B), ϕ U ψ)�

In order to check that ϕUψ holds at the current vertex (say x), we have to move
forward in the word until we find some vertex (say z) causally in the future of
x that satisfies ψ. The first two components of (D(A), D(B), ϕ U ψ) gives the
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letters that must be causally in the future of x. Hence, if we read a letter that
is not in D(A∪B), we just skip it and continue to move forward. Otherwise, we
guess whether the letter will be causally in the past of z or not. If yes, then we
have to check that ϕ holds. If no, then we have to remember the letter to make
sure that z will not be in its causal future. This is the purpose of the second
component in a state (D(A), D(B), ϕUψ). At some point, we have to check that
ψ holds when reading a letter in D(A) \D(B) which ensures that z is causally
in the future of x and that we have checked ϕ for all vertices causally between
x and z.

Acceptance condition. The automaton that we construct is very weak mean-
ing that there is a partial order on states such that the transition function is
non-increasing. The order is defined first by the subformulae ordering and second
by the reverse containment ordering on the subalphabets. The non increasing
property is clear from the definition of the transition function.

Since the automaton is very weak, on each infinite branch of a run, the state
is ultimately constant, called its ultimate state. For a finite branch its ultimate
state is the last state. The branch is accepting if its ultimate state is not in
Q′ since these states represent obligations that have to be fulfilled eventually.
Therefore, the co-Büchi acceptance condition is given by the set Q′ and the
equivalent Büchi acceptance condition is given by Q′. Note that Q′ is also the
set of final states used to accept finite traces.

Proposition 7. The automaton Aα accepts the word language

L(Aα) = {w ∈ Σ∞ | [w] |= α},

where [w] denotes the trace associated with the word w ∈ Σ∞.

Remark 1. For the complexity the number of states of Aα is important. Obvi-
ously, it is |α| times a quadratic polynomial in the number of subsets D(A),
where A ⊆ Σ and |α| denotes the size of the initial formula. To have a better
bound let us count the number of states more accurately after some minimization
procedure. First we construct reachable states only. Thus we are inside the set
Q′ ∪Q′. A state (D(b), D(B),EXϕ) ∈ Q3 is never satisfiable if D(b) \D(B) = ∅.
Thus, all these states can be removed and replaced by the symbol ⊥ when they
appear in the right-hand side of a transition. Moreover, {b} ∪ B is always con-
nected and we may identify (D(b), D(B),EXϕ) with (D(b′), D(B),EXϕ) as soon
as D({b} ∪ B) = D({b′} ∪ B). Analogously, a state (D(A), D(B), ϕ U ψ) ∈ Q4

is never satisfiable if D(A) \D(B) = ∅. Again, all these states can be removed
and replaced by the symbol ⊥. Again, A ∪B is connected and we may identify
(D(A), D(B), ϕUψ) with (D(A′), D(B), ϕUψ) as soon as D(A∪B) = D(A′∪B).
Altogether, we can bound the number of states by 2N(Σ,D) · |α|, where

N(Σ,D) = |{(D(A ∪B), D(B)) | A ∪B connected and D(A) \D(B) 6= ∅}|.

If the dependence relation is full, that is, when traces are actually words, then
N(Σ,D) = 1 and the size of our automaton does not depend on the size of the

21



alphabet. In this case, we essentially get the usual construction for LTL formulae
over words.

Finally, we can decompose (Σ,D) into its connected components such that
(Σ,D) is a disjoint union of connected graphs (Σi, Di) for 1 ≤ i ≤ k. Then we
can construct the automaton for each connected component independently and
the number M(Σ,D) = max1≤i≤k N(Σi, Di) becomes important rather than
N(Σ,D). The reason is that t |= (D(b),EMϕ) if and only πB(t) |= (D(b),EMϕ),
where πB(t) denotes the projection of t over the connected component B of b,
that is, πB(t) is the restriction of t to the vertices with label in B.

Theorem 4. Let c > 0 be a constant. The following satisfiability problem is
PSPACE-complete:

Input: A dependence alphabet (Σ,D) such that M(Σ,D) ≤ c and a formula
α ∈ LocTLinit

Σ (EX,U).
Question: Is there a real trace t ∈ R such that t |= α?

Proof. The PSPACE-hardness follows from the word case. The PSPACE al-
gorithm reduces the satisfiability problem in a first phase to a conjunction of
satisfiability problems, one for each connected component of (Σ,D). Then for
each connected component one after another we can check emptiness for the
alternating automata according to the construction in Proposition 7. Checking
emptiness for an alternating automaton can be done in PSPACE with respect
to the size the automaton. ut

The construction of an alternating automaton associated with a local tempo-
ral logic formula can be carried out for the existential until EU and the operator
EG from TLC. Also, we can extend the construction for the past modalities EY,
S and ES and for the operator Eco from TLC is we use two-way alternating au-
tomata. Since the emptiness problem for two-way alternating automata is also
PSPACE-complete [17], we get a similar result for the local temporal logic using
all operators. This extends the result in [2] concerning TLC.

7 Conclusion

We have defined a basic and natural local logic for Mazurkiewicz traces which
is expressively complete with respect to first order if and only if the dependence
alphabet is a cograph, i.e., all traces are series parallel posets. The main open
problem remains to define a (natural) local logic which yields expressive com-
pleteness for more general (best for all) dependence alphabets, and such that
the satisfiability problem is in PSPACE or at least elementary.

There were two recent proposals to solve this problem. The first one [14]
introduce a local temporal logic which is in the same spirit that the one used in
the present paper but uses filtered until and past tense modalities (EY and S).
The second one [1] uses a past oriented logic with a rather special form of previous
modality with two arguments and a non-standard semantics (the evaluation of
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one argument is restricted to a factor of the original trace). In both cases, the
logic is proved to be expressively complete for arbitrary dependence alphabets
and decidable in PSPACE. Still, the problem of finding more natural logics that
are expressively complete and decidable in PSPACE remains open.

There is also a proposal by Walukiewicz [33] for a local logic for traces, but
his focus is on monadic second order logic and based on a µ–calculus, so it is of
quite different spirit.
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