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1. Introduction

Flat counter systems. Counter systems are finite-state automata equipped
with program variables (counters) interpreted over non-negative integers.
They are used in many places like, broadcast protocols [17] and programs
with pointers [20] to quote a few examples. But, along with their large scope
of usability, many problems on general counter systems are known to be unde-
cidable [34]. Indeed, this computational model can simulate Turing machines.
This is not the end of the story since decidability of reachability problems
or model-checking problems based on temporal logics can be regained by
considering subclasses of counter systems (this includes restrictions on the
instructions, on the control graphs or on more semantical properties). An
important and natural class of counter systems, in which various practical
cases of infinite-state systems (e.g. broadcast protocols [19]) can be mod-
elled, are those with a flat control graph, i.e., those where no control state
occurs in more than one simple cycle, see e.g. [2, 9, 19, 31, 6]. Decidability
results on verifying safety and reachability properties on flat counter sys-
tems have been obtained in [9, 19, 4]. However, so far, such properties have
been rarely considered in the framework of any formal specification language
(see an exception in [8]). In [14], a class of Presburger counter systems is
identified for which the local model checking problem for Presburger-CTL?
is shown decidable. These are Presburger counter systems defined over flat
control graphs with transitions labelled by adequate Presburger formulae
(representing guards). Even though flatness is clearly a substantial restric-
tion, it is shown in [31] that many classes of counter systems with computable
Presburger-definable reachability sets are flattable, i.e. there exists a flat un-
folding of the counter system with identical reachability sets. Hence, the
possibility of flattening a counter system is strongly related to semilinearity
of its reachability set. Moreover, in [8] model-checking relational counter sys-
tems over LTL formulae is shown decidable when restricted to flat formulae
(their translation into automata leads to flat structures). Flat counter sys-
tems can be also seen as a way to under-approximate the behavior of general
counter systems. In fact, by unfolding nested loops of the original system
with different strategies, one can produce an enumeration of flat systems
which characterize some behaviors of the system. Note that such an approx-
imation allows to describe more behaviors than the approach that consists
in looking at bounded behaviors (where the values of the counters do not
overpass a certain given bound).
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Towards the complexity of temporal model-checking flat counter systems. Our
goal is to revisit here standard decidability results for subclasses of counter
systems obtained by translation into Presburger arithmetic in order to obtain
optimal complexity upper bounds. Indeed, effectively composing the trans-
lation of a verification problem into Presburger arithmetic (PrA) and then
using a solver for (PrA) is not necessarily optimal computationally. We focus
in this work on the model-checking of flat counter systems taking, as spec-
ification language, linear-time temporal logic with past and extended with
counter constraints.

Linear temporal logic (LTL) was first introduced as a specification lan-
guage for verification in [36]. The model-checking problem for LTL and its
subclasses over finite structures like Kripke structures has been extensively
studied and its exact complexity characterization is well-known (see [7]).
Moreover, it is known that, even though LTL with past-time operators is ex-
pressively similar to LTL with only future temporal operators [21], LTL with
past is known to be more succinct than LTL with only future operator [29].
We plan to investigate the model checking problem for LTL with past op-
erators and with counter constraints as atomic formulae over flat counter
system. Even if it is known that such a problem is decidable for flat counter
systems [14], no work has so far provided tight complexity bounds. Due to
the popularity of LTL with past in the verification community and to the
strong expressive power of counter systems, we believe that providing opti-
mal algorithms for this model-checking problem is of great interest and could
as well be useful to the field of verification of infinite state-systems.

Related Works. Many papers study reachability problems for flat control
structures manipulating integer variables or counters. The main differences
between these different works lie in the type of guards and updates over the
counters that are allowed in the system. In [9], Comon and Jurski study
reachability problems for a class of counter systems with non-deterministic
updates where each transition of the system is labelled by a difference bound
matrix (DBM) characterizing the difference between the actual and the suc-
cessive values of the counters; they show that, for such a model, reachability is
decidable. Latter on, in [5], this latter problem is proved to be NP-complete.
In [19], Finkel and Leroux study another class of counter systems, where the
guards are given by Presburger arithmetic formulae and the updates on the
counters are performed thanks to linear functions, and they show that it is
possible to compute the reachability set of such systems which is expressible
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in Presburger arithmetic. Note that this latter work extends a previous sim-
ilar result proposed by Boigelot in [2]. In this work, we focus on the class of
counter systems whose guards are Boolean combinations of linear constraints
and whose updates are translations, hence this class of systems is incompara-
ble with the class of counter systems labelled with difference bound matrices
(we are more expressive in the guards but less powerful in the updates) and
it consists in a subclass of the systems studied by Finkel and Leroux.

In [14], it is proved that CTL? model-checking over the class of so-called
admissible counter systems is decidable by reduction into the satisfiability
problem for Presburger arithmetic, the decidable first-order theory of nat-
ural numbers with addition. Note that the flat counter systems considered
by Finkel and Leroux, and hence the one we propose to study, are admis-
sible. Even though this latter paper gives the decidability status of the
model-checking of Past LTL over flat counter systems (CTL? being strictly
more expressive that LTL), the introduced decision procedure provides a very
rough complexity upper bound in 4ExpTime, whereas, as we shall see, this
problem is NP-complete.

Our contributions. In this paper, we establish several computational com-
plexity characterizations of model-checking problems restricted to flat counter
systems in the presence of a rich LTL-like specification language with arith-
metical constraints and past-time operators. Not only we provide an opti-
mal complexity but also, we believe that our techniques could be reused for
further extensions (see the recent work [12] about regular specification lan-
guages). Indeed, we combine three proof techniques: the general stuttering
theorem [28], the property of small integer solutions of equation systems [3]
(this latter technique is used since [37, 23]) and the elimination of disjunctions
in guards (see Section 7). Let us be a bit more precise.
We extend the general stuttering principle established in [28] for LTL (with-
out past-time operators) to Past LTL. However, since this principle will be
applied to path schemas, a fundamental structure in flat counter systems, we
do not aim at being optimal; what matters in fact for our main result is an NP
upper bound. A path schema is simply a finite alternation of path segments
and simple loops (no repetition of edges) and the principle states that satis-
faction of an LTL formula requires only to take loops a number of times that
is linear in the temporal depth of the formula. This principle has been already
used to establish that LTL model-checking over weak Kripke structures is in
NP [27] (weakness corresponds to flatness). It is worth noting that another
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way to show a similar result would be to eliminate past-time operators thanks
to Gabbay’s Separation Theorem [21] (preserving initial equivalence) but the
temporal depth of formulae might increase at least exponentially, which is
a crucial parameter in our complexity analysis. We show that the model-
checking problem restricted to flat counter systems in the presence of LTL
with past-time operators is in NP (Theorem 8.4) by combining the above-
mentioned proof techniques (we call this problem MC(PLTL[C], FlatCS)).
Apart from the use of the general stuttering theorem (Theorem 4.1), we take
advantage of the other properties stated for instance in Lemma 6.1 (charac-
terization of runs by quantifier-free Presburger formulae) and Theorem 7.11
(elimination of disjunctions in guards preserving flatness). Note that the
loops in runs are visited a number of times that can be exponential in the
worst case, but this does not prevent us from establishing the NP upper
bound. We also take advantage of the fact that model-checking ultimately
periodic models with Past LTL is in PTime [29]. We also point out the fact
that our main decision procedure is not automata-based, unlike the approach
from [39]. In this paper, complexity results for fragments/subproblems are
also considered. For instance, we get a sharp lower bound since we establish
that the model-checking problem on path schemas with only 2 loops is al-
ready NP-hard (see Lemma 5.6). A summary table of results can be found
in Section 9.

The present paper is an extended and completed version of [11]. It in-
cludes all the proofs and their explanation in details and furthermore we have
added a few more results (see e.g. Section 8.2).

2. Flat Counter Systems and its LTL Dialect

We write N [resp. Z] to denote the set of natural numbers [resp. integers]
and [i, j] to denote the set {k ∈ Z : i ≤ k and k ≤ j}. For every v ∈ Zn,
v[i] denotes the ith element of v for every i ∈ [1, n]. For some n-ary tuple
t, we also write πj(t) to denote the jth element of t (j ≤ n). In the sequel,
integers are encoded with a binary representation. For a finite alphabet Σ, Σ∗

represents the set of finite words over Σ, Σ+ the set of finite non-empty words
over Σ and Σω the set of ω-words over Σ. For a finite word w = a1 . . . ak over
Σ, we write len(w) to denote its length k. For 0 ≤ i < len(w), w(i) represents
the (i+ 1)-th letter of the word, here ai+1.
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2.1. Counter Systems
Counter constraints are defined below as a subclass of Presburger for-

mulae whose free variables are understood as counters. Such constraints
are used to define guards in counter systems but also to define arithmetical
constraints in temporal formulae.

Let C = {x1, x2, . . .} be a countably infinite set of counters (variables
interpreted over non-negative integers) and AT = {p1, p2, . . .} be a count-
able infinite set of propositional variables (abstract properties about program
points). We write Cn to denote the restriction of C to {x1, x2, . . . , xn}.

Definition 2.1 (Guards). The set G(Cn) of guards (arithmetical constraints
on counters in Cn) is defined inductively as follows:

t ::= a.x | t + t

g ::= t ∼ b | g ∧ g | g ∨ g

where x ∈ Cn, a ∈ Z, b ∈ N and ∼∈ {=,≤,≥, <,>}.

Note that such guards are closed under negations (but negation is not a
logical connective) and the truth constants > and ⊥ can be easily defined
too.

Given g ∈ G(Cn) and a vector v ∈ Nn, we say that v satisfies g, written
v |= g, if the formula obtained by replacing each xi by v[i] holds.

Definition 2.2 (Counter system). For a natural number n ≥ 1, a n-dim
counter system (shortly a counter system) S is a tuple 〈Q, Cn,∆, l〉 where:

• Q is a finite set of control states.

• l : Q→ 2AT is a labelling function.

• ∆ ⊆ Q × G(Cn) × Zn × Q is a finite set of edges labeled by guards and
updates of the counter values (transitions).

For every transition δ = 〈q, g,u, q′〉 in ∆, we use the following notations:

• source(δ) = q; target(δ) = q′,

• guard(δ) = g; update(δ) = u.

As usual, to a counter system S = 〈Q, Cn,∆, l〉, we associate a labeled transi-
tion system T(S) = 〈C,→〉 where C = Q×Nn is the set of configurations and
→⊆ C ×∆ × C is the transition relation defined by: 〈〈q,v〉, δ, 〈q′,v′〉〉 ∈→
(also written 〈q,v〉 δ−→ 〈q′,v′〉) iff the conditions below are satisfied:
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• q = source(δ) and q′ = target(δ),

• v |= guard(δ) and v′ = v + update(δ).

Note that in such a transition system, the counter values are non-negative
since C = Q × Nn. We extend the transition relation → to finite words
of transitions in ∆+ as follows. For each w = δ0δ1 . . . δα ∈ ∆+, we have
〈q,v〉 w−→ 〈q′,v′〉 if there are c0, c1, . . . , cα+1 ∈ C such that ci

δi−→ ci+1 for all
i ∈ [0, α], c0 = 〈q,v〉 and cα+1 = 〈q′,v′〉. We say that an ω-word w ∈ ∆ω

is fireable in S from a configuration c0 ∈ Q × Nn if for all finite prefixes w′

of w there exists a configuration c ∈ Q × Nn such that c0
w′−→ c. We write

lab(c0) to denote the set of ω-words which are fireable from c0 in S. Note
that from a given configuration there could be multiple transitions that are
fireable and hence counter systems are inherently non-deterministic.

Given an initial configuration c0 ∈ Q×Nn, a run ρ starting from c0 in S
is an infinite path in the associated transition system T(S) denoted as:

ρ := c0
δ0−→ · · · δα−1−−→ cα

δα−→ · · ·

where ci ∈ Q×Nn and δi ∈ ∆ for all i ∈ N. Let lab(ρ) be the ω-word δ0δ1 . . .
associated to the run ρ. Note that by definition we have lab(ρ) ∈ lab(c0).
When E is an ω-regular expression over the finite alphabet ∆ and c0 is an
initial configuration, lab(E, c0) is defined as the set of labels of infinite runs
ρ starting at c0 such that lab(ρ) belongs to the language defined by E. So
lab(E, c0) ⊆ lab(c0).

We say that a counter system is flat if every node in the underlying graph
belongs to at most one simple cycle (a cycle being simple if no edge is repeated
twice in it) [9]. In a flat counter system, simple cycles can be organized as
a DAG where two simple cycles are in the relation whenever there is path
between a node of the first cycle and a node of the second cycle. We write
FlatCS to denote the class of flat counter systems.

Below, we present the control graph of a flat counter system (guards and
updates are omitted).
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As mentioned in Section 1, one can define other types of counter systems as
it is done for instance in [9, 2, 19, 5] by using different types of guards and
updates.

A Kripke structure S is a tuple 〈Q,∆, l〉 where ∆ ⊆ Q×Q and l : Q→ 2AT

is the labelling function. When Q is finite, it can be viewed as a degenerate
form of counter systems without counters (in the sequel, we take the freedom
to see them as counter systems). All standard notions on counter systems
naturally apply to (finite) Kripke structures too (configuration, run, flatness,
etc.). In the sequel, we shall also investigate the complexity of model-checking
problems on flat Kripke structures (such a class is denoted by FlatKS).

2.2. Linear-Time Temporal Logic with Past and Arithmetical Constraints
Model-checking problem for Past LTL over finite-state systems is known

to be PSpace-complete [38]. In spite of this nice feature, a propositional
variable p only represents an abstract property about the current configu-
ration of the system. A more satisfactory solution is to include in the logi-
cal language the possibility to express directly constraints between variables
of the program, and doing so refining the standard abstraction made with
propositional variables. When the variables are typed, they may be inter-
preted in some specific domain like integers, strings and so on; reasoning in
such theories can be performed thanks to satisfiability modulo theories proof
techniques, see e.g., [22] in which SMT solvers are used for model-checking
infinite-state systems. Hence, the basic idea behind the design of the logic
PLTL[C] is to refine the language of atomic formulae and to allow compar-
isons of counter values. Similar motivations can be found in the introduction
of concrete domains in description logics, that are logic-based formalisms for
knowledge representation [1, 32]. We define below a version of Linear-time
Temporal Logic (LTL), dedicated to counter systems in which the atomic
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formulae are linear constraints and the temporal operators are those of LTL.
Note that capacity constraints from [16] are arithmetical constraints different
from those defined below.

The formulae of the logic PLTL[C] are defined as follows:

φ ::= p | g | ¬φ | φ ∨ φ | Xφ | φUφ | X−1φ | φSφ

where p ∈ AT and g ∈ G(Cn) for some n. We may use the standard ab-
breviations F, G, G−1 etc. For instance, the formula GF(x1 + 2 ≥ x2) states
that infinitely often the value of counter 1 plus 2 is greater than the value of
counter 2. The past-time operators S and X−1 do not add expressive power
to the logic itself [21], but it is known that it helps a lot to express proper-
ties succinctly, see e.g. [30, 29]. The temporal depth of φ, written td(φ), is
defined as the maximal number of imbrications of temporal operators in φ.
Restriction of PLTL[C] to atomic formulae from AT only is written PLTL[∅],
it corresponds to the standard version of LTL with past-time operators. Mod-
els of PLTL[C] are essentially abstractions of runs from counter systems, i.e.
ω-sequences σ : N → 2AT × NC. Given a model σ and a position i ∈ N, the
satisfaction relation |= for PLTL[C] is defined as follows (Boolean clauses are
omitted):

σ, i |= p
def⇔ p ∈ π1(σ(i))

σ, i |= g
def⇔ vi |= g where vi(xj) = π2(σ(i))(xj)

σ, i |= Xφ
def⇔ σ, i+ 1 |= φ

σ, i |= φ1Uφ2
def⇔ σ, j |= φ2 for some i ≤ j

such that σ, k |= φ1 for all i ≤ k < j

σ, i |= X−1φ
def⇔ i > 0 and σ, i− 1 |= φ

σ, i |= φ1Sφ2
def⇔ σ, j |= φ2 for some 0 ≤ j ≤ i

such that σ, k |= φ1 for all j < k ≤ i

Given a counter system 〈Q, Cn,∆, l〉 and a run ρ := 〈q0,v0〉
δ0−→ · · · δp−1−−→

〈qp,vp〉
δp−→ · · · , we consider the model σρ : N → 2AT × NC such that

π1(σρ(i))
def
= l(qi) and π2(σρ(i))(xj)

def
= vi[j] for all j ∈ [1, n] and for all i ∈ N.

Note that π2(σρ(i))(xj) is arbitrary for all j 6∈ [1, n]. We extend the satisfac-
tion relation to runs so that ρ, i |= φ

def⇔ σρ, i |= φ whenever φ is built from
counters in Cn.
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The verification problem we are interested in is the model-checking prob-
lem for PLTL[C] over counter systems, written MC(L, C), where L is a frag-
ment of PLTL[C] and C is a class of counter systems. MC(L, C) is defined as
follows:

Input: A counter system S ∈ C, a configuration c0 and a formula φ ∈ L;

Output: Is there a run ρ starting from c0 in S such that ρ, 0 |= φ?

If the answer is positive, we write S, c0 |= φ. It is known that for the full
class of counter systems, the model-checking problem is undecidable; this is
due to the fact that reachability of a control state is undecidable for counter
systems manipulating at least two counters [34]. On the other hand, some
restrictions can lead to decidability of this problem. This is the case for
flat counter systems, for whom it is proved in [14] that the model-checking
problem of some temporal logic more expressive than PLTL[C] is decidable.
Unfortunately the decision procedure proposed in [14] involves an exponential
reduction to the satisfiability problem for some formulae of the Presburger
arithmetic and as a consequence has a high complexity.

Theorem 2.3. [14, 27] MC(PLTL[C], FlatCS) can be solved in 4ExpTime.
MC(PLTL[∅], FlatKS) restricted to formulae with temporal operators U,X is
NP-complete.

The main goal of this work is to show that a much better upper bound
for MC(PLTL[C], FlatCS) is possible and to provide the precise complexity
of this problem and of its related fragments.

3. Fundamental Structures: Minimal Path Schemas

In this section, we introduce a fundamental notion for flat counter sys-
tems, namely the path schemas. Indeed, every flat counter system can be
decomposed into a finite set of (minimal) path schemas and there are only
an exponential number of them. In the forthcoming nondeterministic algo-
rithms to solve model-checking problems on flat counter systems, the first
step consists in guessing a minimal path schema and then computations are
performed on such a structure. This explains why path schemas are a central
notion in our work.

Let S = 〈Q, Cn,∆, l〉 be a flat counter system. A path segment p of S
is a finite word (or sequence) of transitions from ∆ such that target(p(i)) =
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source(p(i+ 1)) for all 0 ≤ i < len(p)− 1. We write first(p) [resp. last(p)] to
denote the first [resp. last] control state of a path segment, in other words
first(p) = source(p(0)) and last(p) = target(p(len(p)− 1)). We also write

effect(p)
def
=

∑
0≤i<len(p)

update(p(i))

representing the total effect of the updates along the path segment. A path
segment p is said to be simple if len(p) > 0 and for all 0 ≤ i, j < len(p),
p(i) = p(j) implies i = j (no repetition of transitions). A loop is a simple
path segment p such that first(p) = last(p). If a path segment is not a loop
it is called a non-loop segment. A path schema P is an ω-regular expression
built over the alphabet of transitions such that its language represents an
overapproximation of the set of labels obtained from infinite runs following
the transitions of P .

Definition 3.1 (Path Schema). A path schema P is of the form p1l
+
1 p2l

+
2

. . . pkl
ω
k verifying the following conditions:

1. l1, . . . , lk are loops,
2. p1l1p2l2 . . . pklk is a path segment.

We denote by CPS [resp. KPS] the class of path schemas of counter systems
[resp. the class of path schemas of finite Kripke structures]. We write len(P )
for len(p1l1p2l2 . . . pklk) and we denote by nbloops(P ) the number of loops in
P (i.e. nbloops(P ) = k). Let L(P ) stand for the set of infinite words in ∆ω

that belong to the language defined by P . Note that some elements of L(P )
may not correspond to any run whenever constraints on counter values are
not satisfied. Given w ∈ L(P ), we write iterP (w) to denote the unique tuple
in (N \ {0})k−1 such that w = p1l

iterP (w)[1]
1 p2l

iterP (w)[2]
2 . . . pkl

ω
k . So iterP (w)[i]

is the number of times the loop li is taken, for every i ∈ [1, k − 1]. Then,
given a configuration c0, the set iterP (c0) is defined as the set of vectors

iterP (c0)
def
= {iterP (w) ∈ (N \ {0})k−1 | w ∈ lab(P, c0)}

We recall that lab(P, c0) denotes the set of labels of infinite runs ρ starting
at c0 such that lab(ρ) belongs to L(P ).

Finally, we say that a run ρ starting in a configuration c0 respects a path
schema P if lab(ρ) ∈ lab(P, c0) and for such a run, we write iterP (ρ) to denote
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Figure 1: A flat counter system and one of its minimal path schemas

iterP (lab(ρ)). By definition, if ρ respects P , then each loop li is visited at
least once, and the last one infinitely.

So far, a flat counter system may have an infinite set of path schemas.
To see this, it is sufficient to unroll loops and consider the unrolling as an
alternating sequence of path and loop segments. However, we can impose
minimality conditions on path schemas without sacrificing completeness. A
path schema p1l

+
1 p2l

+
2 . . . pkl

ω
k is minimal whenever

1. p1 · · · pk is either the empty word or a simple non-loop segment,
2. l1, . . . , lk are loops with disjoint sets of transitions.

We can then deduce the following lemma which is a simple consequence of
the fact that in a minimal path schema, each transition occurs at most twice.

Lemma 3.2. Given a flat counter system S = 〈Q, Cn,∆, l〉, the total number
of minimal path schemas of S is finite and is smaller than card(∆)(2×card(∆))

and the length of a minimal path schema of S is bounded by 2× card(∆).

In Figure 1, we present a flat counter system S with a unique counter and
one of its minimal path schemas. Each transition δi labelled by +i corre-
sponds to a transition with the guard > and the update value +i. The
minimal path schema shown in Figure 1 corresponds to the ω-regular expres-
sion δ1(δ2δ3)+δ4δ5(δ6δ5)ω. In order to avoid confusions between path schemas
and flat counter systems that look like path schemas, simple loops in the rep-
resentation are labelled by ω or ≥ 1 depending whether the simple loop
is the last one or not. Note that in the representation of path schemas, a
state may occur several times, as it is the case for q3 (this cannot happen in
the representation of counter systems). Minimal path schemas play a crucial
role in the sequel, mainly because of the following properties.

Lemma 3.3. Let S be a flat counter system and P be one of its path schemas.
There is a minimal path schema P ′ such that every run respecting P respects
P ′ as well.
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Proof Consider any non-minimal path schema P = p1(l1)+ · · · pk(lk)ω. P
is non-minimal because some edge δ occurs strictly more than twice in P .
Consider the segments from P containing three consecutive occurrences of
δ. Let w denote the subword of p1l1 · · · pklk formed by taking the segments
together. We can write the word w as w1δw2δw3δw4 and thus source(δ) =
target(w2) = target(w3). Similarly, it is clear that target(δ) = source(w2) =
source(w3). Since P is obtained from a flat counter system, δ belongs to at
most one simple cycle. In this case, clearly there are two loops δw2 and δw3

starting and ending at source(δ) and hence both δw2 and δw3 are iterations
of the same loop. Thus there exists a loop segment l′ such that δw2 = l′α and
δw3 = l′β for some α, β ∈ N and target(l′) = source(l′) = source(δ). Let P1

be the path schema obtained by replacing σi . . . σj . . . σk with w1(l′)+δw4 in
P . Clearly, P1 is a path schema in due form and L(P1) = L(P ). Note that the
above transformation reduces the number of times δ appear by at least one.
Performing the above construction repeatedly for any transition appearing
strictly more than twice in P , we get a minimal path schema P ′. Since, the
set of accepted words is preserved in the transformation, L(P ) = L(P ′) and
hence for every run respecting P there is a run respecting P ′ (and the other
way around). �

Finally, the conditions imposed on the structure of path schemas imply
that each run in a flat counter system starting at configuration c0 respects a
path schema (see similar statements in [31]). Lemmas 3.2 and 3.3 entail the
following result.

Corollary 3.4. For a flat counter system S and a configuration c0, there is a
finite set of minimal path schemas X of cardinality at most card(∆)(2×card(∆))

such that lab(c0) = lab(
⋃
P∈X P, c0).

4. Stuttering Theorem for PLTL[∅]

Stuttering of finite words or single letters has been instrumental to show
several results about the expressive power of PLTL[∅] fragments, see e.g. [35,
28]; for instance, PLTL[∅] restricted to the temporal operator U characterizes
exactly the class of formulae defining classes of models invariant under stut-
tering. This is refined in [28] for PLTL[∅] restricted to U and X, by taking into
account not only the U-depth but also the X-depth of formulae and by intro-
ducing a principle of stuttering that involves both letter stuttering and word
stuttering. In this section, we establish another substantial generalization
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that involves the full logic PLTL[∅] (with its past-time temporal operators).
Roughly speaking, we show that if σ1s

Mσ2, 0 |= φ where σ1s
Mσ2 is a PLTL[∅]

model (σ1, s being finite words), φ is PLTL[∅] formula verifying td(φ) ≤ N
and M > 2N , then σ1s

2N+1σ2, 0 |= φ (and other related properties). This
allows us to conclude that if there is a run

(a) satisfying a path schema P (see Section 3) and,
(b) verifying a PLTL[∅] formula φ,

then there is a run satisfying (a), (b) and each loop is visited at most 2 ×
td(φ) + 5 times, leading to an NP upper bound (see Proposition 5.1). This
extends a result without past-time operators [27]. Moreover, this turns out to
be a key property (Theorem 4.1) to establish the NP upper bound even in the
presence of counters (but additional work needs to be done, see Section 6).
It is worth observing that Theorem 4.1 below is interesting for its own sake,
independently of our investigation on flat counter systems.

Given M,M ′, N ∈ N, we write M ≈N M ′ iff min(M,N) = min(M ′, N).
Given w = w1u

Mw2, w
′ = w1u

M ′w2 ∈ Σω and i, i′ ∈ N, we define an equiv-
alence relation 〈w, i〉 ≈N 〈w′, i′〉 (implicitly parameterized by w1, w2 and u)
such that 〈w, i〉 ≈N 〈w′, i′〉 means that the number of copies of u before po-
sition i and the number of copies of u before position i′ are related by ≈N
and the same applies for the number of copies after the positions. Moreover,
if i and i′ occur in the part where u is repeated, then they correspond to
identical positions in u. More formally, 〈w, i〉 ≈N 〈w′, i′〉

def⇔ M ≈2N M ′ and
either, M,M ′ ≤ 2N and i = i′, or one of the following conditions holds true:

1. i, i′ < len(w1) +N · len(u) and i = i′.
2. i ≥ len(w1) + (M −N) · len(u) and i′ ≥ len(w1) + (M ′−N) · len(u) and

(i− i′) = (M −M ′) · len(u).
3. len(w1) +N · len(u) ≤ i < len(w1) + (M −N) · len(u) and len(w1) +N ·

len(u) ≤ i′ < len(w1) + (M ′ −N) · len(u) and |i− i′| = 0 mod len(u).

The conditions merely state that ifM,M ′ ≤ 2N then the positions in the
respective words have to be same. Since M ≈2N M ′, we have M,M ′ ≤ 2N
implies that M = M ′, that is w = w′. Otherwise, when M,M ′ > 2N , the
indices i and i′ should point to the corresponding equivalent positions in the
words w and w′ when i, i′ are located upto the first N iterations of u or from
the last N iterations of u. Finally, if the positions i and i′ belong to any
iteration of u between the block of the first N iterations of u and the block
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w1 | | |
w2

w1 | | |
w2

Figure 2: Two words w, w′ with u = �� and the relation ≈3

of the last N iterations of u, then i and i′ have the same relative position
with respect to u.

Figure 2 presents two words w and w′ over the alphabet Σ = {�,�}
such that w is of the form w1(��)7w2 and w′ is of the form w1(��)8w2.
The relation ≈3 is represented by edges between positions: each edge from
positions i of w to positions i′ of w′ represents the fact that 〈w, i〉 ≈3 〈w′, i′〉.

In order to prove our stuttering theorem for PLTL[∅], we need to express
some properties concerning the relation ≈ whose proofs can be found in
Appendix. Let w = w1u

Mw2, w
′ = w1u

M ′w2 ∈ Σω, i, i′ ∈ N and N ≥ 2
such that M,M ′ > 2N and 〈w, i〉 ≈N 〈w′, i′〉. We can show the following
properties:

(Claim 1) 〈w, i〉 ≈N−1 〈w′, i′〉 and w(i) = w′(i′).

(Claim 2) i, i′ > 0 implies 〈w, i− 1〉 ≈N−1 〈w′, i′ − 1〉.
(Claim 3) 〈w, i+ 1〉 ≈N−1 〈w′, i′ + 1〉
(Claim 4) For all j ≥ i, there is j′ ≥ i′ such that 〈w, j〉 ≈N−1 〈w′, j′〉 and

for all k′ ∈ [i′, j′−1], there is k ∈ [i, j−1] such that 〈w, k〉 ≈N−1 〈w′, k′〉.
(Claim 5) For all j ≤ i, there is j′ ≤ i′ such that 〈w, j〉 ≈N−1 〈w′, j′〉 and

for all k′ ∈ [j′−1, i′], there is k ∈ [j−1, i] such that 〈w, k〉 ≈N−1 〈w′, k′〉.

We now state our stuttering theorem for PLTL[∅] that is tailored for our
future needs.

Theorem 4.1 (Stuttering). Let N ≥ 2 andM,M ′ > 2N and σ = σ1s
Mσ2,

σ′ = σ1s
M ′σ2 ∈ (2AT)ω. For all i, i′ ∈ N such that 〈σ, i〉 ≈N 〈σ′, i′〉 and for

all PLTL[∅] formulae φ with td(φ) ≤ N , we have σ, i |= φ iff σ′, i′ |= φ.
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This theorem basically states that no PLTL[∅] formula φ with td(φ) ≤ N is
able to distinguish the infinite words σ = σ1s

Mσ2 and σ′ = σ1s
M ′σ2 when

M,M ′ > 2N . Before proving the theorem we assign a tuple of naturals
for each PLTL[∅] formula φ denoted as rank(φ) ∈ N × N and defined as
rank(φ) = 〈td(φ), size(φ)〉 where size(φ) denotes the size of the formula φ
which is defined as usual. For instance, size(p) = 1 and size(φ1 ∧ φ2) =
size(φ1Uφ2) = size(φ1) + size(φ2) + 1. The tuple rank(φ) is called the rank of
the formula φ and we use the lexicographic order< over the ranks of formulae.
This order is defined as follows 〈m1, n1〉 < 〈m2, n2〉 iff either m1 < m2 or
(m1 = m2 and n1 < n2).

Proof (Stuttering Theorem) Let N ≥ 2 and M,M ′ > 2N and σ = σ1s
Mσ2,

σ′ = σ1s
M ′σ2 ∈ (2AT)ω. We consider as well i, i′ ∈ N such that 〈σ, i〉 ≈N

〈σ′, i′〉. We will show that for all PLTL[∅] formula φ with td(φ) ≤ N , we
have σ, i |= φ iff σ′, i′ |= φ. The proof is by induction on the formula rank.
We assume furthermore that (Claim 1) - (Claim 5) are true (the proofs of
these claims being provided in Appendix).

• Base case: As base case we consider a PLTL[∅] formula φ with rank(φ)
= 〈0, 1〉. (i.e. formulae which are just atomic propositions). Thus we
have φ = p for some p ∈ AT. Since, 〈σ, i〉 ≈N 〈σ′, i′〉 for some N ≥ 2
and by (Claim 1), w(i) = w(i′), either p ∈ w(i) or p 6∈ w(i), In any
case, σ, i |= p iff σ′, i |= p.

• Induction step: The induction hypothesis is the following one: for
all formulae ψ with rank(ψ) < rank(φ) and for all j, j′ such that
〈σ, j〉 ≈td(ψ) 〈σ′, j′〉, we have σ, j |= ψ iff σ′, j′ |= ψ. To prove that
the desired property holds, we proceed by the following case analysis
on the shape of the formula φ.

– φ = Xφ′: Since td(φ′) < td(φ), we have rank(φ′) < rank(φ).
By (Claim 3), 〈σ, i + 1〉 ≈N−1 〈σ′, i′ + 1〉 and using (Claim 1)
repeatedly 〈σ, i + 1〉 ≈td(φ′) 〈σ′, i′ + 1〉. By induction hypothesis,
we have σ, i + 1 |= φ′ iff σ′, i′ + 1 |= φ′. Thus, σ, i |= Xφ′ iff
σ′, i′ |= Xφ′.

– φ = X−1φ′: First if i = 0 or i′ = 0, since 〈σ, i〉 ≈N 〈σ′, i′〉, we have
i = i′ = 0 and in that case σ, i 6|= X−1φ′ and σ′, i′ 6|= X−1φ′. Assume
now i > 0 and i′ > 0. Since td(φ′) < td(φ), we have rank(φ′) <
rank(φ). By (Claim 2), i, i′ > 0 implies 〈σ, i− 1〉 ≈N−1 〈σ′, i′− 1〉
and consequently, thanks to (Claim 1), we deduce 〈σ, i−1〉 ≈td(φ′)
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〈σ′, i′−1〉 . Using induction hypothesis, σ, i−1 |= φ′ iff σ′, i′−1 |=
φ′. This allows us to deduce that σ, i |= X−1φ′ iff σ′, i′ |= X−1φ′.

– φ = φ1Uφ2: First, we suppose that σ, i |= φ1Uφ2. There is j ≥ i
such that σ, j |= φ2 and σ, k |= φ1 for every k ∈ [i, j − 1]. We
have that td(φ1) ≤ N − 1 and td(φ2) ≤ N − 1, and consequently
rank(φ1) < rank(φ) and rank(φ2) < rank(φ). Using (Claim 4),
there is j′ ≥ i′ such that 〈σ, j〉 ≈N−1 〈σ′, j′〉 and for all k′ ∈
[i′, j′−1] there is k ∈ [i, j−1] such that 〈σ, k〉 ≈N−1 〈σ′, k′〉. Using
(Claim 1) and the induction hypothesis, we deduce that σ′, j′ |= φ2

and σ′, k′ |= φ1 for every k′ ∈ [i′, j′ − 1] . Thus σ′, i′ |= φ1Uφ2.
Following the same reasoning, we can prove that if σ′, i′ |= φ1Uφ2,
we have σ, i |= φ1Uφ2.

– φ = φ1Sφ2: We first suppose that σ, i |= φ1Sφ2; consequently
there is 0 ≤ j ≤ i such that σ, j |= φ2 and σ, k |= φ1 for every
k ∈ [j + 1, i]. We have that td(φ1) ≤ N − 1 and td(φ2) ≤ N − 1,
and consequently rank(φ1) < rank(φ) and rank(φ2) < rank(φ).
Using (Claim 5), there is 0 ≤ j′ ≤ i′ such that 〈σ, j〉 ≈N−1 〈σ′, j′〉
and for all k′ ∈ [j′+1, i′] there is k ∈ [j+1, i] such that 〈σ, k〉 ≈N−1

〈σ′, k′〉. Using (Claim 1) and the induction hypothesis, we deduce
that σ′, j′ |= φ2 and σ′, k′ |= φ1 for every k′ ∈ [j′ + 1, i′]. Thus
σ′, i′ |= φ1Sφ2. Following the same reasoning, we can prove that if
σ′, i′ |= φ1Sφ2, we have σ, i |= φ1Sφ2.

– φ = ¬φ′: In that case td(φ′) = td(φ) and size(φ′) = size(φ) − 1,
hence rank(φ′) < rank(φ). Since 〈σ, i〉 ≈N 〈σ′, i′〉, using (Claim
1), we have 〈σ, i〉 ≈td(φ′) 〈σ′, i′〉 (remember that td(φ′) ≤ N) and
by induction hypothesis, we deduce that σ, i 2 φ′ iff σ′, i′ 2 φ′.
Thus, σ, i |= ¬φ′ iff σ′, i′ |= ¬φ′.

– φ = φ1 ∨ φ2: For such a formula, we consider the two following
subcases:

(a) (td(φ1) ≤ td(φ)− 1 and td(φ2) = td(φ)) or (td(φ2) ≤ td(φ)−
1 and td(φ1) = td(φ)). Without loss of generality, let us
assume that td(φ1) ≤ td(φ)− 1 and td(φ2) = td(φ). We have
size(φ2) ≤ size(φ)− 1. This implies that rank(φ1) < rank(φ)
and rank(φ2) < rank(φ). Since 〈σ, i〉 ≈N 〈σ′, i′〉, using (Claim
1) repeatedly, we have 〈σ, i〉 ≈td(φ1) 〈σ′, i′〉 and 〈σ, i〉 ≈td(φ2)

〈σ′, i′〉 (remember that td(φ1) ≤ N and that td(φ2) ≤ N).
Thus, by induction hypothesis, σ, i |= φ1 iff σ′, i′ |= φ1 and
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σ, i |= φ2 iff σ′, i′ |= φ2. Hence, σ, i |= φ1∨φ2 iff σ′, i′ |= φ1∨φ2.
(b) td(φ1) = td(φ2) = td(φ). In that case, we have size(φ1) ≤

size(φ)−1 and size(φ2) ≤ size(φ)−1. Consequently rank(φ1) <
rank(φ) and rank(φ2) < rank(φ). As previously, this allows
us to deduce that σ, i |= φ1 ∨ φ2 iff σ′, i′ |= φ1 ∨ φ2.

�

A similar proof can be found in [28] and our proof provides a gener-
alisation, in some respect, by dealing with past-time operators. On the
other hand, for the purpose of model-checking flat counter systems, we need
a simpler property than what is established in [28]. The proof of Theo-
rem 4.1 essentially amounts to design a suitable strategy in Ehrenfeucht-
Fraïssé (EF) games [18]. Consequently, an alternative proof is possible by
using EF games [18]; this does not necessarily provide a shorter proof and
it requires to use properties of the game, as done in [18]. In particular even
though the above proof and the proof of [18, Theorem 4.4] are also similar
in nature, we nevertheless provide the proof which is tailored to our specific
need and moreover this allows us to be self-contained. Note that to obtain
the same result thanks to EF games, it is enough to observe that the relation
〈w, i〉 ≈N 〈w′, i′〉 leads exactly to a winning strategy for the Duplicator in the
Ehrenfeucht-Fraïssé game for Past LTL over the words w and w′. Another
reason for being self-contained is that the properties shown in both proofs
are slightly different; typically, for our model-checking procedure, we need a
polynomial bound.

Finally, from Theorem 4.1, we conclude that given a formula φ from
PLTL[∅], a word σ with an infix s repeated more than max(2.td(φ) + 1, 5)
times satisfies φ iff the word σ′ in which s is repeated exactly max(2.td(φ) +
1, 5) times satisfies φ.

5. Model-checking Path Schemas

Path schemas in flat counter systems and Kripke structures are defined
as ω-regular expressions over the alphabet of transitions. Nevertheless, they
can also be viewed as restricted flat systems, i.e. as restricted flat counter
systems or Kripke structures, with the proviso that each loop is visited at
least once and the structure is more constrained since it follows the definition
of path schemas. For instance, in a path schema, it is not possible to have
two transitions from the same “state” leading to two different loops. In this
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section, we consider the model-checking problem with input path schemas
(instead of counter systems). Studying such restricted flat systems is indeed
important to understand where stands the frontier for the lower and upper
bounds of our complexity results.

5.1. Complexity results for Path Schemas of Kripke Structures
We begin by looking at the model-checking problem for PLTL[∅] over path

schemas of a flat Kripke structure. We write MC(PLTL[∅], KPS) to denote
the problem defined below:

Input: A finite flat Kripke structure S, a path schema P of S, a configura-
tion c0 and a formula φ of PLTL[∅];

Output: Is there a run ρ starting at c0, respecting P , and such that ρ, 0 |= φ?

In case of positive answer, we write P, c0 |= φ. Let ρ and ρ′ be runs respecting
P . For α ≥ 0, we write ρ ≡α ρ′

def⇔ for every i ∈ [1, nbloops(P )−1], we have
min(iterP (ρ)[i], α) = min(iterP (ρ′)[i], α). We state below a result concerning
the runs of flat counter systems (including finite flat Kripke structures) when
respecting the same path schema.

Proposition 5.1. Let S be a flat counter system, P be a path schema, and
φ ∈ PLTL[∅]. For all runs ρ and ρ′ respecting P such that ρ ≡2td(φ)+5 ρ

′, we
have ρ, 0 |= φ iff ρ′, 0 |= φ.

This property can be proved by applying the Stuttering Theorem (Theo-
rem 4.1) repeatedly in order to get rid of the unwanted iterations of the
loops.

Our algorithm for MC(PLTL[∅], KPS) takes advantage of a result from [29]
for model-checking ultimately periodic models with formulae from Past LTL.
An ultimately periodic path is an infinite word in ∆ω of the form uvω where
uv is a path segment and first(v) = last(v). More generally, an ultimately
periodic word over the alphabet Σ is an ω-word in Σω that can be written
as uvω where u is the prefix and v is the loop. According to [29], given an
ultimately periodic path w, and a formula φ ∈ PLTL[∅], the problem of
checking whether there exists a run ρ such that lab(ρ) = w and ρ, 0 |= φ is in
PTime. Using Theorem 4.1, we can bound the maximal number of iterations
of v we need to check for a given Past LTL formula φ.

Lemma 5.2. MC(PLTL[∅], KPS) is in NP.
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Figure 3: A simple path schema P

Proof This result is a consequence of Proposition 5.1 and [29]. Indeed,
given φ ∈ PLTL[∅] and P = p1l

+
1 p2l

+
2 . . . pkl

ω
k , our algorithm first guesses

y ∈ [1, 2td(φ) + 5]k−1 and check whether ρ, 0 |= φ where ρ is the obvious
ultimately periodic word such that lab(ρ) = p1l

y[1]
1 p2l

y[2]
2 . . . pkl

ω
k . Since y is

of polynomial size and since ρ, 0 |= φ can be checked in polynomial time
by [29, Theorem 5.1], we get the NP upper bound. �

Furthermore, from [27], we have the lower bound for MC(PLTL[∅], KPS).

Lemma 5.3. [27] MC(PLTL[∅], KPS) is NP-hard even if the temporal oper-
ators in the considered PLTL[∅] formulae are restricted to X and F.

For the sake of completeness, we provide the proof presented in [27] adapted
to our context.

Proof The proof is by reduction from the SAT problem. Let Φ be a Boolean
formula built over the propositional variables PV = {p1, · · · , pn}. We build
a path schema P and a formula ψ such that Φ is satisfiable iff there is a run
respecting P and satisfying ψ. The path schema P is the one described in
Figure 3 so that the truth of the propositional variable pi is encoded by the
fact that the loop containing qi is visited twice, otherwise it is visited once.
The formula ψ is defined as a conjunction ψ1∨2∧ψtruth where ψ1∨2 states that
each loop is visited at most twice and ψtruth establishes the correspondence
between the truth of pi and the number of times the loop containing qi is
visited. Formula ψ1∨2 is equal to [

∧
i(G(qi∧XXqi ⇒ XXXG¬qi))] whereas ψtruth

is defined from Φ by replacing each occurrence of pi by F(qi ∧ XXqi).
Let us check the correctness of the reduction. Let v : PV → {>,⊥} be

a valuation satisfying Φ. Let us consider the run ρ respecting P such that
iterP (ρ)[i]

def
= 2 if v(pi) = >, otherwise iterP (ρ)[i]

def
= 1 for all i ∈ [1, n]. It is

easy to check that ρ, 0 |= ψ. Conversely, if there is a run ρ respecting P such
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that ρ, 0 |= ψ, the valuation v satisfies Φ where for all i ∈ [1, n], we have
v(pi) = > def⇔ iterP (ρ)[i] = 2. �

Then, the NP-completeness of MC(PLTL[∅], KPS) follows from the two
previous lemmas. Let us also consider the case where we restrict the class of
path schemas by bounding the number of loops. Hence, for a fixed k ∈ N, we
write MC(PLTL[∅], KPS(k)) to denote the restriction of MC(PLTL[∅], KPS) to
path schemas with at most k loops. When k is fixed, the number of ultimately
periodic paths w in L(P ) such that each loop (except the last one) is visited
at most 2td(φ) + 5 times is bounded by (2td(φ) + 5)k, which is polynomial
in the size of the input (because k is fixed). From these considerations, we
deduce the following result.

Theorem 5.4. MC(PLTL[∅], KPS) is NP-complete.
Given a fixed k ∈ N, MC(PLTL[∅], KPS(k)) is in PTime.

It can be shown that MC(PLTL[∅], KPS(k)) is in NC, hence giving a tighter
upper bound for the problem. This can be obtained by observing that we can
run the NC algorithm from [26] for model checking PLTL[∅] over ultimately
periodic paths in parallel on (2td(φ) + 5)k (polynomially many) different
paths.

5.2. Result for Flat Kripke Structures
Now, we show how to solve MC(PLTL[∅], FlatKS) by using Lemma 5.2.

From Lemma 3.2, the number of minimal path schemas in a flat Kripke
structure S = 〈Q,∆, l〉 is finite and the length of a minimal path schema
is at most 2 × card(∆). Hence, for solving the model-checking problem for
an initial state q0 and a PLTL[∅] formula φ, a possible algorithm consists in
choosing non-deterministically a minimal path schema P starting at q0 and
then apply the algorithm used to establish Lemma 5.2. This new algorithm
would be in NP. Furthermore, thanks to Corollary 3.4, we know that if there
exists a run ρ of S such that ρ, 0 |= φ then there exists a minimal path schema
P such that ρ respects P . Consequently there is an algorithm in NP to solve
MC(PLTL[∅], FlatKS) and NP-hardness can be established as a variant of
the proof of Lemma 5.3.

Theorem 5.5. MC(PLTL[∅], FlatKS) is NP-complete.
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5.3. Some lower bounds in the presence of counters
We will now provide some complexity lower bounds when considering path

schemas over counter systems. As for path schemas from Kripke structures,
we use CPS(k) to denote the class of path schemas obtained from flat counter
systems with number of loops bounded by k. Surprisingly, in the presence
of counters, bounding the number of loops preserves NP-hardness as soon
as there are at least two loops. The case with a single loop is dealt with in
Section 8.2.

Lemma 5.6. For k ≥ 2, MC(PLTL[C], CPS(k)) is NP-hard.

The proof is by reduction from SAT and it is less straightforward than the
proof for Lemma 5.3 or the reduction presented in [27] when path schemas
are involved. Indeed, we cannot encode the nondeterminism in the structure
itself and the structure has only a constant number of loops. Actually, we
cannot use a separate loop for each counter; the reduction is done by encoding
the nondeterminism in the (possibly exponential) number of times a single
loop is taken, and then using its binary encoding as an assignment for the
propositional variables.

Proof The proof is by reduction from the problem SAT. Let Φ be a Boolean
formula built over the propositional variables in {p1, . . . , pn}. We build a
path schema P ∈ CPS(2), an initial configuration (in which all counters will
be equal to zero) and a formula ψ such that Φ is satisfiable iff there is a run
respecting P and starting at the initial configuration such that it satisfies
ψ. The path schema P is the one described in Figure 4; it has one internal
loop and a second loop that is visited infinitely. The guard x1 ≤ 2n enforces
that the first loop is visited α times with α ∈ [1, 2n], which corresponds to
guess a propositional valuation such that the truth value of the propositional
variable pi is > whenever the ith bit of α − 1 is equal to 1. When α − 1 is
encoded in binary with n bits, we assume the first bit is the most significant
one. Note that the internal loop has to be visited at least once since P is a
path schema.

Since the logical language does not allow to access to the ith bit of a
counter value, we simulate the test by arithmetical constraints in the formula
when the second loop of the path schema is visited. For every α ∈ [1, 2n] and
every i ∈ [1, n], we write αiu to denote the value in [0, 2i−1− 1] corresponding
to the i−1 first bits of α−1. When i = 1, by convention αiu = 0. Similarly, we
write αid to denote the value in [0, 2n+1−i−1] corresponding to the (n+1− i)
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Figure 4: Path schema P

last bits of α−1. Observe that α−1 = αiu×2n−i+1 +αid. One can show that
the propositions below are equivalent:

1. ith bit of α− 1 is 1,
2. there is some k ≥ 0 such that k × 2n+1−i + (α − 1) ∈ [2n + 2n−i, 2n +

2n+1−i − 1].

Actually, we shall show that k is unique and the only possible value is 2i−1−
αiu. Before showing the equivalence between (1.) and (2.), we can observe
that condition (2.) can be expressed by the formula

F(q1 ∧ ((xi − 1) ≥ 2n + 2n−i) ∧ ((xi − 1) ≤ 2n + 2n−i+1 − 1))

First, note that [2n+2n−i, 2n+2n+1−i−1] contains 2n−i distinct values and
therefore satisfaction of (2.) implies unicity of k since 2n+1−i > 2n−i. Second,
the ith bit of α− 1 is equal to 1 iff αid ∈ [2n−i, 2n+1−i− 1]. Now, observe that
(2i−1−αiu)2n+1−i + (α− 1) = 2n +αid. So, if (1.), then αid ∈ [2n−i, 2n+1−i− 1]
and consequently 2n + αid ∈ [2n + 2n−i, 2n + 2n+1−i − 1]. So, there is some
k ≥ 0 such that k × 2n+1−i + (α − 1) ∈ [2n + 2n−i, 2n + 2n+1−i − 1] (take
k = 2i−1− αiu). Now, suppose that (2.) holds true. There is k ≥ 0 such that
k×2n+1−i+(α−1) ∈ [2n+2n−i, 2n+2n+1−i−1]. So, k×2n+1−i+(α−1)−2n ∈
[2n−i, 2n+1−i − 1] and therefore k × 2n+1−i + αid − (2i−1 − αiu) × 2n+1−i ∈
[2n−i, 2n+1−i−1]. Since the expression denotes a non-negative value, we have
k ≥ (2i−1 − αiu) (indeed αid < 2n+1−i) and since it denotes a value less or
equal to 2n+1−i − 1, we have k ≤ (2i−1 − αiu). Consequently, k = 2i−1 − αiu
and therefore αid ∈ [2n−i, 2n+1−i− 1], which is precisely equivalent to the fact
that the ith bit of α− 1 is equal to 1.
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The formula ψ is defined from Φ by replacing each occurrence of pi by
F(q1 ∧ ((xi − 1) ≥ 2n + 2n−i) ∧ ((xi − 1) ≤ 2n + 2n−i+1 − 1)). Intuitively, P
contains one counter by propositional variable and all the counters hold the
same value after the first loop. Next, in the second loop, we check that the ith
bit of α−1 is one by incrementing xi by 2n+1−i. We had to consider n counters
since the increments differ. In order to check whether the ith bit of counter
xi is one, we add repeatedly 2n+1−i to the counter. Note that this ensures
that the bits at positions i to n remains the same for the counter whereas the
counter is incremented till its value is greater or equal to 2n. Eventually, we
may deduce that the counter value will belong to [2n+2n−i, 2n+2n−i+1−1].

Let us check the correctness of the reduction. Let v : {p1, . . . , pn} →
{>,⊥}. be a valuation satisfying Φ. We consider the run ρ respecting P
such that the first loop is taken α = (v(p1)v(p2) · · · v(pn))2 + 1 times and
the initial counter values are all equal to zero. > is read as 1, ⊥ as 0 and
(v(p1)v(p2) · · · v(pn))2 denotes the value of the natural number made of n bits
in binary encoding. Hence, for every i ∈ [1, n], the counter xi contains the
value α after the first loop. As noted earlier, v(pi) = > implies that adding
2n−i+1 repeatedly to xi in the last loop, we will hit [2n+2n−i, 2n+2n−i+1−1].
Hence, the formula F(q1∧ ((xi−1) ≥ 2n+2n−i)∧ ((xi−1) ≤ 2n+2n−i+1−1))
will be satisfied by ρ iff v(pi) = >. It is easy to check thus, that ρ, 0 |= ψ.
Conversely, if there is a run ρ respecting P such that ρ, 0 |= ψ and the initial
counter values are all equal to zero, the valuation v satisfies Φ where for all
i ∈ [1, n], we have v(pi) iff the ith bit in the binary encoding of α − 1 is 1,
where α is the number of times the first loop is taken. �

Now, for the sake of completeness, we provide a simple proof that the
reachability problem in flat counter systems is NP-hard too. As explained
earlier, a path schema in CPS can be seen as a flat counter system with
the proviso that each internal loop is visited at least once and the control
structure has a limited amount of nondeterminism. For any state q, we write
conf 0(q) to denote the configuration 〈q, 〈0, · · · , 0〉〉 (all counter values are
equal to zero). The reachability problem REACH(C) for a class of counter
system C is defined as:

Input: A counter system S ∈ C and two states q0 and qf ;

Output: Is there a run from conf 0(q0) to conf 0(qf )?

We have then the following result concerning the lower bound of reachability
in flat counter systems and path schemas from flat counter systems.
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Figure 5: A simple path schema

Lemma 5.7. REACH(CPS) and REACH(FlatCS) are NP-hard.

Proof The proofs are by reduction from the SAT problem. Using the fact
that CPS is a special and constrained FlatCS, we will only prove NP-hardness
of REACH(CPS). As a corollary, we obtain the result for REACH(FlatCS).
Let Φ be a Boolean formula built over the propositional variables PV =
{p1, · · · , pn}. We build a path schema P such that Φ is satisfiable iff there is
a run respecting P starting with the configuration conf 0(q0) and visiting the
configuration conf 0(qf ). The path schema P is the one described in Figure 5
so that the truth of the propositional variable pi is encoded by the fact that
the loop incrementing xi is visited at least twice. The guard g is defined as
a formula that establishes the correspondence between the truth value of pi
and the number of times the loop incrementing xi is visited. It is defined from
Φ by replacing each occurrence of pi by xi ≥ 2. Since the ith and (n + i)th

loops perform the complementary operation on the same counters, both of
the loops can be taken equal number of times (so that qf is reached with all
the counters equal to zero).

Let us check the correctness of the reduction. Let v : PV → {>,⊥}
be a valuation satisfying Φ. We consider the run ρ respecting P such that
iterP (ρ)[i] = k and iterP (ρ)[n+i] = k for some k ≥ 2, if v(pi) = >, otherwise
iterP (ρ)[i] = 1 and iterP (ρ)[n + i] = 1 for all i ∈ [1, n]. It is easy to check
that the guard g is satisfied by the run and taking ith loop and (n+ i)th loop
equal number times ensures resetting the counter values to zero. Hence, the
configuration conf 0(qf ) is reachable. Conversely, if there is a run ρ respect-
ing P and starting with configuration conf 0(q0) such that the configuration
conf 0(qf ) is reachable, then the guard g ensures that the valuation v satisfies
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Φ where for all i ∈ [1, n], we have v(pi) = > def⇔ iterP (ρ)[i] ≥ 2. �

6. Characterizing Infinite Runs by Presburger Formulae

In this section, we show how to build a quantifier-free Presburger formula
(also called a constraint system herein) from a path schema P and a con-
figuration c0 such that it encodes the set of all runs respecting P from c0.
This can be done for path schemas without disjunctions in guards that sat-
isfy an additional infiniteness property. A path schema P = p1l

+
1 p2l

+
2 . . . pkl

ω
k

satisfies the infiniteness property whenever it satisfies the conditions below:

1. effect(lk) ≥ 0,
2. all the guards in transitions of lk are conjunctions of atomic guards, and

for each atomic guard occurring in the loop lk of the form
∑

i aixi ∼ b
we have

•
∑

i ai × effect(lk)[i] ≤ 0 if ∼∈ {≤, <},
•
∑

i ai × effect(lk)[i] = 0 if ∼∈ {=},
•
∑

i ai × effect(lk)[i] ≥ 0 if ∼∈ {≥, >}.

It is easy to check that these conditions are necessary to visit the last
loop lk infinitely. More specifically, if a path schema does not satisfy the
infiniteness property, then no infinite run can respect it (assuming that no
disjunction occurs in guards). Moreover, given a path schema, one can decide
in polynomial time whether it satisfies the infiniteness property.

Now, let us consider a path schema P = p1l
+
1 p2l

+
2 . . . pkl

ω
k (k ≥ 1) obtained

from a n-dim flat counter system S such that it satisfies the infiniteness
property and all the guards on transitions are conjunctions of atomic guards
of the form

∑
i aixi ∼ b where ai ∈ Z, b ∈ Z and ∼∈ {=,≤,≥, <,>}.

Hence, disjunctions are disallowed in guards. The goal of this section (see
Lemma 6.1 below) is to characterize the set iterP (c0) ⊆ (N \ {0})k−1 for
some initial configuration c0 as the set of solutions of a constraint system.
For each internal loop li of the path schema P , we introduce a variable yi.
The number of variables in the systems/formulae is hence precisely k − 1.
A constraint system E over the set of variables {y1, . . . , yk−1} is a quantifier-
free Presburger formula built over {y1, . . . , yk−1} as a conjunction of atomic
constraints of the form

∑
i aiyi ∼ b where ai, b ∈ Z and ∼∈ {=,≤,≥, <

,>}. Conjunctions of atomic counter constraints and constraint systems
are essentially the same objects but the distinction in this place allows to
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emphasize the different purposes: guard on counters in operational models
and symbolic representation of sets of tuples.

Now, we explain how to build from the path schema P and from an
initial configuration c0 = 〈q0,v0〉, a constraint system E over the set of
variables {y1, . . . , yk−1} that characterizes the set iterP (c0) ⊆ (N \ {0})k−1.
The intuition behind this construction being that each variable yi represents
the number of times the internal loop li is taken.

For all α ∈ [1, k] and for all i ∈ [1, n], we write effect<(lα)[i] to denote
the term below:

v0[i]+(effect(p1)+ · · ·+effect(pα))[i]+effect(l1)[i]y1 + . . .+effect(lα−1)[i]yα−1

It corresponds to the value of the counter xi just before entering in the loop
lα. Similarly, for all α ∈ [1, k] and for all i ∈ [1, n], we write effect<(pα)[i] to
denote:

v0[i]+(effect(p1)+· · ·+effect(pα−1))[i]+effect(l1)[i]y1+. . .+effect(lα−1)[i]yα−1

It corresponds to the value of the counter xi just before entering in the seg-
ment pα. In this way, for each segment p in P (either a loop or a non-loop
segment) and for each β ∈ [0, len(p) − 1] the term below refers to the value
of counter xi just before entering for the first time in the (β+ 1)th transition
of p:

effect<(p)[i] + effect(p(0) · · · p(β − 1))[i]

Similarly, the value of counter xi just before entering for the last time in the
(β + 1)th transition of lα is represented by the term below:

effect<(p)[i] + effect(lα)[i](yα − 1) + effect(lα(0) · · · lα(β − 1))[i]

The set of conjuncts in E is defined as follows. Each conjunct corresponds
to a specific requirement in runs respecting P .

E1: Each loop is visited at least once:

y1 ≥ 1 ∧ · · · ∧ yk−1 ≥ 1

E2: Counter values are non-negative. We consider the following constraints:
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• For each segment p and each β ∈ [0, len(p) − 1], the value of
counter xi just before entering for the first time in the (β + 1)th
transition of p is non-negative:

effect<(p)[i] + effect(p(0) · · · p(β − 1))[i] ≥ 0

The segment p can be either a loop or a non-loop segment.

• For each α ∈ [1, k − 1] and for each β ∈ [0, len(lα)− 1], the value
of counter xi just before entering for the last time in the (β+ 1)th
transition of lα is non-negative:

effect<(lα)[i]+effect(lα)[i](yα−1)+effect(lα(0) · · · lα(β−1))[i] ≥ 0

We point out that it is sufficient for preserving non-negativity to check
the guards the first time and the last time the run enters in a loop.

E3: Counter values should satisfy the guards the first time when a transition
is visited. For each segment p in P , for each β ∈ [0, len(p)− 1] and for
each atomic guard

∑
i aixi ∼ b occurring in guard(p(β)), we add the

atomic constraint:∑
i

ai(effect<(p)[i] + effect(p(0) · · · p(β − 1))[i]) ∼ b

E4: Counter values should satisfy the guards the last time when a transition
is visited. This applies to loops only. For each α ∈ [1, k − 1], for each
β ∈ [0, len(lα)− 1] and for each atomic guard

∑
i aixi ∼ b occurring in

guard(lα(β)), we add the atomic constraint:∑
i

ai(effect<(lα)[i]+effect(lα)[i](yα−1)+effect(lα(0) · · · lα(β−1))[i]) ∼ b

No condition is needed for the last loop since the path schema P satisfies
the infiniteness property. Furthermore, the guards are conjunctions of
atomic guards (linear constraints), whence they describe a convex set.
So, if along a run, the guard is satisfied the first time the loop is visited
and the last time the loop is visited, then the guard is satisfied for all
the intermediate visits.

Now, let us bound the number of equalities or inequalities above. To do
so, we write N1 to denote the number of atomic guards in P .
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• The number of conjuncts in E1 is less than k.

• The number of conjuncts in E2 is bounded by

len(P )× n+ len(P )× n = 2n× len(P ).

• The number of conjuncts in E3 [resp. E4] is bounded by len(P )×N1.

So, the number of conjuncts in E is bounded by 2× len(P )× (1 + n+N1) ≤
2× len(P )×n(1 +N1). Since n ≤ size(P ) and 1 +N1 ≤ size(P ), we get that
this number is bounded by len(P )× 2× size(P )2.

Let K be the maximal absolute value of constants occurring either in P
or in v0. Now, we explain how it is possible to bound the maximal absolute
value of constants in E . To do so, we start by a few observations.

• A path segment p has at most len(P ) transitions and therefore the
maximal absolute value occurring in effect(p) is at most K × len(P ).

• The maximal absolute value occurring in effect<(p) is at most K +
K × len(P ) = K(1 + len(P )). The first occurrence of K comes from
the counter values in the initial configuration.

Consequently, we can make the following conclusions.

• The maximal absolute values of constants in E1 is 1.

• The maximal absolute values of constants in the first part of E2 is
bounded by K(1 + len(P )) +Klen(P ) ≤ (K + 1)(len(P ) + 1).

• The maximal absolute values of constants in the second part of E2 is
bounded by K(1 + len(P )) +Klen(P ) +Klen(P ) ≤ 2(K + 1)(len(P ) +
1). So, the maximal absolute values of constants in E2 is bounded by
2(K + 1)(len(P ) + 1).

• The maximal absolute values of constants in E3 or E4 is bounded by
n×K × 2(K + 1)(len(P ) + 1) +K. The last occurrence of K is due to
the constant b in the atomic constraint.

Consequently, the maximal absolute value of constants in E is bounded
by 2n×K(K + 2)× (len(P ) + 1). When P is a minimal path schema, note
that len(P ) ≤ 2× card(∆) ≤ 2× size(S) and k ≤ card(Q) ≤ size(S).
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Lemma 6.1. Let S = 〈Q, Cn,∆, l〉 be a flat counter system without disjunc-
tions in guards, P = p1l

+
1 p2l

+
2 . . . pkl

ω
k be one of its path schemas satisfying the

infiniteness property and c0 be a configuration. One can compute a constraint
system E such that

• the set of solutions of E is equal to iterP (c0),

• E has k − 1 variables,

• E has at most len(P )× 2× size(P )2 conjuncts,

• the greatest absolute value from constants in E is bounded by 2n ×
K(K + 2)× (len(P ) + 1).

Proof The constraint system E is the one built above.
(?) Let ρ = 〈q0,v0〉〈q1,v1〉〈q2,v2〉 · · · be an infinite run respecting the

path schema P with c0 = 〈q0,v0〉. We write V : {y1, . . . , yk−1} → N to denote
the valuation such that for every α ∈ [1, k− 1], we have V (yα) = iterP (ρ)[α].
V is extended naturally to terms built over variables in {y1, . . . , yk−1}, the
range becoming Z. Let us check that V |= E .

1. Since ρ respects P , each loop li is visited at least once and therefore
V |= E1.

2. We have seen that the value below

V (effect<(p)[i] + effect(p(0) · · · p(β − 1))[i])

is equal to the value of counter xi just before entering for the first time
in the (β + 1)th transition of p. Similarly, the value below

V (effect<(lα)[i] + effect(lα)[i](yα − 1) + effect(lα[0] · · · lα[β − 1])[i])

is equal to the value of counter xi before entering for the last time in the
(β+1)th transition of lα. Since ρ is a run, these values are non-negative,
whence V |= E2.

3. Since ρ is a run, whenever a transition is fired, all its guards are satis-
fied. Hence, for each segment p in P , for each β ∈ [0, len(p) − 1] and
for each atomic guard

∑
i aixi ∼ b in guard(p(β)), we have∑

i

aiV (effect<(p)[i] + effect(p(0) · · · p(β − 1))[i]) ∼ b
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Similarly, for each α ∈ [1, k − 1], for each β ∈ [0, len(lα) − 1] and for
each atomic guard

∑
i aixi ∼ b ∈ guard(lα(β)), we have∑

i

aiV (effect<(lα)[i]+effect(lα)[i](yα−1)+effect(lα(0) · · · lα(β−1))[i]) ∼ b

Consequently, V |= E3 ∧ E4.

(??) It remains to show the property in the other direction.
Let V : {y1, . . . , yk−1} → N be a solution of E . Let

w = p1l
V (y1)
1 · · · pk−1l

V (yk−1)
1 pkl

ω
k ∈ ∆ω

and let us build an ω-sequence ρ′ = 〈q0,v
′
0〉〈q1,v

′
1〉〈q2,v

′
2〉 · · · ∈ (Q × Zn)ω,

that will be later shown to be an infinite run respecting the path schema P
with c0 = 〈q0,v0〉. Here is how ρ′ is defined (note that the definition does
not assume that ρ′ needs to be a run):

• For every i ≥ 0, qi
def
= source(w(i)),

• v′0
def
= v0 and for every i ≥ 1, we have v′i

def
= v′i−1 + update(w(i)).

In order to show that ρ′ is an infinite run respecting P , we have to check
three main properties.

1. Since V |= E2, for each segment p in P and for each β ∈ [0, len(p)− 1],
counter values just before entering for the first time in the (β + 1)th
transition of p are non-negative. Moreover, for each α ∈ [1, k − 1] and
for each β ∈ [0, len(lα) − 1], counter values just before entering for
the last time in the (β + 1)th transition of lα are non-negative too.
We have also to guarantee that for j ∈ [2, V (yα) − 1], counter values
just before entering for the jth time in the (β + 1)th transition of
lα are non-negative. This is a consequence of the fact that if v ≥ 0
and v + V (yα)effect(lα) ≥ 0, then for j ∈ [2, V (yα) − 1], we have
v+ j× effect(lα) ≥ 0 (convexity). Consequently we have v′i ≥ 0 for all
i ≥ 0,.

2. Similarly, counter values should satisfy the guards for each fired transi-
tion. Since V |= E3, for each segment p in P , for each β ∈ [0, len(p)−1]
and for each atomic guard

∑
i aixi ∼ b in guard(p(β)), counter val-

ues satisfy it the first time the transition is visited. Moreover, since
V |= E3, for each α ∈ [1, k − 1], for each β ∈ [0, len(lα) − 1] and for
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each atomic guard
∑

i aixi ∼ b in guard(lα(β)) occurs, counter values
satisfy it the first time the transition is visited. However, we have also
to guarantee that for j ∈ [2, V (yα)− 1], counter values just before en-
tering for the jth time in the (β + 1)th transition of lα, all the guards
are satisfied. This is a consequence of the fact that if

∑
i aiv[i] ∼ b and∑

i ai(v + V (yα)effect(lα))[i] ∼ b, then for j ∈ [2, V (yα) − 1], we have∑
i ai(v + j × effect(lα))[i] ∼ b (convexity). Hence, ρ′ is a run starting

at c0.
3. It remains to show that ρ′ respects P . Since ρ′ is a run (see (1) and

(2) above), by construction of ρ′, it respects P thanks to V |= E1. This
last condition is indeed needed since by definition, to respect a path
schema each loop has to be visited at least once.

�

7. From One Minimal Schema to Several Schemas

Section 6 is restricted to path schemas with no disjunction in guards.
However, having disjunctions in guards is not a real problem as soon as
we allow quantifiers in the constructed formula. But, on the one hand, in
full generality we allow disjunction in guards by definition and, on the other
hand, we would like to generate only quantifier-free formulae from Presburger
arithmetic for its computational properties. This leaves us with two ways to
encode the runs using quantifier-free Presburger formulae.

1. To encode the runs in a path schema (with disjunction in guards) using
quantified Presburger formulae and to perform quantifier-elimination
procedure to obtain equivalent quantifier-free formulae,

2. To transform the path schema (with disjunction in guards) into path
schemas with no disjunction in guards and then to encode the runs
respecting such path schemas by using quantifier-free Presburger for-
mulae from Section 6.

The quantifier-elimination procedure is known to be computationally expen-
sive, see e.g. [10], whereas the second method, as shown in the sequel, allows
to obtain a polynomial-size formula thanks to non-deterministic guesses. In
order to get an optimal complexity bound for the model-checking proce-
dure, we will in fact follow the second method. Given a flat counter system
S = 〈Q, Cn,∆, l〉, a configuration c0 = 〈q0,v0〉 and a minimal path schema
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P starting from the configuration c0, we build a finite set Y of path schemas
such that:

1. each path schema in Y has transitions without disjunctions in guards,
2. the existence of a run respecting P is equivalent to the existence of a

path schema in Y having the run respecting it,
3. each path schema in Y is obtained from P by unfolding loops so that

the terms in each loop satisfy the same atomic guards.

Moreover, we shall see how the cardinality of Y is at most exponential in
the size of P . Each path schema in Y comes with an implicit counter sys-
tem (typically containing exactly the states and transitions occurring in the
path schema). We explain below how we can get rid of disjunctions. By
contrast, disjunctions can be easily eliminated at the cost of adding new
transitions between states and using disjunctive normal form (DNF). This
type of transformation easily breaks flatness and may cause an exponential
blow-up because of the DNF. That is why we shall follow a different approach.

7.1. Term maps
Before defining the set of path schemas with no disjunctions, let us intro-

duce a few definitions. Let B be a finite non-empty set of integers containing
all the constants b occurring in guards of S of the form t ∼ b and T be a
finite set of terms containing all the terms t occurring in guards of S of the
form t ∼ b. Assuming that B = {b1, . . . , bm} with b1 < · · · < bm, we write I
to denote the finite set of (non-empty) intervals

I
def
= {(−∞, b1−1], [b1, b1], [b1+1, b2−1], [b2, b2], · · · , [bm, bm], [bm+1,∞)}\{∅}

Note that we may have [bj + 1, bj+1 − 1] = ∅ if bj+1 = bj + 1. The set I
contains at most 2m+ 1 intervals and at least m+ 2 intervals. We consider
the natural linear ordering ≤ on intervals in I that respects the standard
relation ≤ on integers. In other words,

(−∞, b1−1] ≤ [b1, b1] ≤ [b1+1, b2−1] ≤ [b2, b2] ≤ · · · ≤ [bm, bm] ≤ [bm+1,∞)

A term map m is a map m : T → I that abstracts term values by associating
to them an interval.

Definition 7.1. Given a loop effect u ∈ Zn, we define the relation �u such
that m �u m′

def⇔ for every term t =
∑

i aixi ∈ T , we have
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• m(t) ≤m′(t) if
∑

i aiu[i] ≥ 0,

• m(t) ≥m′(t) if
∑

i aiu[i] ≤ 0,

• m(t) = m′(t) if
∑

i aiu[i] = 0.

We write m ≺u m′ whenever m �u m′ and m 6= m′.

Sequences of strictly increasing term maps have bounded length.

Lemma 7.2. Let u ∈ Zn and m1 ≺u m2 ≺u · · · ≺u mL. Then, L ≤
card(I)× card(T ) ≤ 2× card(T )× card(B) + card(T ).

Proof Given a term map m and a term t, m(t) can obviously take one of
the card(I) values from I. Due to monotonocity, for each term t,

(increasing) either m1(t) ≤ · · · ≤mL(t)

(decreasing) or mL(t) ≤ · · · ≤m1(t).

Also, there are card(T ) distinct terms in T (obvious). Hence, the number
of different maps that are either decreasing or increasing can be card(T ) ×
card(I). Again, we know that card(I) ≤ 2 × card(B) + 1. Hence, L, the
number of different term maps in a sequence which is either increasing or
decreasing, can be at most card(I) × card(T ) ≤ 2 × card(T ) × card(B) +
card(T ). �

Given a guard g using the syntactic resources from T and B, and a term
map m, we write m ` g with the following inductive definition:

• m ` t = b
def⇔ m(t) = [b, b],

• m ` t ≤ b
def⇔ m(t) ⊆ (−∞, b],

• m ` t ≥ b
def⇔ m(t) ⊆ [b,+∞),

• m ` t < b
def⇔ m(t) ⊆ (−∞, b),

• m ` t > b
def⇔ m(t) ⊆ (b,+∞),

• m ` g1 ∧ g2
def⇔ m ` g1 and m ` g2,

• m ` g1 ∨ g2
def⇔ m ` g1 or m ` g2.
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The relation ` is simply the symbolic satisfaction relation between term
values and guards. Since term maps and guards are built over the same sets
of terms and constants, completeness is obtained as stated in Lemma 7.3(II)
below. Furthermore, Lemma 7.3(I) states that the relation ` is easy to check.

Lemma 7.3.

(I) m ` g can be checked in PTime in size(m) + size(g).

(II) m ` g iff for all v : {x1, x2, · · · , xn} → N and for all t ∈ T , v(t) ∈m(t)
implies v |= g.

It is worth noting that size(m) is in O(size(I)× size(T )). The values size(I)
and size(T ) have not been formally defined but we assume a reasonably
succinct encoding using a binary representation for integers.

Proof

(I) For the polynomial-time algorithm we follow the following steps. First,
for each constraint t ∼ b appearing in g, we replace it either by > (true)
or by ⊥ (false) depending whetherm ` t ∼ b or not. After replacing all
constraints, we are left with a positive Boolean formula whose atomic
formulae are either > or ⊥. It can be evaluated in logarithmic space
in the size of the resulting formula (less than size(g)), see e.g. [33].

Given a term map m and a constraint t ∼ b, checking m ` t ∼ b
amounts to check the containement of interval m(t) in a specified
interval depending on ∼. This can be achieved by comparing the
end-points of the intervals, which can be done in polynomial time in
size(t) + size(m). As the number of constraints is also bounded by
size(g), the replacement of atomic constraints can be performed in
polynomial time in size(m) + size(g). Thus, the procedure runs in
polynomial time in size(m) + size(g).

(II) Consider that m ` g and some v : {x1, x2, · · · , xn} → N such that v(t)
lies in the interval m(t) for each term t ∈ T . Now we prove inductively
on the structure of g that v |= g.

– As base case we have arithmetical constraints of the guard. Con-
sider a constraint of the form t ≤ b. Since m ` g, we have
that m(t) ⊆ (−∞, b]. Since, v(t) lies in the interval m(t),
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v(t) ∈ (−∞, b]. In this case v |= t ≤ b. Similarly, for other
constraints t ∼ b, observe that if v(t) ∈ m(t) then v(t) lies in
the interval specified in the definition of ` and thus, v |= t ∼ b.

– The induction step for ∧ and ∨, follows easily.

On the other hand, assume that for all valuations v and for all t ∈ T ,
we have v(t) ∈ m(t) implies v |= g. Similar to above, we will use
inductive argument to show that m ` g

– Base Case: Let us specifically consider the atomic guard t ≥ b
and v be a valuation such that v(t) ∈ m(t). We have v |= t ≥
b, and consequently v(t) ∈ [b,+∞). Since, v(t) ∈ m(t), we
have that, m(t) ⊆ [b,+∞). Hence, m ` t ≥ b. Similarly, for
constraints of other forms t ∼ b, v(t) lies in the interval exactly
specified in the definition of `. Thus, m ` t ∼ b.

– Inductive step: Again, the induction step for ∧ and ∨ follows
easily.

�

Finally, for a loop segment l, the tuple of term maps 〈m0,m1, · · · ,mlen(l)−1〉
is said to be final iff for every term t =

∑
j ajxj ∈ T and for all i ∈

[0, len(l)− 1],

•
∑

j ajeffect(l)[j] > 0 implies mi(t) is maximal in I.

•
∑

j ajeffect(l)[j] < 0 implies mi(t) is minimal in I.

where effect(l) is defined in Section 3.

7.2. Resources and footprints
A resource R is a triple 〈X,T,B〉 such thatX is a finite set of propositional

variables, T is a finite set of terms and B is a finite set of integers. Without
any loss of generality, we can assume that all these sets are non-empty (to
avoid treatments of –easy– degenerated cases). A formula φ ∈ PLTL[C] is
built over R whenever the atomic formulae are of the form either p ∈ X or
t ∼ b with t ∈ T and b ∈ B. A footprint is an abstraction of a model
for PLTL[C] restricted to elements from the resource R. More precisely, a
footprint ft is of the form ft : N→ 2X×IT where I is the set of intervals built
from B, whence the first element of ft(i) is a propositional valuation and the
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second one is a term map. The satisfiability relation |= involving models or
runs can be adapted to footprints as follows where formulae and footprints are
obtained from the same resource R and |=symb is the new symbolic satisfaction
relation:

• ft, i |=symb p
def⇔ p ∈ π1(ft(i)),

• ft, i |=symb t ≥ b
def⇔ π2(ft(i))(t) ⊆ [b,+∞),

• ft, i |=symb t ≤ b
def⇔ π2(ft(i))(t) ⊆ (−∞, b],

• ft, i |=symb Xφ
def⇔ ft, i+ 1 |=symb φ,

• ft, i |=symb φUψ
def⇔ there is j ≥ i such that ft, j |=symb ψ and for every

j′ ∈ [i, j − 1], we have ft, j′ |=symb φ.

We omit the clauses for Boolean connectives, past-time operators and other
arithmetical constraints since their definitions are as expected. Actually,
|=symb is exactly the satisfaction relation for plain Past LTL when arithmetical
constraints are understood as abstract propositions.

Definition 7.4. Let R = 〈X,T,B〉 be a resource and ρ = 〈q0,v0〉, 〈q1,v1〉 · · ·
be an infinite run of S. The footprint of ρ with respect to R is the footprint
ftρ such that for every i ≥ 0, we have ftρ(i)

def
= 〈l(qi)∩X,mi〉 where for every

term t =
∑

j ajxj ∈ T , we have
∑

j ajvi[j] ∈mi(t).

Note that the value
∑

j ajvi[j] belongs to a unique element of I since I is
a partition of Z, hence Definition 7.4 makes sense. Lemma 7.6 below roughly
states that satisfaction of a formula on a run can be checked symbolically from
the footprint (this turns out to be useful for the correctness of forthcoming
Algorithm 1).

Lemma 7.5. Let R = 〈X,T,B〉 be a resource, ρ = 〈q0,v0〉, 〈q1,v1〉 · · · be an
infinite run, i ≥ 0 be a position and φ be a formula in PLTL[C] built over R.
Then ρ, i |= φ iff ftρ, i |=symb φ.

Proof The proof is by structural induction.

• Base Case 1 (p ∈ X). The propositions below are equivalent:

– ρ, i |= p,
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– p ∈ l(qi) (by definition of |=),
– p ∈ π1(ftρ(i)) (by definition of ftρ),
– ftρ, i |=symb p (by definition of |=symb).

• Base Case 2 (
∑

j ajxj ≤ b with
∑

j ajxj ∈ T and b ∈ B). The
propositions below are equivalent:

– ρ, i |=
∑

j ajxj ≤ b,
–

∑
j ajvi[j] ≤ b (by definition of |=),

– π2(ftρ(i))(
∑

j ajxj) ⊆ (−∞, b] (because, by definition of ftρ, we
have

∑
j ajvi[j] ∈ π2(ftρ(i))(

∑
j ajxj)),

– ftρ, i |=symb

∑
j ajxj ≤ b (by definition of |=symb).

The base cases for the other arithmetical constraints can be shown
similarly.

• For the induction step, by way of example we deal with the case φ = Xψ
(the cases for the Boolean operators or for the other temporal operators
are analogous). We have the following equivalences:

– ρ, i |= Xψ,
– ρ, i+ 1 |= ψ (by definition of |=),
– ftρ, i+ 1 |=symb ψ (by induction hypothesis),
– ftρ, i |=symb Xψ (by definition |=symb).

�

As a corollary, we obtain the following lemma.

Lemma 7.6. Let R = 〈X,T,B〉 be a resource and ρ and ρ′ be two infinite
runs with identical footprints with respect to R. For all formulae φ built over
R and all positions i ≥ 0, we have ρ, i |= φ iff ρ′, i |= φ.

Given a minimal path schema P = p1l
+
1 p2l

+
2 . . . pkl

ω
k and a run ρ respecting

P , the footprint ftρ (with respect to a resource R = 〈X,T,B〉) is an ultimately
periodic word that can be written of the form w · uω where len(u) = len(lk).
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7.3. Unfolding
Let R = 〈X,T,B〉 be a resource, c0 = 〈q0,v0〉 be an initial configuration

and P = p1l
+
1 p2l

+
2 . . . pkl

ω
k be a minimal path schema such that first(p1) = q0

(disjunctions in guards are allowed). In the sequel, we assume that T contains
the terms present in P and, B contains the constants present in P . In order
to define the set of path schemas YR,P,c0 parameterized by R, P and c0 and
with no disjunction in the guards, we need to define intermediate objects.
We list some of them below:

• a set of guards G?(T,B, U) (parameterized by the finite set U of updates
from P ),

• a set of (structured) control states Q′ = Q× IT ,
• a set of transitions ∆′ defined from Q′, G?(T,B, U) and U .

Let ∆P be the set of transitions occurring in P . Given a term t =∑
j ajxj ∈ T , an update u ∈ Zn and a term map m, we write ψ(t,u,m(t))

to denote the formula below (where b, b′ ∈ B):

• ψ(t,u, (−∞, b]) def
=

∑
j aj(xj + u[j]) ≤ b,

• ψ(t,u, [b,+∞))
def
=

∑
j aj(xj + u[j]) ≥ b,

• ψ(t,u, [b, b′]) def
= ((

∑
j aj(xj + u[j]) ≤ b′) ∧ ((

∑
j aj(xj + u[j]) ≥ b).

The formulae of the form ψ(t,u, int) (int ∈ I) have been designed to
satisfy the property below.

Lemma 7.7. Let v, v′ : {x1, . . . , xn} → N be such that for every i ∈ [1, n],
v′(xi) = v(xi) + u[i]. For every interval int ∈ I, for every term t ∈ T ,
v |= ψ(t,u, int) iff v′(t) ∈ int.

The proof is by an easy verification.
We write G?(T,B, U) to denote the set of guards of the form∧

t∈T

ψ(t,u,m(t))

where u ∈ U and m : T → I. Even though the cardinal of G?(T,B, U) is
exponential, the new path schemas defined below remain of polynomial size,
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partly because each guard in G?(T,B, U) is of polynomial size in the size of
P .

We define ∆′ as a finite subset of Q′ ×∆P × G?(T,B, U) × U × Q′ such
that for every 〈q,m〉 δ,〈gm′ ,u〉−−−−→ 〈q′,m′〉 ∈ ∆′, the conditions below are satisfied:

• q = source(δ) and q′ = target(δ),

• gm′ is a guard that states that after the update u, for each t ∈ T , its
value belongs to m′(t). Precisely, gm′ is equal to

∧
t∈T ψ(t,u,m′(t))

• Term values belong to intervals that make true guard(δ), i.e. m `
guard(δ).

• u = update(δ).

We extend the definition of source(δ)/target(δ) to δ′ = 〈q,m〉 δ,〈gm′ ,u〉−−−−→
〈q′,m′〉 ∈ ∆′ with source(δ′)

def
= 〈q,m〉 and target(δ′)

def
= 〈q′,m′〉. Similarly, for

a finite word w ∈ (∆′)+, we define source(w)
def
= source(w(0)) and target(w)

def
=

target(w(len(w)− 1)).
Below, we define skeletons as slight variants of path schemas in YR,P,c0 .

The slight differences are explained a bit later. A skeleton sk (compatible
with R, P and c0 = 〈q0,v0〉) is a finite word over ∆′, written

〈q1,m1〉
δ1,〈g1m′ ,u1〉
−−−−−→ 〈q2,m2〉

δ2,〈g2m′ ,u2〉
−−−−−→ 〈q3,m3〉 · · ·

δK ,〈gKm′ ,uK〉−−−−−−→ 〈qK+1,mK+1〉,

verifying the following conditions:

(init) For every term t =
∑

j ajxj ∈ T , we have
∑

j ajv0[j] ∈ m1(t) where
v0 is the initial vector. If v0 is not fixed, typically to solve the global
model-checking problem, there is no need to require any condition on
m1.

(schema) Let f : (∆′)∗ → ∆∗ be the map such that f(ε) = ε, f(w · w′) =

f(w)·f(w′) and f(〈q,m〉 δ,〈gm′ ,u〉−−−−→ 〈q′,m′〉) = δ. We require that f(sk) ∈
p1l

+
1 p2l

+
2 . . . pkl

+
k . So, a skeleton can be seen as a finite sequence of

transitions that is the prefix of a word in the language generated from
the path schema P . Moreover, it is decorated by additional pieces of
information.

(minimality) For every factor w = 〈qH ,mH〉
δH ,〈gHm′ ,uH〉−−−−−−→ 〈qH+1,mH+1〉 · · ·

δJ−1,〈gJ−1
m′ ,uJ−1〉−−−−−−−−−→ 〈qJ ,mJ〉 of sk such that f(w) = (l)3 for some loop l of
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P (therefore J = H + 3 × len(l)), there is α ∈ [1, len(l)] such that
mH+α ≺effect(l) mH+α+2×len(l). We disallow three consecutive sequences
of transitions related to the loop l without any progress on the term
maps. Indeed, if this occurs, then this would be more adequate to
capture some of these sequences by a loop in the new path schema.

(last-loop) For the unique suffix w = 〈qH ,mH〉 −→ · · · −→ 〈qH+len(lk),mH+len(lk)〉
of sk of length len(lk) (so f(w) = lk), we have source(w) = target(w)
(i.e. 〈qH ,mH〉 = 〈qH+len(lk),mH+len(lk)〉) and 〈mH , . . . ,mH+(len(lk)−1)〉
is final for the loop lk.

Lemma 7.8. For a skeleton sk, len(sk) ≤ (len(p1)+ · · ·+len(pk))+2× (2×
card(T )× card(B) + card(T ))× (len(l1) + · · ·+ len(lk))

Proof Since f(sk) ∈ p1l
+
1 p2l

+
2 . . . pkl

+
k , let f(sk) = p1l

n1
1 p2l

n2
2 . . . pkl

nk
k for

some n1, . . . , nk ≥ 1. We have len(sk) ≤ (len(p1)+ · · ·+len(pk))+max(ni)×
(len(l1) + · · ·+ len(lk)). It remains to bound the values n1, . . . , nk. For each
factor w of sk such that f(w) = (li)

ni with i ∈ [1, k], by the (minimality)
condition and Lemma 7.2, we conclude that ni ≤ 2×(2×card(T )×card(B)+
card(T )). Consequently, len(sk) ≤ (len(p1)+· · ·+len(pk))+2×(2×card(T )×
card(B) + card(T ))× (len(l1) + · · ·+ len(lk)). �

From skeletons, we shall define unfolded path schemas built over the
alphabet Q′ × G?(T,B, U) × U × Q′ (transitions are not anymore formally
labelled by elements in ∆P ; sometimes we keep these labels for convenience).
As for the definition of f , let ∆̃ be a finite subset of (Q′×G?(T,B, U)×U×Q′)
and let h : (∆′)∗ → (∆̃)∗ be the map such that h(ε) = ε, h(w · w′) =

h(w) · h(w′) and h(〈q,m〉 δ,〈gm′ ,u〉−−−−→ 〈q′,m′〉) = 〈q,m〉 〈gm′ ,u〉−−−→ 〈q′,m′〉. This
time, elements of ∆P are removed instead of being kept as for f . Given a
skeleton sk, we shall define a path schema Psk = p′1(l′1)+p′2(l′2)+ . . . p′k′(l

′
k′)

ω

such that h(sk) = p′1l
′
1p
′
2l
′
2 . . . p

′
k′l
′
k′ . Hence, skeletons slightly differ from the

path schemas. It remains to specify how the loops in Psk are identified. Every

factor w = 〈qH ,mH〉
δH ,〈gHm′ ,uH〉−−−−−−→ 〈qH+1,mH+1〉 · · ·

δJ−1,〈gJ−1
m′ ,uJ−1〉−−−−−−−−−→ 〈qJ ,mJ〉 of

sk such that

1. f(w) = l for some loop l of P ,
2. w is not the suffix of sk of length len(lk),
3. the sequence of the len(l) next elements after w is also equal to w,
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is replaced by (h(w))+. Finally, l′k′ is equal to h(w) where w is the unique
suffix of sk of length len(lk). The path schema Psk is unique by the condition
(minimality). Indeed, there is no factor of sk of the form w3 such that
f(w) = l for some loop l of P . As far as the labeling function is concerned, the
labels of q and 〈q,m〉 are identical with respect to the set X, i.e. l′(〈q,m〉) def

=
l(q) ∩X. Hence,

1. k′ ≤ k × (2× card(T )× card(B) + card(T )),
2. len(Psk) ≤ (len(p1) + · · · + len(pk)) + 2 × (2 × card(T ) × card(B) +

card(T ))× (len(l1) + · · ·+ len(lk)),
3. Psk has no guards with disjunctions.

The construction of a path schema from a skeleton cannot be done by
simply taking the path segments as before and the copies of the loop seg-
ments as alternating path and loop segments in the new path schema. For
example, consider this system with one counter x, I = {(−∞,−1], [0, 0], [1, 1],
[2, 2], [3,∞)} and T = {x+ 1}, the representation of a path schema P and of
two unfolded path schemas represented in Figure 6. Thanks to Figure 6, we
notice that

• p1(l11)+l21(l31)+l41(l51)+p2(l2)ω does not have any run respecting it as a
path schema, as the loops l11, l31 cannot be taken even once in any run.

• p1l
2
1l

4
1(l51)+p2(l2)ω has a run respecting it as a path schema. But, here

all the unfoldings of the loop l1 are taken as path segments.

We write YR,P,c0 to denote the set of unfolded path schemas Psk obtained
from skeletons sk compatible with the resource R, the minimal path schema
P and the initial configuration c0.

Lemma 7.9. Checking whether a word w ∈ (Q′ × ∆ × G?(T,B, U) × U ×
Q′)∗ is a skeleton compatible with R, P and 〈q0,v0〉 assuming that len(w) ≤
(len(p1) + · · · + len(pk)) + 2(2× card(T )× card(B) + card(T ))× (len(l1) +
· · ·+ len(lk)) can be done in polynomial time in the size of 〈q0,v0〉, size(P ),
size(T ) and size(B).

Observe that in the statement of Lemma 7.9, the length of w depends
on the length or cardinal of several objects whereas the checking procedure
depends on their respective size, partly because we need to take into account
the binary encoding of the integers. As previously, the sizes size(P ), size(T )
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q0 q1 q2
>,+1 >,+1

>,+1 >, (0)

≥ 1 ω

P

q0, [0, 0] q1, [1, 1]

≥ 1

q1, [2, 2]

≥ 1

q1, [3,∞)

≥ 1

q2, [3,∞)

ω

x + 1 = 1,+1 x + 1 = 2,+1

x+1=1,+1

x + 1 ≥ 3,+1

x+1=2,+1

x + 1 ≥ 3,+1

x+1>2,+1 >, 0

P ′

q0, [0, 0] q1, [1, 1] q1, [2, 2] q1, [3,∞)

≥ 1

q2, [3,∞)

ω

x + 1 = 1,+1 x + 1 = 2,+1 x + 1 ≥ 3,+1 x + 1 ≥ 3,+1

x+1>2,+1 >, 0

P ′′

Figure 6: A path P and two unfolded path schemas
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and size(B) have not been formally defined but we assume a reasonably
succinct encoding using a binary representation for integers.

Proof Let w be a word over Q′×∆P ×G?(T,B, U)×U×Q′ whose length is
bounded by (len(p1) + · · ·+ len(pk)) + 2(2× card(T )× card(B) + card(T ))×
(len(l1) + · · ·+ len(lk)). Let N be the sum of size of 〈q0,v0〉, size(P ), size(T )
and size(B). Since the length of w is bounded, its size is also polynomial in
N .

Checking whether an element in Q′×∆P × G?(T,B, U)×U ×Q′ belongs
to ∆′ can be done in polynomial time in N thanks to Lemma 7.3(I). Hence,
checking whether w belongs to (∆′)∗ can be done in polynomial time in N too
since its length is also polynomial in N . It remains to check the conditions
for skeletons.

• Condition (schema) can be checked by building first f(w) (this re-
quires linear time in N) and then by checking whether it belongs to
p1l

+
1 p2l

+
2 . . . pkl

+
k (requires also linear time in N).

• Condition (last-loop) can be checked by extracting the suffix of w of
length len(lk).

• Condition (minimality) can be checked by considering all the factors
w′ of w (there are less than len(w)2 of them) and whenever f(w′) = l3

for some loop l, we verify that the condition is satisfied. All these
operations can be done in polynomial time in N .

• Finally, condition (init) is also easy to check in polynomial time in N .

�

The main properties about the set of unfolded path schemas YR,P,c0 are
stated below.

Proposition 7.10.

(I) Let ρ be an infinite run respecting P and starting at c0 = 〈q0,v0〉. Then,
there is a path schema P ′ in YR,P,c0 and an infinite run ρ′starting at
〈〈q0,m0〉,v0〉 respecting P ′ and such that ftρ = ftρ′.

(II) Let ρ be an infinite run starting at 〈〈q0,m0〉,v0〉 and respecting P ′ for
some P ′ ∈ YR,P,c0. Then, there is an infinite run ρ′ starting at c0 =
〈q0,v0〉 and respecting P such that ftρ = ftρ′.
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Proof (I) Let ρ = 〈q0,v0〉
δ0−→ 〈q1,v1〉

δ1−→ · · · be an infinite run respecting
P with footprint ftρ : N → 2AT × IT . We write 〈Zi,mi〉 to denote ftρ(i). In
order to build ρ′ and P ′, first we enrich the structure ρ and then we define a
skeleton from the enriched structure that allows us to define P ′. The run ρ′
is then defined from ρ so that the sequences of counter values are identical.
From ρ, we consider the infinite sequence below:

w = 〈q0,m0〉
δ0,〈gm1 ,update(δ0)〉
−−−−−−−−−−→ 〈q1,m1〉

δ1,〈gm2 ,update(δ1)〉
−−−−−−−−−−→ · · ·

It is easy to check that w can be viewed as an element of (∆′)ω where ∆′ is
defined as a finite subset of Q′ ×∆P × G?(T,B, U)× U ×Q′ where U is the
finite set of updates from P = p1(l1)+p2(l2)+ · · · (lk−1)+pk(lk)

ω. Moreover,
we have f(w) ∈ L(P ), that is f(w) = p1(l1)n1p2(l2)n2 · · · (lk−1)nk−1pk(lk)

ω for
some n1, . . . , nk−1 ≥ 1. From w, one can build a skeleton sk compatible with
P and 〈q0,v0〉. sk is formally a subword of w such that

f(sk) = p1(l1)n
′
1p2(l2)n

′
2 · · · (lk−1)n

′
k−1pk(lk)

n′k

with 1 ≤ n′i ≤ min(ni, 2 × (2 × card(T ) × card(B) + card(T )) for every
i ∈ [1, k − 1] and 1 ≤ n′k ≤ 2 × (2 × card(T ) × card(B) + card(T )). We
have w = w′ · w0 · w0 · (w0)ω with f(w0) = lk for some w0. The skeleton
sk is obtained from w′ · w0 · w0 by deleting copies of loops as soon as two
copies are consecutive. More precisely, every maximal factor of w′ · w0 · w0

of the form (w?)N with N > 2 such that f(w?) = li for some loop li of
P , is replaced by (w?)2. This type of replacement can be done at most
k× (2× (2× card(T )× card(B) + card(T ))) times. One can check that sk is
indeed a skeleton compatible with R, P and 〈q0,v0〉. Considering the path
schema Psk built from sk, one can show that the sequence ρ′ below is an
infinite run respecting Psk:

〈〈q0,m0〉,v0〉
〈gm1 ,update(δ0)〉
−−−−−−−−→ 〈〈q1,m1〉,v1〉

〈gm2 ,update(δ1)〉
−−−−−−−−→ 〈〈q2,m2〉,v2〉 · · ·

so that ftρ = ftρ′ . When entering in the last loop of Psk, counter values still
evolve but the sequence of control states forms a periodic word made of the
last len(lk) control states of sk. By construction of sk and Psk, it is clear
that ρ and ρ′ have the same sequences of counter values (they have actually
the same sequences of updates) and by definition of the labels, they have also
the same sequences of sets of atomic propositions. It remains to check that
ρ′ is indeed a run, which amounts to verify that guards are satisfied. This
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is guaranteed by the way guards are defined, by the completeness result in
Lemma 7.3(II) and by the result of Lemma 7.7.

(II) Let ρ be some run respecting some P ′ ∈ YR,P,c0 of the following form:

〈〈q0,m0〉,v0〉
δ0,〈gm1 ,update(δ0)〉
−−−−−−−−−−→ 〈〈q1,m1〉,v1〉

δ1,〈gm2 ,update(δ1)〉
−−−−−−−−−−→ 〈〈q2,m2〉,v2〉 · · ·

In the above run, we have decorated the steps by transitions from P as P ′ is
defined from a skeleton in which transitions are decorated by such transitions.
After a tedious (but not difficult) verification, one can show that

ρ′ = 〈q0,v0〉
δ0−→ 〈q1,v1〉

δ1−→ · · ·

is a run respecting P such that ftρ = ftρ′ . Satisfaction of guards is guaranteed
by the way ∆′ is defined. The fact that ρ′ respects P is even easier to justify
since all the path schemas in YR,P,c0 can be viewed as specific instances of P
that differ in the way the term maps evolve (see the condition (schema)).
Details are omitted. �

Let P ′ = p′1(l′1)+p′2(l′2)+ . . . p′k′(l
′
k′)

ω be a path schema in YR,P,c0 and ρ be a

run 〈〈q0,m0〉,v0〉
〈gm1 ,update(δ0)〉
−−−−−−−−→ 〈〈q1,m1〉,v1〉

〈gm2 ,update(δ1)〉
−−−−−−−−→ 〈〈q2,m2〉,v2〉 · · ·

respecting P ′. It is easy to show that for i ≥ 0, we have π2(ftρ(i)) = mi

and ftρ is an ultimately periodic word of the form w · uω where len(u) =
len(l′k′) = len(lk) and len(w) = (len(p′1) + · · · + len(p′k′)) + (iterP ′(ρ)[1] ×
len(l′1) + · · · + iterP ′(ρ)[k′ − 1] × len(l′k′−1)). As seen previously, we have
ρ, 0 |= φ iff ftρ, 0 |=symb φ.

Let us also define the function proj which associates to w ∈ ∆̃ω the
ω-sequence proj(w) : N → 2X × IT such that for all i ∈ N, if w(i) =

〈〈q,m〉, g,u, 〈q′,m′〉〉 and l(q) ∩ X = L then proj(w)(i)
def
= 〈L,m〉. Now,

we can state the main theorem about removing disjunction in the guards by
unfolding of loops. It entails the main properties we expect from YR,P,c0 .

Theorem 7.11. Given a flat counter system S, a minimal path schema P ,
a resource R = 〈X,T,B〉 such that the set of terms T includes those in
P , the set of constants B includes those in P , and an initial configuration
c0 = 〈q0,v0〉, there is a finite set of path schemas YR,P,c0, such that:

1. No path schema in YR,P,c0 contains disjunctions occurring in guards.
2. For every P ′ ∈ YR,P,c0, len(P ′) is polynomial in len(P ) + card(T ) +

card(B).
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3. Checking whether P ′ belongs to YR,P,c0 can be done in polynomial time
in size(P ) + size(T ) + size(B).

4. For every run ρ respecting P and starting at 〈q0,v0〉, we can find a run
ρ′ respecting some P ′ ∈ YR,P,c0 such that ρ |= φ iff ρ′ |= φ for every φ
built over R.

5. For every run ρ′ respecting some P ′ ∈ YR,P,c0 with initial counter values
v0, we can find a run ρ respecting P such that ρ |= φ iff ρ′ |= φ for
every φ built over R.

6. For every P ′ ∈ YR,P,c0, for every ultimately periodic word w·uω ∈ L(P ′),
for every φ built over R checking whether proj(w · uω), 0 |=symb φ can be
done in polynomial time in the size of w · u and in the size of φ.

Proof Let YR,P,c0 be the set of path schemas defined from the resource R,
the minimal path schema P and the initial configuration c0.

1. For every path schema in YR,P,c0 , the guards on transitions are of
the form

∧
t∈T ψ(t,u,m(t)) and each guard ψ(t,u,m(t)) is itself an

atomic guard or a conjunction of two atomic guards. Hence, no path
schema in YP contains any disjunction in some guard.

2. By Lemma 7.8, every skeleton defining a path schema in YR,P,c0 has
polynomial length in len(P ) + card(T ) + card(B). Each path schema
in YR,P,c0 has a linear length in the length of its corresponding skeleton.
Consequently, for every P ′ ∈ YR,P,c0 , its length len(P ′) is polynomial in
len(P ) + card(T ) + card(B).

3. Given a path schema P ′ in YR,P,c0 , one can easily identify its underlying
skeleton sk by removing iteration operators such as + and ω (easy at
the cost of keeping track of transitions from ∆P ). By Lemma 7.9,
checking whether sk is compatible with R, P and 〈q0,v0〉 can be done
in polynomial time in size(P ) + size(T ) + size(B). In particular, if sk
is too long, this can be checked in polynomial time too.

4. By Proposition 7.10(I), for every run ρ respecting P and starting at
〈q0,v0〉, there are P ′ ∈ YR,P,c0 and a run ρ′ respecting P ′ such that
ftρ = ftρ′ . By Lemma 7.6, ρ |= φ iff ρ′ |= φ.

5. Similar to (4.) by using Proposition 7.10(II).
6. Let us consider an ultimately periodic word w · uω ∈ L(P ′). We can

build in linear time the ultimately periodic word w′ · u′ω = proj(w · uω)
over the alphabet 2X×IT and the size of the word w′ [resp. u′] is linear
in the size of the word w [resp. w′]. By [29, Theorem 5.1], we know
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that w′ ·u′ω, 0 |=symb φ can be checked in time O(size(φ)2× len(w′ ·u′)).
Indeed, |=symb is analogous to the satisfiability relation for plain Past
LTL.

�

We write YR,P to denote the set of path schemas defined as for those in
YR,P,c0 except that there is no constraint on the first term map (this amount
to ignore the condition (init)). This set will be useful to solve the global
model-checking problem.

8. Model-checking PLTL[C] over Flat Counter Systems

8.1. A decision procedure in NP
We provide here a nondeterministic polynomial-time algorithm to solve

MC(PLTL[C], FlatCS). To do so, we combine the properties of the general
stuttering theorem for LTL with past-time operators (see Theorem 4.1) with
small solutions of constraint systems. In Algorithm 1 below, nondeterministic
steps (guesses) are performed only at the beginning of the algorithm. Note
that a polynomial p?(·) is used and its existence follows from forthcoming
Theorem 8.1. Similarly, the polynomial q?(·) follows from Theorem 7.11.

Now, we explain how p?(·) is defined. Let S be a flat counter system,
c0 = 〈q0,v0〉 be an initial configuration and φ ∈ PLTL[C]. Let N = size(S) +
size(〈q0,v0〉) + size(φ). Let P be a minimal path schema of S. We have:

• len(P ) ≤ 2× card(∆) ≤ 2N ,

• nbloops(P ) ≤ card(Q) ≤ N .

Let T be the set of terms t occurring in S and φ in guards of the form
t ∼ b. We have card(T ) ≤ size(S) + size(φ) ≤ N . Let B be the set of
constants b occurring in either S or φ in guards of the form t ∼ b. We have
card(B) ≤ size(S) + size(φ) ≤ N . Let R = 〈X,T,B〉 be the resource such
that X is the finite set of propositional variables occurring in φ. Such a
resource is said to be coherent with S and φ.

Let M be the maximal absolute value of a constant occurring in S, φ, v0

(either as an element of B or as a coefficient in front of a counter or as a
component in v0). We have M ≤ 2N .

Now, let P ′ be a path schema in YR,P,c0 with P ′ = p1(l1)+p2(l2)+ · · · pk(lk)ω.
Since len(P ′) ≤ (len(p1) + · · · + len(pk)) + 2 × (2 × card(T ) × card(B) +
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card(T ))×(len(l1)+ · · ·+len(lk)), we have len(P ′) ≤ 5×card(T )×card(B)×
len(P ) ≤ 5N3. Similarly, nbloops(P ′) ≤ 5N3. The number of guards occur-
ring in P ′ is bounded by len(P ′) × 2 × card(T ) ≤ 10 × N4. The maximal
constant M′ occurring in P ′ is bounded by M + n × M2 which is bounded by
N × 22×N . Let E be the constraint system defined from P ′ (see Lemma 6.1).

• The number of variables is equal to nbloops(P ′) which is bounded by
5N3.

• The number of conjuncts is bounded by 2 × len(P ′) × n × (1 + N1)
where N1 is the number of atomic guards in P ′. Hence, this number is
bounded by 2× 5N3 ×N × (1 + 10×N4) ≤ 110N8.

• The greatest absolute value from constants in E is bounded by n ×
nbloops(P ′)×(M′)4×len(P ′)3, which is bounded byN(5N3)(N×22×N)4×
53N9 ≤ 625×N17 × 28×N .

We will see in the sequel how these bounds allows us to show that E ∧
ψ1 ∧ · · · ∧ ψk−1 admits a small solution using the theorem below for any
ψ1 ∧ · · · ∧ ψk−1 built from Algorithm 1.

Theorem 8.1. [3] LetM∈ [−M,M ]a×b and b ∈ [−M,M ]a, where a, b,M ∈
N. If there is x ∈ Nb such thatMx ≥ b, then there is y ∈ [0, (max{b,M})Ca]b
such thatMy ≥ b, where C is some constant.

By Theorem 8.1, E ∧ ψ1 ∧ · · · ∧ ψk−1 has a solution iff E ∧ ψ1 ∧ · · · ∧ ψk−1

has a solution whose counter values are bounded by

(625×N17 × 28×N)C×2×(110×N8+5×N3)

which can be easily shown to be bounded by 2p
?(N) for some polynomial

p?(·) (of degree 9). This is precisely, the polynomial p?(·) that is used in
Algorithm 1 (for obvious reasons). In order to justify the coefficient 2 before
110, note that any constraint of the form

∑
i aiyi ∼ b with ∼∈ {=,≤,≥, <

,>} can be equivalently replaced by 1 or 2 atomic constraints of the form∑
i aiyi ≥ b.
Algorithm 1 starts by guessing a path schema P (line 1) and an un-

folded path schema P ′ = p1l
+
1 p2l

+
2 . . . pkl

ω
k (line 3) and check whether P ′

belongs to YR,P,c0 (line 5). It remains to check whether there is a run ρ
respecting P ′ such that ρ |= φ. Suppose there is such a run ρ; let y be
the unique tuple in [1, 2td(φ) + 5]k−1 such that y ≈2td(φ)+5 iterP ′(ρ). By
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Algorithm 1 The main algorithm in NP with inputs S, c0 = 〈q,v0〉, φ
1: guess a minimal path schema P of S satisfying the infiniteness property
2: build a resource R = 〈X,T,B〉 coherent with S and φ
3: guess a path schema P ′ = p1l

+
1 p2l

+
2 . . . pkl

ω
k such that len(P ′) ≤ q?(len(P )+card(T )+

card(B))
4: guess y ∈ [1, 2td(φ) + 5]k−1

5: guess y′ ∈ [1, 2p
?(size(S)+size(c0)+size(φ))]k−1

6: check that P ′ belongs to YR,P,c0
7: check that proj(p1l

y[1]
1 p2l

y[2]
2 . . . l

y[k−1]
k−1 pkl

ω
k ), 0 |=symb φ

8: build the constraint system E over the variables y1, . . . , yk−1 for P ′ with initial counter
values v0 (obtained from Lemma 6.1)

9: for i = 1→ k − 1 do
10: if y[i] = 2td(φ) + 5 then
11: ψi ← “yi ≥ 2td(φ) + 5”
12: else
13: ψi ← “yi = y[i]”
14: end if
15: end for
16: check that y′ |= E ∧ ψ1 ∧ · · · ∧ ψk−1

Proposition 5.1, we have proj(p1l
y[1]
1 p2l

y[2]
2 . . . l

y[k−1]
k−1 pkl

ω
k ), 0 |=symb φ. Since

the set of tuples of the form iterP ′(ρ) is characterized by a quantifier-free
Presburger formula, by the existence of small solutions from [3], we can as-
sume that iterP ′(ρ) contains only small values. Hence line 4 guesses y and
y′ (corresponding to iterP ′(ρ) with small values). Line 6 precisely checks
proj(p1l

y[1]
1 p2l

y[2]
2 . . . l

y[k−1]
k−1 pkl

ω
k ), 0 |=symb φ whereas line 11 checks whether y′

encodes a run respecting P ′ with y′ ≈2td(φ)+5 y.

Lemma 8.2. Algorithm 1 runs in nondeterministic polynomial time.

Proof We first check that all the guesses can be done in polynomial time.

• A minimal path schema P of S is of polynomial size with respect to
the size of S.

• The path schema P ′ is of polynomial size with respect to the size of P ,
φ and c0 (Theorem 7.11(2)).

• y and y′ are obviously of polynomial size since their components have
values bounded by some exponential expression only (values in y can
be much smaller than the values in y′).

Now, we verify that all the checks can be in done in polynomial time too.
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• Both P and P ′ are in polynomial size with respect to the size of the in-
puts and checking compatibility amounts to verify that P ′ is an unfold-
ing of P , which can be done in polynomial time (see Theorem 7.11(3)).

• Checking whether proj(p1l
y[1]
1 p2l

y[2]
2 . . . l

y[k−1]
k−1 pkl

ω
k ), 0 |=symb φ can be done

in polynomial time using Theorem 7.11(6) since p1l
y(1)
1 p2l

y(2)
2 . . . l

y(k−1)
k−1

pklk is of polynomial size with respect to the size of P ′ and φ.

• Building E ∧ψ1∧· · ·∧ψk−1 can be done in polynomial time since E can
be built in polynomial time with respect to the size of P ′ (see Section 6)
and ψ1∧ · · · ∧ψk−1 can be built in polynomial time with respect to the
size of φ (td(φ) ≤ size(φ)).

• y′ |= E ∧ ψ1 ∧ · · · ∧ ψk−1 can be finally checked in polynomial time
since the values in y′ are of exponential magnitude and the combined
constraint system is of polynomial size.

�

It remains to verify that Algorithm 1 is correct, which is stated below.

Lemma 8.3. S, c0 |= φ iff Algorithm 1 on inputs S, c0, φ has an accepting
run.

In the proof of Lemma 8.3, we take advantage of all our preliminary
results.

Proof First, let us show that if Algorithm 1 on inputs S, c0 = 〈q0,v0〉, φ
has an accepting computation, then S, c0 |= φ. This means that there are P ,
P ′, y, y′ that satisfy all the checks. Let w = p1l

y′[1]
1 · · · pk−1l

y′[k−1]
k−1 pkl

ω
k and

ρ = 〈〈q0,m0〉,v′0〉〈〈q1,m1〉,v′1〉〈〈q2,m2〉,v′2〉 · · · ∈ (Q′ × Zn)ω be defined as
follows:

• For every i ≥ 0, qi
def
= π1(source(w(i))),

• v′0
def
= v0 and v′i

def
= v′i−1 + update(w(i)) for every i ≥ 1.

By Lemma 6.1, since y′ |= E ∧ ψ1 ∧ · · · ∧ ψk−1, we deduce that ρ is a run
respecting P ′ starting at the configuration 〈〈q0,m0〉,v0〉. Since y′ |= ψ1 ∧
· · · ∧ψk−1 and y |= ψ1 ∧ · · · ∧ψk−1, by Proposition 5.1, the statements below
are equivalent:

(z) proj(p1l
y[1]
1 p2l

y[2]
2 . . . l

y[k−1]
k−1 pkl

ω
k ), 0 |=symb φ,
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(zz) proj(p1l
y′[1]
1 p2l

y′[2]
2 . . . l

y′[k−1]
k−1 pkl

ω
k ), 0 |=symb φ.

Line 6 from Algorithm 1 guarantees that proj(p1l
y[1]
1 p2l

y[2]
2 . . . l

y[k−1]
k−1 pkl

ω
k ), 0 |=symb

φ, whence we have (zz). Since proj(p1l
y′[1]
1 p2l

y′[2]
2 . . . l

y′[k−1]
k−1 pkl

ω
k ) = ftρ, by

Lemma 7.5, we deduce that ρ, 0 |= φ. By Theorem 7.11(5), there is an infi-
nite run ρ′, starting at the configuration 〈q0,v0〉 and respecting P , such that
ρ′, 0 |= φ.

Now, suppose that S, c0 |= φ. We show that there exist P , P ′, y, y′
that allow to build an accepting computation of Algorithm 1. There is
a run ρ starting at c0 such that ρ, 0 |= φ. By Corollary 3.4, ρ respects
some minimal path schema of S, say P . By Theorem 7.11(4), there is
a path schema P ′ = p1l

+
1 p2l

+
2 . . . pkl

ω
k in YR,P,c0 for which there is a run

ρ′ satisfying φ. Furthermore, since P ′ ∈ YR,P,c0 , we know that len(P ′) ≤
q?(len(P ) + card(T ) + card(B)) for some polynomial q?(·). From iterP ′(ρ

′) ∈
(N \ {0})k−1, for every i ∈ [1, k − 1], we consider ψi such that ψi is equal
to yi = iterP ′(ρ

′)[i] if iterP ′(ρ′)[i] ≤ 2td(φ) + 5, otherwise ψi is equal to
yi ≥ 2td(φ) + 5. Since P ′ admits at least one infinite run ρ′ such that
iterP ′(ρ

′) satisfies ψ1 ∧ · · · ∧ ψk−1, the constraint system E obtained from
P ′ (thanks to Lemma 6.1) but augmented with ψ1 ∧ · · · ∧ ψk−1 admits at
least one solution. Let us define y′ ∈ [1, 2p

?(size(S)+size(c0)+size(φ))]k−1 as a
small solution of E ∧ ψ1 ∧ · · · ∧ ψk−1 and y ∈ [1, 2td(φ) + 5]k−1 be de-
fined such that y[i] = max(y′[i], 2td(φ) + 5) for i ∈ [1, k − 1]. As shown
previously, the bound 2p

?(size(S)+size(c0)+size(φ)) is sufficient if there is a so-
lution. Clearly, y′ |= E ∧ ψ1 ∧ · · · ∧ ψk−1. So p1l

y′[1]
1 p2l

y′[2]
2 . . . l

y′[k−1]
k−1 pkl

ω
k

generates a genuine run. Since ftρ′ = proj(p1l
y′[1]
1 p2l

y′[2]
2 . . . l

y′[k−1]
k−1 pkl

ω
k ) (see

Lemma 7.7) and since by Lemma 7.5, we have ftρ′ |=symb φ, we get that
proj(p1l

y′[1]
1 p2l

y′[2]
2 . . . l

y′[k−1]
k−1 pkl

ω
k ), 0 |=symb φ. This also implies that P ′ satis-

fies the infiniteness property. Hence

proj(p1l
y[1]
1 p2l

y[2]
2 . . . l

y[k−1]
k−1 pkl

ω
k ), 0 |=symb φ

thanks to Proposition 5.1. Consequently, we have all the ingredients to build
safely an accepting run for Algorithm 1 on inputs S, c0, φ. �

The two previous lemmas allow us to state the main result of this paper.

Theorem 8.4. MC(PLTL[C], FlatCS) is NP-complete.

As a corollary, we can also solve the global model-checking problem with
existential Presburger formulae (we knew that Presburger formulae exist for
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global model-checking [14] but we can conclude that they are structurally
simple and we provide an alternative proof).

Corollary 8.5. Given a flat counter system S, a control state q0 and a for-
mula φ ∈ PLTL[C] one can effectively build an existential Presburger formula
φ that represents the initial counter values v0 such that there is an infinite
run ρ starting at 〈q0,v0〉 such that ρ, 0 |= φ.

It is sufficient to consider the formula below:∨
minimal path schema P

∨
P ′=p1l

+
1 p2l

+
2 ...l

+
k−1pkl

ω
k∈YR,P

(
∧
t∈T

ϕ(t,mfirst
P ′ (t)))∧

∨
y s.t. ft

p1l
y[1]
1 p2l

y[2]
2 ...l

y[k−1]
k−1

pkl
ω
k

,0 |=symb φ

∃ y1 · · · yk−1 E ′P ′ ∧ ψ1 ∧ · · · ∧ ψk−1

where

• the first generalized disjunction deals with minimal path schemas start-
ing on q0,

• the second disjunction enumerates the unfolded path schema in YR,P
with no constraint on the first term map, say mfirst

P ′ ,

• given a term t =
∑

j ajxj ∈ T and a term map m, we write ϕ(t,m(t))
to denote the formula below (where b, b′ ∈ B):

– ϕ(t, (−∞, b]) def
=

∑
j ajxj ≤ b,

– ϕ(t, [b,+∞))
def
=

∑
j ajxj ≥ b,

– ϕ(t, [b, b′])
def
= ((

∑
j ajxj ≤ b′) ∧ ((

∑
j ajxj ≥ b).

• the third generalized disjunction deals with y ∈ [1, 2td(φ) + 5]k−1,

• the constraint system E ′P ′ is obtained from EP ′ by replacing initial
counter values by free variables, i.e. by replacing occurrences of v0[i]
by xi in expressions built in Section 6.
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8.2. The special case of path schemas with a single loop
Thanks to Lemma 5.6, we have seen that MC(PLTL[C], CPS(k)) is NP-

hard as soon as k ≥ 2. By contrast, we prove that MC(PLTL[C], CPS(1)) is
in PTime by using the previous proof techniques.

Consider a path schema P = p · lω in a counter system with only one
loop l. Due to the structure of P there exists at most one run ρ respecting
P and starting from a given initial configuration c0. The footprint ftρ of
this run (see Section 7) is of the form u.vω, which is an ultimately periodic
word. Since the only loop l is to be taken an infinite number of times, we
have len(v) = len(l), which is polynomial in the input size, but len(u) can
be exponential. In fact, in the word lab(ρ(0)ρ(1) · · · ρ(len(u))) ∈ p · l+, the
number of repetitions that can be attached to the loop l may be exponential.
The algorithm computes the number of different possible sets of term maps
(defined in Section 7), that can be generated while visiting the loop l. There
are at most a polynomial number of such term maps due to Lemma 7.2.
Next, for each such assignment of term maps to the nodes of l, the algorithm
calculates the number of iterations β of l, for which the terms remain in their
respective term map. However, each of these βi can be exponentially large.
Now, the formula is symbolically verified over the ultimately periodic path
where the nodes of the path schema are augmented with the term maps.

Before providing the algorithm formally, we need to introduce auxil-
iary notions. For a path segment p = δ0δ1 · · · δlen(p)−1, we define p[i, j] =
δiδi+1 · · · δj with 0 ≤ i ≤ j ≤ len(p) − 1 and p[i, j] = ε (the empty word) if
j < i. We use furthermore the convention that effect(ε) = 0.

Since the unique run respecting P must contain p and copies of l, we can
specify the term maps for w = p · l. Consider the function finit : [0, len(w)]→
IT for a given configuration c0 = 〈q0,v0〉, defined as follows:

• finit(0)
def
= m0 iff for each term t =

∑
j ajxj ∈ T , we have

∑
j aj.v0[j] ∈

m0(t) and m0 ` guard(w(0)).

• for every i ∈ [1, len(w)], finit(i)
def
= mi iff, for each term t =

∑
j ajxj ∈ T ,

we have
∑

j aj.(effect(w[0, i− 1])[j] + v0[j]) ∈mi(t) and if i < len(w),
then mi ` guard(w(i)).

• Otherwise, if the term maps do not satisfy the guards, then there does
not exist any run and hence finit(i) is undefined.

In the algorithm, we also consider a map curr : T → Z that provides the value
of the terms at specific positions of the run. From this function, we define
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the function valcurr : ∆+ → IT as follows, valcurr(w) = m where m verifies:
curr(t) +

∑
j aj.(effect(w)[j]) ∈ m(t) for all t =

∑
j ajxj ∈ T . Finally,

given a path segment p = δ0δ1 · · · δlen(p)−1 with δi = 〈qi, gi,ui, qi+1〉 ∈ ∆ for
i ∈ [0, len(p)−1] and a given tuple of term maps M = 〈m0,m1, · · · ,mlen(p)〉,
we define p⊗M

def
= δ′0δ

′
1 · · · δ′len(p)−1 where δ′i

def
= 〈〈qi,mi〉, gi,ui, 〈qi+1,mi+1〉〉.

Now, we describe our algorithm that solves MC(PLTL[C], CPS(1)) in poly-
nomial time. Given an initial configuration c0, it begins by computing the
term maps for each position of p and the first iteration of l, using finit. Subse-
quently, it computes new tuples of term maps 〈m0,m1, · · · ,mlen(l)〉 for l and
the number of iterations β+1 of l for which the terms remain in their respec-
tive term map from the tuple. We store those tuples made of term maps in
an array A and the integer variable βi+1 is used to store the number of iter-
ations corresponding to tuple A[i]. If for some position the algorithm reaches
some term map that does not satisfy some guard, the procedure aborts (this
means that there is no infinite run).

There are only polynomially many entries in A but each number of loop
iterations βi + 1 can possibly be exponential. The algorithm performs then
symbolic model checking over a path schema augmented with the calculated
term maps. The augmented path schema is obtained by performing l ⊗ A[i]
for each i. Finally since the number of times l ⊗ A[i] is repeated can be
exponential, when checking for the satisfaction of the formula, instead of
taking βi + 1 times the loop l ⊗ A[i], we consider the same run where the
loop is taken min(βi + 1, 2td(φ) + 5) times. By Theorem 4.1, we have that
the two path schemas are equivalent in terms of satisfiability of φ. The
polynomial-time algorithm is described in Algorithm 2.

It now remains to prove that the algorithm runs in PTime and is correct.

Lemma 8.6. Algorithm 2 terminates in polynomial time in the input size.

Proof We check that each step of the algorithm can be performed in poly-
nomial time.

• Building a resource and a set of intervals can be done by scanning the
input once.

• Since the updates of P is part of the input, we can compute finit for all
positions in p · l in polynomial time.

• Computation of curr depends on the previous value of curr and the
coefficients appearing in the guards of P . Hence, it involves addition
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Algorithm 2 The PTime algorithm with inputs P = p · lω, c0 = 〈q0,v0〉, φ
1: Build a resource R = 〈X,T,B〉 and a set of intervals I coherent with P

and φ.
2: Compute finit(i) for all i ∈ [0, len(p.l)].
3: if for some i ∈ [0, len(p · l)], finit(i) is undefined then abort
4: h := 1;
5: A[h] := 〈finit(len(p)), finit(len(p) + 1), · · · , finit(len(p.l))〉
6: For each term t ∈ T , curr(t) := A[h][len(l) + 1](t)
7: while A[h] is not final do
8: Compute, βh = min{β ∈ N|i ∈ [0, len(l)− 1], t ∈ T, valcurr(lβ · l[0, i−

1])(t) 6= A[h][i](t)}.
9: h := h+ 1
10: A[h] := 〈m0,m1, · · · ,mlen(l)〉, such that valcurr(lβh · l[0, i − 1]) = mi

for all i ∈ [0, len(l)].
11: For each term t ∈ T , curr(t) := A[h][len(l) + 1](t).
12: if there is i ∈ [1, len(l)] such that A[h][i] 0 guard(l(i− 1)) then abort
13: end while
14: For j ∈ [1, h− 1], TR[j] := min(βj + 1, 2td(φ) + 5)
15: Check that proj((p ⊗ 〈finit(0), . . . , finit(len(p))〉 · (l ⊗ A[1])TR[1].(l ⊗

A[2])TR[2] . . . (l ⊗ A[h− 1])TR[h−1](l ⊗ A[h])ω), 0 |=symb φ
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and multiplication of at most a polynomial number of bits. Thus, this
can be performed in polynomial time.

• The maximal possible value for h is bounded by a polynomial given
by Lemma 7.8. Indeed, the process described in the while loop is the
same as the creation of the set of unfolded path schemas. There is just
a major difference: there exists at most one run and hence at most one
unfolded path schema.

• Calculation of each value βh requires computing valcurr, which again
involves arithmetical operations on polynomially many bits. Thus, this
requires polynomial time only.

• Checking (p⊗〈finit(0), . . . , finit(len(p))〉 · (l⊗A[1])TR[1](l⊗A[2])TR[2] . . .
(l ⊗ A[h − 1])TR[h−1](l ⊗ A[h])ω, 0 |=symb φ can be done in polynomial
time for the following reasons.

– By definition of TR[h], size of (p⊗〈finit(0), . . . , finit(len(p))〉 · (l⊗
A[1])TR[1](l⊗A[2])TR[2] . . . (l⊗A[h− 1])TR[h−1](l⊗A[h])ω is poly-
nomial in the input size.

– By [29, Theorem 5.1], (p⊗〈finit(0), . . . , finit(len(p))〉·(l⊗A[1])TR[1](l⊗
A[2])TR[2] . . . (l ⊗ A[h − 1])TR[h−1](l ⊗ A[h])ω, 0 |=symb φ can be
checked in time O(size(φ)2 ⊗ len(p · lTR[1]lTR[2] · · · lTR[h−1]l)). In-
deed, |=symb is analogous to the satisfaction relation for plain Past
LTL.

�

Lemma 8.7. P, c0 |= φ iff Algorithm 2 on inputs P, c0, φ has an accepting
run.

Proof First, we assume that P, c0 |= φ. We show that there exists a vector
of positive integers 〈β1, β2, . . . , βh〉 for some h ∈ N such that Algorithm 2 has
an accepting run. Clearly, the word of transitions taken by a run ρ respecting
P and satisfying φ is of the form plω. Hence, it can be decomposed as the
sequence plβ1+1lβ2+1 . . . lβh+1lω, depending on the portion of P that is visited,
such that for each consecutive copy of l, the term maps associated with the
nodes change. It is easy to see that this decomposition is the same as the one
computed by the algorithm. Now, each βi can be exponential. But due to
Lemma 7.5 and Theorem 4.1, we know that (p ⊗ 〈finit(0), . . . , finit(len(p))〉 ·
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(l⊗A[1])β1+1(l⊗A[2])β2+1 . . . (l⊗A[h−1])βh−1+1(l⊗A[h])ω, 0 |=symb φ iff (p⊗
〈finit(0), . . . , finit(len(p))〉 · (l⊗A[1])TR[1](l⊗A[2])TR[2] . . . (l⊗A[h−1])TR[h−1]

(l ⊗ A[h])ω, 0 |=symb φ. Hence, the algorithm has an accepting run.
Now, suppose that the algorithm has an accepting run on inputs P, c0

and φ. We prove that P, c0 |= φ. Since the algorithm has an accepting
run, let β1, β2, · · · , βh be the integers it successively computes. Let w =
plβ1+1lβ2+1 . . . lβh+1lω and ρ = 〈〈q0,m0〉,v′0〉〈〈q1,m1〉,v′1〉〈〈q2,m2〉,v′2〉 · · · ∈
(Q′ × Zn)ω be defined as follows:

• for every i ≥ 0, qi
def
= π1(source(w(i))),

• v′0
def
= v0 and,

• for every i ≥ 1, we have v′i
def
= v′i−1 + update(w(i)).

By the calculation of βj for j ∈ [1, h] in the algorithm, it is easy to check
that 〈q0,v

′
0〉〈q1,v

′
1〉〈q2,v

′
2〉 · · · ∈ (Q × Zn)ω is a run respecting P . Algo-

rithm 2 guarantees that (p ⊗ 〈finit(0), . . . , finit(len(p))〉 · (l ⊗ A[1])TR[1](l ⊗
A[2])TR[2] . . . (l⊗A[h− 1])TR[h−1](l⊗A[h])ω, 0 |=symb φ. Thus, by Lemma 7.5
and Theorem 4.1, we deduce 〈q0,v

′
0〉〈q1,v

′
1〉〈q2,v

′
2〉 · · · , 0 |= φ. �

Consequently, we get the PTime upper bound.

Proposition 8.8. MC(PLTL[C], CPS(1)) is in PTime.

9. Conclusion

We have investigated the computational complexity of the model-checking
problem for flat counter systems with formulae from an enriched version of
LTL (with past-time operators and arithmetical constraints on the counters).
Our main result is the NP-completeness of the problem MC(PLTL[C], FlatCS),
significantly improving the complexity upper bound from [14]. This also im-
proves the results about the effective semilinearity of the reachability rela-
tions for such flat counter systems from [9, 19]; indeed, our logical dialects
allow to specify whether a configuration is reachable. Figure 7 presents our
main results and compares them with the complexity of the reachability
problem. Furthermore, our results extend the recent result on the NP-
completeness of model-checking flat Kripke structures with LTL from [27]
(see also [26]) by adding counters and past-time operators. As far as the
proof technique is concerned, the NP upper bound is obtained as a com-
bination of a general stuttering property for LTL with past-time operators
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Classes of Systems PLTL[∅] PLTL[C] Reachability
KPS NP-complete —– PTime
CPS NP-complete NP-complete (Theo. 8.4) NP-complete

KPS(n) PTime (Theo. 5.4) —– PTime
CPS(n), n > 1 open NP-complete (Lem. 5.6) open

CPS(1) PTime PTime PTime
FlatKS NP-complete —– PTime
FlatCS NP-complete NP-complete (Theo. 8.4) NP-complete

Figure 7: Summary: computational complexity of the problems MC(L, C)

(a result extending what is done in [28] with past-time operators) and the
use of small integer solutions for quantifier-free Presburger formulae [3]. This
latter technique is nowadays widely used to obtain optimal complexity upper
bounds for verification problems, see e.g. [25, 24]. Herein, our main original-
ity rests on its intricate combination with a very general stuttering principle.
There are several related problems which are not addressed in the paper.
For instance, the extension of the model-checking problem to full CTL? is
known to be decidable [14] and the complexity characterization has been re-
cently solved in [13]. Similarly, the model-checking problem can be extended
by considering successively more powerful guards and updates (see the very
recent work [5], see also [15]). In this respect, extending our model by al-
lowing quantified Presburger arithmetic formulae immediately results in a
reduction from the satisfiability problem for Presburger arithmetic. Extend-
ing our model by incorporating updates with finite monoid property in the
sense of [19] is another option to consider. In fact, though model-checking is
known to be decidable [14], the exact complexity is possibly higher than NP.
Another direction for extensions would be to consider richer update functions
or guards and to analyze how much our combined proof technique is robust
in those cases, for instance by allowing transfer updates.
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Appendix A. Proofs of the claims used by the Stuttering Theorem

Appendix A.1. A Zone Classification for Proving (Claim 1) – (Claim 5)
For the proofs of (Claim 1) – (Claim 5), the positions of each word w of

the form w = w1u
Mw2 ∈ Σω (Σ = 2AT, w1 ∈ Σ∗, u ∈ Σ+ and w2 ∈ Σω) with

M > 2N are partitionned into five zones (A, B, C, D and E). We also assume
that N ≥ 2. Indeed, given that 〈w, i〉 ≈N 〈w′, i′〉, we shall proceed by a case
analysis on the positions i and i′ depending on which zones i and i′ belong
to (assuming that w′ = w1u

M ′w2 ∈ Σω with M ′ > 2N). The definition of
zones is illustrated on Figure A.8 and here is the formal characterization:

• Zone A corresponds to the set of positions i ∈ N such that 0 ≤ i <
len(w1) + (N − 1) · len(u).

• Zone B corresponds to the set of positions i ∈ N such that len(w1) +
(N − 1) · len(u) ≤ i < len(w1) +N · len(u).

• Zone C corresponds to the set of positions i ∈ N such that len(w1) +
N · len(u) ≤ i < len(w1) + (M −N) · len(u).

• Zone D corresponds to the set of positions i ∈ N such that len(w1) +
(M −N) · len(u) ≤ i < len(w1) + (M − (N − 1)) · len(u).

• Zone E corresponds to the set of positions i ∈ N such that len(w1) +
(M − (N − 1)) · len(u) ≤ i.

A B C D E
| | |

Figure A.8: The five zones for w1(��)8w2 with N = 3 and u = ��

Note that the definition of zones depends on the value N (taken from
≈N) and also on u, w1 and w2. In the sequel, we may index the zones by
N (providing AN , BN , etc.) when it is useful to make explicit from which
relation ≈N the definition of zones is made. Moreover, we may use a prime
symbol (providing A′N , B′N , etc.) to refer to zones for the infinite word
w′. So, the relation ≈N can be redefined as follows when M,M ′ > 2N :
〈w, i〉 ≈N 〈w′, i′〉

def⇔ (M ≈2N M ′) and one of the conditions holds true:

1. i = i′ and either (i ∈ AN and i′ ∈ A′N) or (i ∈ BN and i′ ∈ B′N).
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2. (i− i′) = (M −M ′)len(u) and either (i ∈ DN and i′ ∈ D′N) or (i ∈ EN

and i′ ∈ E′N).
3. i ∈ CN , i′ ∈ C′N and |i− i′| = 0 mod len(u).

Appendix A.2. Proof of (Claim 1)
Let us recall what is (Claim 1). Let w = w1u

Mw2, w
′ = w1u

M ′w2 ∈ Σω,
i, i′ ∈ N and N ≥ 2 such that M,M ′ ≥ 2N + 1 and 〈w, i〉 ≈N 〈w′, i′〉.

(Claim 1) 〈w, i〉 ≈N−1 〈w′, i′〉; w(i) = w′(i′).

Proof We first prove that 〈w, i〉 ≈N−1 〈w′, i′〉. Without any loss of gener-
ality, we can assume that M ≥ M ′. Since N > N − 1, it is obvious that
M ≈2(N−1) M

′.

• If i < len(w1) + (N − 1) · len(u) [i is in Zone AN ], then i = i′. Hence
either (i ∈ AN−1, i′ ∈ A′N−1 and i = i′) or (i ∈ BN−1, i′ ∈ B′N−1 and
i = i′). Hence, 〈w, i〉 ≈N−1 〈w′, i′〉.
• If i ≥ len(w1) + (M − (N − 1)) · len(u) [i is in zone EN ] then i =
i′+ (M −M ′) · len(u) and i′ ≥ len(w1) + (M ′− (N −1)) · len(u) [i′ is in
zone E′N ]. So, either (i is in zone EN−1 and i′ is in zone E′N−1) or (i is
in zone DN−1 and i′ is in zone D′N−1). Since i = i′+ (M −M ′) · len(u),
we conclude that 〈w, i〉 ≈N−1 〈w′, i′〉.
• If len(w1)+(N−1) · len(u) ≤ i < len(w1)+N · len(u) [i is in Zone BN ]

then i = i′. Hence, i ∈ CN−1, i′ ∈ C′N−1 and |i − i′| = 0 mod len(u).
Hence, 〈w, i〉 ≈N−1 〈w′, i′〉.
• If len(w1) + N · len(u) ≤ i < len(w1) + (M − N) · len(u) [i in Zone
CN ], then len(w1) +N · len(u) ≤ i′ < len(w1) + (M ′−N) · len(u) [i′ is
in Zone C′N ] and |i− i′| = 0 mod len(u). Consequently, i is in Zone
CN−1, i′ is in Zone C′N−1 and |i− i′| = 0 mod len(u). This entails that
〈w, i〉 ≈N−1 〈w′, i′〉.
• If len(w1) + (M − N) · len(u) ≤ i < len(w1) + (M − (N − 1)) · len(u)
[i in Zone DN ], then i′ is in Zone D′N and i = i′ + (M −M ′) · len(u).
Consequently, i is in Zone CN−1, i′ is in Zone C′N−1 and |i − i′| = 0
mod len(u). This also entails that 〈w, i〉 ≈N−1 〈w′, i′〉.

As far as the second property is concerned, it is easy to conclude that
w(i) = w′(i′), because either i and i′ correspond to the same position rel-
atively to the words w1 or w2, or they are respectively in the Zone C and

64



they correspond to the same position of u. Indeed, in this latter case, their
difference is such that |i− i′| = 0 mod len(u). �

Appendix A.3. Proof of (Claim 2)
Let us recall what is (Claim 2). Let w = w1u

Mw2, w
′ = w1u

M ′w2 ∈ Σω,
i, i′ ∈ N and N ≥ 2 such that M,M ′ ≥ 2N + 1 and 〈w, i〉 ≈N 〈w′, i′〉.

(Claim 2) i, i′ > 0 implies 〈w, i− 1〉 ≈N−1 〈w′, i′ − 1〉.

Proof Without any loss of generality, we can assume that M ≥ M ′. Since
N > N − 1, it is obvious that M ≈2(N−1) M

′.

• If i < len(w1) + (N − 1) · len(u) [i is in Zone AN ], then i = i′. Hence,
i − 1 ∈ AN−1, i′ − 1 ∈ A′N−1 and i − 1 = i′ − 1. So, 〈w, i − 1〉 ≈N−1

〈w′, i′ − 1〉.
• If i ≥ len(w1) + (M − (N − 1)) · len(u) [i is in zone EN ] then i =
i′ + (M −M ′) · len(u) and i′ ≥ len(w1) + (M ′ − (N − 1)) · len(u) [i′ is
in zone E′N ]. So, either (i− 1 is in zone EN−1, i′ − 1 is in zone E′N−1

and i − 1 = i′ − 1 + (M −M ′) · len(u)) or (i − 1 is in zone DN−1 and
i′ − 1 is in zone D′N−1 and i− 1 = i′ − 1 + (M −M ′) · len(u)) or (i− 1
is in zone CN−1 and i′ − 1 is in zone C′N−1 and |(i− 1)− (i′ − 1)| = 0
mod len(u)). We conclude that 〈w, i− 1〉 ≈N−1 〈w′, i′ − 1〉.
• If len(w1) + (N − 1) · len(u) ≤ i < len(w1) + N · len(u) [i is in Zone
BN ] then i = i′. Hence, either (i − 1 ∈ CN−1, i′ − 1 ∈ C′N−1 and
|(i − 1) − (i′ − 1)| = 0 mod len(u)) or (i − 1 ∈ BN−1, i′ − 1 ∈ B′N−1

and i− 1 = i′ − 1). Hence, 〈w, i− 1〉 ≈N−1 〈w′, i′ − 1〉.
• If len(w1)+N · len(u) ≤ i < len(w1)+(M−N) · len(u) [i in Zone CN ],

then len(w1) + N · len(u) ≤ i′ < len(w1) + (M ′ − N) · len(u) [i′ is in
Zone C′N ] and |i− i′| = 0 mod len(u). Consequently, i− 1 is in Zone
CN−1, i′ − 1 is in Zone C′N−1 and |(i − 1) − (i′ − 1)| = 0 mod len(u).
This entails that 〈w, i− 1〉 ≈N−1 〈w′, i′ − 1〉.
• If len(w1) + (M − N) · len(u) ≤ i < len(w1) + (M − (N − 1)) · len(u)
[i in Zone DN ], then i′ is in Zone D′N and i = i′ + (M −M ′) · len(u).
Consequently, i−1 is in Zone CN−1, i′−1 is in Zone C′N−1 and |(i−1)−
(i′− 1)| = 0 mod len(u). This entails that 〈w, i− 1〉 ≈N−1 〈w′, i′− 1〉.

�
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Appendix A.4. Proof of (Claim 3)
Let us recall what is (Claim 3). Let w = w1u

Mw2, w
′ = w1u

M ′w2 ∈ Σω,
i, i′ ∈ N and N ≥ 2 such that M,M ′ ≥ 2N + 1 and 〈w, i〉 ≈N 〈w′, i′〉.

(Claim 3) 〈w, i+ 1〉 ≈N−1 〈w′, i′ + 1〉.

Proof The proof is similar to the proof for (Claim 2). Nevertheless, full
proof is provided below for the sake of completeness. Without any loss of
generality, we can assume thatM ≥M ′. Since N > N−1, it is again obvious
that M ≈2(N−1) M

′.

• If i < len(w1) + (N − 1) · len(u) [i is Zone AN ], then i = i′. Hence
either (i+ 1 ∈ AN−1, i′+ 1 ∈ A′N−1 and i+ 1 = i′+ 1) or (i+ 1 ∈ BN−1,
i′ + 1 ∈ B′N−1 and i + 1 = i′ + 1) or (i + 1 ∈ CN−1, i′ + 1 ∈ C′N−1 and
i− i′ = 0). Hence, 〈w, i+ 1〉 ≈N−1 〈w′, i′ + 1〉.
• If i ≥ len(w1) + (M − (N − 1)) · len(u) [i is in zone EN ] then i =
i′+ (M −M ′) · len(u) and i′ ≥ len(w1) + (M ′− (N −1)) · len(u) [i′ is in
zone E′N ]. So, either (i+ 1 is in zone EN−1 and i′+ 1 is in zone E′N−1)
or (i + 1 is in zone DN−1 and i′ + 1 is in zone D′N−1). Since i + 1 =
i′+ 1 + (M −M ′) · len(u), we conclude that 〈w, i+ 1〉 ≈N−1 〈w′, i′+ 1〉.
• If len(w1)+(N−1) · len(u) ≤ i < len(w1)+N · len(u) [i is in Zone BN ]

then i = i′. Hence, i+1 ∈ CN−1, i′+1 ∈ C′N−1 and |(i+1)−(i′+1)| = 0
mod len(u). Hence, 〈w, i+ 1〉 ≈N−1 〈w′, i′ + 1〉.
• If len(w1)+N · len(u) ≤ i < len(w1)+(M−N) · len(u) [i in Zone CN ],

then len(w1) + N · len(u) ≤ i′ < len(w1) + (M ′ − N) · len(u) [i′ is in
Zone C′N ] and |i− i′| = 0 mod len(u). Consequently, i+ 1 is in Zone
CN−1, i′ + 1 is in Zone C′N−1 and |(i + 1) − (i′ + 1)| = 0 mod len(u).
This entails that 〈w, i+ 1〉 ≈N−1 〈w′, i′ + 1〉.
• If len(w1) + (M − N) · len(u) ≤ i < len(w1) + (M − (N − 1)) · len(u)
[i in Zone DN ], then i′ is in Zone D′N and i = i′ + (M −M ′) · len(u).
Consequently, either (i+ 1 is in Zone CN−1, i′+ 1 is in Zone C′N−1 and
|(i+ 1)− (i′ + 1)| = 0 mod len(u)) or (i+ 1 is in Zone DN−1, i′ + 1 is
in Zone D′N−1 and i+ 1 = i′+ 1 + (M −M ′) · len(u)). This also entails
that 〈w, i+ 1〉 ≈N−1 〈w′, i′ + 1〉.

�
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Appendix A.5. Proof of (Claim 4)
Before providing the detailed proof, we give a concrete example on Fig-

ure A.9. On this example, we assume that the top word w and the bottom
word w′ and their respective positions i and i′ are such that 〈w, i〉 ≈3 〈w′, i′〉.
We want to illustrate (Claim 4) and for this matter, we choose a position j
in w. Now observe that according to the zone classification, j is in the Zone
C of the word w and furthermore it is not possible to find a j′ > i′ in the
Zone C of the word w′ such that j and j′ points on the same position of the
word u. That is why we need to consider at this stage not the relation ≈3

but instead ≈2. In fact, as shown at the bottom of Figure A.9, we can find
for j, a position j′ in w′ such that 〈w, j〉 ≈2 〈w′, j′〉 (take j = j′) and this
figure also shows that for all i′ ≤ k ≤ j′, 〈w, k〉 ≈2 〈w′, k〉.

w1 | i j | |
w2

w1 | i′ | |
w2

w1 | i j | |
w2

w1 | i′ j′ | |
w2

〈w, i〉 ≈N 〈w′, i′〉

〈w,k〉≈N−1〈w
′,k′〉

for i ≤ k ≤ j

w

w

w′

w′

Two letter word u =

Figure A.9: Relation between ≈N and ≈N−1

Let us recall what is (Claim 4). Let w = w1u
Mw2, w

′ = w1u
M ′w2 ∈ Σω,

i, i′ ∈ N and N ≥ 2 such that M,M ′ ≥ 2N + 1 and 〈w, i〉 ≈N 〈w′, i′〉.

(Claim 4) For all j ≥ i, there is j′ ≥ i′ such that 〈w, j〉 ≈N−1 〈w′, j′〉 and
for all k′ ∈ [i′, j′−1], there is k ∈ [i, j−1] such that 〈w, k〉 ≈N−1 〈w′, k′〉.

Proof We proceed by a case analysis on the positions i and j:

• If i ≥ len(w1) + (M − N)len(u) [i is in Zone DN or EN ] then j ≥
len(w1) + (M −N)len(u) [j is in Zone DN or EN ] and i′ ≥ len(w1) +
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(M ′−N)len(u) [i′ is in Zone DN or EN ] and i = i′+(M−M ′)len(u).
We define j′ = j − (M − M ′)len(u). Then it is clear that j′ ≥ i′

and 〈w, j〉 ≈N 〈w′, j′〉. By (Claim 1), we get 〈w, j〉 ≈N−1 〈w′, j′〉.
Let k′ ∈ [i′, j′ − 1] and let k = k′ + (M − M ′)len(u), then we have
that k ∈ [i, j − 1] and also 〈w, k〉 ≈N 〈w′, k′〉, hence by (Claim 1),
〈w, k〉 ≈N−1 〈w′, k′〉.
• If i < len(w1) +N len(u) [i is in Zone AN or BN ] then i′ < len(w1) +
N len(u) [i′ is in Zone AN or BN ], i = i′ and we have the following
possibilities for the position j ≥ i:

– If j < len(w1) + N len(u) [j is in Zone AN or BN ], then let
j′ = j. Consequently we have 〈w, j〉 ≈N 〈w′, j′〉 and by (Claim
1) we get 〈w, j〉 ≈N−1 〈w′, j′〉. Let k′ ∈ [i′, j′ − 1] and k = k′.
Then we have that k ∈ [i, j − 1] and also 〈w, k〉 ≈N 〈w′, k′〉 and
by (Claim 1), 〈w, k〉 ≈N−1 〈w′, k′〉.

– If len(w1)+N len(u) ≤ j < len(w1)+(M−N)len(u) [j is in Zone
CN ], then let ` = (j− (len(w1) +N len(u))) mod len(u) (` is the
relative position of j in the word u it belongs to). Consequently
0 ≤ ` < len(u). Let j′ = len(w1) + N len(u) + ` (we choose j′
at the same relative position of j in the first word u of the Zone
C′N). Then len(w1) + N len(u) ≤ j′ < len(w1) + (M ′ − N)len(u)
[j′ is in Zone C′N ] (because (M ′ − N) > 0) and |j − j′| = 0
mod len(u). We deduce that 〈w, j〉 ≈N 〈w′, j′〉 and by (Claim 1)
we get 〈w, j〉 ≈N−1 〈w′, j′〉. Then let k′ ∈ [i′, j′−1] and let k = k′.
Then we have that k ∈ [i, j − 1]. Furthermore, if k′ < len(w1) +
N len(u) [k′ is in Zone A′N or B′N ] we obtain 〈w, k〉 ≈N 〈w′, k′〉
and by (Claim 1), 〈w, k〉 ≈N−1 〈w′, k′〉. Moreover, if len(w1) +
N len(u) ≤ k′ [k′ is in Zone C′N ] then k is in Zone CN and
|k − k′| = 0 mod len(u) since k = k′. So, 〈w, k〉 ≈N 〈w′, k′〉 and
by (Claim 1), 〈w, k〉 ≈N−1 〈w′, k′〉.

– If len(w1)+(M−N)len(u) ≤ j [j is in Zone EN or DN ], let j′ =
j− (M−M ′)len(u). Then, we have len(w1)+(M ′−N)len(u) ≤ j′

[j′ is in Zone D′N or E′N ] and we deduce that 〈w, j〉 ≈N 〈w′, j′〉
and by (Claim 1) we get 〈w, j〉 ≈N−1 〈w′, j′〉. Then let k′ ∈
[i′, j′−1]. If k′ < len(w1)+N len(u) [k′ is in Zone A′N or B′N ], for
k = k′, we obtain 〈w, k〉 ≈N 〈w′, k′〉 and by (Claim 1), 〈w, k〉 ≈N−1

〈w′, k′〉. For the case when k′ ≥ len(w1)+(M ′−N)len(u) [k′ is in
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Zone DN or EN ], we choose k = k′ + (M −M ′)len(u) and here
also we deduce 〈w, k〉 ≈N 〈w′, k′〉 and by (Claim 1), 〈w, k〉 ≈N−1

〈w′, k′〉. If on the other hand, w1+N len(u) ≤ k′ < len(w1)+(M ′−
N)len(u) [k′ is in Zone C′N ], let ` = (k′ − (len(w1) + N len(u)))
mod len(u) (` is the relative position of k′ in the word u it belongs
to) and let k = len(w1) + N len(u) + ` (k is placed at the same
relative position of k′ in the first word u of the Zone CN). Then we
have w1 +N len(u) ≤ k < len(w1)+(M−N)len(u) and |k−k′| = 0
mod len(u) which allows to deduce that 〈w, k〉 ≈N 〈w′, k′〉 and by
(Claim 1), 〈w, k〉 ≈N−1 〈w′, k′〉.

• If len(w1)+N len(u) ≤ i < len(w1)+(M −N)len(u) [i is in Zone CN ]
then len(w1) +N len(u) ≤ i′ < len(w1) + (M ′−N)len(u) [i′ is in Zone
C′N ] and |i − i′| = 0 mod len(u). Let ` = (i − (len(w1) + N len(u)))
mod len(u) (the relative position of i in the word u). We have the
following possibilities for the position j ≥ i:

– If j− i < len(u)− `+ len(u) (j is either in the same word u as i or
in the next word u), then j < len(w1) + (M − (N − 1))len(u) [j is
in Zone CN or DN ]. We define j′ = i′+ (j− i) and we have that
len(w1) +N len(u) ≤ j′ < len(w1) + (M ′− (N − 1))len(u) [j′ is in
Zone C′N or D′N ] and since |i − i′| = 0 mod len(u), we deduce
|j−j′| = 0 mod len(u). From this, we obtain 〈w, j〉 ≈N−1 〈w′, j′〉.
Let k′ ∈ [i′, j′−1] and k = i+k′−i′. We have then that k ∈ [i, j−1]
and len(w1) +N len(u) ≤ k′ < len(w1) + (M ′− (N − 1))len(u) and
len(w1) + N len(u) ≤ k < len(w1) + (M − (N − 1))len(u). Since
|i − i′| = 0 mod len(u), we also have |k − k′| = 0 mod len(u).
Hence, 〈w, k〉 ≈N−1 〈w′, k′〉.

– If j−i ≥ len(u)−`+len(u) (j is neither in the same word u as i nor
in the next word u) and j ≥ len(w1)+(M−N)len(u) [j is in Zone
EN or DN ]. Let j′ = j−(M−M ′)len(u) then j′ ≥ len(w1)+(M ′−
N)len(u) [j′ is in Zone E′N or D′N ] and consequently 〈w, j〉 ≈N
〈w′, j′〉 and by (Claim 1) we get 〈w, j〉 ≈N−1 〈w′, j′〉. Then let
k′ ∈ [i′, j′ − 1]. If k′ ≥ len(w1) + (M ′ − N)len(u) [k′ is in Zone
D′N or E′N ], then let k = k′+(M−M ′)len(u); we have in this case
that k ≥ len(w1)+(M−N)len(u) and this allows us to deduce that
〈w, k〉 ≈N−1 〈w′, k′〉. Now assume k′ < len(w1) + (M ′ −N)len(u)
[k′ is in Zone C′N ] and k′ − i′ < len(u) − ` (k′ and i′ are in
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the same word u), then let k = i + k′ − i′. In this case we have
k < len(w1)+(M−N)len(u) [k is in Zone CN ] and since |i−i′| =
0 mod len(u), we also have |k − k′| = 0 mod len(u), whence
〈w, k〉 ≈N−1 〈w′, k′〉. Now assume k′ < len(w1) + (M ′ −N)len(u)
[k′ is in Zone C′N ] and k′ − i′ ≥ len(u)− ` (k′ and i′ are not in
the same word u). We denote by `′ = (k′ − (len(w1) + N len(u)))
mod len(u) the relative position of k′ in u and let k = i+(len(u)−
`) + `′ (k and k′ occur in the same position in u but k occurs in
the word u just after the word u in which i belongs to) Then
k ∈ [i, j − 1] (because `′ < len(u) and j − i ≥ len(u)− `+ len(u))
and k < len(w1) + (M − (N − 1))len(u) (because i + (len(u) −
`) < len(w1) + (M − N)len(u) and `′ < len(u)) and |k − k′| = 0
mod len(u) (k and k′ are both pointing on the `′-th position in
word u). This allows us to deduce that 〈w, k〉 ≈N−1 〈w′, k′〉.

– If j − i ≥ len(u)− `+ len(u) (j is neither in the same word u as i
nor in the next word u) and j < len(w1) + (M −N)len(u) [j is in
Zone CN ]. Then let `′ = (j − (len(w1) + N len(u))) mod len(u)
the relative position of j in u. We choose j′ = i′+(len(u)−`)+`′ (j
and j′ occur in the same position in u but j′ occurs in the word u
just after the word u in which i′ belongs to) We have then that j′ <
len(w1)+(M ′−(N−1))len(u) [j′ is in Zone C′N or D′N ] (because
i′ + (len(u)− `) < len(w1) + (M −N)len(u) and `′ < len(u)) and
|j − j′| = 0 mod len(u) (j and j′ are both pointing on the `′-th
position in word u), hence 〈w, j〉 ≈N−1 〈w′, j′〉. Let k′ ∈ [i′, j′−1].
If k′−i′ < len(u)−` (k′ and i′ are in the same word u), then let k =
i+k′−i′. In this case we have k < len(w1)+(M−N)len(u) [k is in
Zone CN ] and since |i−i′| = 0 mod len(u), we also have |k−k′| =
0 mod len(u), hence 〈w, k〉 ≈N−1 〈w′, k′〉. If k′ − i′ ≥ len(u) − `
(k′ and i′ are not in the same word u), then j′ − k′ < `′ and let
k = j− j′− k′. In this case we have k < len(w1) + (M −N)len(u)
[k is in Zone CN ] and since |j − j′| = 0 mod len(u), we also
have |k − k′| = 0 mod len(u), hence 〈w, k〉 ≈N−1 〈w′, k′〉.

�

Appendix A.6. Proof of (Claim 5)
Let us recall what is (Claim 5). Let w = w1u

Mw2, w
′ = w1u

M ′w2 ∈ Σω,
i, i′ ∈ N and N ≥ 2 such that M,M ′ ≥ 2N + 1 and 〈w, i〉 ≈N 〈w′, i′〉.
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(Claim 5) for all j ≤ i, there is j′ ≤ i′ such that 〈w, j〉 ≈N−1 〈w′, j′〉 and for
all k′ ∈ [j′ − 1, i′], there is k ∈ [j − 1, i] such that 〈w, k〉 ≈N−1 〈w′, k′〉.

Proof The proof is similar to the proof for (Claim 4) by looking backward
instead of looking forward (still there are slight differences because past is
finite). Nevertheless, full proof is provided below for the sake of completeness.
We proceed by a case analysis on the positions i and j.

• If i < len(w1) +N len(u) [i is in Zone AN or BN ] then j < len(w1) +
N len(u) [j is in Zone AN or BN ], i′ < len(w1) + N len(u) [i′ is in
Zone A′N or B′N ] and i = i′. We define j′ = j. Then it is clear that
j′ < i′ and 〈w, j〉 ≈N 〈w′, j′〉. By (Claim 1), we get 〈w, j〉 ≈N−1 〈w′, j′〉.
Let k′ ∈ [j′ − 1, i′] and let k = k′, then we have that k ∈ [j − 1, i] and
also 〈w, k〉 ≈N 〈w′, k′〉, hence by (Claim 1), 〈w, k〉 ≈N−1 〈w′, k′〉.
• If i ≥ len(w1) + (M − N)len(u) [i is Zone DN or EN ] then i′ ≥

len(w1) + (M ′−N)len(u) [i′ is in Zone D′N or E′N ] and i = i′+ (M −
M ′)len(u) and we have the following possibilities for the position j ≤ i:

– If j ≥ len(w1)+(M−N)len(u) [j is in Zone DN or EN ], then let
j′ = j−(M−M ′)len(u). Consequently, we have 〈w, j〉 ≈N 〈w′, j′〉
and by (Claim 1) we get 〈w, j〉 ≈N−1 〈w′, j′〉. Let k′ ∈ [j′ − 1, i′]
and k = k′ + (M −M ′)len(u). Then we have that k ∈ [j − 1, i]
and also 〈w, k〉 ≈N 〈w′, k′〉. By (Claim 1), 〈w, k〉 ≈N−1 〈w′, k′〉.

– If len(w1)+N len(u) ≤ j < len(w1)+(M−N)len(u) [j is in Zone
CN ], then let ` = (j− (len(w1) +N len(u))) mod len(u) (` is the
relative position of j in the word u it belongs to). Consequently
0 ≤ ` < len(u). Let j′ = len(w1) + (M ′ −N)len(u)− (len(u)− `)
(j′ is at the same position as j in the last word u of the Zone C′N).
Then len(w1) +N len(u) ≤ j′ < len(w1) + (M ′−N)len(u) [j′ is in
Zone C′N ] (because (M ′ ≥ 2N + 1) and |j − j′| = 0 mod len(u),
they are at the same position in the word u). We deduce that
〈w, j〉 ≈N 〈w′, j′〉 and by (Claim 1) we get 〈w, j〉 ≈N−1 〈w′, j′〉.
Then let k′ ∈ [j′ − 1, i′] and let k = k′ + (M −M ′)len(u). Then
we have that k ∈ [j − 1, i]. Furthermore, if k′ ≥ len(w1) + (M ′ −
N)len(u) [k′ is in Zone D′N or E′N ] then k ≥ len(w1) + (M −
N)len(u) [k is in Zone DN or EN ] and we obtain 〈w, k〉 ≈N
〈w′, k′〉 and by (Claim 1), 〈w, k〉 ≈N−1 〈w′, k′〉. Moreover, if k′ <
len(w1) + (M ′−N)len(u) then necessarily len(w1) +N len(u) ≤ k′
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[k′ is in Zone C′N ] (because j′ < k′) and |k−k′| = 0 mod len(u)
(because k = k′+ (M −M ′)len(u)). Whence, k is in Zone CN and
〈w, k〉 ≈N 〈w′, k′〉. By (Claim 1), we obtain 〈w, k〉 ≈N−1 〈w′, k′〉.

– If j < len(w1)+N len(u) [j is in Zone AN or BN ], let j′ = j. We
have then j′ < len(w1) +N len(u) [j′ is in Zone A′N or B′N ]. We
deduce that 〈w, j〉 ≈N 〈w′, j′〉 and by (Claim 1) we get 〈w, j〉 ≈N−1

〈w′, j′〉. Then let k′ ∈ [j′−1, i′]. If k′ < len(w1)+N len(u) [k′ is in
Zone A′N ], for k = k′, we obtain 〈w, k〉 ≈N 〈w′, k′〉 and by (Claim
1), 〈w, k〉 ≈N−1 〈w′, k′〉. If k′ ≥ len(w1)+(M ′−N)len(u) [k′ is in
Zone D′N or E′N ], we choose k = k′ + (M −M ′)len(u) and here
also we deduce 〈w, k〉 ≈N 〈w′, k′〉 and by (Claim 1), 〈w, k〉 ≈N−1

〈w′, k′〉. If w1 + N len(u) ≤ k′ < len(w1) + (M ′ − N)len(u) [k′ is
in Zone C′N ], let ` = (k′ − (len(w1) + N len(u))) mod len(u) (`
is the relative position of k′ in the word u it belongs to) and let
k = len(w1) + N len(u) + ` (k is at the same position of k′ in the
first word of the Zone CN). Then we have w1 + N len(u) ≤ k <
len(w1) + (M −N)len(u) [k is in the Zone CN ] and |k− k′| = 0
mod len(u) which allows to deduce that 〈w, k〉 ≈N 〈w′, k′〉 and by
(Claim 1), 〈w, k〉 ≈N−1 〈w′, k′〉.

• If len(w1)+N len(u) ≤ i < len(w1)+(M −N)len(u) [i is in Zone CN ]
then len(w1) + N len(u) ≤ i′ < len(w1) + (M ′ − N)len(u) [i′ in Zone
C′N ] and |i − i′| = 0 mod len(u). Let ` = (i − (len(w1) + N len(u)))
mod len(u) (` is the relative position of i in the word u it belongs to).
We have the following possibilities for the position j ≤ i:

– If i−j < `+len(u) (j is in the same word u as i or in the previous
word u) then j ≥ len(w1) + (N − 1)len(u) [j is in Zone BN or
CN ]. We define j′ = i′− (i− j) and we have that len(w1) + (N −
1)len(u) ≤ j′ < len(w1) + (M ′ −N)len(u) [j′ is in Zone B′N or
C′N ] and since |i − i′| = 0 mod len(u), we deduce |j − j′| = 0
mod len(u). From this, we obtain 〈w, j〉 ≈N−1 〈w′, j′〉. Let k′ ∈
[j′ − 1, i′] and k = i − (i′ − k′). We have then that k ∈ [j − 1, i]
and len(w1) + (N − 1)len(u) ≤ k′ < len(w1) + (M ′ − N)len(u)
[k′ is in Zone B′N or C′N ] and len(w1) + (N − 1)len(u) ≤ k <
len(w1) + (M − N)len(u) [k is in Zone BN or CN ] and since
|i − i′| = 0 mod len(u), we also have |k − k′| = 0 mod len(u).
Consequently 〈w, k〉 ≈N−1 〈w′, k′〉.
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– If i−j ≥ `+len(u) (j is neither in the same word u as i nor in the
previous word u) and j < len(w1) +N len(u) [j is in zone AN or
BN ]. Let j′ = j. So, j′ < len(w1)+N len(u) and 〈w, j〉 ≈N 〈w′, j′〉.
By using (Claim 1) we get 〈w, j〉 ≈N−1 〈w′, j′〉. Then let k′ ∈
[j′ − 1, i′]. If k′ < len(w1) +N len(u) [k′ is in Zone A′N or B′N ],
then let k = k′; we have in this case that k < len(w1)+N len(u) and
this allows us to deduce that 〈w, k〉 ≈N−1 〈w′, k′〉. Now assume
k′ ≥ len(w1) + N len(u) [k′ is in Zone C′N ] and i′ − k′ ≤ ` (k′
and i′ are in the same word u), then let k = i− (i′ − k′). In this
case we have k ≥ len(w1) +N len(u) [k is in Zone CN ] and since
|i − i′| = 0 mod len(u), we also have |k − k′| = 0 mod len(u),
hence (w, k) ≈N−1 (w′, k′). Now assume k′ ≥ len(w1) + N len(u)
[k′ is in Zone C′N ] and i′ − k′ > ` (k′ and i′ are not in the same
word u). We denote by `′ = (k′−(len(w1)+N len(u))) mod len(u)
the relation position of k′ in u and let k = i−`− (len(u)−`′) (k is
at the same position as k′ of k in the word u preceding the word
u i belongs to). Then k ∈ [j − 1, i] (because len(u) − `′ < len(u)
and i− j ≥ `+ len(u)) and k ≥ len(w1) + (N − 1)len(u) (because
i + (len(u) − `) ≥ len(w1) + (M − N)len(u) and len(u) − ` <
len(u)) and |k − k′| = 0 mod len(u) (k and k′ are both pointing
on the `′-th position in word u). This allows us to deduce that
〈w, k〉 ≈N−1 〈w′, k′〉.

– If j − i ≥ ` + len(u) (j is neither in the same word u as i nor in
the previous word u) and j ≥ len(w1) + N len(u) [j is in zone
CN ]. Then let `′ = (j − (len(w1) + N len(u))) mod len(u) the
relative position of j ∈ u. We choose j′ = i′ − ` − (len(u) −
`′) (j′ and j are on the same position of u but in the word u
precedent the one to which i belongs to). We have then that
j′ ≥ len(w1) + (N − 1)len(u) [j′ is zone B′N or C′N ] (because
i′−` ≥ len(w1)+N)len(u) and len(u)−`′ ≤ len(u)) and |j−j′| = 0
mod len(u) (j and j′ are both pointing on the `′-th position in
word u), hence 〈w, j〉 ≈N−1 〈w′, j′〉. Let k′ ∈ [j′−1, i′]. If i′−k′ ≤ `
(k′ and i′ are in the same word u), then let k = i−(i′−k′). In this
case we have k ≥ len(w1) +N len(u) [k is in Zone CN ] and since
|i − i′| = 0 mod len(u), we also have |k − k′| = 0 mod len(u),
hence 〈w, k〉 ≈N−1 〈w′, k′〉. If i′ − k′ > ` (k′ and i′ are not in the
same word u), then k′− j′ < len(u)− `′ and let k = j+ k′− j′. In
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this case we have len(w1)+N len(u) ≤ k < len(w1)+(M−N)len(u)
[k is in Zone CN ] and since |j − j′| = 0 mod len(u), we also
have |k − k′| = 0 mod len(u), hence 〈w, k〉 ≈N−1 〈w′, k′〉.

�
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