Ground Reducibility is EXPTIME-complete

Hubert Comon Florent Jacquemard
CNRS and Laboratoire Spécification et Vérification Max-Planck Institut fur Informatik
Ecole Normale Supérieure de Cachan Im Stadtwald, Gebaude 46.1
61 Avenue du président Wilson D-66123 Saarbriicken
94235 CACHAN cedex, France Germany
Hubert.Comon@lsv.ens-cachan.fr florent@mpi-sh.mpg.de
Abstract Ground reducibility was first shown decidable by D.

Plaisted [14]. The algorithm is however quite complex: a

We prove that ground reducibility is EXPTIME-complete tower of 9 exponentials though there is no explicit complex-
in the general case. EXPTIME-hardness is proved by en-ity analysis in the paper. D. Kapur et al. gave another de-
coding the computations of an alternating Turing machine cidability proof [12] which is conceptually simpler, though
whose space is polynomially bounded. It is more difficult still very complicated, and whose complexity is a tower of 7
to show that ground reducibility belongs to DEXPTIME. exponentials in the size &, t. More precisely, they show
We associate first an automaton with disequality constraintsthat checking the reducibility of all ground instancest of
Ax ¢ to a rewrite systenR and a term¢. This automaton can be reduced to checking the reducibility of all ground in-
is deterministic and accepts a termif and only if¢ is not ~ stances ot of depth smaller thav (R) whereN(R) is a
ground reducible byR. The number of states ofx ; is tower of 5 exponentials in the size &f. A third proof was
O(21EI1x1tlhy and the size of the constraints are polynomial proposed by E. Kounalis in [13]. The result is generalized
in the size ofR,t. Then we prove some new pumping lem- to co-ground reducibility and the expected complexity is 5
mas, using a total ordering on the computations of the au- exponentials, though there is no explicit complexity analy-
tomaton. Thanks to these lemmas, we can give an uppesis in the paper. These three algorithms use combinatorial
bound to the number of distinct subtrees of a minimal suc- arguments and some “pumping property”. if there is a deep
cessful computation of an automaton with disequality con- enough irreducible instance tifthen there is also a smaller
straints. It follows that emptiness of such an automaton caninstance which is also irreducible. This yielded the idea of
be decided in time polynomial in the number of its states making explicit the pumping argumentas a pumping lemma
and exponential in the size of its constraints. Altogether, we in some tree language. In support of this idea, when both
get a simply exponential deterministic algorithm for ground and the left members ok arelinear, i.e. each variable
reducibility. appears only once, then the set of reducible instances of
is accepted by a finite tree automaton [8]. Hence the set
of irreducible ground instances is also accepted by a tree
automaton, by complement. This easily gives a simply ex-
ponential algorithm in the linear case. (As we will see this
algorithm is optimal).

1 Introduction

Ground reducibility of a termt w.r.t. a term rewrit- H. Comon expressed first the problem of ground re-
ing systenmiR expresses that all ground instances (instancesducibility as an emptiness problem for some tree language
without variables) oft are reducible byR. This prop- [3]. He also gave a decision proof whose complexity is even

erty is fundamental in automating inductive proofs in equa- worse than the former ones. A.-C Caron, J.-L. Coquidé and
tional theories without constructors [10]. Itis also related to M. Dauchet proved a very beautiful result in 1993 [2, 5],
sufficient completeness algebraic specifications (see e.g. enlighting the pumping properties and their difficulty. They
[12]). Roughly, it expresses that all cases have been covere@ctually show a more general result: the first-order theory of
by R and thatt will be reducible for any inputs. Many pa- unary encompassment predicates is decidable. And it turns
pers have been devoted to decision of ground reducibility. out that ground reducibility can be expressed as a simple
Let us report a brief history of the milestones, starting only formula in this logic. Their technique consists in associat-
in 1985 with the general case. ing an automaton with each formula, in the spirit of Biichi's

and Rabin’s method. The kind of automata which is ap- an automaton with disequality constraints whose emptiness
propriate here is what they cattduction automataa par- is equivalent to the ground reducibility efv.r.t. R and we
ticular case ohutomata with constraintmtroduced by M. analyse carefuly the complexity of such a construction. Sec-
Dauchet in 1981. Such tree automata have the ability totion 4 is devoted to pumpings lemmas for automata with dis-
check for equality or disequality of some subtrees before equality constraints. These lemmas are applied in section 5
applying a transition rule. In general, emptiness of lan- to derive an optimal algorithm which checks the emptiness
guages recognized by such automata is undecidable. Howef (the language recognized by) an automaton with dise-
ever, when we only allow a fixed number of equality tests quality constraints. Finally, we study the lower bound of
on each computation branch, then emptiness becomes deground reducibility in section 6.
cidable. Unfortunately, their result does not give any infor- ~ Some proofs are long and technical, hence not included
mation about possible efficient algorithms. The complexity in the present abstract. Except for a small combinato-
which results from their proof is not better than Plaisted’s rial argument due to B. Reed, the complete proofs can be
bound. We tried to specialize the tree automata techniquefound in F. Jacquemard’s thesis [9] (in French). A com-
for ground reducibility and we got in this way a triple expo- plete version of the paper is also available on the Web
nential bound [4]. This is better than previous methods, but (ht t p: / / ww. npi - sb. de/ ~fl orent/art/).
still far from the lower bound.

The problem in all works about ground reducibility is 2~ Automata with disequality constraints
that they give a bound on the depth of a minimal irreducible
instance ot (oraminimal.term accepted by the automaton). F will always be a fixed finite set of function symbols
However, after establishing carefully such an upper bound, o 4ether with their arity). The set of (ground) terms built
Fhey use a brute-force algorithm, checking the re(_juc[bll- on F is written 7 (or 7()). A positionis a string of pos-
ity of all terms of depth smaller than the bound, which in- e integers. A is the empty string. Positions are ordered
creases the complexity by a double exponential. according to the prefix ordering: < ¢ iff there is a string:

We use here a different approach. We still rely on au- sych thap - r = q.
tomata with disequality constraints. However, we do not try As usual, a finite ternt can be viewed as a mapp|ng
to give a bound on the depth of an accepted term. Ratherfrom its set of positionsPos(t) into F. For instance, if
we show a stronger result: with an appropriate notion of ; — £(g(a),b), Pos(t) = {A,1,11,2} and e.g.t(1) = g.
minimality, a minimal term accepted by the automaton con- |f ;, ¢ Pos(t), we writet|, for the subterm of at position
tains at most an exponential number of distinct subterms., andt[u],, for the term obtained by replacirig, with v in
To prove this, we use a generalization of pumping to ar- ¢, A contextis a termC|], with a hole (formally, it is a pair

bitrary replacements for which the term is decreasing ac-of a term and a positiop, the subterm at positiop being
cording to some well chosen well founded ordering. With a jrrelevant).

few more ingredients, this yields an algorithm for deciding

the emptiness of an automaton with disequality constraintsDefinition 1 Anautomaton with disequality constrairfts
which runs in polynomial time w.r.t. the number of states ADC for short) is a tupld@, Q s, A) whereQ is a finite set
and in exponential time w.r.t. the size of the constraints. of states,(); is the subset of) of final statesand A is a
On the other hand, we show that ground reducibilityt of finite set of transition rules of the form:

w.r.t. R can be reduced to the emptiness problem for an

automaton4 with disequality constraints whose number of fla, - an) =4

states is an exponential in the size?®fand¢ and whose

constraints are polynomial in size. Altogether, we have awheref € F has arityn, ¢1,...,¢, € Q andc is a con-
simply exponential algorithm for ground reducibility. junction of disjunctions of constraints # m» wherer, m,

This result is optimal since ground reducibility is @are strings of natural numbers. The empty conjunction is
EXPTIME-hard, already for linear rewrite systems and lin- Written T. ¢ is called thetarget statef the rule.
eart. A O(2lo§n) lower bound was proved by Kapur et al
[11]. We give here a simple proof of EXPTIME-hardness:
the computations of alternating Turing machines with poly-
nomially bounded space can be encoded (in polynomial
time) into ground reducibility. Hence, quite surprisingly,
ground reducibility is not (at least in theory) harder in the
general case than in the linear case.

In section 2 we recall the definition of automata with dis-
equality constraints. In section 3, we show how to construct

Definition 2 A ground term¢ satisfiesa constraintr; #

w2 (Which we writet = m; # o) if both 7y andw, are
positions oft andi|., # t|.,. This notion of satisfaction is
extended to conjunctions and disjunctions as expected. (In
particulart = T for everyt).

Definition 3 Arunofthe automatom onatermis afunc-
tion p from Pos(t) into A such that, for every € Pos(t),
if t(p) has arityn thenp(p) is a rule f(q1,...,q,) — ¢

and
e foreveryl <i < p, p(p-i) is arule whose target ig;
e tEc

If only the first condition is met by, p will be called aweak
run.

A termt is accepted byA if there is a runp of 4 ont
such thaip(A) is a rule whose target is a final state.

Runs ofA can also be seen as terms over the alphabet
Example 4 Let F = {f,a,b} andQ = {¢q} = Q.

A={ r: a — q ro: b — g

re: fleg) 2> g}

This defines an automaton (which accepts the terms irre-
ducible by the rulef (z, z) — 0).

f(a,b) is accepted since = r3(r1,r2) isarun on such
thatrs yields a final state.f(a,a) is not accepted bw:
there is a weak runs (r1,71) on f(a, a) but the disequality
of r3 is not satisfied.

Note that in general ADC can be non-deterministic
(more than one run on a term) or not completely specified
(no run on some term). However, given a rarthere is a
unique ternip] associated tp.

Definition 5 Let A = (Q, @, A) be an ADC ang a weak
run of A ont. An equality of p is a triple of positions
(p,m1,m2) such thatp,p - m1,p - m2 € Pos(t), m # 72
is in the constraint op(p) andt|p.r, = t|p.xs-

In particular, a weak run without any equality is a run.
The equalities in a run are also classified according to a par-
ticular positionpg of ¢:

® (p,m,m) is closetopy iff p < py < p-m orp <
Po <p- T2

e (p,m,m) isfar from py (orremot§ iff p- w1 < po Or
P72 < Po-

These two possible situations are depicted on figures 1 and
2.

3 Reducing Ground reducibility to an empti-
ness problem for ADC

In this section, we show how to construct an ADC whose
emptiness is equivalent to the ground reducibility problem

Figure 1. An equality close to py

Figure 2. An equality far from py

and we show precisely the size of such an automaton. WeProposition 6 The above automatodnr(z) accepts the

start with an ADC accepting the set of irreducible ground set of terms that are irreducible B%. Its number of states

terms. is an exponential in the size ®&. The constraints have
We assume the reader familiar with term rewriting sys- always a size bounded by the size

tems (see [6] for a survey). We use the subsumption quasi-

ordering on terms s < ¢ if there is a substitutiomr such 3.2 Ground reducibility and ADC

thatso = ¢t. Two termss, ¢t aresimilarif s < ¢t and¢ < s.

The set of variables occurring in a tetris denoted/ar(t).

Finally, thesizeof a term¢, which is denoted|¢||, is the car-

dinal of its positions and theize of a rewrite systenfz,

which is denoted|R||, is the sum of the sizes of its left

members.

If ¢t is alinear term, then its ground reducibility is equiva-
lent to the emptiness of the intersection/dfAxr %)) with
the set of instances af Since the class ADC is closed
by intersection with a regular language (it can be com-
puted in time the product of the sizes of both automata),
deciding ground reducibility amounts to decide emptiness
3.1 Normal forms ADC of an ADC whose number of states@g 2RIl x ||¢|) and
constraints have a siz@(||R||). It is a bit more diffi-
Let £ be the set of left hand sides of a rewrite system cyit whent is not linear since, in such a situation, the
R. First, let£, be the subset of linear terms By £, its set of irreducible instances dfis not necessarily recog-
complement inC and £ the set of linearized versions of pjzed by an ADC. For this reason, we have to compute
terrr;lsinﬁz (i.e. temeS Obtffl"lflld Ey replacingin Elome' Ll‘él directly an automaton having the desired property. Let
each occurrence of a variable by a new variable, yielding a _ f def
linear term). The initial set of sta)':e;% consists in al?lstrict ° NF(R) " (@nres Qg Ane). We computedy,: =
subterms of elements iy, U £3 plus two special stateg; (@nr.¢, QNFyt’ Axr,) as follows:
which accepts all terms amg which accepts only reducible
terms (hence is a failure state). We assume that all terms are ® @NFt = L {tol, | p € Pos(t)} x Qxr whereo ranges
considered up to renaming (in particular any two terms are ~ OVer substitutions fronV LV (¢) (the set of variables
assumed to share no variables in what follows). Also, states ~ occurring at least twice it) into QL.
will be written ¢; instead of:.

The set of state§) of the automaton consists in all uni- ~ ® For all f(q,...,q.) = ¢ € Ayp, and all
fiers of unifiable subsets @, \ {¢.}, plus the additional U, ..., un, € {tol, | p € Pos(t)}, Axr, contains
stateg,. (in this way (@ contains@),). The rules are defined the following rules:
by:

C A ’
f(qt“ U ’Qt") — - f([qu1 5 Q1]7 ey [qun) Qn]) C_c_) [qf(uh...,un): q]
with if f(ui,...,u,) = toy andc’ is constructed as
sketched below.
et = randc = T if one of thet;’s is r or if ¢ i
f(t1,...,tn) is an instance of some € L. = flaws ol -l nl) = (970w 4]
[9f(us,....un)> @) € @nr,c @nd we are not in the
o If f(t1,...,t,) IS not an instance of any term ify, first case.
thent is the unifier of all terms: € Qo \ {¢-} such .
that f (¢4, ..., t,) is an instance of. ' = J(gurs @1l 4 @) = [ag,] in all other
o cases
e Wheng; # g, the constraint is defined by .
¢’ is constructed as follows. Froff(uy,...,u,) we can
/\ \/ - retrieve the rules applied at positiprin ¢t. Assume that the

rule atp checksr; # mo. This amounts to chegkr, # pm

L& L @ € Var(l) at the root position of. Let D be all disequalitiepm; #

tandt unifable - lx =1l == pr- Obtained in this way. The non linearity ofimplies

T#ET some equalities: lef be the set of equalities, = p», for
all positionspy, p» such that|,, = t|,, is a variable. Now,

The final states are all states, excgpt ¢ is the set of disequalities # 7' which are not irD and

Let Anxr(r) be the automaton constructed in this way. that can be inferred fro®, £ using the rules
Anr(r) Is not necessary complete (the automaton may have
no run on terms that are reducible by a non-left linear rule). ppL £ P2, p=p F p'p1 #po
It is however deterministic. p#£D,pp1=p2 F p'p1 D2

For instance,
lett = f(z, f(z,y)) and assume that the automatdg

contains a rulef(q, q) 173 g. Then the automatodny 4
. . 1A2A1#22
will contain the rulef ([g,, ql, [97(4,9),9]) ——
The final states arfgy.,, ¢;] whereq; € QL. andu is an
instance of.

Proposition 7 ¢ is ground reducible byR iff the language
accepted bydnr is empty. The number of states of this
automaton isO(2¢*lItIxIIRI1) wherec is a constant. The
size of the constraints of each rule(X||¢]|* x ||R|)?).

Moreover, the number of rules of the automaton is
O(2¢xlIt<lIElxa || F||) wherea is the maximal arity of
a function symbol angj F'|| is the number of function sym-
bols.

The automaton does not recognize only irreducible
ground instances of. However, if u is accepted by
Anr,¢, then we can construct a terat which is an irre-
ducible instance of and which is still acceptedu’ is ob-
tained by replacing/|,, , . . ., up, With u|,, in « whenever
Do, P1, - - -, Pn are positions of the same variabletin

4 Generalized pumping lemmas

This is the crux part of our proof. We assume here a
well founded orderings>, total on runs and monotonic (i.e.
p > p' implies that for every context, C[p], > C[p'],)-

Definition 8 A pumping(w.r.t. >>) is a replacemenp[p'],
wherep, p’ are runs such that the target state gfis the
same as the target state gff, andp > p[p'],

This definition generalizes the usual pumping definition;

r

/TN

Ug Vo r

N
AR
VAN

/I
IN

Us Us

T
o)

Figure 3. A run with a possible pumping

def

oo 1 i i
wheree neo 1 IS the exponential basis angA)

is the maximal size of a constraint jd. Then we have a
pumping lemma which generalizes those of [5, 4]:

Lemma 10 If pis a run of A andpy,...,py(ax) are po-
sitions ofp such thatp|,, > ... > pl,, ..., and target
states ofly, , - - -, plp, 4., &re identical, then there are in-
dicesig, ..., i, such that the weak ru;il[ppij]pi0 does not
contain any close equality.

Example 11 This example illustrates the principle of the
proof of lemma 10. LetF contain a ternary symbol and

a usual pumping is also a pumping according to the aboveconstants andl be an ADC containing the following tran-

definition, as soon a$> contains thes> theembedding or-
dering

Lemma 9 Every pumping[p'], is a weak run and every
equality of it is either far fronp or close top.

Hence, given a large enough rpnwe will successively
show how to construct a weak run by pumping which does
not contain any close equality (this uses combinatorial ar-
guments only) then we show how to remove far equalities
by further successive pumpings.

4.1 Pumping without creating close equalities

Given an ADCA and an integek, we let:

def

g(A k) Z (e x k+1) x |Q] x 2 x ¢(A)!

sition rule:
1#31A1#32
r: fla,g,q3) ————
Consider moreover the run:
p= r(wuo, vwo,
T(uy, i,
7,-(u2, U2,
r(us, vs,
T(Ug, V4
7,-(Us, Us,

r(ug, v6,0)))))))

which is also depicted on figure 3.

We are going to show that is large enough so as to
be able to find a pumping which does not create any close
equality. Assume first that replacing each subtree rooted

with r at position 3 creates a close equality. This meansthere are prefixe,,...,py Of p and disequalities
that, for alli = 2,..6, u; = up Orv; = vo. Thenitis pos- m; # m;' checked ap; such thap|pilplp.~r = plpilplpin: -
sible to extract a subsequence of three indiges, i3 such And p; 7} is a prefix ofp. The situation is depicted on fig-
that (Uo = Uj; = Ujy = U,'3) \Y (1}0 = Vj; = Vi, = Ui3). ure 4.

Assume we are in the first case of the alternative and that, Let k, = MALZA (n(A) is the maximal num-
for instanceup = uy = us = ug. Now we replace the sub- per of constraints checked by a rulé).4, k) is chosen in
term r(uz, vz, ...) With 7(uy, vy, ...) andr(ug,ve,v) re- such a way thatM (p,p, h(A, k)) implies M (p, p', k) for
spectively. Sincew, = us = ug # u, if each of these)/ ranging in the set of thé, + ¢(A) largest positions in

replacements creates a close equality, we must have {p1,-..,Praw} (thisis a simple extraction: among all far
vy = vg. Finally, replacing-(us, vs, . . .) With r(ug, ve, v), equalities created ip[p;], some have to be far enough).
we cannot create a close equality singe= ug # uz and However, this is not quite satisfactory since we do not
vy = Vg # V3. “propagate” the predicaté! with the same arguments.
In this example, the ordering>- was any simplification Now, consider
ordering on runF;. A similar ex?mple cou);d bepbuilt where the k, smallest positions "{plu’ o Ph(AB) Bly extrac-
tion, we may assume tha ' < ... < pg, 7 . Now

the positiong; are incomparable w.r.t. the prefix ordering.

! X ; the termsp|,, .- are distinct and we apply to them lemma
Note that we did not use yet its totality.

10. This yieldsk + ¢(A) possible pumpings at a position
))) . i, T, » Which do not create close equalities. One of these
4.2 Pumping without creating equalities pumpings is indicated by the arrow on figure 4.
The final idea is to combine the two above constructions.

In the following definition, M is supposed to express Roughly, we have on one hartcreplacements[p;], such
some “non minima”ty" of the run: ifM holds true, then that./\/l(p,p’,k) and on the other hand we hakepump-
there are many possible replacements which yield smallerings plplp:, such that alsaM(p,p', k) wherep’ < p.
weak runs without creating any close equality. The goal is Combiningoeach pumping with each replacement, we get

to show that, for large enough runs, it is possible to con- Aq(p, ', k?) which yields the lemma according to the as-
struct a run which is smaller w.r.t>. sumption onk. O

Definition 12 M is the predicate (defined relatively to an
ADC A and an orderings) which holds true om, p, & iff
pis a position ofp andk runsp|, > pr > ... > p; such
thatp(p), p1(A), ..., pr(A) have the same target state and
forall 1 < i < k the pumping|p;], does not contain any
close equality.

Note that we used some other propertiessefin this
proof, for instance its monotonicity. We also used its total-
ity, in order to be able to apply lemma 10.

Then, we initiate the process with lemma 10 and use
the propagation lemma to push the position under which no
equality is created, up to the root of the tree. With simple

Leth(A, k) = (14 ¢(A)) x g(A, k+c(A)) +k + c(A). s_ufficient conditions for the inequality’ > h(A, k), this
The following propagation lemma is the crux part of our yields:
proof. (It is also very technical to prove). It explains how
to get rid of remote equalities, if we have enough pumpings
which do not create close equalities.

Lemma 14 Let A be an ADC . There is a bourid A) =
¢ x |Q* x 2P((A) whereP is a polynomial, such that, if
M(p, p,b(A)) for some positiom of p then there is a run

Lemma 13 (Propagation lemma)Letp be arun of, p € p > p' suchthap(A) andp’(A) have the same target state.

Pos(p) andk be an integer such that® > h(A, k). Then,

it M(p,p, h(A, k)) is true, one of the following holds: The lemma states that, if a run is large enough, so as

to accommodaté(.4) pumpings which do not create close
1. thereis arurp’ such thaip|, > p’ andp[p'], isarun equalities, then there is a strictly smaller run. Now, an ADC
accepts at least a tree iff it accepts a tree with a minimal run
2. There exists @' < p such thatM(p,p', h(A,k)) IS (w.rt. >). Lemma 14 states that such a minimal run has to
true. contradict the predicat81, hence to be small enough. The
algorithm of the next section exploits this property, search-

Sketch of the proof ing a minimal run within a given amount of space.

If we are not in the first case of the lemma, then for each
run p; such thap|, > p; andp[p;], does not create a close . .
equality (as in the definition aM), p[p;], contains a far 9 EMptiness decision for ADC
equality. This means that eaghalready occurs at some po-
sition; in p with 7r; incomparable withp. More precisely, In this section we present the following result:

R

T)
AT, At
P

png plﬂl'
/7 \\ 7 \\

// \\ //p \\

/ \ / \

/ N / \

ph / pl \\ / \\

Figure 4. Equalities created by the replacements at position p

Theorem 15 There is an algorithm which decides the Lemma 16 If E* does not contain any accepting run then

emptiness of an ADC and which runs in ti@iéP; (|Q|) x
2P2(e(A)) whereP,, P, are polynomials.

A does not accept any term.

Sketch of the proofAssume that4 acceptst andp is

We use a marking algorithm in which each state is a successful run on Assume moreover that is mini-

marked with some successful runs yielding this state. Thismal w.rt. >. Letp = r(p,.

..,pn). By lemma 14,

generalizes the usual marking algorithm for finite bottom- M (p, p, b(A)) is true for every positiop of p. By construc-

up tree automata: we do not keep only the information thattion, this means that € E* wheneverp,, .

..,pn € E7.

a state is inhabited, but also keep witnesses of this fact.We conclude by an induction on the number of stafes.
The witnesses are used to check the disequality constraints

higher up in the run.
It can be simply stated as follows:

In order to give a complexity bound, we need an addi-
tional argument (a generalization of Konig's theorem for
bipartite graphs to hypergraphs). Let us first define a notion

start with a mapping which associates each state
g with an empty seEg, then saturate the states
E} using the rule:

{pla"'apn} € U Eg? = T(pla"'7pn) € Eg;j_l
7€Q
If r(p1,-..,pn) is @ run whose target stateds

and-M(r(p1,-..,pn),p,b(A)) for every posi-
tion p which is a prefix of some position checked
by r. (This expresses a minimality condition).

We have to prove on one hand that the saturated set

ey yr

geEQ n>0

contains an accepting run iffl accepts at least one tree
(completeness) and on the other hand fiiatcan be com-
puted with the expected complexity (termination).

of dependency in hypergraphs:

Definition 17 Let S be a set andh, k be integers. The
nuplessy, . .., 5 of elements irt are independerniff there
isasetl C {1,...,n}suchthat

L] VZ'EI,SL,':...:S]C,@
o Vig ILVj#j' 550 # sy

Let A be an ADC andy, ..., 7.4} be the set of suf-
fixes of positions which are checked by some rulglotet
p=r(p1,...,pn) bearunofd. Then Checly) is the tu-
ple (1, ..., peay) € (T(A) U{L}) such thapp; =1
if 7; is not checked by andp; = p|,, otherwise.

Lemma 18 Let p be a run of the ADCA and p €
Pos(p), k > b(A) and > be a total ordering. If
there arek + 1 runs p|, = pr+1 > > m
such that, Chedl),...ChecKp.1) are independent
thenM(p, p, k — c¢(A)) is true.

The proof of this lemma is quite simple: since the runs

(see [6] for complementary definitions on orderings)it-

are independent, we can replace some run with anotherself is defined as > tiff I(u) > I(¢). O

without creating equalities.
Now, we have the extension of Konig’s theorem from
bipartite graphs to hypergraphs:

Theorem 19 (B. Reed, private communication)Let S be
a set andK, n be integers. LetG C S™. If every subset
G1 C G of independent elements has a cardifél| < K,
then|G| < K™ x nl.

With this additional argument, we can give an upper
bound to the cardinal of sefs]'

| U EFI<1Q1 x (b(A+ e(A)) Y x c(A)!
7€Q

Which proves its termination with < O(|Q]**¢(A) x
280(c(A)) whereP, is a polynomial.

As a consequence of theorem 15 and proposition 7, we
get:

Theorem 21 Ground reducibility of a termt w.rt a
rewrite systemR can be decided in deterministic time
O(2PUIEILIRI)) whereP is a polynomial.

The coefficients of? may depend linearly from (the
maximal arity of a function symbol) angr||.

Let us emphasize that using an ordering which has the
properties of lemma 20 instead of the usual pumping order-
ing was crucial in the proof; for instance the totality of the
ordering allows much more pumpings that usually. Hence
looking for minimal runs restricts the search space in a dra-
matic way. The construction of the propagation lemma re-
lies on these properties.

Now, we have to estimate the cost of each inference step.
Of course, we assume that identical subterms are sharedd Lower bound
More precisely, each new run is a rule whose sons are al-

ready in the set. Hence checking thdp,,...,p,) is a
run can be performed in tim& A) since disequalities are

checked in constant time. Finally, it remains to check the

predicateM. If > satisfies the following additional prop-
erty:

(p>> o' andp € Ey.) impliesp’ € | E}'
4ERQ

then only the runs which are alreadyii} are possible can-
didates forpy, . . ., pi, in the definition of M. There are at
most|£;| possible runs to consider ar@A) positionsp.
Finally, for each pumping, verifying whether or not it cre-
ates a close equality requires timed). Hence minimality
condition can be checked in time at most

QI % (b(A + ¢(A) M x e(A)! x e(A)?

Theorem 22 Ground reducibility is EXPTIME-hard, for
linear rewrite system® and linear termg.

The proof is very much similar to H. Seidl's proof [15]
that inclusion of tree languages is EXPTIME-hard. We en-
code computation trees of an alternating Turing machihe
which works on a polynomially bounded space as a term in
T (F). (This encoding is polynomial). Then, from an input
w of the Turing machine, we build a tertnand a rewrite
systemR such that there is a ground instance/i(F) of ¢
which is irreducible iff M acceptaw. R andt are built in
polynomial time w.r.t.w and|M|. The irreducible ground
instances of simply describes the accepting configurations:
t = T(x). The rules inR essentially check that the initial
configuration isw and discards trees which are not compu-
tation trees: this can be verified locally with a polynomial
number of rules.

It is also possible to prove EXPTIME-hardness by re-

Together with the bound on the number of steps, we get thequcing the emptiness problem for the intersection tfee

desired property.
It still remains to exhibit an ordering> which satisfies
all our requirements:

Lemma 20 There is an orderings> which is monotonic,
well-founded, total off'(A) and such that, it > u, then
the depth ot is larger or equal than the depth af

sketch of the prooftonsider the following interpretation
of t: I(t) is the triple(d(t), M (t), t) whered(t) is the depth
of t, M (t) is the multiset of strict subterms of Triples are

automata. The latter is EXPTIME-complete ([16, 7]).

7 Conclusion

We proved that ground reducibility is EXPTIME-
complete for both the linear and the non-linear case. This
closes a pending question. However, we do not claim that
this result in itself gives any hint on how to implement a
ground reducibility test. As we have seen, it is not tractable
in general. A possible way to implement these techniques

ordered with the lexicographic composition of 1— the order- as efficiently as possible was suggested in [1]. On the av-

ing on natural numbers 2— The multiset extensions08—

erage, some algorithms may behave well. In any case, we

a lexicographic path ordering extending a total precedenceclaim that tree automata help both in theory and in practice.

References

[1] A.-C. Caron, H. Comon, J.-L. Coquidé, M. Dauchet, and
F. Jacquemard. Pumping, cleaning and symbolic constraints
solving. InProc. Int. Conference on Algorithms, Languages
and ProgrammingLecture Notes in Computer Science, vol.
820, Jerusalem, July 1994. Springer-Verlag.

[2] A.-C. Caron, J.-L. Coquidé, and M. Dauchet. Encompass-
ment properties and automata with constraints. In C. Kirch-
ner, editor5th International Conference on Rewriting Tech-
niques and Applicationsvolume 690 ofLecture Notes in
Computer SciencéMontreal, Canada, June 1993. Springer-
Verlag.

[3] H. Comon. An effective method for handling initial alge-
bras. InProc. 1st Workshop on Algebraic and Logic Pro-
gramming, Gaussig, LNCS 34S8pringer-Verlag, Nov. 1988.

[4] H. Comon and F. Jacquemard. Ground reducibility and au-
tomata with disequality constraints. In P. Enjalbert, edlit
Proc. 11th Symp. on Theoretical Aspects of Computer Sci-
ence Lecture Notes in Computer Science, vol. 775, Caen,
1994. Springer-Verlag.

[5] Dauchet, Caron, and Coquidé. Automata for reductiappr
erties solvingJSCOMP: Journal of Symbolic Computatjon
20, 1995.

[6] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In
J. van Leeuwen, editoiandbook of Theoretical Computer
Sciencevolume B, pages 243-309. North-Holland, 1990.

[7] T. Frihwirth, E. Shapiro, M. Vardi, and E. Yardeni. Lagi
programs as types for logic programs. Pnoc. 6th IEEE
Symp. Logic in Computer Science, Amsterdpages 300—
309, 1991.

[8] J. Gallier and R. Book. Reductions in tree replacemest sy
tems. Theorical Computer Scienc87:123—-150, 1985.

[9] F. JacquemardAutomates d’arbres et Réécriture de termes
PhD thesis, Université Paris-Sud, 1996.

[10] J.-P. Jouannaud and E. Kounalis. Automatic proofs by in
duction in theories without constructorgnformation and
Computation82(1), July 1989.

[11] D.Kapur, P. Narendran, D. Rosenkrantz, and H. Zhang. Su
ficient completeness, ground reducibility and their comyple
ity. Acta Inf, 28:311-350, 1991.

[12] D. Kapur, P. Narendran, and H. Zhang. On sufficient com-
pleteness and related properties of term rewriting systems
Acta Inf, 24(4):395-415, 1987.

[13] E. Kounalis. Testing for the ground (co)-reducibility
term rewriting systems. Theoretical Computer Science
106(1):87-117, 1992.

[14] D. Plaisted. Semantic confluence tests and completithm
ods. Information and Contrgl65:182—215, 1985.

[15] H. Seidl. Deciding equivalence of finite tree autom&am
Journal of Computing19(3):424—-437, 1990.

[16] H. Seidl. Haskell overloading is DEXPTIME-completaf.
Process. Lett.52:57-60, 1994.

