
The First-Order Theory of Lexicographic Path Orderings

is Undecidable

Hubert Comon

1

CNRS and LRI, Bat. 490, Universit�e de Paris Sud, F-91405 ORSAY cedex,

France, comon@lri.lri.fr

Ralf Treinen

1;2

Laboratoire de Recherche en Informatique (LRI), Bat. 490, Universit�e de Paris

Sud, F-91405 ORSAY cedex, France; and German Research Center for Arti�cial

Intelligence (DFKI), Stuhlsatzenhausweg 3, D-66123 Saarbr�ucken, Germany,

treinen@lri.fr

We show, under some assumption on the signature, that the 9

�

8

�

fragment

of the theory of a lexicographic path ordering is undecidable, both in the

partial and in the total precedence cases. Our result implies in particular

that the simpli�cation rule of ordered completion is undecidable.

1 Introduction

The recursive path orderings (short rpo) are orderings on terms introduced

by N. Dershowitz. They are the most popular orderings used for proving the

termination of term rewriting systems (see [4] for a survey). The reason for the

usefulness of these orderings lies in their stability properties: if s >

rpo

t, then,

for every context C, C[s] >

rpo

C[t] (this is the monotonicity property) and,

assuming that variable symbols are incomparable with any other term (except

themselves), s >

rpo

t implies that s� >

rpo

t� for any substitution �. These

two stability properties are important because, when they hold, proving the

termination of a rewrite system amounts to proving that every left hand side

of a rule is strictly larger than the corresponding right hand side. A classical

problem in term rewriting systems is however the impossibility of orienting an

1

Supported by the ESPRIT working group CCL.

2

Supported by The German Bundesminister f�ur Bildung, Wissenschaft, Forschung

und Technologie (ITW-9105).

Preprint submitted to Elsevier Preprint 19 July 1995

equation such as x+y = y+x without losing termination. Several approaches

have been proposed since the early 80's to overcome this problem. One of

the most interesting is to orient the equation, depending on which instance

of it is applied. In other words, if � is a total monotonic ordering on terms,

then we may see s = t as the two constrained rules s ! t j s > t (read:

s rewrites to t if s > t) and t ! s j t > s, which translate into classical

rewriting as the set of all s� ! t� such that s� � t� and the set of all

t�! s� such that t�� s�. This allows one to use ordered strategies, even in

presence of equations which are not uniformly orientable. A similar approach

was used for the unfailing completion [8] and was described in its full generality

in [13] where also the completeness of a set of deduction rules is proved. This

powerful (yet simple) approach however requires constraint solving techniques

for ordering constraints that are built over the > symbol, which is interpreted

as a monotonic ordering on ground terms, typically a recursive path ordering.

Basically, there are two forms of recursive path orderings: rpo with multiset

status, which was the original de�nition of rpo by Dershowitz, and rpo with

lexicographic status, also called by its more popular name lexicographic path

ordering (short: lpo), and there also mixed forms (see [4] for a survey). In this

paper we are concerned with the lexicographic path ordering, in Section 6 we

will discuss shortly why our result does not transfer to the case of rpo with

multiset status.

The constraints which have to be solved depend on the deduction rules that are

used on constrained equations. At least the existential fragment of the theory

of the ordering must be decidable. Furthermore, the question of decidability of

the 9

�

8

�

fragment is also of great importance to constrained deduction. Indeed,

one problem with constrained equational reasoning is to de�ne simpli�cation

rules (which are essential in rewriting techniques). Such a simpli�cation rule

could be de�ned as follows:

s! t j c u! v j c

0

u! v j c

0

s[v]

p

= t j c

0

^ sj

p

= u

If T (F) j= 8V ar(s)9V ar(u):c! (sj

p

= u ^ c

0

)

Here, sj

p

is the subterm of s at position p, s[v]

p

denotes the term obtained

from s by replacing sj

p

by v, and T (F) is the �rst-order logic structure of

ground terms. This rule is called \total simpli�cation" in [10]; it can be read

as: \the rule s! t j c is simpli�ed by the rule u! v j c

0

at position p in s if,

for all instances of s! t that satisfy the constraint c, there is an instance of

u! v which satis�es c

0

and which reduces sj

p

".

The case of a total lexicographic path ordering has been investigated by H.

Comon and its existential fragment has been shown decidable [2]. This frag-

2

ment is actually NP-complete, as shown by R. Nieuwenhuis [12]. The exis-

tential fragment of the theory of any total recursive path ordering is actually

decidable [9]. On the other side, R. Treinen has shown that the full �rst-order

theory (actually the 9

�

8

�

9

�

8

�

fragment) of the theory of a partial recursive

path ordering is undecidable [15]. This leaves as open questions the existen-

tial fragment of a partial recursive path ordering on the one hand, and the

�rst-order theory of a total recursive path ordering on the other hand. These

problems were listed as Problem 24 in the lists of open problems in rewriting

theory in [6] and further in [7]. A partial answer to the �rst question has been

given by A. Boudet and H. Comon: the positive existential fragment of the

theory of tree embedding is decidable [1]. The second problem remained open

up to now. We answer this question here, showing that the 9

�

8

�

fragment of

a lexicographic path ordering is undecidable, both in the total and in the par-

tial cases. This improves Treinen's result for the partial case by reducing the

number of quanti�er alternations of the undecidable fragment. Furthermore,

as an application, we show that this implies the undecidability of the above

simpli�cation rule.

The undecidability proof follows the ideas developed by R. Treinen in [15]: we

encode the Post Correspondence Problem (PCP) thanks to a direct simulation

of sequences. The general idea is to express as a �rst-order formula that a term

is a \Post sequence", i.e. that every subsequence is either empty or obtained

by one step of the PCP problem. Note that the universal quanti�cation over

subsequences is essential here. In [15], this is achieved using the fact that there

are two incomparable symbols in F . In this case, sequences can be coded in

such a way that the predicate \s is a subsequence of t" can (roughly) be

expressed as \s is a maximal term smaller than t (w.r.t. �

lpo

) following a

certain pattern." In the case of a total ordering, however, this technique can

not be applied since every �nite set has a greatest element. We need here

another trick: sequences are encoded the other way around (\upside down"

if we compare with [15]) which allows to express the \subsequence relation".

This last part is the most di�cult part of our proof.

The paper is organized as follows: in Section 2 we state precisely the problem

and establish (or recall) some properties of the lexicographic path ordering. In

Section 3 we explain the top level structure of the proof, reducing undecidabil-

ity of our problem to the problem of expressing some properties in the theory

of �

lpo

. In Section 4, which is the heart of the paper, we show how to construct

the formulas satisfying the requirements given in Section 3. In Section 5 we

show the undecidability of the simpli�cation rule and conclude in Section 6. In

particular, we summarize the hypotheses we used on the signature and discuss

various possible extensions.

3

2 The Problem

2.1 The Main Theorem

In this section, we de�ne precisely the setting and present the main theorem.

We use mainly the notations of [5]. Terms are built from an alphabet F of

function symbols each of which is associated with a �xed arity. Typical ele-

ments of F are f; g; h; k; 0. In addition, we use variable symbols out of a set X.

The set of terms built over some subset G � F is written T (G), and we write

T (G;X) for the set of terms built over G and X.

Assuming an ordering �

F

on F (called precedence on F), the lexicographic

path ordering �

lpo

on T (F) is de�ned as follows.

De�nition 2.1 (lexicographic path ordering, [4]) For all f; g 2 F and

s

1

; : : : ; s

n

; t

1

; : : : ; t

m

2 T (F) we de�ne f(s

1

; : : : ; s

n

) >

lpo

g(t

1

; : : : ; t

m

) i� one

of the following holds:

{ s

i

�

lpo

g(t

1

; : : : ; t

m

) for some i

{ f >

F

g and f(s

1

; : : : ; s

n

) >

lpo

t

i

for all i = 1; : : : ;m

{ f = g and the two following properties are satis�ed:

� f(s

1

; : : : ; s

n

) >

lpo

t

i

for all i = 1; : : : ;m and

� there is an i 2 f1; : : : ; ng such that s

1

= t

1

^: : :^s

i�1

= t

i�1

and s

i

>

lpo

t

i

.

In this de�nition (and in the rest of the paper) we use the standard notational

derivations of s �

lpo

t : s >

lpo

t is an abbreviation for s �

lpo

t and s 6= t,

t �

lpo

s stands for s �

lpo

t, t 6�

lpo

s means that t �

lpo

s does not hold, etc.

The following properties of �

lpo

can be found in the literature (see the survey

of N. Dershowitz [4]).

Proposition 2.2 The relation �

lpo

de�ned on T (F)

{ is an ordering, i.e. it is re
exive, antisymmetric and transitive.

{ is monotonic, i.e. f(s

1

; : : : ; s

n

) �

lpo

f(t

1

; : : : ; t

n

) whenever s

i

�

lpo

t

i

for all

i = 1; : : : ; n,

{ has the subterm property, i.e. s >

lpo

t whenever t is a proper subterm of s.

{ is total whenever �

F

is total.

If we know that h(

�

t) >

lpo

k(�s), then we can in general not tell from the head

symbols which case of De�nition 2.1 applies. For instance if f >

F

> b >

F

a,

then we have to use the �rst case of De�nition 2.1 to prove f(a; f(b; b)) >

lpo

f(b; b), but we can not prove this if we �rst decompose by the third case.

Hence, to decompose an inequality, we have in general to consider di�erent

4

possibilities. In case of unary head symbols, however, we can decompose de-

terministically:

Proposition 2.3 If h(t) >

lpo

h(s), then t >

lpo

s.

Proof: Let h(t) >

lpo

h(s). If the last case of De�nition 2.1 applies, then t >

lpo

s must hold. If the �rst case of De�nition 2.1 applies, then t �

lpo

h(s) >

lpo

s,

where the second inequality holds by the subterm property. 2

We de�ne the language L as the set of all �rst-order predicate logic formulae

built on the two binary predicates = and �. The 9

�

8

�

-fragment of L, written

�

2

(L), is de�ned as the set of formulae of the special form

9x

1

; : : : ; x

n

8y

1

; : : : ; y

n

P

where P is a Boolean combination of atoms s = t and s � t. For a given

precedence �

F

on F , the formulae of L are interpreted in the domain of

(ground) terms T (F) where = is the (syntactic) equality between terms and

� is the lexicographic path ordering generated �

F

. We write such a model as

A

F;�

F

or shortly as A, when F and �

F

are clear. Our concern is to show that,

under certain conditions on F and �

F

, it is undecidable whether A

F;�

F

j= �

holds for given � 2 �

2

(L). Our assumption on the set F and the precedence is

F is a �nite set of function symbols containing at least

{ a constant 0 which is minimal among the constants,

{ a binary function f which is minimal in F � f0g,

{ a unary function symbol g which is minimal in fh j h >

F

fg.

9

>

>

>

=

>

>

>

;

(1)

This assumption includes both partial and total orderings. We do not require

that f �

F

0. Note that there might be non-constant functions symbols smaller

than 0, and constants greater than f . These restrictions are further discussed

in Section 6.

Theorem 2.4 (Main Theorem) For any set F of function symbols and

precedence �

F

satisfying (1), it is undecidable whether for given formula � 2

�

2

(L) we have A

F;�

F

j= �.

2.2 Consequences of the Assumption on the Precedence

Before we begin with the proof we list some consequences of our assumption

on the precedence.

Proposition 2.5 The term 0 is minimal, that is there is no term t with

0 >

lpo

t.

5

Proof: Assume that 0 >

lpo

t. The term t must contain a constant a, hence we

get 0 >

lpo

t �

lpo

a by the subterm property (Proposition 2.2). This contradicts

the minimality of 0 among the constants. 2

Lemma 2.6 Let t 2 T (F) and u 2 T (f0; fg). If t <

lpo

u, then f(0; t) �

lpo

u.

Hence, f(0; t) can be seen as a successor of t as far as comparison to terms

consisting only of 0 and f is concerned. A complete characterization of the

successor function in the context of total lpos has been given in [2].

Proof: Let t <

lpo

u. We proceed by induction on the size of u. By Propo-

sition 2.5, u can not be 0. Hence u = f(u

1

; u

2

) for some u

1

; u

2

2 T (ff; 0g).

First, observe that 0 <

lpo

u, 0 �

lpo

u

1

and 0 �

lpo

u

2

since 0 is a subterm of u

1

and of u

2

. Let t = h(t). There are three cases:

h = 0. Since 0 �

lpo

u

1

and 0 �

lpo

u

2

, we get f(0; 0) �

lpo

f(u

1

; u

2

) from the

monotonicity property (Proposition 2.2).

h = f . Let t = f(t

1

; t

2

). We have to show that

f(0; f(t

1

; t

2

)) �

lpo

f(u

1

; u

2

) where f(t

1

; t

2

) <

lpo

f(u

1

; u

2

)

If the �rst case of De�nition 2.1 applies to t <

lpo

u, we have to consider two

cases:

{ If t �

lpo

u

1

, then f(0; t) �

lpo

f(0; u

1

) �

lpo

f(u

1

; u

2

). The �rst inequality

follows from the monotonicity property of �

lpo

. The second inequality

holds since either u

1

= 0 and 0 �

lpo

u

2

, or 0 <

lpo

u

1

and u

1

<

lpo

f(u

1

; u

2

)

by the monotonicity property of �

lpo

.

{ If t �

lpo

u

2

, then f(0; t) �

lpo

f(0; u

2

) �

lpo

f(u

1

; u

2

) by the monotonicity

property of �

lpo

, and since 0 �

lpo

u

1

.

If the last case of De�nition 2.1 applies to t <

lpo

u, there are again two

cases:

{ If u

1

= 0, then since t

1

< 0 is not possible by Proposition 2.5, we have

t

1

= 0 and t

2

<

lpo

u

2

. We apply the induction hypothesis to t

2

<

lpo

u

2

and

obtain f(0; t

2

) �

lpo

u

2

. Hence, f(0; f(0; t

2

)) �

lpo

f(0; u

2

) by monotonicity.

{ If u

1

6= 0, then in fact 0 <

lpo

u

1

. From the assumption that f(t

1

; t

2

) <

lpo

f(u

1

; u

2

) it follows that f(0; f(t

1

; t

2

)) <

lpo

f(u

1

; u

2

) by De�nition 2.1.

h 62 ff; 0g. By (1), this means h 6�

F

f . By the lpo de�nition, t �

lpo

u

1

or

t �

lpo

u

2

, but equality does not hold because the top symbols of the terms

are di�erent. Hence, by the induction hypothesis, we have f(0; t) �

lpo

u

1

or

f(0; t) �

lpo

u

2

. The claim follows from the subterm property of �

lpo

. 2

Lemma 2.7 Let t; u 2 T (f0; f; gg), then t and u are comparable w.r.t. �

lpo

.

Proof: We use induction on the sum of the sizes of t and u. If u = 0 or

t = 0 then t; u are comparable since, for all s 2 T (fg; f; 0g), s �

lpo

0, by the

6

subterm property. There are now three cases (up to permutation):

{ If s = g(s

1

) and t = g(t

1

), then, by the induction hypothesis, s

1

�

lpo

t

1

(resp. t

1

�

lpo

s

1

). Hence, s �

lpo

t (resp. t �

lpo

s) holds.

{ If s = g(s

1

) and t = f(t

1

; t

2

), then, by the induction hypothesis, s and

t

1

(resp. t

2

) are comparable. If t

1

�

lpo

s (resp. t

2

�

lpo

s), then t >

lpo

s.

Otherwise, s >

lpo

t

1

and s >

lpo

t

2

and, s >

lpo

t follows from the fact that

g >

F

f .

{ Assume now that t = f(t

1

; t

2

) and u = f(u

1

; u

2

). By induction hypothesis,

t

1

and u

1

are comparable, hence we can assume without loss of generality

that t

1

�

lpo

u

1

.

If t

1

= u

1

, then by the induction hypothesis t

2

�

lpo

u

2

or t

2

�

lpo

u

2

.

Hence, t �

lpo

u or t �

lpo

u holds.

If t

1

>

lpo

u

1

, then by the induction hypothesis, t >

lpo

u

2

or t �

lpo

u

2

. In

the former case, t >

lpo

u holds, and t <

lpo

u in the latter case. 2

3 Coding the Post Correspondence Problem

In this section we present the overall framework that we employ in the re-

duction of the Post Correspondence Problem to the theory of a lexicographic

path ordering. We will explain the di�erence to the method developed in [15]

at the end of this section.

3.1 The Post Correspondence Problem

De�nition 3.1 (Post Correspondence Problem, [14]) An instance P of

the Post Correspondence Problem over the alphabet fa; bg is a �nite set of the

form f(p

i

; q

i

) j 1 � i � m; p

i

; q

i

2 fa; bg

+

g. A sequence ((l

i

; r

i

))

i=1;:::;n

with

l

i

; r

i

2 fa; bg

�

is a solution of P if l

1

= r

1

= �, l

n

= r

n

6= � and for every i < n

there is a j

i

� m such that l

i+1

= l

i

p

j

i

and r

i+1

= r

i

q

j

i

.

If ((l

i

; r

i

))

i=1;:::;n

is a solution of P , we say that (l

i+1

; r

i+1

) is constructed from

(l

i

; r

i

) in one P -step. Our de�nition of a solution is slightly di�erent from most

of the literature, where the index sequence j

1

; : : : ; j

n�1

would be considered

as solution. Solvability of an instance of the Post Correspondence Problem is

one of the most famous undecidable problems [14].

7

3.2 Coding the Construction Steps

In this subsection, we de�ne formulae i(x), f(x) and x sx

0

such that

(i) x sx

0

de�nes a well-founded relation on A, that is there is no in�nite

sequence t

1

; t

2

; : : : of ground terms with A j= t

i

s t

i+1

for all i;

(ii) the relation de�ned by s is contained in <

lpo

, that is if A j= t

i

s t

i+1

, then

t

i

<

lpo

t

i+1

.

In the next subsection, we show how to construct a formula solvable

i;s;f

such

that A j= solvable

i;s;f

holds if and only if there is a sequence (t

1

; : : : ; t

n

) 2

A

�

with A j= i(t

1

), A j= f(t

n

) and A j= t

i

s t

i+1

for every i < n.

Having such a solvable

i;s;f

at hand, we can encode the solvability of an

instance P = f(p

i

; q

i

) j i = 1; : : : ; ng of the Post Correspondence Problem

over an alphabet fa; bg. The idea is to de�ne a representation of pairs of

strings, such that A j= i(t) if t represent (�; �), A j= f(t) if t represents some

(w;w) with w 6= �, and A j= t s t

0

if t

0

represents a pair which is constructed

in one P -step from the pair represented by t.

The two above conditions on the relation de�ned by s will be used at two

di�erent stages of the proof. We will use the well-foundedness of s in this

section only. Here, the well-foundedness of the relation is essential for the

�niteness of the sequence. The second condition, that the relation de�ned by

s be contained in <

lpo

, will not be used for the overall framework but only in

the next section to prove the properties of the auxiliary formulae. We will not

use the fact that this second property implies that s is also well-founded in

the \reverse direction".

First we de�ne an injective coding function cw: fa; bg

�

! T (F) by

cw(�)= 0

cw(wa) = f(0; cw(w))

cw(wb) = f(f(0; 0); cw(w))

For instance, cw(ba) = f(0; f(f(0; 0); 0)). In the following, we will often iden-

tify a string with its term representation and write w instead of cw(w). For

every �xed word v 2 fa; bg

�

we can now easily de�ne a formula x = x

0

� v with

the property that for all w 2 fa; bg

�

and t 2 A, we have

A j= t = cw(w) � v i� t = cw(wv)

For instance, the formula x = x

0

� ba is x = f(0; f(f(0; 0); x

0

)).

8

f

"

"

"

"

"

"

"

"b

b

b

b

b

b

b

b

f f

�

�

�@

@

@

�
cw(l)

�

�

�@

@

@

f
c

�

�

�@

@

@

0

cw(r)

Fig. 1. A representation of (l; r).

A �rst attempt to code pairs of words could be to map (l; r) to the term

f(cw(l); cw(r)). With this approach, the relation de�ned by s would be con-

tained in <

lpo

, but it would not be well-founded. For this reason, we add a

\counter" to the representation which is decremented by s (hence, we now

have a representation relation rather than a function, since the counter can

take any value). Note, however, that with the de�nition f(cw(l); f(cw(r); c))

the relation de�ned by s is no longer contained in <

lpo

, as the reader easily

veri�es. Hence, we take another approach and code a pair (l; r) as the term

f(f(�; cw(l)); f(f(0; cw(r)); c))

where � = f(f(0; 0); 0) and where c is the counter mentioned before (see

Figure 1). We now de�ne

i(x) :=9z:x = f(f(�; 0); f(f(0; 0); z))

f(x) :=9x

l

:x = f(f(�; x

l

); f(f(0; x

l

); 0)) ^ x

l

6= 0

x sx

0

:=9x

l

; x

r

; z; x

0

l

; x

0

r

; z

0

: x = f(f(�; x

l

); f(f(0; x

r

); z))

^ x

0

= f(f(�; x

0

l

); f(f(0; x

0

r

); z

0

))

^ z = f(0; z

0

)

^ f(f(0; x

r

); z) < x

0

^

_

(p;q)2P

(x

0

l

= x

l

� p ^ x

0

r

= x

r

� q)

The �rst two lines in the de�nition of x sx

0

match x and x

0

with the pattern

of Figure 1. The third line decrements the counter, and the last line says that

one P -construction step has been performed. The forth line is needed for the

proof of Lemma 3.2.

Lemma 3.2 If A j= t s t

0

, then t <

lpo

t

0

.

9

Proof: By the �rst two lines of the de�nition of t s t

0

, we know that

t = f(f(�; t

l

); f(f(0; t

r

); u)) and t

0

= f(f(�; t

0

l

); f(f(0; t

0

r

); u

0

)) :

Furthermore, by the last line of the de�nition of t s t

0

, t

l

<

lpo

t

0

l

since t

l

is

a proper subterm of t

0

l

, hence f(�; t

l

) <

lpo

f(�; t

0

l

). The claim follows, since

f(f(0; t

r

); u) <

lpo

t

0

by the forth line of the de�nition of t s t

0

. 2

Lemma 3.3 s de�nes a well founded relation on A, that is there is no in�nite

sequence t

1

; t

1

; : : : of ground terms with A j= t

i

s t

i+1

for every i.

Proof: This follows immediately from the fact that by the third line of the

de�nition of t s t

0

, the \counter-component" is decreasing with respect to the

subterm relation. 2

Lemma 3.4 An instance P of the Post Correspondence Problem has a so-

lution if and only if there is a sequence (t

1

; : : : ; t

n

) 2 A

�

with A j= i(t

1

),

A j= f(t

n

) and A j= t

i

s t

i+1

for every i < n.

Proof: Any such sequence (t

1

; : : : ; t

n

) obviously exhibits a solution to P .

On the other hand, let (l

1

; r

1

); : : : ; (l

n

; r

n

) be a solution of P . We de�ne the

sequence (t

1

; : : : ; t

n

) by

t

i

= f(f(�; cw(l

i

)); f(f(0; cw(r

i

)); f

n�i

(0)))

where we take the inductive de�nition

f

0

(0) := 0

f

n+1

(0) := f(0; f

n

(0))

Now, every two consecutive elements of the sequence are in the relation s, as

the reader easily veri�es. For the veri�cation of the third line of the de�nition

of t s t

0

note that, by the de�nition of the coding function cw, f(0; cw(w)) <

lpo

f(�; cw(v)) for all v;w 2 fa; bg

�

. 2

3.3 Coding Solvability

In this subsection we present the top level of the de�nition of solvable

i;s;f

which expresses the solvability of an instance of the Post Correspondence

Problem. The construction of solvable

i;s;f

uses some subformulas which

will be de�ned in the next section. The requirements on these subformulas

used for the correctness proof of the coding are stated. The subformulas will

be de�ned and the respective requirements will be proven in the next section.

10

The intended meaning of the subformulas is as follows. construction

s;f

y

will express the fact that y can be interpreted as a sequence (t

1

; : : : ; t

n

) with

A j= f(t

n

) and A j= t

i

s t

i+1

for every i < n. The formulae head, s and i will

be de�ned in Section 4. x heady is intended to express that x is the head of

the list y, (x; y

0

) finsegy is intended to express that the sequence with head

x and tail y

0

is a �nal segment of y and nonemptyy will express that the list

y has a head.

Now we can de�ne

solvable

i;s;f

:=

9x; y: i(x) ^ construction

s;f

y ^ 9y

0

(x; y

0

) finsegy

construction

s;f

y :=

8x; y

0

: (x; y

0

) finsegy !

ff(x) _ (nonemptyy

0

^ 8x

0

:x

0

heady

0

! x sx

0

)g

We have to verify that A j= solvable

i;s;f

if and only if P has a solution.

The two following lemmata show what needs to be done in order to prove this

equivalence. We de�ne

Seq := f(t

1

; : : : ; t

n

) 2 T (f0; fg)

�

j A j= f(t

n

);A j= t

i

s t

i+1

for all i < ng

Lemma 3.5 Let ct:Seq !A such that for all t; u 2 A and s 2 Seq we have

A j= nonemptyct(s) i� s 6= () (2)

A j= t head ct(s) i� s = cons(t; s

0

) for some s

0

2 Seq (3)

A j= (t; u) finsegct(s) i�u = ct(s

0

) for some s

0

2 Seq

and cons(t; s

0

) is a �nal segment of s (4)

If P has a solution, then A j= solvable

i;s;f

.

Proof: This follows directly from Lemma 3.4. 2

Lemma 3.6 Suppose that the following statements hold:

A j=8y:nonemptyy ! 9x:x heady (5)

A j=8x; x

0

; y; y

0

:(x; y

0

) finsegy ^ x

0

heady

0

^ x sx

0

! 9y

00

:(x

0

; y

00

) finsegy (6)

If A j= solvable

i;s;f

, then P has a solution.

Proof: Suppose that A j= construction

s;f

u. We will show that whenever

A j= (t; u

0

) finsegu, then there is a sequence t

1

; : : : ; t

n

2 A

�

such that t = t

1

,

11

A j= f(t

n

) and A j= t

i

s t

i+1

for all i < n. We proceed by induction on the

relation s which is well founded by Lemma 3.3. If A j= f(t), then we can

take the sequence to be (t), and we are done. Otherwise, A j= nonemptyu

0

holds. By (5), there is an t

0

with A j= t

0

headu

0

. From the de�nition of

construction

s;f

y we get that A j= t s t

0

. Hence, by (6), there is a u

00

such

that A j= (t

0

; u

00

) finsegu. Now we can apply the induction hypothesis on t

0

,

which yields the claim. By Lemma 3.4, P has a solution. 2

The number of quanti�er alternations of the formula solvable

i;s;f

depends

of course on the quanti�er pre�x in the subformulas. The reader easily checks

that solvable

i;s;f

has the quanti�er pre�x 9

�

8

�

(that is the best we can get

with this approach) if and only if

i(x) has quanti�er pre�x 9

�

8

�

;

x sx

0

has quanti�er pre�x 8

�

;

f(x) has quanti�er pre�x 8

�

;

nonemptyy has quanti�er pre�x 8

�

;

x heady has quanti�er pre�x 9

�

;

(x; y

0

) finsegy has quanti�er pre�x 9

�

:

The formula i(x) is already in the required form, but for x sx

0

and f(x) we

have to �nd equivalent formulae in the 8

�

-fragment. For the case of f(x), this

can be achieved with the quanti�er elimination method of [3]. An equivalent

universal form of f(x) is

^

h6=f

8�u; v

1

; v

2

; v

3

�

x 6= h(�u) ^ x 6= f(h(�u); v

1

) ^ x 6= f(v

1

; h(�u))

^x 6= f(f(v

1

; v

2

); f(h(�u); v

3

))

�

^8v

1

; v

2

; v

3

; v

4

; v

5

�

x = f(f(v

1

; v

2

); f(f(v

3

; v

4

); v

5

))!

v

1

= � ^ v

2

= v

4

^ v

3

= 0 ^ v

5

= 0

�

By the �rst two lines, x is of the form f(f(v

1

; v

2

); f(f(v

3

; v

4

); v

5

)). Since

v

1

; : : : ; v

5

are completely determined by the value for x, we can now use an

universal quanti�er to state further properties about these variables.

The method of [3] does not apply to formulae involving inequations. In case

of x sx

0

, however, we can nevertheless �nd an equivalent universal formula.

Intuitively speaking, this is possible since all the variables in the inequation

f(f(0; x

r

); z) < x

0

are either free (the variable x

0

) or are existentially quanti�ed

and \completely de�ned" by the equations (the variables x

r

; z). The universal

form of x sx

0

is given in Appendix A.

12

The main di�erence to the method of [15] lies in the representation of pairs of

strings in the �rst-order structure under consideration, and in the de�nition

of s. As explained in the beginning of this section, an essential property of s is

well-foundedness. In [15], we could de�ne s in such a way that v sw holds i� v

is constructed from w in one P -construction step. In most of the applications

shown in [15], this implies immediately the well-foundedness of s.

The situation is di�erent in this paper. As we already mentioned, we will need

the property that s is contained in <

lpo

. With all natural representations of

words, v <

lpo

w does not hold if v is constructed from w in one P -step. On

the other hand, it is not di�cult to ensure that w <

lpo

v holds in this case.

Hence, we decided to use a \reversed" de�nition of s with the property that

v sw holds i� w is constructed from v in one P -construction step.

As a consequence, we have to regain well-foundedness of s, since there might

well be in�nite sequences v

0

<

lpo

v

1

<

lpo

v

2

<

lpo

� � �. Hence, we introduced an

additional representation of pairs of strings (in [15], pairs where \hard-wired"

in the formulae s, finseg, i etc.), and equipped the representation of pairs

with a \counter" which is decreased along s.

4 The Undecidability Proof

Following the method presented in Section 3, we will now de�ne the predicates

nonemptyy, x heady, (x; y

0

) finsegy and the coding function ct and verify the

conditions 2, 3, 4, 5, and 6. This completes the proof of Theorem 2.4.

4.1 De�nition of the Coding Function

We code a sequence (t

1

; : : : ; t

n

) 2 Seq as

ct(t

1

; : : : ; t

n

) = f(g(t

1

); f(g(t

1

); : : : ; f(g(t

n

); 0) : : :))

(see Figure 2). The term 0 encodes the empty sequence.

4.2 Accessing the Greatest Element of a List

Before we give the complete de�nition of the predicates, we �rst de�ne some

intermediate formulae and show some of their properties. The purpose is to

have, in the presentation of a list (t

1

; : : : ; t

n

) as de�ned in Subsection 4.1,

13

f

�

�

�

g

t

1

P

P

P

P

P

P

P

P

P

f

�

�

�

g

t

2

P

P

P

P

P

P

P

P

P

P

f

�

�

�

g

t

n

@

@

@

0

Fig. 2. The term ct((t

1

; : : : ; t

n

)).

access to the last element t

n

. Note that the last element might occur as an

arbitrarily deep subterm in the coding. First, we de�ne

�

1

(x; y) := f(g(x); g(x)) � y > g(x)

The following lemma explains its meaning:

Lemma 4.1 Let A j= �

1

(t; u). Then

(i) g(t) is a subterm of u

(ii) for every subterm g

0

(�v) of u with g

0

6<

F

g, we have g(t) �

lpo

g

0

(�v).

Intuitively,�

1

(t; u) means that t is the greatest subterm of uwhich is headed by

a symbol not smaller than g. Especially, g(t) is the greatest g-headed subterm

of u.

Proof: For the second claim let g

0

(�v) be a subterm of u with g

0

6<

F

g. By

the subterm property and since f 6= g

0

(since g >

F

f), the �rst inequality of

�

1

(t; u) yields f(g(t); g(t)) >

lpo

g

0

(�v). Now, since g

0

6�

F

f , we have g(t) �

lpo

g

0

(�v) by the de�nition of �

lpo

.

For proving that g(t) is a subterm of u, we use an induction on the structure

of u = h(u

1

; : : : ; u

n

). There are three cases:

h = 0. This can not occur, since the second inequation of �

1

(t; u), 0 >

lpo

g(t),

contradicts Proposition 2.5.

h = f . The second inequality of �

1

(t; u), f(u

1

; u

2

) >

lpo

g(t), yields u

1

�

lpo

g(t)

or u

2

�

lpo

g(t). If u

1

= g(t) or u

2

= g(t), then the claim is proven.

14

Otherwise, the �rst inequality of �

1

(t; u), f(g(t); g(t)) �

lpo

f(u

1

; u

2

),

yields g(t) >

lpo

u

1

and f(g(t); g(t)) >

lpo

u

2

. Since this contradicts u

1

>

lpo

g(t), u

2

>

lpo

g(t) must hold. Hence, by the induction hypothesis, g(t) is a

subterm of u

2

and consequently of u.

h 62 ff; 0g. Hence h 6�

F

f . The �rst inequation of �

1

(t; u), f(g(t); g(t)) >

lpo

u,

yields g(t) �

lpo

u which contradicts the second inequation of �

1

(t; u), u >

lpo

g(t). Hence, this case cannot occur. 2

Corollary 4.2 For every term u, if A j= 9x:�

1

(x; u) then there is a unique

term gs(u) such that A j= �

1

(gs(u); u).

If we want to ensure the existence of an x such that A j= �

1

(x; u) we have to

assume more hypotheses on u. Let

 (y) = g(0) < y < g(g(0))

^ 8x:y 6= g(x)

^ 8x:(y 6� f(g(x); g(x)) ^ y > g(x))! y > g(f(0; x))

^ 8x: y > g(x)!

^

h=2ff;0g

x 6� h(0; : : : ; 0)

(7)

Lemma 4.3 Let u 2 T (F). Then A j= (u)! 9x:�

1

(x; u).

Proof: Let A j= (u). From the inequality u <

lpo

g(g(0)), we infer that every

symbol in u is 0 or is equal to or smaller than g. From this and the fact that

g(0) <

lpo

u we infer that u contains at least one occurrence of g.

Hence, there is a subterm g(w) of u. From the last part of and the sub-

term property of �

lpo

, for any subterm g(w) of u, w 2 T (ff; 0g). Then, by

Lemma 2.7, there is a term w

0

= maxfw j g(w) subterm of ug.

We show that A j= �

1

(w

0

; u). We have of course u �

lpo

g(w

0

). Moreover,

u is not equal to g(w

0

) by the second part of (u). Assume that u 6�

lpo

f(g(w

0

); g(w

0

)). By the third part of (u), this means that u >

lpo

g(f(0; w

0

)).

Hence, there is a subterm g(v) of u which v �

lpo

f(0; w

0

). By the maximality

of w

0

, we get w

0

�

lpo

v �

lpo

f(0; w

0

). This is a contradiction to the subterm

property, hence u �

lpo

f(g(w

0

); g(w

0

)) holds. 2

Lemma 4.4 For all sequences s = (t

1

; : : : ; t

n

) 2 Seq with n � 1, we have

A j= (ct(s)).

Proof: The formula (ct(s)) consists of four parts.

(i) A j= g(0) < ct(s) < g(g(0)). This follows immediately from the de�nition

of <

lpo

.

(ii) A j= 8x:ct(s) 6= g(x) since ct(s) = f(g(t

1

); u) for some u.

15

(iii) A j= 8x:(ct(s) 6� f(g(x); g(x)) ^ ct(s) > g(x)) ! ct(s) > g(f(0; x)).

If ct(s) >

lpo

g(t), then, for some i, t

i

�

lpo

t, hence t 2 T (ff; 0g) and,

by Lemma 2.7, ct(s) >

lpo

f(g(t); g(t)). Then t

i

>

lpo

t holds for some i.

By Lemma 2.6, this implies t

i

�

lpo

f(0; t). Hence, ct(s) >

lpo

g(t

i

) �

lpo

g(f(0; t)).

(iv) If ct(s) >

lpo

g(t), then t

i

�

lpo

t for some i. This implies, by minimality of

f that t 2 T (ff; 0g). This proves the last part of (ct(s)). 2

Corollary 4.5 For all sequences s = (t

1

; : : : ; t

n

) 2 Seq with n � 1, we have

A j= �

1

(t

n

; ct(s)).

Proof: By Lemma 4.4, A j= (ct(s)). By Lemma 4.3, there is a t with

A j= �

1

(t; ct(s)). By Lemma 4.1, t must be equal to t

n

. 2

4.3 De�nition of the Predicates

We are now ready to give the missing de�nitions:

(x; y

0

) finsegy :=(�

1

(x; y) ^ y

0

= 0) _

9w:f(g(x); f(g(x); y

0

)) > y � f(g(x); y

0

) ^

g(w) > g(x) ^ �

1

(w; y)

x heady :=9y

0

:y = f(g(x); y

0

) ^ (y

0

= 0 _ 9w:(x < w ^ �

1

(w; y)))

nonemptyy :=8u; u

0

:

^

f

0

6=f

y 6= f

0

(u) ^

^

g

0

6=g

y 6= f(g

0

(u); u

0

)

^ (y)

^8x; y

0

:(y = f(g(x); y

0

)

! (y

0

= 0 _ 8w:(�

1

(w; y)! x < w)))

All parts of the predicate finseg will be used in in the proof of Property 4,

and also later in the proof of Property 6.

With regard to Property 3, it would be su�cient to de�ne x heady as 9y

0

:y =

f(g(x); y

0

). The second part of the predicate head is needed in the proof of

Property 6.

Note that the �rst conjunct of the predicate nonempty is equivalent to the

formula 9x; y

0

:(y = f(g(x); y

0

)). Since nonempty is required to be 8

�

-formula

(see the discussion at the end of Section 3), we use the universal form instead

of the straightforward existential form. Again, this would be su�cient with

regard to Property 2 alone, but we need the last two conjuncts for the proof

of Property 5.

16

4.4 Proof of the Conditions of Lemma 3.5

Lemma 4.6 Property (4) holds.

Proof: We have to prove for all (t

1

; : : : ; t

n

) 2 Seq the equivalence

A j= (t; u

0

) finseg ct(t

1

; : : : ; t

n

)

() exists i � n with t = t

i

and u

0

= ct(t

i+1

; : : : ; t

n

).

where it is understood that (t

n+1

; : : : ; t

n

) is the empty sequence.

For the direction from left to right we have to consider two cases.

If A j= �

1

(t; ct(t

1

; : : : ; t

n

)) ^ u

0

= 0, then n � 1 and t = t

n

by Corollaries 4.5

and 4.2.

Otherwise, there is an r 2 A such that

Aj=f(g(t); f(g(t); u

0

)) > ct(t

1

; : : : ; t

n

) � f(g(t); u

0

)

^g(r) > g(t) ^ �

1

(r; ct(t

1

; : : : ; t

n

))

By Corollaries 4.5 and 4.2, r = t

n

holds. Now, g(r) >

lpo

g(t), hence t

n

>

lpo

t

by Proposition 2.3. Since t

n

>

lpo

t, there is a smallest index i such that

t

i

�

lpo

t. Hence, t

i

0

6�

lpo

t for all i

0

< i. Using the lpo rules and Proposition 2.3,

ct(t

1

; : : : ; t

n

) �

lpo

f(g(t); u

0

) is simpli�ed into ct(t

i

; : : : ; t

n

) �

lpo

f(g(t); u

0

),

hence ct(t

i

; : : : ; t

n

) >

lpo

u

0

.

Since t 6�

lpo

t

n

, there is a smallest index j such that t 6�

lpo

t

j

. Furthermore,

since f(g(t); f(g(t); u

0

)) >

lpo

ct(t

1

; : : : ; t

n

), it follows from the subterm prop-

erty that f(g(t); f(g(t); u

0

)) >

lpo

ct(t

j

; : : : ; t

n

). Since by construction t 6�

lpo

t

j

,

this inequality is equivalent to u

0

�

lpo

ct(t

j

; : : : ; t

n

). Together we have

ct(t

i

; : : : ; t

n

) >

lpo

u

0

�

lpo

ct(t

j

; : : : ; t

n

)

and hence i < j. By our construction of j this means t �

lpo

t

i

. On the other

hand we have t

i

�

lpo

t, hence t = t

i

. Using the de�nition of an lpo, we can

now simplify

f(g(t

i

); f(g(t

i

); u

0

)) >

lpo

ct(t

1

; : : : ; t

n

)

)

�

f(g(t

i

); f(g(t

i

); u

0

)) >

lpo

ct(t

i

; : : : ; t

n

)

) f(g(t

i

); u

0

) >

lpo

ct(t

i+1

; : : : ; t

n

)

) u

0

�

lpo

ct(t

i+1

; : : : ; t

n

)

17

On the other hand, we have

ct(t

1

; : : : ; t

n

) �

lpo

f(g(t

i

); u

0

))

�

ct(t

i

; : : : ; t

n

) �

lpo

f(g(t

i

); u

0

)

) ct(t

i+1

; : : : ; t

n

) �

lpo

u

0

Hence, u

0

= ct(t

i+1

; : : : ; t

n

).

For the direction from right to left we only have to check that

A j= �

1

(t

n

; ct(t

1

; : : : ; t

n

))

(this is Corollary 4.5), and that for i < n we have

A j=9w: f(g(t

i

); f(g(t

i

); ct(t

i+1

; : : : ; t

n

))) > ct(t

1

; : : : ; t

n

)

� f(g(t

i

); ct(t

i+1

; : : : ; t

n

))

^g(w) > g(t

i

)

^�

1

(w; ct(t

1

; : : : ; t

n

))

This is easily proven for the choice w = t

n

. 2

Lemma 4.7 Property (2) holds.

Proof: For the implication from left to right, assume A j= nonemptyct(s).

We have to show that then s 6= (). Note that the formula

8u:

^

f

0

6=f

y 6= f

0

(u)

implies in particular that y 6= 0, hence the sequence is not empty.

For the implication from right to left, assume that s 6= (). We have to show

that A j= nonemptyct(s). We split this proof into three parts corresponding

respectively to the three conjuncts in the formula nonemptyy.

{ When s is not empty, ct(s) = f(g(t

1

); u) for some u. Hence the �rst part of

the formula is valid:

A j= 8u; u

0

:

^

f

0

6=f

ct(s) 6= f

0

(u) ^

^

g

0

6=g

ct(s) 6= f(g

0

(u); u

0

)

{ A j= (ct(s)) has been proven in Lemma 4.4.

{ For the last part of the formula let ct(s) = f(g(t

1

); u). If u = 0, then the

formula holds. Otherwise, u must be of the form f(g(t

2

); v) with t

2

>

lpo

t

1

.

18

For all w such that �

1

(w; ct(s)) holds, g(w) �

lpo

g(t

2

) >

lpo

g(t

1

) thanks to

Lemma 4.1. As a consequence, w >

lpo

t

1

holds by Proposition 2.3. 2

Lemma 4.8 Property (3) holds.

Proof: For the implication from left to right, assume that A j= t head ct(s).

We have to show that s = cons(t; s

0

) for some s

0

2 Seq. Indeed, by de�nition

of x heady, we must have A j= 9y

0

:ct(s) = f(g(t); y

0

) which means that s =

(t; t

2

; : : : ; t

n

) and s

0

= ct(t

2

; : : : ; t

n

).

For the other direction, let s = (t

1

; : : : ; t

n

) 2 Seq. We have to show that

A j= t

1

head ct(s). Indeed, ct(s) = f(g(t

1

); u) for some u. If u = 0, then the

claim is proven. Otherwise, t

n

>

lpo

t

1

and A j= �

1

(t

n

; ct(s)) by Corollary 4.5.

2

Note that actually some parts of the de�nitions of x heady and nonemptyy

have not been used so far. They will be exploited when proving Property 6.

4.5 Proof of the Conditions of Lemma 3.6

We are left to prove Properties 6 and 5, which is the subject of the next two

lemmas.

Lemma 4.9 Property (5) holds.

Proof: We have already seen that the �rst part of the formula nonemptyu

implies that there are t; u such that u = f(g(t); u

0

) If u

0

= 0, then we are done.

Otherwise, since A j= (u) there is by Lemma 4.3 a t

0

with A j= �

1

(t

0

; u).

From the last part of nonemptyu it follows that A j= t < t

0

. 2

Lemma 4.10 Property (6) holds.

Proof: Assume that (t; u

0

) finsegu and t

0

headu

0

and t s t

0

hold. We have to

show that (t

0

; u

00

) finsegu holds for some u

00

.

Since A 6j= t

0

head0, u

0

6= 0 holds and A j= (t; u

0

) finsegu implies that

A j= 9w:f(g(t); f(g(t); u

0

)) > u � f(g(t); u

0

) ^ g(w) > g(t) ^ �

1

(w; u) (8)

holds. Moreover, by de�nition of t

0

headu

0

we have that for some u

00

A j= u

0

= f(g(t

0

); u

00

) ^ (u

00

= 0 _ 9w

0

:�

1

(w

0

; u

0

) ^ t

0

< w

0

) (9)

Note that, by (8), gs(u) exists. We shall show that

19

Aj=(u

00

= 0 ^ t

0

= gs(u))

_(f(g(t

0

); f(g(t

0

); u

00

)) > u � f(g(t

0

); u

00

) ^ g(gs(u)) > g(t

0

)

^�

1

(gs(u); u)

There are two cases:

t

0

= gs(u) . If u

00

= 0, then the claim is proven.

Otherwise, assume that u

00

6= 0. Then by (9), gs(u

0

) exists and t

0

<

lpo

gs(u

0

). From (8) and Lemma 4.1, we know that u �

lpo

f(g(t); u

0

) >

lpo

u

0

�

lpo

g(gs(u

0

)). By the lpo rules, there must be a subterm h(�r) of u with h 6<

F

g

and h(�r) �

lpo

g(gs(u

0

)). By the second part of Lemma 4.1, this means

g(gs(u)) �

lpo

h(�r) �

lpo

g(gs(u

0

)), hence gs(u) �

lpo

gs(u

0

) by Proposition 2.3.

This contradicts t

0

= gs(u) <

lpo

gs(u

0

), hence the case u

00

6= 0 can not occur.

t

0

6= gs(u) . Note that �

1

(gs(u); u) holds by (8). We have to prove three in-

equalities

(i) A j= f(g(t

0

); f(g(t

0

); u

00

)) > u. From (8), (9) and from t

0

>

lpo

t (since

A j= t s t

0

and by Lemma 3.2), we get

f(g(t

0

); f(g(t

0

); u

00

)) = f(g(t

0

); u

0

) >

lpo

f(g(t); f(g(t); u

0

)) >

lpo

u :

(ii) A j= u � f(g(t

0

); u

00

). From (8) and (9) we get

u �

lpo

f(g(t); u

0

) = f(g(t); f(g(t

0

); u

00

)) >

lpo

f(g(t

0

); u

00

) :

(iii) A j= g(gs(u)) > g(t

0

). By (8) and (9), u >

lpo

g(t

0

) holds. Hence, there is

a subterm g

0

(�v) of u with g

0

6<

F

g and g

0

(�v) � g(t

0

). This implies, by

Lemma 4.1, g(gs(u)) �

lpo

g(t

0

). Since we assumed t

0

6= gs(u) in the case

distinction, g(gs(u)) >

lpo

g(t

0

) follows.

2

Theorem 2.4, reconsidered: Let F contain (at least) one binary symbol f ,

one unary symbol g and one constant 0. The 9

�

8

�

fragment of the theory of

a lexicographic path ordering extending a precedence in which 0 is a minimal

constant, f is minimal in F � f0g and g is a minimal symbol greater than f

is undecidable.

Proof: For every instance P of the Post Correspondence Problem, we can

construct the sentence solvable

i;s;f

, which belongs to the 9

�

8

�

-fragment.

Lemma 3.5, Lemma 4.6, Lemma 4.7 and Lemma 4.8 show that T (F) j=

solvable

i;s;f

if P is solvable. If P is solvable, then by Lemma 3.6, Lemma 4.9

and Lemma 4.10, T (F) j= solvable

i;s;f

holds. Since solvability of an in-

stance of the Post Correspondence Problem is undecidable, so is validity of

9

�

8

�

-sentences in T (F). 2

20

5 Undecidability of the simpli�cation rule

Recall the simpli�cation rule given in the introduction, which corresponds to

the \total simpli�cation rule" of [10].

s! t j c u! v j c

0

u! v j c

0

s[v]

p

= t j c

0

^ sj

p

= u

If T (F) j= 8V ar(s)9V ar(u):c! (sj

p

= u ^ c

0

)

When writing a constrained rule like s! t j c, it is understood that V ar(c) �

V ar(s) [V ar(t). We consider the constraint system consisting of constraints

of the form 9y

1

; : : : ; y

n

:b where b is Boolean combination of equalities and

inequalities.

Theorem 5.1 For any set F of function symbols and precedence �

F

satisfy-

ing (1), the set of instances of the simpli�cation rule is undecidable. This also

holds when c is instantiated to be >.

Proof: We reduce the validity problem in A of 8

�

9

�

-sentences to the decision

problem of the set of instances of the simpli�cation rule. Note that the set of

8

�

9

�

-sentences which are valid in A is (up to equivalence transformations) the

complement of the set of 9

�

8

�

-sentences valid inA, and hence is undecidable by

Theorem 2.4. Let 8x

0

; : : : ; x

n

9y

0

; : : : ; y

m

:� be given. This sentence is obviously

equivalent to

8x

0

; : : : ; x

n

9z

0

; : : : ; z

n

; y

0

; : : : ; y

m

: z

0

= x

0

^ : : : ^ z

n

= x

n

^ �[z

0

=x

0

; : : : ; z

n

=x

n

] (10)

where z

0

; : : : ; z

n

are fresh distinct variables. We use the abbreviations

F (�x)= f(x

0

; f(: : : f(x

n

; 0) : : :))

F (�z)= f(z

0

; f(: : : f(z

n

; 0) : : :))

�

0

=�[z

0

=x

0

; : : : ; z

n

=x

n

]

Now, (10) is equivalent to

8x

0

; : : : ; x

n

9z

0

; : : : ; z

n

; y

0

; : : : ; y

m

: �

0

^ F (�z) = F (�x)

21

This sentence is valid in A if and only if

F (�x)! 0 j > F (�z)! 0 j �

0

F (�z)! 0 j �

0

0 = 0 j �

0

^ F (�x) = F (�z)

is an instance of the simpli�cation rule. 2

6 Concluding Remarks

We proved the undecidability of the 9

�

8

�

fragment of lexicographic path or-

derings over �nite signatures. This proof assumes some weak hypotheses on

the precedence. Choosing 0 as a minimal constant is not a restriction. The

main restrictions are

(i) among the minimal symbols of F n f0g w.r.t. �

F

, there should be a (at

least) binary one (which we called f);

(ii) among the minimal symbols larger than f there should be a non-constant

one (which we called g).

Indeed, if there is a minimal symbol h in F nf0g whose arity is, say, 3, we can

for example code g and f as:

f(x; y)

def

= h(0; x; y); g(x)

def

= h(h(0; 0; 0); 0; x):

Note that, in such a case, Assumption (ii) above is no longer used: the proof

applies to one constant and one ternary function symbol. Similarly, g needs

not to be unary: \at least unary" is su�cient.

We conjecture that Assumption (ii) above can be removed, at the price of

some additional coding, which we avoid here for sake of simplicity. The idea

of the coding would be to map T (f0; f; gg) into T (f0; hg) where h is binary,

while preserving the ordering relation. For example, we could de�ne f(x; y)

def

=

h(0; h(x; y)) and g(x)

def

= h(h(0; 0); x). Actually, this particular mapping does

not work. Some additional work has to be done in order to cope with several

\overlappings" of g(x) into f(x; y) or of f(x; y) into itself. This did not occur

in the ternary symbol case above because of the \
atness" of the coding. We

believe that the coding is still possible, though tedious.

However, Assumption (i) cannot be removed easily. Actually, the decidability

of the �rst-order theory of a total lexicographic path ordering on a signature

containing only unary symbols and constants remains open. Our method can-

not be applied in this case, because we have no means by which we could

22

encode sequences.

Similarly, our method cannot be applied directly to recursive path orderings

with multiset status. Indeed, Lemma 4.6 does not hold: we took advantage of

the fact that

x > x

0

j= f(x; y) > f(x

0

; y

0

)$ f(x; y) > y

0

which does not hold for multiset status. Moreover, this property is important

since this is the way we \go down" in the terms, retrieving subterms.

On the positive side, our method might be applied for proving undecidability

of con
uence of ordered rewrite systems (see [11]) which use a lexicographic

path ordering. Indeed, strong ground con
uence of such systems is expressed

using a 8

�

9

�

sentence over �

lpo

. But there are still di�culties because in the

problem, as it is stated in [11], the constraints only consist in single inequalities

l > r for each rule l ! r. It is possible to encode any quanti�er-free formula

over �

lpo

into a single inequation, using additional function symbols. However,

we would need existential quanti�cations in the constraints. This can only be

achieved through rules which introduce new variables. But then, we get only

inequalities in which existentially quanti�ed variables are all on the same side

of the inequality, which is not su�cient for our purpose.

References

[1] A. Boudet and H. Comon. About the theory of tree embedding. In M. C.

Gaudel and J.-P. Jouannaud, editors, 4th International Joint Conference on

Theory and Practice of Software Development, Lecture Notes in Computer

Science, vol. 668, pages 376{390, Orsay, France, Apr. 1993. Springer-Verlag.

[2] H. Comon. Solving symbolic ordering constraints. International Journal of

Foundations of Computer Science, 1(4):387{411, 1990.

[3] H. Comon and P. Lescanne. Equational problems and disuni�cation. Journal

of Symbolic Computation, 7:371{425, 1989.

[4] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation,

3(1):69{115, Feb. 1987.

[5] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen,

editor, Handbook of Theoretical Computer Science, volume B, pages 243{309.

North-Holland, 1990.

[6] N. Dershowitz, J.-P. Jouannaud, and J. Klop. Open problems in term rewriting.

In R. V. Book, editor, 4th International Conference on Rewriting Techniques

23

and Applications, Lecture Notes in Computer Science, vol. 488, pages 445{456,

Como, Italy, Apr. 1991. Springer-Verlag.

[7] N. Dershowitz, J.-P. Jouannaud, and J. Klop. More problems in rewriting.

In C. Kirchner, editor, 5th International Conference on Rewriting Techniques

and Applications, Lecture Notes in Computer Science, vol. 690, pages 468{487,

Montreal, Canada, June 1993. Springer-Verlag.

[8] J. Hsiang and M. Rusinowitch. On word problems in equational theories. In

T. Ottmann, editor, 14th International Colloquium on Automata, Languages

and Programming, Lecture Notes in Computer Science, vol. 267, pages 54{71,

Karlsruhe, Germany, July 1987. Springer-Verlag.

[9] J.-P. Jouannaud and M. Okada. Satis�ability of systems of ordinal notations

with the subterm property is decidable. In J. L. Albert, B. Monien, and M. R.

Artalejo, editors, 18th International Colloquium on Automata, Languages and

Programming, Lecture Notes in Computer Science, vol. 510, pages 455{468,

Madrid, Spain, 1991. Springer-Verlag.

[10] C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction with symbolic

constraints. Revue Fran�caise d'Intelligence Arti�cielle, 4(3):9{52, 1990. Special

issue on automatic deduction.

[11] R. Nieuwenhuis. A new ordering constraint solving method and its

applications. Research Report MPI-I-92-238, Max-Planck- Institut f�ur

Informatik, Saarbr�ucken, Feb. 1993.

[12] R. Nieuwenhuis. Simple LPO constraint solving methods. Inf. Process. Lett.,

47(2):65{69, Aug. 1993.

[13] R. Nieuwenhuis and A. Rubio. Theorem proving with ordering constrained

clauses. In D. Kapur, editor, 11th International Conference on Automated

Deduction, Lecture Notes in Computer Science vol. 607, pages 477{491,

Saratoga Springs, NY, June 1992. Springer-Verlag.

[14] E. L. Post. A variant of a recursively unsolvable problem. Bulletin of the AMS,

52:264{268, 1946.

[15] R. Treinen. A new method for undecidability proofs of �rst order theories.

Journal of Symbolic Computation, 14(5):437{458, Nov. 1992.

A The Universal Form of x sx

0

In Section 3, x sx

0

has been de�ned in form of a 9

�

-formula. We give here an

equivalent de�nition as a 8

�

-formula (see also the explanation given with the

24

universal formulation of f(x), Section 3.

^

h6=f

8�u; v

1

; v

2

; v

3

�

x 6= h(�u) ^ x 6= f(h(�u); v

1

)

^x 6= f(v

1

; h(�u))

^x 6= f(f(v

1

; v

2

); f(h(�u); v

3

))

�

^

^

h6=f

8�u; v

1

; v

2

; v

3

�

x

0

6= h(�u) ^ x

0

6= f(h(�u); v

1

)

^x

0

6= f(v

1

; h(�u))

^x

0

6= f(f(v

1

; v

2

); f(h(�u); v

3

))

�

^8v

1

; v

2

; v

3

; v

4

; v

5

; v

0

1

; v

0

2

; v

0

3

; v

0

4

; v

0

5

�

x = f(f(v

1

; v

2

); f(f(v

3

; v

4

); v

5

))

^x

0

= f(f(v

0

1

; v

0

2

); f(f(v

0

3

; v

0

4

); v

0

5

))

! v

1

= � ^ v

3

= 0 ^ v

5

= f(0; v

0

5

)

^v

0

1

= � ^ v

0

3

= 0

^f(f(0; v

4

); v

5

) < x

0

^

_

(p;q)2P

(v

0

2

= v

2

� p ^ v

0

4

= v

4

� q)

�

25

