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Abstract. In a former paper, we defined a new semantics for timed
automata, the Almost ASAP semantics, which is parameterized by A
to cope with the reaction delay of the controller. We showed that this
semantics is implementable provided there exists a strictly positive value
for the parameter A for which the strategy is correct. In this paper, we
define the implementability problem to be the question of existence of
such a A. We show that this question is closely related to a notion of
robustness for timed automata defined in [Pur98] and prove that the
implementability problem is decidable.

1 Introduction

Timed automata are an important formal model for the specification and anal-
ysis of real-time systems. Formalisms like timed automata and hybrid automata
are central in the so-called model-based development methodology for embedded
controllers. The steps underlying that methodology can be summarized as fol-
lows: (i) construct a (timed/hybrid automaton) model Env of the environment
in which the controller will be embedded; (i7) make clear what is the control
objective: for example, prevent the environment to enter a set of Bad states;
(741) design a (timed automata) model Cont of the control strategy; (iv) verify
that Reach([Env || Cont]) N Bad = @ (where Reach([Env || Cont]) denotes the
set of states reachable in the transition system associated to the synchronized
product of the automaton for the environment and the automaton for the con-
troller). When Cont has been proven correct, it would be valuable to ensure
that an implementation Impl of that model can be obtained in a systematic
way in order to ensure the conservation of correctness, that is to ensure that
Reach([Env || Impl]) N Bad = & is obtained by construction.

Unfortunately, this is often not possible for several fundamental and/or tech-
nical reasons. First, the notion of time used in the traditional semantics of timed
automata is continuous and defines perfect clocks with infinite precision while
implementations can only access time through digital and finitely precise clocks.
Second, timed automata react instantaneously to events and time-outs while im-
plementations can only react within a given, usually small but not zero, reaction
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delay. Third, timed automata may describe control strategies that are unreal-
istic, like zeno-strategies or strategies that ask the controller to act faster and
faster [CHRO2]. For one of those three reasons, a model for a digital controller
that has been proven correct may not be implementable (at all) or it may not be
possible to turn it systematically into an implementation that is proven correct
w.r.t. this model.

To overcome those problems, we recently proposed in [DDR04] an alternative
semantics to timed automata. This semantics is called the Almost ASAP seman-
tics, AASAP for short. The AASAP-semantics of a timed automaton A, noted
[A]AASAP is a parametric semantics that leaves as a parameter A € Q= the
reaction delay of the controller. This semantics relaxes the classical semantics
of timed automata in that it does not impose on the controller to react instan-
taneously but imposes on the controller to react within A time units. We have
proven that a timed controller is implementable with a sufficiently fast hardware
if and only if there exists A € QY such that Reach([Env || Cont]a) N Bad = .
Details on the notion of implementability can be found in [DDRO04]. The imple-
mentability problem is to determine the existence of such a A. The decidability
of that important problem is open. We will close this open question here.

The use of the AASAP-semantics in the verification phase can be under-
stood intuitively as follows. When we verify a control strategy using the AASAP-
semantics, we test if the proposed strategy is robust in the following sense': “Is
the strategy still correct if it is perturbed a little bit when executed on a device
that has a finite speed and uses finitely precise clocks 7’

In this paper, we show that this intuition relating robustness and imple-
mentability allows us to draw an interesting and important link with a paper
by Puri [Pur98] and allows us to answer positively the open question about the
decidability of the implementability problem.

Related works. In this paper, we focus on timed controllers and environments
that can be modeled using timed automata. There exist related works where the
interested reader will find other ideas about implementability.

In [AFILSO03], Rajeev Alur et al consider the more general problem of gen-
erating code from hybrid automata, but they only sketch a solution and state
interesting research questions. The work in this paper should be useful in that
context.

In [AFM'02,AFPT03], Wang Yi et al present a tool called TIMES that gen-
erates executable code from timed automata models. However, they make the
synchrony hypothesis and so they assume that the hardware on which the code
is executed is infinitely fast and precise.

In [HKSPO3], Tom Henzinger et al introduce a programming model for real-
time embedded controllers called GIOTTO. GIOTTO is an embedded software
model that can be used to specify a solution to a given control problem inde-
pendently of an execution platform but which is closer to executable code than

1 Our notion of robustness is different from another interseting one introduced
in [GHJ97].



a mathematical model. So, GIOTTO can be seen an intermediary step between
mathematical models like hybrid automata and real execution platforms.

Our paper is structured as follows. In Section 2, we recall some classical defi-
nitions related to timed automata and we introduce a general notion of enlarged
semantics for those automata. In Section 3, we recall the essential notions and
problems related to the AASAP-semantics, and we recall the notion of robust-
ness as introduced by Puri in [Pur98]. In Section 4, we present a small example
that illustrates the enlarged semantics and the problems that we want to solve
on this semantics. In Section 5, we make formal the link between our notion of
implementability and the notion of robustness introduced by Puri. In Section 6,
we give a direct proof that the implementability problem is decidable. Finally,
we close the paper by a conclusion.

Complete proofs can be found in a longer version of this paper at the following
web page: http://www.ulb.ac.be/di/ssd/cfv/publications.html.

2 Preliminaries

Definition 1 [TTS] A timed transition system T is a tuple (S, ¢, X', —) where
S is a (possibly infinite) set of states, ¢ € S is the initial state, X' is a finite set
of labels, and — C § x X URZY x § is the transition relation where RZ° is the
set of positive real numbers. If (¢,0,q’) € — we write ¢ = ¢'. O

A trajectory of a TTS T = (S,1, X, —) is a sequence m = (sg,%o) - .. (Sk, tx)
such that for 0 <i <k, (s;,t;) € S x R and for 0 <i < k, s; = si;1 and either
o€ X and tiy; =t;, or 0 € R°Y and t;,1 = t; + 0. We sometimes refer to this
trajectory as m[to, tx] and write 7(¢;) instead of ¢;. A trajectory is stutter-free iff
it is not the case for any ¢ that g; AN Gi+1 and g;41 RAAEN Qi+2 with 7, 7541 € R>9.
A state s of T is reachable if there exists a trajectory m = (s, %o) - .. (Sk, t) such
that sg = ¢ and s, = s. The set of reachable states of 7 is noted Reach(7).

Given a set Var = {x1,...,2,} of clocks, a clock valuation is a function
v: Var — RZ% In the sequel, we often say that a clock valuation is a point
in R™. If R C Var, then v[R := 0] denotes the valuation v’ such that

, 0 ifzeR
U(x):{v(x)ifing

A closed rectangular guard g over {x1,...,z,} is a set of inequalities of the
form a; < z; < b;, one for each x; where a;,b; € Q2% U {4+00} and a; < b;. We
write Rectc(Var) for the set of closed rectangular guards over Var. For A > 0,
we define [g] o = {(z1,...,2n) | @i — A <x; <b;+ A} CR" When A =0, we
write [g] instead of [g],-

We slightly modify the classical definitions related to timed automata [AD94].
In particular, guards on edges are rectangular and closed?. Also the value of

2 In the sequel, the guards are enlarged by strictly positive parameter A, and so it is
natural to consider them closed.



their clock is bounded by M, the largest constant appearing in guards. The last
restriction does not reduce the expressive power of timed automata.

Definition 2 [Timed automaton] A timed automaton is a tuple A = (Loc, Var,
qo, Lab, Edg) where

— Loc is a finite set of locations representing the discrete states of the automa-
ton.

— Var ={z1,...,2,} is a finite set of real-valued variables.

— qo = (lo,vo) where Iy € Loc is the initial location and vg is the initial clock
valuation such that Vo € Var : vo(z) € N A vo(x) < M.

— Lab is a finite alphabet of labels.

— Edg C LocxLocxRect.(Var) xLabx2Va" is a set of edges. An edge (I,1', g, 0, R)
represents a jump from location [ to location I’ with guard g, event o and a
subset R C Var of variables to be reset. OJ

We now define a family of semantics for timed automata that is parameterized
by € € Q=0 (drift on clocks) and A € Q=° (imprecision on guards).

Definition 3 [Enlarged semantics of timed automata] The semantics of a timed
automaton A = (Loc, Var, qo, Lab, Edg), when the two parameters ¢ and A are
fixed is given by the TTS [A]4 = (S, ¢, X, —) where

1. S={(l,v) |l € Loc Av: Var — [0, M]}.
2. 1= q0-
3. XY = Lab.
4. The transition relation — is defined by
(a) For the discrete transitions: ((I,v), o, (I’,v")) € — iff there exists an edge
(1,U',g,0,R) € Edg such that v € [¢g] , and v' = v[R := 0].
(b) For the continuous transitions: ((I,v),¢, (I',v")) € — iff i =" and v'(z;) —
v(z;) €[(1—e)t,(1+e)t] fori=1...n. O

In the sequel, we write [A] for [A]Y, which is the classical semantics of timed
automata.

Remark Our definition of timed automata does not use strict inequalities; this
simplifies the presentation and is not restrictive. Indeed, consider a timed au-
tomaton A with (possibly open) rectangular guards and the closure automaton

A resulting from A by replacing strict inequalities by non-strict ones. It appears

obviously that Reach([A]%) C Reach([A]4) and Reach([A]%) C Reach([A]%),
2

and hence the implementability problem on A ”Does there ezist A € Q>0 such

that Reach([A]%) NBad = @ #” is equivalent to the the implementability prob-

lem on A.

We now recall some additional classical notions related to timed automata.
Let |x] denote the integer part of x (the greatest integer k¥ < z), and (x)
denote its fractional part.



Definition 4 [Clock regions] A clock region is an equivalence class of the rela-
tion ~ defined over the clock valuations in Var — [0, M]. We have v ~ w iff all
the following conditions hold:

— Va € Var: |v(z)]| = |w(x)].

— Va,y € Var: (v(z)) < (v(y)) iff (w(z)) < (w(y)).

— Vz € Var: (v(x)) =01 =0. O
We write Jv[ for the clock region containing v. It is easy to see that Jv[ contains

the valuations that agree with v on the integer part of the variables, and on the

ordering of their fractional part and 0. The closure of the region containing v is

noted [v]. Such a set is called a closed region.

Definition 5 [Region graph] Given the TTS [A] = (S, s0, X, —4) of a timed
automaton A, we define the corresponding region graph G = (C,—¢) of A :

— C=A{(,[v]) | (I,v) € S} is the set of closed regions.
= =S CxC (I [), (U, [v]) €=e if (I, v)—a(l',v") and (I, [v]) # (I, [U’]é

This definition is meaningful since C is finite and whenever (I, [v]) —¢ (I, [v']),
for any s € [v] there exists s’ € [v'] such that (I, s)—4(l’,s"), and for any s’ € [v/]
there exists s € [v] such that (I,s)—a(l',s") [AD94].

Let W = |C| be the total number of regions.

Definition 6 [Zones] A zone Z C R™ is a closed set defined by inequalities of
the form

ri— x5 <my;, a; <y <G

where 1 < 4,5 <n and myj, 4, 3; € Z. O

A set of states is called a zone-set if it is a finite union of sets of the form
{l} x Z where [ is a location and Z is a zone.

Definition 7 [Progress cycle] A progress cycle in the region graph of a timed
automaton is a cycle in which each clock is reset at least once. O

Assumption 8 We make the assumption that every cycle in the region graph
of the timed automata we consider is a progress cycle.

This assumption, made by Puri in his paper [Pur98], is not a very restric-
tive assumption, since it is weaker than classical non-Zeno assumptions in the
literature (for example in [AMPS98], they impose that ”in every cycle in the
transition graph of the automaton, there is at least one transition which resets
a clock variable x; to zero, and at least one transition which can be taken only
if z; >17).



3 AASAP semantics and enlarged semantics

In [DDRO4], we introduced the Almost ASAP semantics. This semantics relaxes
the usual semantics of timed automata, its main characteristics are summarized
as follows:

— any transition that can be taken becomes urgent only after a small delay A
(which may be left as a parameter);

— a distinction is made between the occurrence of an event in the environment
(sent) and in the controller (received), however the time difference between
the two events is bounded by A;

— guards are enlarged by some small amount depending on A.

In the same paper, in Theorem 6, we show that this semantics can be encoded
using a syntactical transformation of the automaton controller and by enlarging
the guards by the parameter A which takes its value in the positive rationals. So
we can study the AASAP-semantics of Env || Cont by considering the semantics
[Env || Cont’]% where Cont’ is obtained syntactically from Cont. So in the rest
of this paper, we will consider the A-enlarged semantics instead of the AASAP-
semantics.

In this previous work, we have shown that the AASAP-semantics and so the
A-enlarged semantics allow us to reason about the implementability of a control
strategy defined by a timed automaton. The problems that we want to solve
algorithmically on the A-enlarged semantics are the following ones:

— [Fixed] given a zone-set of Bad states, the timed automata Env and Cont, and
a fixed value of A € Q~Y decide whether Reach([Env || Cont’]%) N Bad = &;

— [Existence] given a zone-set of Bad states, Env and Cont, decide whether
there exists A € Q~° such that Reach([Env || Cont’]%) N Bad = @. This is
also called the implementability problem.

— [Maximization] given a zone-set of Bad states, Env and Cont, compute the
least upper bound of the set of A € Q> such that Reach([Env || Cont’]%) N
Bad = @. Intuitively, this gives us the information about the slowest hard-
ware that can implement correctly the strategy.

To solve the fixed version, we use the usual reachability algorithm for timed
automaton defined in [AD94]. To solve the maximization version (in an approx-
imative way), we observe that for any timed automaton A, any two positive
rational numbers Ay, Ay, if Ay < A, then Reach([A]% ) € Reach([A]%,). So,
given a tolerance n € Q~°, the maximal value of A can be approached by 7
as follows: assuming Bad is reachable in [A]%_,, it suffices to solve the [Fixed]
problems with values A; =in (0 <i < (%1), and take as approximation of the
maximal A the value A; such that the answer of the [Fixed] problem is YES
for A; and No for A; 1, which can be found more efficiently with a dichotomy
search.

The decidability of the implementability problem is established in the next
sections. To achieve this, we draw a strong link with a robust semantics defined



by Puri in [Pur98]. In that paper, Puri shows that the traditional reachability
analysis defined in [AD94] is not correct when the clocks drift even by a very
small amount. He then reformulates the reachability problem as follows: given a
timed automaton A, instead of computing Reach([A]3), he proposes an algorithm
that computes N.cg>oReach([A]§). When A is clear from the context, this set is
denoted by R?. This is the set of states that can be reached when the clocks drift
by an infinitesimally small amount. He shows that this set has nice robustness
properties with respect to modeling errors. In particular, he establishes that if
the clocks are drifting, then guards can be checked with some small imprecisions
(see [Pur98] for details).

In our paper, in order to make the link with the implementability prob-
lem, we study a variant of this robust semantics where only small imprecisions
on guards checking are allowed: the set of reachable states in this semantics
is the set Nacg>oReach([A]%). When A is clear from the context, this set
is abbreviated by R},. We first show that for any timed automaton A, any
zone-set Bad, we have that: Npcg>oReach([A]%) N Bad = & iff there exists
A € Q7% such that Reach([A]%) N Bad = @. After, we establish that the algo-
rithm proposed by Puri to compute the set N.cg>0Reach([A]f) is also valid to
compute the set of states Nacg>oReach([A]%). As corollaries, we obtain that
Necg>oReach([A]§) = Nacg>oReach([A]%) and so we obtain an algorithm to
decide the implementability problem.

The proofs of our results follow the general ideas of the proofs of Puri and are
based on the structure of limit cycles of timed automata (a fundamental notion
introduced by Puri) but we needed new techniques to treat the imprecisions on
guards instead of the drifts of clocks as in the original paper. Also the proofs
in the paper of Puri are not always convincing, so we reproved a large number
of his lemmas that are needed to establish our proof and had to correct one of
them.

4 Example

Consider automaton A of Fig. 1. We examine two cases : @« = 2 and a = 3. For
both cases, the reachable states of the classical semantics [A] are the same and
are depicted in Fig. 2 (the points vy ... v7 will be used later in the paper). The
safety property we want to verify is that the location err is not reachable. Note
that in the classical semantics this is true in both cases.

Consider now the enlarged semantics [A]% with A > 0. In this semantics,
guards are enlarged by the amount A. The edge from [y to I has the guard
a < 2+ A and the edge from I3 to I; has the guard b > 2 — A. Starting from the
initial state (I3,a = 1,b = 0), the jump to I can occur A time units later, so
that the states (I3,a = 0,b < 1+ A) are reached. Similarly, the transition from
I3 back to [ is enabled A time units earlier and the states (I1,a > 1—2A,b=0)
can be reached. By iterating the cycle, the states (I1,a > 1 — 2kA,b = 0) and
(I3,a =0,b <14 (2k — 1)A) are reachable. So, for any A > 0 some new states



Fig. 2. Reach([A]) for the timed automaton A of Fig. 1.

l1 l2

Fig. 3. The set R’ for the timed automaton A of Fig. 1.



are reachable in [A]Y% that were not reachable in the classical semantics. Those
states are represented in Fig. 3.

From those new states that become reachable in location s, if a = 3, the
location err remains unreachable but if & = 2 it becomes reachable.

Clearly, from this example, one sees that a correct timed system (in the sense
of the classical semantics) could have a completely different (and potentially
bad) behavior due to an infinitesimally small inaccuracy in testing of the clocks
(which is unavoidable since the clocks are discrete in embedded systems). This
is the case for the automaton of figure 1. When a = 2, the classical semantics is
not robust since even the slightest error in guard checking allows new discrete
transition to be taken. In other words, there is no strictly positive value for the
parameter A that still ensures the safety property for [A]Y%. Systems with such
features cannot have a correct implementation because their correctness relies
on the idealization of the mathematical model.

But this is not always the case: for the same automaton when a = 3, no
more discrete transitions are possible in the enlarged semantics than in the
classical one. In this case, we can answer positively to the question “Is there a
strictly positive value for parameter A that allows the enlarged semantics to still
satisfy the safety property?”. And indeed, we can prove that any value A < %
is satisfying.

5 Linking robustness and implementability

The classical semantics of timed automaton A is [A]%:%,, which is a mathemat-
ical idealization of how we expect an implementation would behave: it makes
the hypothesis that the hardware is perfectly precise and infinitely fast. Un-
fortunately, the execution of a timed automaton on a real hardware cannot be
considered as ideal in the mathematical sense. It is thus an interesting question
to know whether a small drift or imprecision of the clocks could invalidate some
properties satisfied by the classical semantics. Drifts in clocks have been stud-
ied in [Pur98]. We are interested in studying imprecisions in the evaluation of
the guards since it is directly connected to the question of implementability, as
explained above. The main result of this paper is the following.

Theorem 9 There exists an algorithm that decide for any timed automaton A,
any zone-set Bad if there exists A € Q>0 such that Reach([A]%) N Bad = @.

To prove Theorem 9, we show that the set Bad intersects R¥, iff it inter-
sects Reach([A]%) for some A > 0. As shown in the next section, Algorithm 1
computes R% . Consequently, the implementability problem is decidable.

Theorem 10 For any timed automaton A, any zone-set Bad, R} NBad = @ iff
3JA > 0: Reach([A]%) N Bad = @.

The proof of Theorem 10 relies on two intermediate lemmas, one of which
corrects a wrong claim in [Pur98]: it gives a bound on the distance between



two zones with empty intersection. This bound is claimed to be % We show
that % where n is the dimension of the space is the tightest bound. However
the final results of [Pur98] are not deeply affected by this mistake. The distance
considered is defined by duo(z,y) = ||z — yllec = maxi<i<n(|z: — yil). Let us

reformulate that lemma.

Lemma 11 (Corrected from [Pur98, Lemma 6.4]) Let Z; C R™ and Z3 C
R™ be two zones such that Zy N Zy = &. Then, for any x € Z1 and y € Zs,
doo(z,y) > L. This bound is tight.

In the sequel, when a distance d or a norm || || is used, we always refer to
doo and || ||eo. The following lemma relies on the theory of real numbers and the
basics of topology.

Lemma 12 Let Ax(A € R>C) be a collection of sets such that Ax, C Aa, if
Ay < Ay Let A = (Np50Aa be nonempty. If d(A,B) > 0, then there eists
A >0 such that A.NB=0.

Proof of theorem 10. If R}, N Bad = &, since R}, and Bad are unions of
sets of the form {l} x Z; where Z; is a zone, Lemma 11 applies and we have
d(R%,Bad) > 0. From Lemma 12, we obtain that there exists A > 0 such that
Reach([A]%) N Bad = 2.

If there exists A > 0 such that Reach([A]%) N Bad = &, then trivially
R} NBad = @. |

6 Algorithm for computing R’

Algorithm 1: Algorithm from [Pur98] for computing R} (A) for a timed automa-
ton A.
Data : A timed automaton A = (Loc, Var, qo, Lab, Edg)
Result : The set J* = R}
begin
1. Construct the region graph G = (R4, —a) of A ;
2. Compute SCC(G) = strongly connected components of G;
3. 0" —[(qo)] 5
4. J* «— Reach(G, J") ;
5. if for some S € SCC(G), S Z J* and J* N S # & then
J=J"US;
Goto 4 ;

end

In this section, we prove that the algorithm proposed in [Pur98] computes
R%,. This implies that R} = R},. The algorithm is shown as Algorithm 1.



Let us first examine how Algorithm 1 performs on the example of section 4.
In the region graph of the timed automaton of Fig. 1, there is a cycle that runs
from valuation vg to itself through vy to v7 (see Fig. 2). Thus there is a cycle
through the regions containing valuations vy to v7. Furthermore, these regions
have an intersection with the set of reachable states in the classical semantics (in
gray). Indeed since we consider closed regions, the intersection of two adjacent
regions is not empty. Since those regions form a strongly connected component of
the region graph and their intersection with the reachable states in the classical
semantics is not empty, the algorithm adds all those regions to the set J*.

One can check that all regions of R?, for the automaton A of figure 1 will be
correctly added by Algorithm 1 (see figure 3).

In the rest of this section, we prove that this algorithm computes R%,, by
proving J* C R on the one hand, and R% C J* on the other hand.

6.1 Limit cycles

This section studies the behavior of limit cycles. A limit cycle of a timed au-
tomaton A is a trajectory m = (qo, t0)(q1,%1) - - - (g, tx) of [A] such that ¢ > to
and gqx = qo. As suggested in [Pur98], given a progress cycle in the region graph
and a region on this cycle, we focus on the subset of points of this region having
a limit cycle. We first define this subset:

Definition 13 [See [Pur98, Section 7.1]] Consider a cyclic pathp = pop1 ... pn
with py = pg in the region graph of a timed automaton A. We define the return
map Ry,: 2P° — 2P0 by R, (S) = Uges R, ({q}) for S C py, and, for singletons,

T = (qo, to)(q1,t1) - .- (qn,tn) and Vi. g; € p;

Ry({90}) = {QN

there exists a trajectory 7 in [A] s.t. }

The set L;, of points which can return back to themselves after i cycles
through p, is defined as follows: L, , = {q | ¢ € R;(q)}. The set of points with
limit cycles through p is L, = UjenLi p. O

In the sequel, we write R or L instead of R, or L, when the path p is clear
from the context. The interesting property of L, is that it is always reachable
from any valuation in p:

Theorem 14 ([Pur98, Lemma 7.10]) Let p = pop1 ... py be a cycle in G.
Then for any z € po, there exists z', 2" € L s.t. there exist trajectories in [A]
from z to 2’ and from 2" to z.

6.2 Soundness of Algorithm 1: J* C R7,

Let » € RZ% and = € R™. The closed ball of radius r centered in z is the set
B(z,r) = {2’ | d(z,2") < r}. The following Lemma shows how a trajectory may
be modified when enlarging guards in timed automata:



Lemma 15 Let A be a timed automaton with n clocks, A € Q>°, and § = %.
Let p =pop1p2-..-pN be a cycle in the region graph of A. Let u be a valuation
in po having a limit cycle, i.e. for which there exists a trajectory [0, T] in [A]Q
following p and with 7(0) = «(T) = u. Let v € po N B(u,d) be a neighbor
valuation. Then there exists a trajectory from u to v in [A]Y.

Intuitively, the result is proved by slightly anticipating or delaying the tran-
sition dates when a clock is reset.
Consider for instance the following path:

(I = a,y:b) T—1>f0> (;1: :()7y:b—|—7'1) KEN (,1: :a/7y: b/)
with a’ = 75 and V' = b+ 71 +79. By slightly modifying the continuous transition
labels 7;, we get
(x =a,y =D) ﬂ)—()) (z=0,y=b+7 —0) 2% (z=d +6,y="0).
Tri=
Thus the final value of clock y is identical in both cases, while the final value
of = has been slightly modified. By carefully repeating this procedure, we can

independently modify the final valuations of each clock. This corresponds to the
idea behind Lemma 15.

Theorem 16 Let A be a timed automaton. Let p = pop1 ... pn be a cyclic
path in the region graph of A, and let x and y be two valuations in po. For any
A € Q7Y there exists a trajectory from x to y in [A]%.

Proof. From Lemma 14, there exists u,v € L s.t.  — u and v — y in [A].
Then u satisfies the conditions of Lemma 15, and thus any w € L “close to”
u is reachable from u in [A]%. Since L is convex, by recursively applying the
previous argument, any w € L is reachable from u in [A]%. In particular, v is
reachable from u in [A]%, and y is reachable from z in [A]Y. [ ]

As a consequence:

Theorem 17 The set J* computed by Algorithm 1 is a subset of R}, i.e. J* C
R .

Proof. Let A > 0. If a set of regions J is a subset of Reach([A]%), then so is
the set of reachable regions from J in the region graph G. Moreover, whenever a
state of J appears in a cyclic region path p, then Theorem 16 ensures that any
state in that region path is reachable in [A]%. Thus JUp C Reach([A]Y%). Since
J* is built by successively applying the above two operations, this ensures that
J* C Reach([[A]%). This holds for any A > 0, thus J* C R,. |



6.3 Completeness of Algorithm 1: R}, C J*

To prove the completeness of Algorithm 1, we need to better understand the
relationship between trajectories of [A]% and those of [A]. In particular, Theo-
rem 18 states that any trajectory ©’ of [A]% can be approached by a trajectory
7 of [A], making the same discrete transitions and passing by the same regions.

Theorem 18 For any distance 6 € R>?, for any number of steps k € N, there
exists A € Q>0 such that for any k-step trajectory ©' = (g}, ty) - .. (g}, t)) of
[A]%, there exists a k-step trajectory m = (qo,to) - .. (qr, tr) of [A] such that for
any position i (0 <i<k)

— q; € [q}], that is the two trajectories cross the same regions,
— and the distance between corresponding states q; and g} is bounded by 0, that
is ¢ = (Li,vs), ¢ = (I},v)) where l; =1} and |lv; —v}]| <.

Below, we give the general ideas underlying the proof. It uses the following
lemma, stating that if v is reachable from u by letting time elapse, then any
point x € [u] in the neighborhood of w can reach some point y € [v] in the
neighborhood of v. More precisely:

Lemma 19 Suppose r —¢ ' in the region graph G of a timed automaton, and
u = v withu € r, v €r' and 7 € RZ°. Then for any x € B(u, R) Nr, there

exists y € B(v,2R) Nr' such that v~ y for some 7" with |t —7'| < R.

Proof (Sketch) of theorem 18.
The outline of the proof is as follows. We define a ”simulation” relation R

between valuations, which is a subset of R” x N x R™ and we write R,(z', x) if
(2',a,2) € R. We show that

agk:/ v5y D zin [A]
If Ra(l' ,(E) then E|y7Z : 'R,a+1(z'7z)
o' Sy S 2 in [A]Y lz=2<lly-yl <o

The relation R, takes into account the current position in the trajectory: if z’
is the a'? state in the trajectory, then z is in a neighborhood of size parameterized
by a. This size increases with a, because the longer is the trajectory, the greater
is the possible deviation (Fig. 4). This is not a classical simulation relation
because it only works for a fixed trajectory length k (which is sufficient for
proving Theorem 18).

Intuitively, R links a valuation x with a valuation z’ if whenever two clock
have close fractional parts in z’ (for a special distance D), those clocks have
identical fractional parts in x.

Fig. 5 illustrates the necessity of this choice: consider the trajectory (z’,0)
(v, t)(2',t') of [A]%. We must construct a trajectory (z,0)(y,t)(z,t) of [A]
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Fig. 4. Simulation of the trajectory 7’ of [A]%.

taking the same discrete transition (labeled with o). In the enlarged semantics,
the guard on this transition is satisfied by y’ (i.e. ¥’ € [g] A)-

The only possible choice for y is to both lie in the region [y'] and in [g¢],
as shown in the figure. This imposes the choice of x on the diagonal (i.e. with
identical fractional parts for z; and ;).

Tj /
Y
2 Ay 12
v AN
g
{E, t
lx ...........
ag
2|4
Z;
0 1 2

Fig. 5. Simulating 2’ © 3’ < 2’ enforces to take  with (z;) = (z;). This is because
(z7) and (z}) are too close.

R is formally defined in the complete proof, and it is shown that the A can
be chosen such that A < m. [ |

The following theorem is a direct consequence of Theorem 18. It says that
points in J* cannot reach points that are more than distance o away from J*
in [A]Y for sufficiently small A.

Theorem 20 Suppose x € J* and there ezists a trajectory from z to y in [A]%
with A < w54y where a < L and W is the total number of regions. Then

(2+4n) n’
d(y, J*) < a.

Finally, we can establish the completeness of Algorithm 1.



Theorem 21 The set J* computed by Algorithm 1 contains R, i.e. R C J*.

Proof. Since J* is a closed set containing the initial state, from Theorem 20,
for any y € Reach([A]%), d(y, J*) < a where o can be made arbitrarily small.
It follows that R% C J*. |

This concludes the proof that Algorithm 1 computes R% . According to [Pur98],
we have the corollary that R¥, = R} = R* where R* = Nacg>0Ncco>0Reach([A]%)
so that the enlarged semantics R%, is also robust against drifts in clocks.

6.4 Complexity
Complexity issues have been studied in [Pur98], so we recall the main result.

Theorem 22 ([Pur98]) Given a timed automaton A = (Loc, Var, qo, Lab, Edg)
and a location Iy € Loc, determining whether a state (ly,v) € R¥ for some
valuation v is PSPACE-Complete.

7 Conclusion

In this paper, we have shown that a notion of robustness defined by Puri [Pur98]
is closely related to a notion of implementability that we recently introduced
in [DDRO4]. Making this link formal allowed us to show that our notion of im-
plementability is decidable for the class of timed automata. To establish this link,
we have proved that the algorithm proposed by Puri computes the set of reach-
able states of timed automata where guards are enlarged by an infinitesimally
small rational value. The existence of such a value implies the implementability
as shown in our previous paper. The proofs of the decidability result rely on non
trivial adaptations of the main ideas underlying the study of drift in the rate of
clocks made by Puri.

The algorithm that is used to check implementability manipulates strongly
connected components of the region graph. It can be seen as defining exact
accelerations of cycles of the timed automaton.

We will work in the future on making those accelerations practical and as a
consequence, we will work on to turn the theoretical algorithm proposed in this
paper into a practical one. If we succeed in this task, the results of this paper and
of our previous paper [DDR04] will allow us to propose a practical procedure to
produce provably correct code from proved correct controller modeled as timed
automata.
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