
Equivalence Between Model-Checking Flat
Counter Systems and Presburger Arithmetic?

Stéphane Demri2, Amit Kumar Dhar1, and Arnaud Sangnier1

1 LIAFA, Univ Paris Diderot, Sorbonne Paris Cité, CNRS, France
2 NYU – CNRS

Abstract. We show that model-checking flat counter systems over CTL*
(with arithmetical constraints on counter values) has the same complex-
ity as the satisfiability problem for Presburger arithmetic. The lower
bound already holds with the temporal operator EF only, no arithmeti-
cal constraints in the logical language and with guards on transitions
made of simple linear constraints. This complements our understanding
of model-checking flat counter systems with linear-time temporal log-
ics, such as LTL for which the problem is already known to be (only)
NP-complete with guards restricted to the linear fragment.

1 Introduction

Branching-time temporal logics for counter systems. At first glance, model-
checking counter systems with temporal logics seems a hopeless enterprise since
control-state reachability problem for Minsky machines is already known to be
undecidable [23]. Fortunately, many subclasses of counter systems admit a de-
cidable reachability problem and more importantly, sometime the reachability
sets are even definable in Presburger arithmetic (PA) [24]. That is why, model-
checking problems with temporal logics for one-counter automata [15,16], Petri
nets [17], reversal-bounded counter systems [2], flat counter systems [14] have
been considered. The previous list is certainly not exhaustive and a general ques-
tion is how to take advantage of the decidability of the reachability problem to
conclude the decidability of model-checking problems with temporal logics. This
can lead to endless studies, since the variety of subclasses of counter systems
and temporal logics is extremely rich. By way of example, reachability sets of
flat counter systems are known to be definable in (PA), see e.g. [3,6,14,4], but it
is unclear how this can be extended to model-checking problems with temporal
logics, which indeed, is done in [10] for flat counter systems. A complexity char-
acterization for model-checking linear-time properties is provided in [9]. In the
present paper, we study flat counter systems and branching-time temporal log-
ics, more specifically with a variant of CTL∗ [12], already known to be difficult
to mechanize in the propositional case with labelled transition systems.

? Work partially supported by the EU Seventh Framework Programme under grant
agreement No. PIOF-GA-2011-301166 (DATAVERIF).

Our motivations We have seen that reachability problems and the verification
of linear-time properties for flat counter systems are nowadays well-studied (see
e.g. [9,4]) and in this paper we wish to understand the computational complex-
ity for branching-time temporal logics such as CTL or CTL∗ (see e.g. [12]).
Branching-time extensions often lead to undecidability, see e.g. the case with
Petri nets for which CTL is undecidable (with propositional variables only)
whereas the reachability problem and model-checking for several LTL variants
are known to be decidable [17]. For flat counter systems, we are on the safe
side since decidability of model-checking CTL∗ formulae is established in [10]
but no lower bound is provided in [10] and the translation into (PA) gives an
exponential size formula, which is rather unsatisfactory. Our main motivation is
therefore to understand the complexity of model-checking flat counter systems
with branching-time logics so that optimal algorithms for model-checking can
be eventually designed.

Our contribution. We show that the model-checking problem for flat counter
systems over a version of CTL∗ with arithmetical constraints on counter values
is equivalent to satisfiability for (PA), modulo logarithmic-space reductions.

– For the complexity lower bound, we show that the satisfiability problem for
(PA) can be reduced to the model-checking problem but there is no need for
arithmetical constraints and for temporal operators other than EF.

– For the complexity upper bound, we reduce the model-checking problem to
satisfiability problem in (PA) by using the fact that runs in flat counter sys-
tems can be encoded by tuples of natural numbers and then the semantics
for CTL∗ can be internalized in (PA). This very fact has been already ob-
served in [10] but herein, we provide a logarithmic-space reduction which
makes a substantial difference with [10]. Indeed, we are also able to quantify
over path schemas (symbolic representation of potential infinite sets of runs),
but concisely. This witnesses once more, that verification problems can be
encoded efficiently to (PA), see e.g. [5].

– As a consequence, we are able to get the equivalence with (PA) to known
branching-time temporal logics stronger than CTLEF (such as CTL) and our
proof technique can be applied to extensions with past-time operators with
a minimal amount of change.

As far as proofs are concerned, for the lower bound, we take advantage of the
observation that a quantification in (PA) over a variable z can be simulated by
a loop that increments a corresponding counter and there is a correspondence
between first-order quantifier ∃ [resp. ∀] and temporal connective EF [resp. AG].
For the upper bound, quantification over path schemas is done, directly followed
by a quantification over the number of times loops are visited. However, we
provide a new way to encode runs in flat counter systems, which is rewarding
complexity-wise. Not only we provide a much better complexity characterization
than [10] but also our reduction into (PA) is much simpler, and therefore this
leaves some hope to use then some solvers for (PA), see e.g. [7,20].
Due to lack of space, omitted proofs can be found in [11].

2

2 Branching-time temporal logics on flat counter systems

Presburger arithmetic. (PA), i.e. the first-order theory of natural numbers with
addition, is introduced by M. Presburger who has shown decidability by quan-
tifier elimination. Let VAR = {z1, z2, z3, . . .} be a countably infinite set of
variables. Terms are expressions of the form a1z1 + · · · + anzn + k where a1,
. . . , an, k are in N. A valuation f is a map VAR → N and it can be ex-
tended to the set of all terms as follows: f(k) = k, f(az) = a × f(z) and
f(t + t′) = f(t) + f(t′) for all terms t and t′. Formulae are defined by the
grammar φ ::= t ≤ t′ | ¬φ | φ ∧ φ | ∃ z φ where t and t′ are terms and
z ∈ VAR. A formula φ is in the linear fragment def⇔ φ is a Boolean combination of
atomic formulae of the form t ≤ t′. The semantics for formulae in (PA) is defined
with the satisfaction relation |=: for instance f |= t ≤ t′

def⇔ f(t) ≤ f(t′) and
f |= ∃ z φ def⇔ there is n ∈ N such that f [z 7→ n] |= φ. Any formula φ(z1, . . . , zn)
whose free variables are among z1, . . . , zn, with n ≥ 1, defines a set of n-tuples
Jφ(z1, . . . , zn)K

def
= {〈f(z1), . . . , f(zn)〉 ∈ Nn : f |= φ}, in that case for a vector

v ∈ Nn, we will also write v |= φ for v ∈ Jφ(z1, . . . , zn)K. For a given PA formula
φ, the set of free variables of φ is denoted by free(φ). The satisfiability problem
for (PA) is a decision problem that takes as input a formula φ and asks whether
there is a valuation f such that f |= φ. If such a valuation exists, we say that φ
is satisfiable. Decidability of Presburger arithmetic has been shown in [24]. An
exact complexity characterization is provided in [1].

Counter systems. Let C = {x1, x2, . . .} be a countably infinite set of counters
with the finite subset {x1, . . . , xn} denoted as Cn and AT = {p1, p2, . . .} be a
countably infinite set of atomic propositional variables. A counter system is
a tuple 〈Q, Cn, ∆, `〉 where Q is a finite set of control states, ` : Q → 2AT is
a labelling function, ∆ ⊆ Q × Gn × Zn × Q is a finite set of edges labelled
by guards and updates of the counter values (transitions) where Gn is a finite
set of Presburger formulae φ with free(φ) ⊆ {x1, . . . , xn}. Guards are quite
general and we basically only need them in the linear fragment. However, since
we provide a translation into (PA), we can be a bit more general, as in Presburger
counter machines [10,19].

For each transition δ = 〈q, g,u, q′〉 in ∆, we use the following notations:
source(δ) = q, target(δ) = q′, guard(δ) = g and update(δ) = u. As usual, to
a counter system S = 〈Q, Cn, ∆, `〉, we associate a labelled transition system
T(S) = 〈C,→〉 where C = Q×Nn is the set of configurations and →⊆ C ×∆×C
is the transition relation defined by: 〈〈q,v〉, δ, 〈q′,v′〉〉 ∈→ (also written 〈q,v〉 δ−→
〈q′,v′〉) iff q = source(δ), q′ = target(δ), v |= guard(δ) and v′ = v + update(δ).
We write c→ c′ iff there exists some edge δ, such that c δ−→ c′.

Given c0 ∈ Q × Nn, a run ρ starting from c0 in S is a (possibly infinite)

path in the associated transition system T(S) denoted as ρ := c0
δ0−→ · · · δm−1−−−→

cm
δm−−→ · · · , where ci ∈ Q× Nn and δi ∈ ∆, for all i ∈ N.

3

Let trans(ρ) be the ω-word δ0δ1 . . . of the sequence of transitions appearing

in the run ρ. For every i ≥ 0, we define ρ(i) = ci and ρ≤i = c0
δ0−→ c1 · · ·

δi−1−−−→ ci.
Also, we say c →∗ c′ iff there exist a run ρ and i ∈ N such that ρ(0) = c and
ρ(i) = c′. Note that a run in a counter system S is either finite or infinite. A
run ρ is maximal iff either it is infinite, or it is finite and the last configuration
is a deadlock (i.e. with no successor configurations). For a finite maximal run

ρ := c0
δ0−→ · · · δm−1−−−→ cm

δm−−→ cm+1, we write |ρ| = m, otherwise for an infinite
maximal run ρ, |ρ| = ω.

A counter system is flat if every node in the underlying graph belongs to at
most one simple cycle (a cycle being simple if no edge is repeated twice in it)
[6,22]. In a flat counter system, simple cycles can be organized as a DAG where
two simple cycles are in the relation whenever there is path between a node of
the first cycle and a node of the second cycle. We denote by FlatCS the class of
flat counter systems.

Logical specifications. The formulae for CTL∗ are defined as follows: φ ::= p |
ψ(x1, . . . , xn) | φ ∧ φ | ¬φ | Xφ | φUφ | Eφ where p ∈ AT and ψ(x1, . . . , xn)
is a Presburger formula. We write CTLEF to denote the fragment of CTL∗ in
which the only (unary) temporal operator is EF (EFφ def

= E (> U φ) and > def
=

(x1 = x1)). Our version of CTL∗ is defined as the standard version, see e.g. [12],
except that the Kripke structures are replaced by transition systems from counter
systems and at the atomic level, arithmetical constraints are allowed. Let S =
〈Q, Cn, ∆, `〉 be a counter system with transition system T(S) = 〈C,→〉. The
satisfaction relation |= is defined as follows (CTL∗ formula φ, maximal run ρ in
T(S), position i < |ρ|):

ρ, i |= p
def⇔ p ∈ `(q), where ρ(i) = 〈q,v〉

ρ, i |= ψ(x1, . . . , xn)
def⇔ v |= ψ(x1, . . . , xn), where ρ(i) = 〈q,v〉

ρ, i |= Xψ
def⇔ ρ, i+ 1 |= ψ and i+ 1 < |ρ|

ρ, i |= ψ1Uψ2
def⇔ ρ, j |= ψ2 for some i ≤ j

such that j < |ρ| and ρ, k |= ψ1 for all i ≤ k < j

ρ, i |= Eφ
def⇔ there is a maximal run ρ′ s.t. ρ′(0) = ρ(i) and ρ′, 0 |= φ

Given a CTL∗ formula φ, a counter system S and a configuration c from S, we
say that S, c |= φ iff there exists a maximal run ρ in the configuration graph
T(S) with ρ(0) = c such that ρ, 0 |= φ (note that there is an overload for |= in
S, c |= φ). A flat counter system S is called non-blocking if every maximal run ρ
in S is infinite. Otherwise it is called a blocking flat counter system.

Lemma 1. Let L be either CTL∗ or CTLEF. Given a flat counter system S,
a configuration c and a formula φ in L, there exist a non-blocking flat counter
system S′, a configuration c′ and a formula φ′ in L such that S, c |= φ iff S′, c′ |=
φ′. Such a reduction can be performed in logarithmic space.

It is easy to see that we can add some dummy state to a blocking flat counter
system to obtain a non-blocking one preserving the satisfiability of formulae.

4

The formula is also transformed by using a standard relativization method (a
new propositional variable is introduced that holds true only on configurations
that were not reachable in the original counter system). Due to Lemma 1, hence-
forth we consider only non-blocking flat counter systems. Since the reachability
relation is definable in (PA) for flat counter systems [10], it is even possible to
decide whether all maximal runs from a given configuration are infinite.

The model-checking problem for flat counter systems over CTL∗ is defined
as follows (let us call it MC(CTL∗, FlatCS)): given a flat counter system S, a
configuration c and a formula φ in CTL∗, determine whether S, c |= φ. We know
that MC(CTL∗, FlatCS) is decidable [10] but its exact complexity is not fully
characterized (actually, this is the purpose of the present paper). The restriction
to LTL formulae is known to be NP-complete [8] when guards are restricted
to the linear fragment. In Section 3, we show that the satisfiability problem
for (PA) can be reduced to MC(CTL∗, FlatCS) restricted to CTLEF without
arithmetical constraints and to flat counter systems such that the guards are
restricted to simple linear constraints. By contrast, model-checking flat finite
Kripke structures over CTL∗ is ∆P

2 -complete [13,18].

3 Reducing (PA) to a subproblem of MC(CTL∗, FlatCS)

In a flat counter system with n counters, the guards on transitions are Pres-
burger formulae with free variables in {x1, . . . , xn}. That is why, it is easy to
show that the satisfiability problem for (PA) can be reduced (in logarithmic
space) to MC(CTL∗, FlatCS). Clearly, this is not interesting and the generality
of the guards in the paper is only considered because, when establishing the
complexity upper bound, we can be quite liberal with the set of guards. How-
ever, a more reasonable set of guards is the linear fragment (i.e., without any
first-order quantification). Below, we show that a very restricted fragment of
MC(CTL∗, FlatCS), simply called MC−(CTL∗, FlatCS), is already as hard as
the satisfiability problem for (PA) and our reduction is based on a simple and
nice correspondence between quantifiers in (PA) and the temporal operators EF
and AG in CTL∗. First, let us define MC−(CTL∗, FlatCS) as the subproblem
of MC(CTL∗, FlatCS) with the following restrictions: (a) atomic formulae are
restricted to propositional variables and the only temporal connective is EF (and
its dual AG, by closure under negation) and (b) the guards on the transitions are
linear constraints t ≤ t′ or their negations.
Theorem 2. There is a logarithmic-space reduction from the satisfiability prob-
lem for (PA) to MC−(CTL∗, FlatCS).

Proof. (sketch) Let φ be a formula in (PA). Without any loss of generality, we
can assume that φ has the form Q1 z1 Q2 z2 · · · Qn zn φ

′(z1, z2, . . . , zn) with
Q1,Q2, . . . ,Qn ∈ {∃,∀} and φ′ is a quantifier-free formula. Note that given any
formula in (PA), we can reduce it to an equisatisfiable formula of that form
in logarithmic space (which is then fine for our main result since logarithmic-
space reductions are closed under composition). This is essentially based on the
construction of formulae in prenex normal form in first-order logic.

5

Let us consider Sφ defined below where ei ∈ Nn is the ith unit vector.

q0 q1 qn−1 qn qn+1

>, e1 >, e2 >, en

φ′(x1, x2, . . . , xn),0

>,0

Observe that φ′(x1, x2, . . . , xn) may contain Boolean connectives but we explain
below how to get rid of them in Sφ. Below, we define ψ in CTLEF whose atomic
formulae are among q1, . . . , qn+1 (also abusively understood as control states)
such that (†) Sφ, 〈q0,0〉 |= ψ iff φ is satisfiable in (PA). Intuitively, the possible
value associated to each variable zi from φ is taken care of by the ith loop
(that can only increment the ith counter). This is not enough, and additionally,
the quantifications from φ are simulated in the formula ψ by using EF or AG,
depending whether the first-order quantification is either existential or universal.
Let us define below the formulae ψi with i ∈ [1, n+ 1] so that ψ def

= ψ1, ψn+1
def
=

EF qn+1, and for every i ∈ [1, n], if Qi = ∃ then ψi
def
= EF(qi ∧ ψi+1), otherwise

ψi
def
= AG(qi ⇒ ψi+1). In order to establish (†) it is sufficient to show the property

(††) below. Given a valuation f : VAR → N, we write vf ∈ Nn to denote
the vector such that vf [i]

def
= f(zi) for every i ∈ [1, n]. One can show that

(††) for all f , we have f |= φ′(z1, z2, . . . , zn) iff 〈qn,vf 〉 |= ψn+1 and for all
i ∈ [1, n] and for all valuations f such that f(zi) = · · · = f(zn) = 0, we have
f |= Qi zi · · · Qn zn φ

′(z1, z2, . . . , zn) iff 〈qi−1,vf 〉 |= ψi. We get the property
(†) by applying (††) with i = 1.

To eliminate the Boolean connectives in the guard of the transition between
qn and qn+1, we follow two simple rules, while preserving flatness (easy to check
since that transition does not belong to a loop). W.l.o.g., we can assume that
negations are only in front of linear constraints. A transition q

ψ1∧ψ2,0−−−−→ q′ is
replaced by q ψ1,0−−→ q′′

ψ2,0−−→ q′ where q′′ is new. Similarly, a transition q ψ1∨ψ2,0−−−−→ q′

is replaced by q ψ1,0−−→ q′ and q ψ2,0−−→ q′, assuming that q does not belong to a loop.
It is easy to show that Sφ can be transformed into a flat counter system S′φ
by applying the two rules above as much as possible so that eventually, S′φ is a
proper counter system for MC−(CTL∗, FlatCS). ut

4 From MC(CTL∗, FlatCS) to (PA)

In this section, we present a logarithmic-space reduction fromMC(CTL∗, FlatCS)
to the satisfiability problem for (PA). In [10], a reduction is already presented
to get decidability of MC(CTL∗, FlatCS). Unfortunately, it requires exponential
space and is quite difficult to parse. Following a similar idea, we propose here a
simpler reduction that has the great advantage to be optimal complexity-wise.
The idea of this reduction is based on the two following points:

1. encoding the runs in flat counter systems by tuples of natural numbers
thanks to a symbolic representation for potential infinite sets of runs, see
path schemas in [8],

6

2. internalizing CTL∗ semantics into (PA) by using the encoding of runs.

Below, we consider a fixed flat counter system S = 〈Q, Cn, ∆, `〉 and w.l.o.g, Q =
{1, . . . , α} for some α ≥ 1 and ∆ = {δ1, . . . , δβ}. Since Q ⊆ N, configurations of
S are vectors in Nn+1 where the first component represents the control state.

4.1 Minimal path schemas

In [8], following an idea from [21], minimal path schemas are introduced as a
mean to symbolically represent all runs in flat counter systems. Path schemas
can be defined as finite sequences made of transitions or simple loops (condi-
tions apply). Formal definition is recalled below. A simple loop l of S is a non-
empty finite sequence of transitions δ1, . . . , δm such that source(δ1) = target(δm),
source(δj) = target(δj+1) for all j ∈ [1,m− 1], and, for all j, k ∈ [1,m], if j 6= k
then δj 6= δk. The length of l, written length(l), is the value m and we denote by
source(l) = target(l) the control state source(δ1). The number of simple loops is
necessarily finite and we assume that the set of loops of S is L = {l1, l2, . . . , lγ}.
Since S is flat, we have γ ≤ α. A minimal path schema P is a non-empty se-
quence u1, . . . , uN s.t. each ui ∈ ∆∪L and the following conditions are verified.

1. uN is a loop,
2. i 6= j implies ui 6= uj ,
3. for all i ∈ [1, N − 1], we have target(ui) = source(ui+1).

The second condition guarantees minimality whereas the third condition ensures
that P respects the control graph of S. The size of P , denoted by size(P), is
equal to N . For all j ∈ [1, N], we write P [j] to denote uj . Here is an obvious
result.

Lemma 3. The size of a minimal path schema is bounded by β + γ ≤ β + α.

In order to obtain concrete paths from a path schema P , we augment P with
a vector specifying how many times each internal loop is visited. By definition,
a loop in P is internal if it is not the last one. An iterated path schema is a
pair 〈P,m〉 where P is a minimal path schema and m ∈ Nsize(P) such that
m[1] = size(P) and for all i ∈ [1, size(P)− 1], m[i+1] > 0 and if P [i] ∈ ∆, then
m[i+ 1] = 1. From 〈P,m〉, we define the ω-word

trans(P,m)
def
= P [1]m[2] . . . P [j]m[j+1] . . . P [size(P)− 1]m[size(P)]P [size(P)]ω

Lemma 4 below states that iterated path schemas encode all runs from flat
counter systems by noting that infinite runs necessarily end by a simple loop
(repeated infinitely) and the visit of loops is strictly ordered.

Lemma 4. [8] Given an infinite run ρ in a flat counter system S , there exists
an iterated path schema 〈P,m〉 such that trans(ρ) = trans(P,m).

7

Encoding iterated path schemas. Thanks to Lemma 3, we show that it is possible
to encode path schemas by vectors in NK with K = 1 + β + γ. Intuitively, we
encode a path schema P by two vectors vp and vt in NK where the first element
of each vector is equal to size(P) and for all i ∈ [2, size(P)+1], we have vt[i] = 1
if P [i] is a loop and vt[i] = 0 otherwise. So, vt encodes the type of each element
(transition vs. loop) in the sequence defining P . Similarly, vp[i] represents the
number of the associated transition or loop; for instance, vp[i] = 2 and vt[i] = 1
encodes that P [i] is the second loop, say l2. Furthermore, we encode the vector
m by a vector vit ∈ NK . Let us formalize this. First, we define the function
τ : (({0}× [1, β])∪ ({1}× [1, γ]))→ ∆∪L such that τ(0, i) def

= δi and τ(1, i)
def
= li.

Now, we provide a set of conditions C on the vectors vt,vp,vit ∈ NK which have
to be respected so that, we can build from them an iterated path schema.

C.1 vp[1] = vt[1] = vit[1] with vp[1] ∈ [1,K − 1]; for all i ∈ [vit[1] + 2,K],
vp[i] = vt[i] = vit[i] = 0,

C.2 vt[i] ∈ {0, 1} for all i ∈ [2,K],
C.3 if vt[i] = 0 then vp[i] ∈ [1, β], for all i ∈ [2,vp[1] + 1],
C.4 if vt[i] = 1 then vp[i] ∈ [1, γ], for all i ∈ [2,vp[1] + 1],
C.5 vt[vp[1] + 1] = 1,
C.6 there are no i, j ∈ [2,vp[1]+1] such that i 6= j, vt[i] = vt[j] and vp[i] = vp[j],
C.7 target(τ(vt[i],vp[i])) = source(τ(vt[i+ 1],vp[i+ 1])) for all i ∈ [2,vp[1]],
C.8 for all i ∈ [2,vp[1]], vit[i] > 0 and if vt[i] = 0 then vit[i] = 1.

The first four conditions ensure that the vectorial representation is coherent.
The three next conditions guarantee that the encoding respects the structure of
a minimal path schema, i.e. that the last element is a loop (C.5), that there are
no two identical transitions or loops in the schema (C.6) and that the succession
of elements effectively represents a path in the counter system (C.7). The last
condition ensures that vit matches the definition of the vector in an iterated
path schema. It follows that given vectors vp, vt and vit in NK that satisfy all
the conditions (C.i), we can build a minimal path schema Pvt,vp equal to

τ(vt[2],vp[2]) · · · τ(vt[vp[1] + 1],vp[vp[1] + 1])

From the vector vit, we can define the vector mvit ∈ Nvit[1] such that for all
i ∈ [1,vit[1]], mvit

[i]
def
= vit[i]. We will see that there exists a Presburger for-

mula Schema(Zt,Zp,Zit) over the sets of variables Zp = {z1p, . . . , zKp }, Zt =

{z1t , . . . , zKt } and Zit = {z1it, . . . , zKit } to express the conditions (C.i)i∈[1,8].

Lemma 5.

1. Let P be a finite non-empty sequence of length N ≤ β + γ over the alphabet
∆ ∪ L and m ∈ NN . Then, 〈P,m〉 is an iterated path schema iff there are
vt, vp and vit in NK respecting C and such that P = Pvt,vp

and m = mvit
.

2. One can build a (PA) formula Schema(Zt,Zp,Zit) of polynomial size in the
size of the counter system S such that for all vt, vp, vit ∈ NK , we have
vt, vp, vit |= Schema(Zt,Zp,Zit) iff vt, vp and vit satisfy C.

8

Let us consider the following flat counter system.

q1

q2

q5 q6

q7

q8

δ1

δ2

δ3
δ4

δ5

δ6

δ7

δ8

δ9

δ10

l1

l2

l3

There are 10 transitions and 3 simple loops. The enumeration of edges and
loops is done as shown above. Let 〈P,m〉 be such that P = δ3 · δ6 · l2 · δ8 · l3
and m = (5, 1, 1, 146, 1). So, we get the resulting ω-word as δ3 · δ6 · (l2)146 ·
δ8 · (l3)ω. From the previous encoding, the ω-word is encoded by vectors vp =
(5, 3, 6, 2, 8, 3, 0, 0, 0, 0, 0, 0, 0, 0), vt = (5, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) and vit =
(5, 1, 1, 146, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0).

4.2 Encoding runs using vectors

Lemma 4 states that any infinite run can be encoded by an iterated path schema.
However, not every iterated path schema corresponds to a run in due form. We
will see now how to check that an iterated path schema indeed represents a run
starting from a given configuration c. First, we need to introduce a notion of
pseudo-run in which only the updates are precise. Given c ∈ Q× Zn, a pseudo-
run ρ starting from c in S is an infinite sequence ρ := c0

δ1 · · · δm−1
 cm

δm · · ·
where c0 = c, ci = 〈qi,vi〉 ∈ Q×Zn for all i ≥ 0 and for all transitions δ ∈ ∆ we
have 〈q,v〉 δ

 〈q′,v′〉 def⇔ q = source(δ), q′ = target(δ) and v′ = v+ update(δ).

So, a pseudo-run ρ = 〈q0,v0〉
δ1 · · · δm−1

 〈qm,vm〉 · · · is a run iff for all i ∈ N,
vi |= guard(δi) and vi ∈ Nn. Note also that for all configurations 〈q,v〉, if
〈P,m〉 is an iterated path schema such that source(P [1]) = q then there exists
a pseudo-run starting from c such that trans(ρ) = trans(〈P,m〉).

From these observations, we conclude that an iterated path schema 〈P,m〉
augmented with c0 = 〈q0,v0〉 verifying source(P [1]) = q0, defines a unique
pseudo-run that is denoted by ρ(P,m, c0). Given a configuration c0 = 〈q0,v0〉, we
say that ρ(P,m, c0) is well-defined if source(P [1]) = q0. For every i ∈ [0, size(P)−
1] let pi

def
=

∑j=i
j=1m[j]∗ length(P [j]) with limit case p0 = 0. The value pi is called

the position of the ith witness configuration ρ(P,m, c0)(pi). Intuitively, we reach
the ith witness configuration after going through the first i elements of the path
schema P in ρ(P,m, c0). We say that ρ(P,m, c0) is positive if for all the witness
configurations 〈q,v〉, we have v ∈ Nn. Note that since for all path schemas P , we
have size(P) ≤ β+γ, the number of witness configurations for such a pseudo-run
is bounded by β + γ.

Now, we show how to build a (PA) formula whose set of solutions corresponds
to the witness configurations of a pseudo-run associated to an iterated path
schema equipped with an initial configuration. Before defining the formula, we
explain some further notions. In the sequel, we use the sets of variables X0 =
{x10, . . . , xn+1

0 } and X = {x1, . . . , xn+1} to represent configurations and Wi =

9

{w1
i , . . . ,w

n+1
i } for every i ∈ [0, β + γ − 1] to represent pseudo-configurations

and the variables p0, . . . , pβ+γ−1 and y to represent positions in (pseudo)-runs.
Furthermore, given sets of variables X,W representing (pseudo)-configurations,
a variable x and a vector u ∈ Nn, we use the shortcut X = W + x.u to denote
the formula

∧n+1
i=2 xi = wi + x.u[i − 1]. Let us define the formula Witness that

states whether a given set of configurations and natural numbers represent the
witness configurations and their respective positions in a pseudo-run associated
to an iterated path schema. The main idea of the formula is to check at each step
whether the control states of the witness configurations match with the states of
the taken transitions or loops in the path schema and then to compute the effect
of the corresponding element of the iterated path schema taking into account
the number of iterations.

Witness(W0, . . . ,Wβ+γ−1, p0, . . . , pβ+γ−1,Zt,Zp,Zit,X0)
def
=

(p0 = 0 ∧ X0 = W0 ∧
1∨
t=0

max(β,γ)∨
j=1

z2p = j ∧ z2t = t ∧ x10 = source(τ(t, j)))∧

β+γ−1∧
i=1

(i < z1t ⇒
1∨
t=0

max(β,γ)∨
j=1

(zi+1
p = j ∧ zi+1

t = t ∧ pi = pi−1 + zi+1
it ∗ length(τ(t, j))∧

w1
i = target(τ(t, j)) ∧Wi = Wi−1 + zi+1

it ∗ update(τ(t, i)))

Lemma 6 below characterizes the formula Witness.

Lemma 6. Let w0, . . . ,wβ+γ−1, c0 ∈ Nn+1 and p0, . . . , pβ+γ−1 ∈ N and vt,
vp, vit in NK such that vt, vp, vit |= Schema(Zt,Zp,Zit). We have w0, . . . ,
wβ+γ−1, p0, . . . , pβ+γ−1, vt, vp, vit, c0 |= Witness iff ρ(Pvt,vp

,mvit
, c0) is well-

defined and positive and for all j ∈ [0, β + γ − 1], if j < size(Pvt,vp
), then wj

represents the jth witness configuration of ρ(Pvt,vp
,mvit

, c0) and pj its position.

Using Witness, one can build in logarithmic space a formula to check whether a
vector c is the ith configuration 〈qi,vi〉 of a pseudo-run ρ(Pvt,vp ,mvit , c0) with
the property that vi |= guard(trans(〈Pvt,vp ,mvit〉)[i + 1]) and vi ∈ Nn (here i
is the number of transitions to reach that configuration) and then to construct
a formula to check whether a pseudo-run is a run. In fact, as observed earlier, it
is enough to check whether at each step the ith configuration satisfies the guard
of the (i+ 1)th transition.

Lemma 7. One can build in logarithmic-space in the size of flat counter system
S two PA formulae Conf (Zt,Zp,Zit,X0, y,X) and Run(Zt,Zp,Zit,X0) such that
for all c0, c ∈ Nn+1, for all i ∈ N and for all vt, vp, vit ∈ Nβ+γ+1, we have the
two following properties:

1. vt, vp, vit, c0, i, c |= Conf iff vt, vp, vit |= Schema and ρ(Pvt,vp
,mvit

, c0) is
well defined and c = ρ(Pvt,vp

,mvit
, c0)(i) and c[2], · · · , c[n+1] |= guard(trans(

〈Pvt,vp ,mvit〉)[i+ 1])

2. vt, vp, vit, c0 |= Run iff vt, vp, vit |= Schema and ρ(Pvt,vp ,mvit , c0) is well-
defined and is a run.

10

4.3 Encoding CTL∗ formulae using (PA)

We can encode path schemas and runs using vectors and check their validity using
Presburger arithmetic formula, our next aim is to encode a given CTL∗ formula
using a formula in (PA). The forthcoming encoding internalizes CTL∗ semantics
and a similar idea has been already used in [10]. For each CTL∗ formula φ, we
build a (PA) formula Checkφ(Zt,Zp,Zit,X0, y) where the variables Zt,Zp,Zit and
X0 represent a run as in the formula Run and, y represents a position such that
the formula checks whether the CTL∗ formula is satisfied at the current position.
Formula Checkφ is defined recursively (Boolean clauses are omitted):

Checkp
def
= ∃ X (Conf (Zt,Zp,Zit,X0, y,X) ∧

∨
{j | p ∈ `(j)}

x1 = j)

Checkψ(x1,...,xn)
def
= ∃ X (Conf (Zt,Zp,Zit,X0, y,X) ∧ ψ(X))

CheckXφ
def
= ∃ y′ (y′ = y + 1 ∧ Checkφ(Zt,Zp,Zit,X0, y

′))

CheckφUφ′
def
= ∃ y′′ (y ≤ y′′ ∧ Checkφ′(Zt,Zp,Zit,X0, y

′′)∧
∀ y′ (y ≤ y′ < y′′ ⇒ Checkφ(Zt,Zp,Zit,X0, y

′)))

CheckEφ
def
= ∃ Z′t ∃ Z′p ∃ Z′it ∃ X (Conf (Zt,Zp,Zit,X0, y,X)∧

Run(Z′t,Z
′
p,Z
′
it,X) ∧ ∃ y′ (y′ = 0 ∧ Checkφ(Z

′
t,Z
′
p,Z
′
it,X, y

′)))

Now, we can state the main property concerning the formulae Checkφ based on
Lemmas 4, 5 and 7.

Lemma 8. Let c0 ∈ Nn+1, i ∈ N and vt, vp, vit ∈ NK be such that vt, vp, vit
, c0 |= Run. We have ρ(Pvt,vp

,mvit
, c0), i |= φ iff vt, vp, vit, c0, i |= Checkφ(Zt,Zp,

Zit,X0, y).

This allows us to conclude the main result of this section.

Theorem 9. There is a logarithmic-space reduction from MC(CTL∗, FlatCS)
to the satisfiability problem for (PA).

It is possible to extend the reduction by admitting linear past-time operators
to the temporal language since we have seen that we can easily quantify over
runs. However, in that case, finite prefixes in runs should not be reset.

5 Conclusion

We have been able to characterize the computational complexity for MC(CTL∗,
FlatCS) by showing that the problem is equivalent to the satisfiability prob-
lem for Presburger arithmetic (modulo logarithmic-space reductions). The lower
bound is obtained by considering a quite strong restriction (no arithmetical con-
straints in formulae, the only temporal operator is EF, guards on transitions are
simple linear constraints). By contrast, the restriction of the problem to LTL
formulae is known to be NP-complete [8] when guards are in the linear fragment
and the restriction of the problem to formulae in CTLEF is also equivalent to

11

(PA). We have proposed a new way for encoding runs in flat counter systems us-
ing Presburger arithmetic formulae, but without any exponential blow up, which
allows us to get a precise complexity characterization. It remains open to deter-
mine which extensions of CTL∗ on flat counter systems preserve decidability, if
not an efficient translation into (PA).

References

1. L. Berman. The complexity of logical theories. TCS, 11:71–78, 1980.
2. M. Bersani and S. Demri. The complexity of reversal-bounded model-checking. In

FROCOS’11, volume 6989 of LNAI, pages 71–86. Springer, 2011.
3. B. Boigelot. Symbolic methods for exploring infinite state spaces. PhD thesis,

Université de Liège, 1998.
4. M. Bozga, R. Iosif, and F. Konecny. Safety problems are NP-complete for flat

integer programs with octagonal loops. In VMCAI’14, volume 8318 of LNCS,
pages 242–261. Springer, 2014.

5. V. Bruyère, E. Dall’Olio, and J. Raskin. Durations, parametric model-checking in
timed automata with Presburger arithmetic. In STACS’03, volume 2607 of LNCS,
pages 687–698. Springer, 2003.

6. H. Comon and Y. Jurski. Multiple counter automata, safety analysis and Pres-
burger Arithmetic. In CAV’98, volume 1427 of LNCS, pages 268–279. Springer,
1998.

7. L. de Moura and N. Björner. Z3: An Efficient SMT Solver. In TACAS’08, volume
4963 of LNCS, pages 337–340. Springer, 2008.

8. S. Demri, A. Dhar, and A. Sangnier. Taming Past LTL and Flat Counter Systems.
In IJCAR’12, volume 7364 of LNAI, pages 179–193. Springer, 2012.

9. S. Demri, A. Dhar, and A. Sangnier. On the complexity of verifying regular prop-
erties on flat counter systems. In ICALP’13, volume 7966 of LNCS, pages 162–173.
Springer, 2013.

10. S. Demri, A. Finkel, V. Goranko, and G. van Drimmelen. Model-checking CTL∗

over flat Presburger counter systems. JANCL, 20(4):313–344, 2010.
11. A. K. Dhar. PhD thesis, Université Paris VII-Denis Diderot, 2014.
12. A. Emerson and J. Halpern. ‘sometimes‘ and ’not never’ revisited: on branching

versus linear time temporal logic. JACM, 33:151–178, 1986.
13. E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time logic

strikes back. Sci. Comput. Program., 8(3):275–306, 1987.
14. A. Finkel and J. Leroux. How to compose Presburger accelerations: Applications

to broadcast protocols. In FST&TCS’02, volume 2256 of LNCS, pages 145–156.
Springer, 2002.

15. S. Göller, C. Haase, J. Ouaknine, and J. Worrell. Branching-time model checking
of parametric one-counter automata. In FoSSaCS’12, volume 7213 of LNCS, pages
406–420. Springer, 2012.

16. S. Göller and M. Lohrey. Branching-time model checking of one-counter processes
and timed automata. SIAM J. Comput., 42(3):884–923, 2013.

17. P. Habermehl. On the complexity of the linear-time mu-calculus for Petri nets. In
ICATPN’97, volume 1248 of LNCS, pages 102–116. Springer, 1997.

18. F. Laroussinie, N. Markey, and P. Schnoebelen. Model checking CTL+ and FCTL
is hard. In FOSSACS’01, volume 2030 of LNCS, pages 318–331. Springer, 2001.

19. J. Leroux. Presburger counter machines. Habilitation thesis, U. of Bordeaux, 2012.

12

20. J. Leroux and G. Point. TaPAS: The Talence Presburger Arithmetic Suite. In
TACAS’09, volume 5505 of LNCS, pages 182–185. Springer, 2009.

21. J. Leroux and G. Sutre. On flatness for 2-dimensional vector addition systems with
states. In CONCUR, volume 3170 of LNCS, pages 402–416. Springer, 2004.

22. J. Leroux and G. Sutre. Flat counter automata almost everywhere! In ATVA’05,
volume 3707 of LNCS, pages 489–503. Springer, 2005.

23. M. Minsky. Computation, Finite and Infinite Machines. Prentice Hall, 1967.
24. M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arith-

metik ganzer Zahlen, in welchem die Addition als einzige Operation hervor-
tritt. In Comptes Rendus du premier congrès de mathématiciens des Pays Slaves,
Warszawa, pages 92–101, 1929.

13

