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Abstract—We study linear-time temporal logics interpreted
over data words with multiple attributes. We restrict the atomic
formulas to equalities of attribute values in successive positions
and to repetitions of attribute values in the future or past.
We demonstrate correspondences between satisfiability problems
for logics and reachability-like decision problems for counter
systems. We show that allowing/disallowing atomic formulas
expressing repetitions of values in the past corresponds to the
reachability/coverability problem in Petri nets. This gives us
2EXPSPACE upper bounds for several satisfiability problems. We
prove matching lower bounds by reduction from a reachability
problem for a newly introduced class of counter systems. This
new class is a succinct version of vector addition systems with
states in which counters are accessed via pointers, a poten-
tially useful feature in other contexts. We strengthen further
the correspondences between data logics and counter systems
by characterizing the complexity of fragments, extensions and
variants of the logic. For instance, we precisely characterize the
relationship between the number of attributes allowed in the logic
and the number of counters needed in the counter system.

I. INTRODUCTION

Words with multiple data: Finite data words [4] are
ubiquitous structures that include timed words, runs of counter
automata or runs of concurrent programs with an unbounded
number of processes. These are finite words in which every
position carries a label from a finite alphabet and a data value
from some infinite alphabet. More generally, structures over
an infinite alphabet provide an adequate abstraction for objects
from several domains: for example, infinite runs of counter
automata can be viewed as infinite data words, finite data
trees model XML documents with attribute values [9] and so
on. A wealth of specification formalisms for data words (or
slight variants) has been introduced stemming from automata,
see e.g. [26], [29], to adequate logical languages such as first-
order logic [1], [5] or temporal logics [23], [19], [9], [17], [10]
(see also a related formalism in [12]). Depending on the type
of structures, other formalisms have been considered such as
XPath [9] or monadic second-order logic [3]. In full generality,
most formalisms lead to undecidable decision problems and a
well-known research trend consists of finding a good trade-off
between expressiveness and decidability. Restrictions to regain
decidability are protean: bounding the models (from trees to
words for instance), restricting the number of variables, see
e.g. [1], limiting the set of the temporal operators or the use
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of the data manipulating operator, see e.g. [11], [6]. Moreover,
interesting and surprising results have been exhibited about
relationships between logics for data words and counter au-
tomata [1], [7], [2], leading to a first classification of automata
on data words [2]. This is why logics for data words are not
only interesting for their own sake but also for their deep
relationships with data automata or with counter automata.
Herein, we pursue further this line of work and we work with
words in which every position contains a vector of data values.

Motivations: In [6], a decidable logic interpreted over
(finite or infinite) sequences of variable valuations (understood
as words with multiple data) is introduced in which the atomic
formulae are of the form either x ≈ Xiy or x ≈ 〈>?〉y. The
formula x ≈ Xiy states that the current value of variable x is
the same as the value of y i steps ahead (local constraint)
whereas x ≈ 〈>?〉y states that the current value of x is
repeated in a future value of y (future obligation). Such atomic
properties can be naturally expressed with a freeze operator
that stores a data value for later comparison, and in [6],
it is shown that the satisfiability problem is decidable with
the temporal operators in {X,X−1,U,S}. The freeze operator
allows to store a data value in a register and then to test later
equality between the value in the register and a data value at
some other position. This is a powerful mechanism but the
logic in [6] uses it in a limited way: only repetitions of data
values can be expressed and it restricts very naturally the use
of the freeze operator. The decidability result is robust since,
for instance, it holds with the addition of atomic formulas of
the form x ≈ 〈>?〉−1y stating that the current value of x is
repeated in a past value of y (past obligation). Decidability
can be shown either by reduction into FO2(∼, <,+ω), a
first-order logic over data words introduced in [1] or by
reduction into the verification of fairness properties in Petri
nets, shown decidable in [16]. In both cases, an essential use
of the decidability of the reachability problem for Petri nets
is made, for which no primitive recursive algorithm is known,
see e.g. [21]. Hence, even though the logics shown decidable
in [6] poorly use the freeze operator (the only properties about
data are related to controlled repetitions), the complexity of
their satisfiability problems is unknown. Moreover, it is unclear
whether the reductions into the reachability problem for Petri
nets are really needed; this would be the case if reductions
in the other direction exist. Note that in [17], a richer logic
has been introduced and it has been shown that satisfiability



is equivalent to the reachability problem for Petri nets.
Our main motivation is to investigate logics that express

repetitions of values, revealing the correspondence between
expressivity of the logic and reachability problems for counter
machines, including well-known problems for Petri nets. This
work can be seen as a study of the precision with which
counting needs to be done as a consequence of having a
mechanism for demanding “the current data value is repeated
in the future/past” in a logic. Hence, this is not the study
of yet another logic, but of a natural feature shared by most
studied logics on data words [6], [1], [7], [11], [17], [9],
[10]: the property of demanding that a data value be repeated.
We consider different ways in which one can demand the
repetition of a value, and study the repercussion in terms of
the “precision” with which we need to count in order to solve
the satisfiability problem. Our measurement of precision here
distinguishes the reachability versus the coverability problem
for Petri nets and the number of counters needed as a function
of the number of variables used in the logic.

Our contribution: We introduce the logic LRV (“Logic of
Repeating Values”) interpreted over finite words with multiple
data, equipped with atomic formulas of the form either x ≈
Xiy or x ≈ 〈φ?〉y [resp. x 6≈ 〈φ?〉y], where x ≈ 〈φ?〉y [resp.
x 6≈ 〈φ?〉y] states that the current value of x is repeated [resp.
is not repeated] in some future value of y in a position where
φ holds true. When we impose φ = >, the logic introduced
in [6] is obtained and it is denoted by LRV>. The syntax
for future obligations is freely inspired from PDL with its test
operator ‘?’. Even though LRV contains the past-time temporal
operators X−1 and S, it has no past obligations. We write
PLRV to denote the extension of LRV with past obligations
of the form x ≈ 〈φ?〉−1y or x 6≈ 〈φ?〉−1y. Below, we illustrate
how LRV and variants are compared to existing data logics.

BD-LTL [17] (≡ Reach(VASS)) LTL↓1(X,X−1,U,S) [7] (undec.)

PLRV

LRVPLRV> = CLTLXF,XF−1

[6]

LRV> = CLTLXF [6]

(1 attribute)

Our main results are listed below.
1. We begin where [6] stopped: the reachability problem for

Petri nets is reduced to the satisfiability problem of PLRV
(i.e., the logic with past obligations).

2. Without past obligations, the satisfiability problem is much
easier: we reduce the satisfiability problem of LRV> and
LRV to the control-state reachability problem for VASS,
via a detour to a reachability problem on gainy VASS. But
the number of counters in the VASS is exponential in the
number of variables used in the formula. This gives us a
2EXPSPACE upper bound.

3. The exponential blow up mentioned above is unavoidable:
we show a polynomial-time reduction in the converse direc-
tion, starting from a linear sized counter machine (without
zero tests) that can access exponentially many counters.

This gives us a matching 2EXPSPACE lower bound.
4. Several augmentations to the logic do not alter the com-

plexity: we show that complexity is preserved when MSO-
definable temporal operators are added or when infinite
words with multiple data are considered.

5. The power of nested testing formulas: we show that the
complexity of the satisfiability problem for LRV> reduces
to PSPACE-complete when the number of variables in the
logic is bounded by a constant, while the complexity of
the satisfiability of LRV does not reduce even when only
one variable is allowed. Recall that the difference between
LRV> and LRV is that the later allows any φ in x ≈ 〈φ?〉y
while the former restricts φ to just >.

6. The power of pairs of repeating values: we show that the
satisfiability problem of LRV> augmented with 〈x, y〉 ≈
〈>?〉〈x′, y′〉 (repetitions of pairs of data values) is unde-
cidable, even when 〈x, y〉 ≈ 〈>?〉−1〈x′, y′〉 is not allowed
(i.e., even when past obligations are not allowed).

7. Implications for classical logics: we show a 3EXPSPACE
upper bound for the satisfiability problem for forward-
EMSO2(+1, <,∼) over data words, using results on LRV.

For proving the result mentioned in point 3 above, we in-
troduce a new class of counter machines that we call chain
systems and show a key hardness result for them. This class
is interesting for its own sake and could be used in situations
where the power of binary encoding needs to be used. We
prove the (k+ 1)EXPSPACE-completeness of the control state
reachability problem for chain systems of level k (we only
use k = 1 in this paper but the proof for arbitrary k is
no more complex than the proof for the particular case of
k = 1). In chain systems, the number of counters is equal
to an exponential tower of height k but we cannot access
the counters directly in the transitions. Instead, we have a
pointer that we can move along a chain of counters. The
(k + 1)EXPSPACE lower bound is obtained by a non-trivial
extension of the EXPSPACE-hardness result from [22], [8].
Then we show that the control state reachability problem for
the class of chain systems with k = 1 can be reduced to
the satisfiability problem for LRV (see Section V). It was
known that data logics are strongly related to classes of counter
automata, see e.g. [1], [7], [2] but herein, we show how varying
the expressive power of logics leads to correspondence with
different reachability problems for counter machines.

II. PRELIMINARIES

We write N [resp. Z] to denote the set of non-negative
integers [resp. integers] and [i, j] to denote {k ∈ Z : i ≤
k and k ≤ j}. For v ∈ Zn, v(i) denotes the ith element of
v for every i ∈ [1, n]. We write v � v′ whenever for every
i ∈ [1, n], we have v(i) ≤ v′(i). For a (possibly infinite)
alphabet Σ, Σ∗ represents the set of finite words over Σ, Σ+

the set of finite non-empty words over Σ. For a finite word
or sequence u = a1 . . . ak over Σ, we write |u| to denote its
length k. For 0 ≤ i < |u|, u(i) represents the (i+ 1)-th letter
of the word, here ai+1.



Logics of Repeating Values: Let VAR = {x1, x2, . . .} be
a countably infinite set of variables. We denote by LRV the
logic whose formulas are defined as follows, where x, y ∈
VAR, i ∈ N.

φ ::= x ≈ Xiy | x ≈ 〈φ?〉y | x 6≈ 〈φ?〉y | φ ∧ φ | ¬φ |
Xφ | φUφ | X−1φ | φSφ

A valuation is a map from VAR to N, and a model is a finite
non-empty sequence σ of valuations. For every model σ and
0 ≤ i < |σ|, the satisfaction relation |= is defined:
• σ, i |= x ≈ Xjy iff i+j < |σ| and σ(i)(x) = σ(i+j)(y),
• σ, i |= x ≈ 〈φ?〉y iff there exists j such that i < j < |σ|,
σ(i)(x) = σ(j)(y) and σ, j |= φ.

The semantics x 6≈ 〈φ?〉y is defined similarly but asking for a
different data value. The temporal operators next (X), previous
(X−1), until (U) and since (S) and Boolean connectives are
defined in the usual way. We also use the standard derived
temporal operators (G, F, F−1, . . . ) and constants >, ⊥. We
write σ |= φ if σ, 0 |= φ. Given a set of temporal operators O,
we write LRV(O) to denote the fragment of LRV restricted
to formulas with operators from O. The satisfiability problem
for LRV (written SAT(LRV)) is to check for an LRV formula
φ, whether there is σ such that σ |= φ. Let PLRV be the
extension of LRV with additional atomic formulas of the form
x ≈ 〈φ?〉−1y and x 6≈ 〈φ?〉−1y. The satisfaction relation is
extended as expected: σ, i |= x ≈ 〈φ?〉−1y iff there is 0 ≤ j <
i such that σ(i)(x) = σ(j)(y) and σ, j |= φ, and similarly for
x 6≈ 〈φ?〉−1y. We write LRV> [resp. PLRV>] to denote the
fragment of LRV [resp. PLRV] in which atomic formulas are
restricted to x ≈ Xiy and x ≈ 〈>?〉y [resp. to x ≈ Xiy,
x ≈ 〈>?〉y and x ≈ 〈>?〉−1y]. In [6], LRV> and PLRV>

were shown to be decidable by reduction into the reachability
problem for Petri nets. However, the characterization of their
complexity remained open.

Properties: In the table below, we justify our choices
for atomic formulae by presenting several abbreviations (with
their obvious semantics). By contrast, we include in LRV both
x ≈ 〈φ?〉y and x 6≈ 〈φ?〉y when φ is an arbitrary formula since
there is no obvious way to express one with the other.

Abbreviation Definition

x 6≈ Xiy ¬(x ≈ Xiy) ∧
i times︷ ︸︸ ︷
X · · ·X>

x ≈ X−iy

i times︷ ︸︸ ︷
X−1 · · ·X−1(Xix ≈ y)

x 6≈ X−iy ¬(x ≈ X−iy) ∧

i times︷ ︸︸ ︷
X−1 · · ·X−1>

x 6≈ 〈>?〉y (x 6≈ Xy) ∨ X((y ≈ Xy)U(y 6≈ Xy))
x 6≈ 〈>?〉−1y (x 6≈ X−1y) ∨ X−1((y ≈ X−1y)S(y 6≈ X−1y))

Models for LRV can be viewed as finite data words in (Σ×
D)∗, where Σ is a finite alphabet and D is an infinite domain.
E.g., equalities between dedicated variables can simulate that
a position is labelled by a letter from Σ; moreover, we may
assume that the data values are encoded with the variable x.
Let us express that whenever there are i < j s.t. i and j [resp.
i+ 1 and j + 1, i+ 2 and j + 2] are labelled by a [resp. a′,

a′′], σ(i+1)(x) 6= σ(j+1)(x). This can be stated in LRV by:
G(a ∧ X(a′ ∧ Xa′′) ⇒ X¬(x ≈ 〈X−1a ∧ a′ ∧ Xa′′?〉x)). This
is an example of key constraints, see e.g. [27, Definition 2.1]
and the paper contains also numerous examples of properties
that can be captured by LRV.

Basics on VASS: A vector addition system with states
(VASS) is a tuple A = 〈Q,C, δ〉 where Q is a finite set of
control states, C is a finite set of counters and δ is a finite
set of transitions in Q × ZC × Q. A configuration of A is a
pair 〈q,v〉 ∈ Q × NC . We write 〈q,v〉 −→ 〈q′,v′〉 if there is
(q,u, q′) ∈ δ such that v′ = v + u. The reachability problem
for VASS (written Reach(VASS)) consists in checking whether
〈q0,v0〉 ∗−→ 〈qf ,vf 〉, given two configurations 〈q0,v0〉 and
〈qf ,vf 〉. The reachability problem for VASS is decidable with
non-primitive recursive complexity algorithms [25], [18], [21],
but the best known lower bound is only EXPSPACE [22],
[8]. The control state reachability problem is the following
EXPSPACE-complete problem [22], [28]: given a configuration
〈q0,v0〉 and a control state qf , check whether 〈q0,v0〉 ∗−→
〈qf ,v〉 for some v ∈ NC . We also use two other kinds
of computations: with gains (−→gainy) or losses (−→lossy). We
write 〈q,v〉 −→gainy 〈q′,v′〉 [resp. 〈q,v〉 −→lossy 〈q′,v′〉] if
there is a transition (q,u, q′) ∈ δ and w ∈ NC such that
v � w and w + u � v′ [resp. w � v and v′ � w + u].

III. THE POWER OF PAST: FROM REACH(VASS) TO
SAT(PLRV)

While [6] concentrated on decidability results, here we be-
gin with a hardness result. When past obligations are allowed
as in PLRV, SAT(PLRV) is equivalent to the very difficult
problem of reachability in VASS. Combined with the result of
the next section where we prove that removing past obligations
leads to a reduction into the control state reachability problem
for VASS, this means that reasoning with past obligations is
much more complicated.

Theorem 1. There is a polynomial-space reduction from
Reach(VASS) into SAT(PLRV).

The proof of Theorem 1 is analogous to the proof of [1,
Theorem 16] except that properties are expressed in PLRV
instead of being expressed in FO2(∼, <,+1). In Section IV-A,
we show how to eliminate test formulas φ from x ≈ 〈φ?〉y
and x ≈ 〈φ?〉−1y. Combining this with the decidability proof
for PLRV> satisfiability from [6], we get that SAT(PLRV)
[resp. for SAT(PLRV>)] is equivalent to Reach(VASS) modulo
polynomial-space reductions.

IV. LEAVING THE PAST BEHIND SIMPLIFIES THINGS:
FROM SAT(LRV) TO CONTROL STATE REACHABILITY

In this section, we show the reduction from SAT(LRV) to
the control state reachability problem in VASS. We obtain a
2EXPSPACE upper bound for SAT(LRV) as a consequence.
This is done in two steps: (1) simplifying formulas of the form
x ≈ 〈φ?〉y to remove the test formula φ (i.e., a reduction
from SAT(LRV) into SAT(LRV>)); and (2) reducing from
SAT(LRV>) into the control state reachability pb. in VASS.



A. Elimination of Test Formulas

We give a polynomial-time algorithm that for every ϕ ∈
LRV computes a formula ϕ′ ∈ LRV> that preserves satisfi-
ability: there is a model σ s.t. σ |= ϕ iff there is a model
σ′ s.t. σ′ |= ϕ′. We give the reduction in two steps. First, we
eliminate formulas with inequality tests of the form x 6≈ 〈ϕ?〉y
using only positive tests of the form x ≈ 〈ϕ?〉y. We then
eliminate formulas of the form x ≈ 〈ϕ?〉y, using only formulas
of the form x ≈ 〈>?〉y. Let LRV≈ be the logic LRV where
there are no appearances of formulas of the form x 6≈ 〈ϕ?〉y;
and let PLRV≈ be PLRV without x 6≈ 〈ϕ?〉y or x 6≈ 〈ϕ?〉−1y.

Proposition 2 (from LRV to LRV≈). There is a polynomial-
time reduction from SAT(LRV) into SAT(LRV≈); and from
SAT(PLRV) into SAT(PLRV≈).

Proof sketch: For every ϕ ∈ LRV, we compute
ϕ′ ∈ LRV≈ in polynomial time, which preserves satisfiability.
Besides all the variables from ϕ, ϕ′ uses a distinguished
variable k (which will have a constant value, different from all
the values of the variables of ϕ) and variables v≈y,ψ , vx6≈〈ψ?〉y
for every subformula ψ of ϕ and variables x, y of ϕ.

Each subformula x 6≈ 〈ψ?〉y is replaced by x 6≈ vx6≈〈ψ?〉y ∧
vx6≈〈ψ?〉y ≈ 〈ψ?〉y, where vx6≈〈ψ?〉y is a fresh variable. On the
other hand, for each subformula ¬(x 6≈ 〈ψ?〉y), we use the
variable v≈y,ψ in conjunction with k as shown below.

k

v≈y,ψ

x

≈ k

v≈y,ψ

x

≈

|= ¬(x 6≈ 〈ψ?〉y)

k

v≈y,ψ

|= ¬ψ

6≈

≈

y

v≈y,ψ

|= ψ

≈ y

v≈y,ψ

|= ¬ψ

6≈ y

v≈y,ψ

|= ψ

≈

In the beginning, v≈y,ψ ≈ k, which is broken at the first position
where all future positions where ψ holds have the same value
for y. At this position (say i+1), v≈y,ψ 6≈ k and v≈y,ψ maintains
the same value (say n) at all future positions, illustrated as
a dashed box above. In all positions after i that satisfy ψ,
y ≈ v≈y,ψ . These conditions can be enforced without using
¬(x 6≈ 〈ψ?〉y). Suppose x also has value n at position i as
shown above. Now in any position after i that satisfies ψ, y
has the value n, which is the value of x in position i. This is
exactly the semantics of ¬(x 6≈ 〈ψ?〉y). Hence, ¬(x 6≈ 〈ψ?〉y)
can be replaced by ¬XFψ ∨ x ≈ Xv≈y,ψ . Past obligations are
treated in a symmetrical way.

Proposition 3 (from LRV≈ to LRV>). There is a polynomial-
time reduction from SAT(LRV≈) into SAT(LRV>); and from
SAT(PLRV≈) into SAT(PLRV>).

Proof sketch: For every ϕ ∈ LRV≈, we compute in
polynomial time ϕ′ ∈ LRV> that preserves satisfiability.
Besides all the variables from ϕ, ϕ′ uses a new distinguished
variable k, and a variable vy,ψ for every subformula ψ of ϕ
and every variable y of ϕ. We enforce k to have a constant
value different from all values of variables of ϕ. At every

k

v≈y,ψ

x

≈
�≈

k

v≈y,ψ

x

≈
�≈

k

v≈y,ψ

x

�≈
≈

|= ¬(x �≈ �ψ?�y)

y

v≈y,ψ

ψ

≈ y

v≈y,ψ

¬ψ

y

v≈y,ψ

ψ

≈

k

ψ

k

≈

≈

vy,ψ vy,ψ

y y

k

v≈y,ψ

x

≈
�≈

k

v≈y,ψ

x

≈
�≈

k

v≈y,ψ

x

�≈
≈

|= ¬(x �≈ �ψ?�y)

y

v≈y,ψ

ψ
≈ y

v≈y,ψ

¬ψ

y

v≈y,ψ

ψ

≈
k

ψ

k

≈

≈
vy,ψ vy,ψ

y y

position, we enforce ψ to hold if vy,ψ ≈ y, and ψ not to hold
if vy,ψ ≈ k as shown above. Then x ≈ 〈ψ?〉y is replaced by
x ≈ 〈>?〉vy,ψ .

Corollary 4. There is a polynomial-time reduction from
SAT(LRV) into SAT(LRV>).

Since SAT(PLRV>) is decidable [6], we obtain the decid-
ability of SAT(PLRV).

Corollary 5. SAT(PLRV) is decidable.

B. From LRV> Satisfiability to Control State Reachability

In [6], SAT(LRV>) is reduced to the reachability problem
for a subclass of VASS. Herein, this is refined by introducing
incremental errors in order to improve the complexity.

In [6], the standard concept of atoms from the Vardi-Wolper
construction of automaton for LTL is used. Refer to the
diagram at the top of Figure 1. The formula x ≈ 〈>?〉y in
the left atom creates an obligation for the current value of x

x 6≈ Xz

x ≈ 〈>?〉y y ≈ z
X++
{y}

X−−{y}

no change

X−−{y}

no change

x 6≈ Xz

x ≈ 〈>?〉y y ≈ z
X++
{y} X−−{y} + ∆ X−−{y} + ∆

Fig. 1. Automaton constructions from [6] (top) and from this paper (bottom).

to appear some time in the future in y. This obligation cannot
be satisfied in the second atom, since y has to satisfy some
other constraint there (y ≈ z). To remember this unsatisfied
obligation about y while taking the transition from the first
atom to the second, the counter X{y} is incremented. The
counter can be decremented later in transitions that allow the
repetition in y. If several transitions allow such a repetition,
only one of them needs to decrement the counter (since there
was only one obligation at the beginning). The other transi-
tions which should not decrement the counter can take the
alternative labelled “no change” in the right part of Figure 1.

The idea here is to replace the combination of the decre-
menting transition and the “no change” transition in the top
of Figure 1 with a single transition with incremental errors as
shown in the bottom. After Lemma 6 below that formalises
ideas from [6, Section 7], we prove that the transition with
incremental errors is sufficient.

Lemma 6 ([6]). For a LRV> formula φ that uses the variables
{x1, . . . , xk}, a VASS Aφ = 〈Q,C, δ〉 can be defined, along
with sets Q0, Qf ⊆ Q of initial and final states resp., s.t.



• the set of counters C consists of all nonempty subsets of
{x1, . . . , xk}.

• For all q, q′ ∈ Q, either {u | (q,u, q′) ∈ δ} = [n1,m1]×
· · · × [n|C|,m|C|] for some n1,m1, . . . , n|C|,m|C| ∈
[−k, k], or {u | (q,u, q′) ∈ δ} = ∅. (We call this property
closure under component-wise interpolation.)

• If δ∩({q}× [−k, k]C×{q′}) is not empty, then for every
X ∈ C there is (q,u, q′) ∈ δ so that u(X) ≥ 0. (We call
this property optional decrement.)

• Let 0 be the counter valuation that assigns 0 to all
counters. Then φ is satisfiable iff 〈q0,0〉 ∗−→ 〈qf ,0〉 for
some q0 ∈ Q0 and qf ∈ Qf .

At the top of Figure 1, only one counter X{y} is shown and
is decremented by 1 for simplicity. In general, multiple coun-
ters can be changed and they can be incremented/decremented
by any number up to k, depending on the initial and target
atoms of the transition. If a counter can be incremented by
k1 and can be decremented by k2, then there will also be
transitions between the same pair of atoms allowing changes
of k1− 1, . . . , 1, 0,−1, . . .− (k2− 1). This corresponds to the
closure under component-wise interpolation mentioned in the
lemma above. The optional decrement property corresponds
to the fact that there will always be a “no change” transition
that does not decrement any counter.

Now, we show that a single transition that decrements all
counters by the maximal possible number can simulate the set
of all transitions between two atoms, using incremental errors.
Let Ainc = 〈Q,C, δmin〉 and Q0, Qf ⊆ Q, where Q,Q0, Qf
and C are same as those of Aφ and δmin is defined as follows:
(q,minupq,q′ , q

′) ∈ δmin iff δ ∩ ({q} × [−k, k]C × {q′}) is
not empty and minupq,q′(X) = minu:(q,u,q′)∈δ{u(X)} for all
X ∈ C.

Lemma 7. If 〈q,v〉 −→ 〈q′,v′〉 in Aφ, then 〈q,v〉 −→gainy

〈q′,v′〉 in Ainc.

Proof sketch: If Aφ takes one of the transitions in the
top of Figure 1, Ainc takes the corresponding transition at the
bottom, adjusting the incremental error ∆ accordingly.

Lemma 8. If 〈q1,v1〉 ∗−→gainy 〈q2,0〉 in Ainc and v′1 � v1,
then 〈q1,v

′
1〉
∗−→ 〈q2,0〉 in Aφ.

Proof sketch: If Ainc takes a transition at the bottom of
Figure 1, Aφ takes the corresponding decrementing transition
at the top, ignoring any incremental errors. This may result in
Aφ reaching 0 earlier in the run, in which case “no change”
transitions are used in the rest of the run.

Theorem 9. SAT(LRV>) is in 2EXPSPACE.

Proof sketch: The proof is in four steps (standard
arguments are used for 3. and 4.).

1 From [6], a LRV> formula φ is satisfiable iff 〈q0,0〉 ∗−→
〈qf ,0〉 in Aφ for some q0 ∈ Q0 and qf ∈ Qf .

2 This is the step that requires new insight. From Lemmas 7
and 8, 〈q0,0〉 ∗−→ 〈qf ,0〉 in Aφ iff 〈q0,0〉 ∗−→gainy 〈qf ,0〉
in Ainc.

3 Let Adec be the VASS obtained from Ainc by “reversing”
each transition. By replacing each gainy transition of
Ainc by the reverse lossy transtion of Adec, we infer that
〈q0,0〉 ∗−→gainy 〈qf ,0〉 in Ainc iff 〈qf ,0〉 ∗−→lossy 〈q0,0〉
in Adec.

4 〈qf ,0〉 ∗−→lossy 〈q0,0〉 iff 〈qf ,0〉 ∗−→ 〈q0,v〉 for some v.
Checking the latter condition is precisely the control state
reachability problem for VASS.

The number of control states and counters inAφ and in Adec is
exponential in |φ| (size of φ). Each control state and transition
function ofAdec can be represented in space polynomial in |φ|.
Given a control state, testing if it is an initial or a final state can
be done in linear time in the size of the state. The automaton
Adec can be constructed in exponential time in |φ|. Hence,
the EXPSPACE upper bound for the control state reachability
problem in VASS [28] gives the 2EXPSPACE upper bound for
SAT(LRV>).

Corollary 10. SAT(LRV) is in 2EXPSPACE.

V. SIMULATING EXPONENTIALLY MANY COUNTERS

In Section IV, the reduction from SAT(LRV) to control state
reachability involves an exponential blow up, since we use one
counter for each subset of variables. The question of whether
this can be avoided depends on whether LRV is powerful
enough to reason about subsets of variables or whether there
is a smarter reduction without a blow-up. Similar questions
are open in other related areas [24].

Here we prove that LRV is indeed powerful enough to
reason about subsets of variables. We establish a 2EXPSPACE
lower bound, which leverages the power of LRV to access ex-
ponentially many counters through binary encoding. Consider
the variables and their values shown in the table below. The
conditions in the third row are about the equality of variable
values in a single position.

Variable x1 x2 x3 z inc dec
Value 20 30 20 20 10 20

Condition x1 ≈ z x2 6≈ z x3 ≈ z inc 6≈ z dec ≈ z

Encodes 1 0 1 decrement

The combination of all the conditions can be thought of as
encoding “decrement 101th counter”, considering 101 as the
binary encoding of 5, where the i-th bit is 1 if xi ≈ z. A
total of 8 counters can be manipulated with x1, x2 and x3.
Using the power of LRV to reason about values that repeat in
the future, we can encode the condition “for every counter, an
increment is followed by a decrement in the future”, which
then ensures control state reachability.

The rest of this section is divided into three parts. The
first part defines chain systems, which are like VASS where
transition rules like “increment counter X” are replaced by
“increment 101th counter”. The second part shows lower
bounds for the control state reachability problem for chain
systems. The third part shows that LRV can reason about chain
systems of level 1.



A. Chain Systems

We introduce a new class of counter systems that is
instrumental to show that SAT(LRV>) is 2EXPSPACE-hard.
This is an intermediate formalism between counter automata
with zero-tests with counters bounded by triple exponen-
tial values (having 2EXPSPACE-hard control state reachability
problem) and properties expressed in LRV>. Systems with
chained counters have no zero-tests and the only updates
are increments and decrements. However, the systems are
equipped with a finite family of counters, each family having
an exponential number of counters. Let exp(0, n)

def
= n and

exp(k + 1, n)
def
= 2exp(k,n) for every k ≥ 0.

Definition 11. A counter system with chained counters (herein
called a chain system) is a tuple A = 〈Q, f, k,Q0, QF , δ〉
where (1) f : [1, n]→ N where n ≥ 1 is the number of chains
and exp(k, f(α)) is the number of counters for the chain α
where k ≥ 0, (2) Q is a non-empty finite set of states, (3)
Q0 ⊆ Q is the set of initial states and QF ⊆ Q is the set of
final states, (4) δ is the set of transitions in Q× I ×Q where

I = {inc(α),dec(α),next(α),prev(α),first(α)?,first(α)?,

last(α)?, last(α)? : α ∈ [1, n]}.
The system A = 〈Q, f, k,Q0, QF , δ〉 is said to be at

level k. In order to encode the natural numbers from f and
the value k, we use a unary representation. We say that a
transition containing inc(α) is α-incrementing, and a transition
containing dec(α) is α-decrementing. The idea is that for
each chain α ∈ [1, n], we have exp(k, f(α)) counters, but
we cannot access them directly in the transitions like we do
in VASS. Instead, we have a pointer to a counter that we
can move. We can ask if we are pointing to the first counter
(first(α)?) or not (first(α)?), or the last counter (last(α)?)
or not (last(α)?), and we can change the pointer to the next
(next(α)) or previous (prev(α)) counter.

A run is a finite sequence ρ in δ∗ such that

1) for every two ρ(i) = q
instr−−→ r and ρ(i+ 1) = q′

instr′−−→ r′

we have r = q′,
2) for every chain α ∈ [1, n], for every i ∈ [1, |ρ|], we have

0 ≤ cαi < exp(k, f(α)) where

cαi = card({i′ < i | ρ(i′) = q
next(α)−−−−→ r}) −

card({i′ < i | ρ(i′) = q
prev(α)−−−−→ r}),

(1)

3) for every i ∈ [1, |ρ|] and for every chain α ∈ [1, n],

(a) if ρ(i) = q
first(α)?−−−−→ q′, then cαi = 0;

(b) if ρ(i) = q
first(α)?−−−−→ q′, then cαi 6= 0;

(c) if ρ(i) = q
last(α)?−−−−→ q′, then cαi = exp(k, f(α))− 1;

(d) if ρ(i) = q
last(α)?−−−−→ q′, then cαi 6= exp(k, f(α))− 1.

A run is accepting whenever ρ(1) starts with an initial state
from Q0 and ρ(|ρ|) ends with a final state from QF . A run is
perfect iff for every α ∈ [1, n], there is some injective function

γ : {i | ρ(i) is α-decrementing} → {i | ρ(i) is α-incrementing}

such that for every γ(i) = j we have that j < i and cαi = cαj .
A run is gainy and ends at zero iff for every chain α ∈ [1, n],
there is some injective function

γ : {i | ρ(i) is α-incrementing} → {i | ρ(i) is α-decrementing}
such that for every γ(i) = j we have that j > i and cαi = cαj .
In the sequel, we shall simply say that the run is gainy. Below,
we define two problems for which we shall characterize the
computational complexity.

PROBLEM: Existence of a perfect accepting run
of level k ≥ 0 (Per(k))

INPUT: A chain system A of level k.
QUESTION: Does A have a perfect accepting run?

PROBLEM: Existence of a gainy accepting run
of level k ≥ 0 (Gainy(k))

INPUT: A chain system A of level k.
QUESTION: Does A have a gainy accepting run?

Per(k) is actually a control state reachability problem in
VASS where the counters are encoded succinctly. Gainy(k)
is a reachability problem in VASS with incrementing errors
and the reached counter values are equal to zero. Here, the
counters are encoded succinctly too.

Lemma 12. For every k ≥ 0, Per(k) and Gainy(k) are
interreducible in logarithmic space.

Lemma 13. Per(k) is in (k + 1)EXPSPACE.

The proof of Lemma 13 consists of simulating perfect runs
by the runs of a VASS in which the control states record the
positions of the pointers in the chains.

B. Hardness Results for Chain Systems

We show that Per(k) is (k + 1)EXPSPACE-hard. The impli-
cation is that replacing direct access to counters by a pointer
that can move along a chain of counters does not decrease
the power of VASS, while providing access to more counters.
To demonstrate this, we extend Lipton’s EXPSPACE-hardness
proof for the control state reachability problem in VASS [22]
(see also its exposition in [8]). Since our pointers can be moved
only one step at a time, this extension involves new insights
into the control flow of algorithms used in Lipton’s proof,
allowing us to implement it even with the limitations imposed
by step-wise pointer movements.

Lipton’s proof starts from the standard result in computabil-
ity theory that a Turing Machine using space 2n

γ

can be simu-
lated by a counter automaton equipped with 4 counters whose
values are bounded by 22n

γ

. Lipton’s proof shows that such
a counter automaton can be simulated with a VASS. Unlike
counter automata, VASS does not have zero-test transitions.
Each counter c of the automaton is complemented with an
extra counter c in the VASS. The VASS is designed such that
the sum of the values in c and c is 22n

γ

in any reachable
configuration. Now testing c for zero is equivalent to testing
that c is 22n

γ

. This later test is implemented in a VASS as
explained next.



Figure 2 illustrates how a counter si is decremented 22i

times. There are two nested loops indexed by yi−1 and zi−1,
initialised to 22i−1

. When all the iterations are finished, we
would have decremented si exactly 22i−1 × 22i−1

= 22i

times. Testing yi−1 and zi−1 for zero is done by a sim-
ilar gadget, where i, i − 1 are replaced by i − 1, i − 2.

yi−1 = zi−1 = 22
i−1

y−−
i−1, yi−1

++

z−−
i−1, zi−1

++

s−−
i , si

++

zi−1 = 0?

yi−1 = 0?

return

no

no

yes

yes

Fig. 2. Control flow of al-
gorithm that decrements si 22

i

times.

The resulting VASS is com-
posed of nγ constant sized VASS,
each one implementing the nested
loops for an i between 1 and
nγ . The idea behind our (k +
1)EXPSPACE lower bound is to
replace the VASS with a chain
system and nγ with exp(k, nγ).
This will not work as it is,
since a chain system composed
of exp(k, nγ) constant sized por-
tions will not give a polynomial-
time reduction. We reduce the
size of the chain system by ob-
serving that the decrementing al-
gorithm for i−1 is the same as the
one for i, except that i, i−1 are re-
placed by i−1, i−2 respectively.
We can write a single sequence
of instructions for the decrement-
ing algorithm and invoke it for
any i by placing the pointers at
the appropriate counters. Roughly
speaking, exp(k, nγ) copies of the code for large decrements
is replaced by one copy of the code plus a chain of implicit
length exp(k, nγ) equipped with a pointer to refer to a specific
copy.

The main difficulty in the implementation is to ensure
that the multiple invocations of the algorithm return to the
correct point. Unlike Lipton’s proof that uses VASS, we have
to work with chain systems and this introduces some more
constructions, the technical details of which are rather tedious.

Theorem 14. Per(k) is (k + 1)EXPSPACE-hard.

C. Reasoning About Chain Systems with LRV

Given a chain system A of level 1, we construct a formula in
LRV that is satisfiable iff A has a gainy accepting run. Hence,
we get a 2EXPSPACE lower bound for SAT(LRV). The main
idea is to encode runs of chain systems with LRV formulas
that access the counters using binary encoding, so that the
formulas can handle exponentially many counters.

Lemma 15. There is a polynomial-time reduction from
Gainy(1) into SAT(LRV(X,F)).

Proof sketch: Let A = 〈Q, f, 1, Q0, QF , δ〉 be a chain
system of level 1 with f : [1, n] → N, having thus n chains
of counters, of respective size 2f(1), . . . , 2f(n).

We encode a word ρ ∈ δ∗ that represents an accepting run.
For this, we use the alphabet δ of transitions. We can simulate

the labels δ = {t1, . . . , tm} with variables t0, . . . , tm, where
a node has an encoding of the label ti iff the formula 〈ti〉 =
t0 ≈ ti holds true. We build an LRV formula ϕ so that there
is an accepting gainy run ρ ∈ δ∗ of A if, and only if, there is
a model σ so that σ |= ϕ and σ encodes ρ.

The counter-blind conditions to check are: (a) Every posi-
tion satisfies 〈t〉 for some t ∈ δ; (b) the first position satisfies
〈(q0, instr, q)〉 for some q0 ∈ Q0, instr ∈ I , q ∈ Q; (c) the last
position satisfies 〈(q, instr, q′)〉 for some q ∈ Q, instr ∈ I ,
q′ ∈ QF ; (d) no two consecutive positions i and i+ 1 satisfy
〈(q, u, q′)〉 and 〈(p, u′, p′)〉 respectively, with q′ 6= p. The
difficulty is then in checking that the values of the counters
encode indeed a correct gainy run.

We say that a position i is α-incrementing [resp. α-
decrementing] if it satisfies 〈(q, u, q′)〉 for some q, q′ ∈ Q
and u = inc(α) [resp. u = dec(α)]. We use a label (α, i) and
variables xαinc, xαdec for every α ∈ [1, n] and i ∈ [1, f(α)].
We say that a position i operates on the α-counter c, if
〈(α, j)〉 holds (i.e., position i encodes the label (α, j)) for
every position j of the representation of c in base 2 containing
a ‘1’, and ¬〈(α, j)〉 for every position j containing a ‘0’. Note
that we can encode every value 0 ≤ c < 2f(α).

For every chain α, let us consider the following properties:
• Every two positions of σ have different values of xαinc

[resp. of xαdec].
• For every position i of σ operating on an α-counter c with

an instruction ‘first(α)?’ [resp. ‘first(α)?’, ‘last(α)?’,
‘last(α)?’] , we have c = 0 [resp. c 6= 0, c = 2f(α) − 1,
c 6= 2f(α) − 1].

• For every position i of σ operating on an α-counter c,
if the position contains an instruction ‘next(α)’ [resp.
‘prev(α)’], then the next position i + 1 operates on the
α-counter c+1 [resp. c−1]; otherwise, the position i+1
operates on the α-counter c.

• For every α-incrementing position i of σ operating on an
α-counter c there is a future α-decrementing position j >
i on the same α-counter, so that σ(i)(xαinc) = σ(j)(xαdec).

In fact, these properties together with (a)–(d) are sufficient and
necessary to encode a gainy and accepting run of A, and they
can be all expressed in LRV. Then, we obtain a polynomial-
time reduction from Gainy(1) into the satisfiability problem
for LRV(X,F).

VI. A ROBUST EQUIVALENCE

We have seen that the satisfiability problem for LRV is
equivalent to the control state reachability problem in an
exponentially larger VASS. In this section we evaluate how
robust is this result with LRV variants or fragments.

A. Infinite Words with Multiple Data

So far, we have considered only finite words with multiple
data. It is also natural to consider the variant with infinite
words, but it is known that this sometimes leads to undecid-
ability. However, in this case the decidability and complexity
results are preserved. Let LRVω be the variant of LRV in
which infinite models of length ω are taken into account



instead of finite ones. The logics PLRVω , LRV>ω , etc. are
defined accordingly.

Proposition 16. (I) SAT(PLRVω) is decidable.
(II) SAT(LRVω) is 2EXPSPACE-complete.

B. Adding MSO-Definable Temporal Operators

It is standard to extend LTL with MSO-definable temporal
operators (see e.g. [30], [13]), and the same can be done with
LRV. A temporal operator ⊕ of arity n is MSO-definable
whenever there is a formula φ(x, P1, . . . , Pn) from monadic
second-order logic with a unique free position variable x and
with n free unary predicates such that σ, i |= ⊕(φ1, . . . , φn)
iff σ |= φ(i,X1, . . . , Xn) in MSO where each set Xj is equal
to the set of positions from σ satisfying the formula φj , see
e.g. [13]. The 2EXPSPACE upper bound is preserved with a
fixed finite set of MSO-definable operators.

Theorem 17. Let {⊕1, . . . ,⊕N} be a finite set of MSO-
definable temporal operators. Satisfiability problem for LRV
extended with {⊕1, . . . ,⊕N} is 2EXPSPACE-complete.

Note that PLRV augmented with MSO-definable temporal
operators is decidable too.

C. The Now Operator or the Effects of Moving the Origin

The satisfiability problem for Past LTL with the temporal
operator Now is known to be EXPSPACE-complete [20]. The
satisfaction relation is parameterized by the current position of
the origin and past-time temporal operators use that position.
For instance, σ, i |=o Now φ

def⇔ σ, i |=i φ and σ, i |=o φ1Sφ2
def⇔ there is j ∈ [o, i] such that σ, j |=o φ2 and for all j′ ∈

[j−1, i], we have σ, j′ |=o φ1. The powerful operator Now can
be obviously defined in MSO but not with the above definition
since it requires two free position variables, one of which refers
to the current position of the origin.

Theorem 18. SAT(LRV + Now) is 2EXPSPACE-complete.

This contrasts with the undecidability results from [17,
Theorem 5] in presence of the operator Now.

D. Bounding the Number of Variables

Given the relationship between the number of variables in
a formula and the number of counters needed in the corre-
sponding VASS, we investigate the consequences of fixing
the number of variables. Interestingly, this classical restriction
has an effect only for LRV>, i.e., when test formulas φ are
restricted to > in x ≈ 〈φ?〉y. Let LRVk [resp. LRV>k , PLRV>k ]
be the restriction to formulas with at most k variables. In [6,
Theorem 5], it is shown that SAT(LRV>1 ) is PSPACE-complete
by establishing a reduction into the reachability problem for
VASS when counter values are linearly bounded. Below, we
generalize this result for any k ≥ 1 by using the proof of
Theorem 9 and the fact that the control state reachability
problem for VASS with at most k counters is in PSPACE.

Proposition 19. For every k ≥ 1, SAT(LRV>k ) is PSPACE-
complete.

This does not imply that LRVk is in PSPACE, since the
reduction from LRV into LRV> in Section IV-A introduces
new variables. In fact, it introduces a number of variables that
depends on the size of the formula. It turns out that this is
unavoidable, and that its satisfiability problem is 2EXPSPACE-
hard, by the following reduction.

Lemma 20. There is a polynomial-time reduction from
SAT(LRV>) into SAT(LRV1) [resp. SAT(PLRV>) and
SAT(PLRV1)].

Proof sketch: Let ϕ ∈ LRV> using k variables
x1, . . . , xk so that σ |= ϕ. We will encode σ restricted to
x1, . . . , xk inside a model σϕ with only one variable, say
x. To this end, σϕ is divided into N segments s1 · · · sN
of equal length, where N = |σ|. A special data value d
not used in σ plays the role of delimiter between segments
and between positions that code values from σ. Suppose that
d is a data value that is not in σ. Then, each segment si
has length k′ = 2k + 1, and is defined as the data values
“d d1 d d2 . . . d dk d”, where dj = σ(i)(xj). Figure 3
contains an example. We can force that the model has this
shape with LRV1. With this coding, we can tell that we are
between two segments if there are two consecutive equal data
values. In fact, we are at a position corresponding to xi (for
i ∈ [1, k]) inside a segment if we are standing at the 2i-th
element of a segment, and we can test this with the formula
γi = Xk

′−2ix ≈ Xk
′−2i+1x ∨ (Xk

′−2i> ∧ ¬Xk′−2i+1>).
Using the γi’s, we translate xi ≈ 〈>?〉xj in ϕ into a
formula that: moves to the position 2i of the segment (the
one corresponding to xi), and tests x ≈ 〈γj?〉x. We can do
this similarly with all formulas.

Corollary 21. For all k ≥ 1, SAT(LRVk) is 2EXPSPACE-
complete.

Corollary 22. For all k ≥ 1, SAT(PLRVk) is as hard as
Reach(VASS).

E. The Power of Pairs of Repeating Values

Let us consider an LRV variant so that repetition of tuples of
values is possible: we add formulas of the form (x1, . . . , xk) ≈
〈φ?〉(y1, . . . , yk) where x1, . . . , xk, y1, . . . , yk ∈ VAR. This
extends x ≈ 〈ϕ?〉y by testing whether the vector of data
values from the variables (x1, . . . , xk) of the current position
coincides with that of (y1, . . . , yk) in a future position.

We call this extension LRVvec. Unfortunately, we can show
that SAT(LRVvec) is undecidable, even when only tuples of
dimension 2 are allowed. This is proved by reduction from a
variant of Post’s Correspondence Problem (PCP). In order to
code solutions of PCP instances, we adapt a proof technique
used in [1] for first-order logic with two variables and two
equivalence relations on words. However, our proof uses only
future modalities (unlike the proof of [1, Proposition 27]) and
no past obligations (unlike the proof of [17, Theorem 4]). To
prove this result, we work with a variant of the PCP problem
in which solutions ui1 · · ·uin = vi1 · · · vin have to satisfy
|ui1 · · ·uij | ≤ |vi1 · · · vij | for every j.
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Fig. 3. Example of the reduction from SAT(LRV>) into SAT(LRV1), for k = 3, N = 3 and d = 5.

Theorem 23. SAT(LRVvec(X,U)) is undecidable.

Furthermore, our proof can be adapted to show that
SAT(LRV>vec) is also undecidable.

VII. IMPLICATIONS FOR LOGICS ON DATA WORDS

A data word is an element of (Σ×D)∗, where Σ is a finite
alphabet and D is an infinite domain. We focus here on first-
order logic with two variables, and on a temporal logic.

Two-variable Logics: We study a fragment of
EMSO2(+1, <,∼) on data words, and we show that it
has a satisfiability problem in 3EXPSPACE, as a consequence
of our results on the satisfiability for LRV. The satisfiability
problem for EMSO2(+1, <,∼) is known to be decidable,
equivalent to the reachability problem for VASS [1], with no
known primitive-recursive algorithm. Here we show a large
fragment with elementary complexity.

Consider the fragment of EMSO2(+1, <,∼) —that is, first-
order logic with two variables, with a prefix of existential
quantification over monadic relations— where all formulas are
of the form ∃X1, . . . , Xn ϕ with

ϕ ::= atom | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ |
∃x∃y ϕ | ∀x∀y ϕ | ∀x∃y (x ≤ y ∧ ϕ), where

atom ::= ζ = ζ ′ | ζ 6= ζ ′ | ζ ∼ ζ ′ | ζ < ζ ′ | ζ ≤ ζ ′ |
+ 1(ζ, ζ ′) | Xi(ζ) | a(ζ)

for any a ∈ Σ, i ∈ [1, n], and ζ, ζ ′ ∈ {x, y}. The relation
x < y tests that the position y appears after x in the word;
+1(x, y) tests that y is the next position to x; and x ∼ y
tests that positions x and y have the same data value. We call
this fragment forward-EMSO2(+1, <,∼). In fact, forward-
EMSO2(+1, <,∼) captures EMSO2(+1, <) (i.e., all regular
languages on the finite labeling of the data word).1 However,
it seems to be strictly less expressive than EMSO2(+1, <,∼),
since it does not appear to be able to express, for example,
there are exactly two occurrences of every data value. Yet, it
can express there are at most two occurrences of every data
value (with ∃X ∀x∀y. x ∼ y ∧ x < y → X(x) ∧ ¬X(y)),
and there is exactly one occurrence of every data value. For
the same reason, it would neither capture EMSO2(+1,∼).

By an exponential reduction into SAT(LRV), we obtain that
forward-EMSO2(+1, <,∼) is decidable in elementary time.

1Indeed, note that one can easily test whether a word is accepted by a
finite automaton with the help of a monadic relation Xfst that holds only at
the first position. Further, the property of Xfst can be expressed in forward-
EMSO2(+1, <,∼) as (∃y . Xfst(y)) ∧ (∀x∀y . x < y → ¬Xfst(y)).

Proposition 24. The satisfiability problem for forward-
EMSO2(+1, <,∼) is in 3EXPSPACE.

Proof sketch: Through a standard translation we can
bring any formula of forward-EMSO2(+1, <,∼) into a for-
mula of the form

ϕ = ∃X1, . . . , Xn

(
∀x∀y χ ∧

∧
k

∀x∃y (x ≤ y ∧ ψk)

)
that preserves satisfiability, where χ and all ψk’s are quantifier-
free formulas, and there are no tests for labels. Furthermore,
this is a polynomial-time translation. This translation is just
the Scott normal form of EMSO2(+1, <,∼) [1] adapted to
forward-EMSO2(+1, <,∼), and can be done in the same way.

We now give an exponential-time translation tr :
forward-EMSO2(+1, <,∼) → LRV. For any formula ϕ of
forward-EMSO2(+1, <,∼), tr(ϕ) is an equivalent (in the
sense of satisfiability) LRV formula.

The translation makes use of: a distinguished variable x

that encodes the data values of any data word satisfying ϕ;
variables x0, . . . , xn that are used to encode the monadic
relations X1, . . . , Xn; and a variable xprev whose purpose will
be explained later on. We give now the translation. To translate
∀x∀y χ, we first bring the formula to a form∧

m∈M
¬∃x∃y

(
x ≤ y ∧ χm ∧ χxm ∧ χym

)
, (?)

where every χxm (resp. χym) is a conjunction of (negations
of) atoms of monadic relations on x (resp. y); and χm =
µ ∧ ν where µ ∈ {x=y,+1(x, y),¬(+1(x, y) ∨ x=y)} and
ν ∈ {x ∼ y,¬(x ∼ y)}. As an example, if χ = ¬(x ∼
y) ∨X(x) ∨X(y), then the corresponding formula would be∧

µ,χx,χy

(
(¬∃x∃y x ≤ y ∧ µ ∧ ¬X(x) ∧ χy) ∧
(¬∃x∃y x ≤ y ∧ µ ∧ χx ∧ ¬X(y))

)
for all µ ∈ {x=y,+1(x, y),¬(+1(x, y) ∨ x=y)}, χx ∈
{X(x),¬X(x)}, χy ∈ {X(y),¬X(y)}. We can bring the
formula into this normal form in exponential time. We define
tr(χxm) as the conjunction of all the formulas x0 ≈ xi
so that Xi(x) is a conjunct of χxm, and all the formulas
¬(x0 ≈ xi) so that ¬Xi(x) is a conjunct of χxm; we do
similarly for tr(χym). If µ = +1(x, y) and ν = x ∼ y we
define tr

(
∃y
(
x ≤ y ∧ χm ∧ χxm ∧ χym

))
as x ≈ Xx∧tr(χxm)∧

Xtr(χym).
If µ = (x = y) and ν = x ∼ y we translate

tr
(
∃y
(
x ≤ y ∧ χm ∧ χxm ∧ χym

))
= tr(χxm) ∧ tr(χym).



We proceed similarly for µ = +1(x, y), ν = ¬(x ∼ y);
and the translation is of course ⊥ (false) if µ = (x=y), ν =
¬(x∼y). The difficult cases are the remaining ones. Suppose
µ = ¬(+1(x, y) ∨ x=y), ν = x∼y. In other words, x is at
least two positions before y, and they have the same data value.
Observe that the formula tr(χxm) ∧ x ≈ 〈tr(χym)?〉x does not
encode precisely this case, as it would correspond to a weaker
condition x < y ∧ x ∼ y. In order to properly translate this
case we make use of the variable xprev, ensuring that it always
has the data value of the variable x in the previous position

prev = G
(
X> ⇒ x ≈ Xxprev

)
.

We then define tr
(
∃y
(
x ≤ y ∧ χm ∧ χxm ∧ χym

))
as

tr(χxm) ∧ x ≈ 〈xprev ≈ 〈tr(χym)?〉x?〉 xprev.

Note that by nesting twice the future obligation we ensure that
the target position where tr(χym) must hold is at a distance of
at least two positions. For ν = ¬(x∼y) we produce a similar
formula, replacing the innermost appearance of ≈ with 6≈ in
the formula above. We then define tr(∀x∀y χ) as

prev ∧
∧
m∈M

¬ F tr
(
∃y (x ≤ y ∧ χm ∧ χxm ∧ χym)

)
.

To translate ∀x∃y (x ≤ y ∧ ψk) we proceed in a sim-
ilar way. One can show that tr preserves satisfiability. By
Corollary 10 we can decide the satisfiability of the transla-
tion in 2EXPSPACE, and since the translation is exponential,
this gives us a 3EXPSPACE bound for the satisfiability of
forward-EMSO2(+1, <,∼).

Temporal Logics: Our results have also implications for
a fragment of the logic LTL extended with one register for
storing and comparing data values (called the freeze opera-
tor), noted LTL↓1. Its satisfiability problem was shown to be
decidable, but with non-primitive-recursive complexity [7].

Our results yield a fragment of LTL↓1 with elementary
2EXPSPACE upper bound.

VIII. CONCLUSION

We introduced the logic LRV and variants by allowing data
value repetitions thanks to formulas of the form x ≈ 〈φ?〉y.
LRV extends the main logic from [6] but it is also a fragment
of BD-LTL from [17] whose satisfiability is equivalent to
Reach(VASS). We showed that SAT(LRV) is 2EXPSPACE-
complete by reduction into the control-state reachability prob-
lem for VASS (via a detour to gainy VASS) and by introducing
a new class of counter machines (the chain systems) in order
to get the complexity lower bound. This new class of counter
machines is interesting for its own sake and could be used
to establish other hardness results thanks to our results that
extend non-trivially the proof from [22], [8]. Correspondences
between extensions of LRV (such as PLRV, PLRV> and
PLRV1) and reachability problem for VASS are also estab-
lished, strengthening further the relationships between data

logics and reachability problems for counter machines. Other
results for variants are presented in the paper and a summary
can be found below.

LRV>k : PSPACE-complete

LRV ≡ LRV> ≡ LRV1 ≡ LRV + {⊕1, . . . ,⊕k} : 2EXPSPACE-complete

PLRV ≡ PLRV> ≡ PLRV1≡ Reach(VASS)

LRV>vec : undecidable
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