
Ground Reducibility is EXPTIME-complete

Hubert Comon
CNRS and Laboratoire Spécification et Vérification

Ecole Normale Supérieure de Cachan
61 Avenue du président Wilson
94235 CACHAN cedex, France

Hubert.Comon@lsv.ens-cachan.fr

Florent Jacquemard
Max-Planck Institut für Informatik

Im Stadtwald, Gebäude 46.1
D-66123 Saarbrücken

Germany
florent@mpi-sb.mpg.de

Abstract

We prove that ground reducibility is EXPTIME-complete
in the general case. EXPTIME-hardness is proved by en-
coding the computations of an alternating Turing machine
whose space is polynomially bounded. It is more difficult
to show that ground reducibility belongs to DEXPTIME.
We associate first an automaton with disequality constraints
A

R;t

to a rewrite systemR and a termt. This automaton
is deterministic and accepts a termu if and only if t is not
ground reducible byR. The number of states ofA

R;t

is
O(2

kRk�ktk

) and the size of the constraints are polynomial
in the size ofR; t. Then we prove some new pumping lem-
mas, using a total ordering on the computations of the au-
tomaton. Thanks to these lemmas, we can give an upper
bound to the number of distinct subtrees of a minimal suc-
cessful computation of an automaton with disequality con-
straints. It follows that emptiness of such an automaton can
be decided in time polynomial in the number of its states
and exponential in the size of its constraints. Altogether, we
get a simply exponential deterministic algorithm for ground
reducibility.

1 Introduction

Ground reducibility of a termt w.r.t. a term rewrit-
ing systemR expresses that all ground instances (instances
without variables) oft are reducible byR. This prop-
erty is fundamental in automating inductive proofs in equa-
tional theories without constructors [10]. It is also related to
sufficient completenessin algebraic specifications (see e.g.
[12]). Roughly, it expresses that all cases have been covered
byR and thatt will be reducible for any inputs. Many pa-
pers have been devoted to decision of ground reducibility.
Let us report a brief history of the milestones, starting only
in 1985 with the general case.

Ground reducibility was first shown decidable by D.
Plaisted [14]. The algorithm is however quite complex: a
tower of 9 exponentials though there is no explicit complex-
ity analysis in the paper. D. Kapur et al. gave another de-
cidability proof [12] which is conceptually simpler, though
still very complicated, and whose complexity is a tower of 7
exponentials in the size ofR, t. More precisely, they show
that checking the reducibility of all ground instances oft

can be reduced to checking the reducibility of all ground in-
stances oft of depth smaller thanN(R) whereN(R) is a
tower of 5 exponentials in the size ofR. A third proof was
proposed by E. Kounalis in [13]. The result is generalized
to co-ground reducibility and the expected complexity is 5
exponentials, though there is no explicit complexity analy-
sis in the paper. These three algorithms use combinatorial
arguments and some “pumping property”: if there is a deep
enough irreducible instance oft, then there is also a smaller
instance which is also irreducible. This yielded the idea of
making explicit the pumping argument as a pumping lemma
in some tree language. In support of this idea, when botht

and the left members ofR are linear, i.e. each variable
appears only once, then the set of reducible instances oft

is accepted by a finite tree automaton [8]. Hence the set
of irreducible ground instances is also accepted by a tree
automaton, by complement. This easily gives a simply ex-
ponential algorithm in the linear case. (As we will see this
algorithm is optimal).

H. Comon expressed first the problem of ground re-
ducibility as an emptiness problem for some tree language
[3]. He also gave a decision proof whose complexity is even
worse than the former ones. A.-C Caron, J.-L. Coquidé and
M. Dauchet proved a very beautiful result in 1993 [2, 5],
enlighting the pumping properties and their difficulty. They
actually show a more general result: the first-order theory of
unary encompassment predicates is decidable. And it turns
out that ground reducibility can be expressed as a simple
formula in this logic. Their technique consists in associat-
ing an automaton with each formula, in the spirit of Büchi’s

and Rabin’s method. The kind of automata which is ap-
propriate here is what they callreduction automata, a par-
ticular case ofautomata with constraintsintroduced by M.
Dauchet in 1981. Such tree automata have the ability to
check for equality or disequality of some subtrees before
applying a transition rule. In general, emptiness of lan-
guages recognized by such automata is undecidable. How-
ever, when we only allow a fixed number of equality tests
on each computation branch, then emptiness becomes de-
cidable. Unfortunately, their result does not give any infor-
mation about possible efficient algorithms. The complexity
which results from their proof is not better than Plaisted’s
bound. We tried to specialize the tree automata technique
for ground reducibility and we got in this way a triple expo-
nential bound [4]. This is better than previous methods, but
still far from the lower bound.

The problem in all works about ground reducibility is
that they give a bound on the depth of a minimal irreducible
instance oft (or a minimal term accepted by the automaton).
However, after establishing carefully such an upper bound,
they use a brute-force algorithm, checking the reducibil-
ity of all terms of depth smaller than the bound, which in-
creases the complexity by a double exponential.

We use here a different approach. We still rely on au-
tomata with disequality constraints. However, we do not try
to give a bound on the depth of an accepted term. Rather,
we show a stronger result: with an appropriate notion of
minimality, a minimal term accepted by the automaton con-
tains at most an exponential number of distinct subterms.
To prove this, we use a generalization of pumping to ar-
bitrary replacements for which the term is decreasing ac-
cording to some well chosen well founded ordering. With a
few more ingredients, this yields an algorithm for deciding
the emptiness of an automaton with disequality constraints
which runs in polynomial time w.r.t. the number of states
and in exponential time w.r.t. the size of the constraints.
On the other hand, we show that ground reducibility oft

w.r.t. R can be reduced to the emptiness problem for an
automatonA with disequality constraints whose number of
states is an exponential in the size ofR andt and whose
constraints are polynomial in size. Altogether, we have a
simply exponential algorithm for ground reducibility.

This result is optimal since ground reducibility is
EXPTIME-hard, already for linear rewrite systems and lin-
eart. A O(2

n

logn

) lower bound was proved by Kapur et al
[11]. We give here a simple proof of EXPTIME-hardness:
the computations of alternating Turing machines with poly-
nomially bounded space can be encoded (in polynomial
time) into ground reducibility. Hence, quite surprisingly,
ground reducibility is not (at least in theory) harder in the
general case than in the linear case.

In section 2 we recall the definition of automata with dis-
equality constraints. In section 3, we show how to construct

an automaton with disequality constraints whose emptiness
is equivalent to the ground reducibility oft w.r.t.R and we
analyse carefuly the complexity of such a construction. Sec-
tion 4 is devoted to pumpings lemmas for automata with dis-
equality constraints. These lemmas are applied in section 5
to derive an optimal algorithm which checks the emptiness
of (the language recognized by) an automaton with dise-
quality constraints. Finally, we study the lower bound of
ground reducibility in section 6.

Some proofs are long and technical, hence not included
in the present abstract. Except for a small combinato-
rial argument due to B. Reed, the complete proofs can be
found in F. Jacquemard’s thesis [9] (in French). A com-
plete version of the paper is also available on the Web
(http://www.mpi-sb.de/�florent/art/).

2 Automata with disequality constraints

F will always be a fixed finite set of function symbols
(together with their arity). The set of (ground) terms built
onF is writtenT (or T (F)). A positionis a string of pos-
itive integers.� is the empty string. Positions are ordered
according to the prefix ordering:p � q iff there is a stringr
such thatp � r = q.

As usual, a finite termt can be viewed as a mapping
from its set of positionsPos(t) into F . For instance, if
t = f(g(a); b), Pos(t) = f�; 1; 11; 2g and e.g.t(1) = g.
If p 2 Pos(t), we writetj

p

for the subterm oft at position
p andt[u]

p

for the term obtained by replacingtj
p

with u in
t. A contextis a termC[�]

p

with a hole (formally, it is a pair
of a term and a positionp, the subterm at positionp being
irrelevant).

Definition 1 Anautomaton with disequality constraints(or
ADC for short) is a tuple(Q;Q

f

;�) whereQ is a finite set
of states,Q

f

is the subset ofQ of final statesand� is a
finite set of transition rules of the form:

f(q

1

; : : : ; q

n

)

c

�! q

wheref 2 F has arityn, q
1

; : : : ; q

n

2 Q andc is a con-
junction of disjunctions of constraints�

1

6= �

2

where�
1

; �

2

are strings of natural numbers. The empty conjunction is
written>. q is called thetarget stateof the rule.

Definition 2 A ground termt satisfiesa constraint�
1

6=

�

2

(which we writet j= �

1

6= �

2

) if both �

1

and�
2

are
positions oft andtj

�

1

6= tj

�

2

. This notion of satisfaction is
extended to conjunctions and disjunctions as expected. (In
particular t j= > for everyt).

Definition 3 A runof the automatonA on a termt is a func-
tion � fromPos(t) into � such that, for everyp 2 Pos(t),
if t(p) has arityn then�(p) is a rule f(q

1

; : : : ; q

n

)

c

�! q

and

� for every1 � i � p, �(p � i) is a rule whose target isq
i

� t j= c

If only the first condition is met by�, � will be called aweak
run.

A termt is accepted byA if there is a run� of A on t
such that�(�) is a rule whose target is a final state.

Runs ofA can also be seen as terms over the alphabet�.

Example 4 LetF = ff; a; bg andQ = fqg = Q

f

.

� = f r

1

: a ! q r

2

: b ! q

r

3

: f(q; q)

1 6=2

��! q g

This defines an automaton (which accepts the terms irre-
ducible by the rulef(x; x)! 0).

f(a; b) is accepted since� = r

3

(r

1

; r

2

) is a run ont such
that r

3

yields a final state.f(a; a) is not accepted byA:
there is a weak runr

3

(r

1

; r

1

) onf(a; a) but the disequality
of r

3

is not satisfied.

Note that in general ADC can be non-deterministic
(more than one run on a term) or not completely specified
(no run on some term). However, given a run�, there is a
unique term[�] associated to�.

Definition 5 LetA = (Q;Q

f

;�) be an ADC and� a weak
run of A on t. An equality of � is a triple of positions
(p; �

1

; �

2

) such thatp; p � �
1

; p � �

2

2 Pos(t), �
1

6= �

2

is in the constraint of�(p) andtj
p��

1

= tj

p��

2

.

In particular, a weak run without any equality is a run.
The equalities in a run are also classified according to a par-
ticular positionp

0

of t:

� (p; �

1

; �

2

) is closeto p

0

iff p � p

0

< p � �

1

or p �
p

0

< p � �

2

� (p; �

1

; �

2

) is far from p

0

(or remote) iff p � �
1

� p

0

or
p � �

2

� p

0

.

These two possible situations are depicted on figures 1 and
2.

3 Reducing Ground reducibility to an empti-
ness problem for ADC

In this section, we show how to construct an ADC whose
emptiness is equivalent to the ground reducibility problem

π1
π2

p
0

p

Figure 1. An equality close to p

0

π1
π2

p

p
0

Figure 2. An equality far from p

0

and we show precisely the size of such an automaton. We
start with an ADC accepting the set of irreducible ground
terms.

We assume the reader familiar with term rewriting sys-
tems (see [6] for a survey). We use the subsumption quasi-
ordering on terms :s � t if there is a substitution� such
thats� = t. Two termss; t aresimilar if s � t andt � s.
The set of variables occurring in a termt is denotedV ar(t).
Finally, thesizeof a termt, which is denotedktk, is the car-
dinal of its positions and thesizeof a rewrite systemR,
which is denotedkRk, is the sum of the sizes of its left
members.

3.1 Normal forms ADC

Let L be the set of left hand sides of a rewrite system
R. First, letL

1

be the subset of linear terms inL, L
2

its
complement inL andL

3

the set of linearized versions of
terms inL

2

(i.e. terms obtained by replacing in somet 2 L
2

each occurrence of a variable by a new variable, yielding a
linear term). The initial set of statesQ

0

consists in all strict
subterms of elements inL

1

[L

3

plus two special states:q
x

which accepts all terms andq
r

which accepts only reducible
terms (hence is a failure state). We assume that all terms are
considered up to renaming (in particular any two terms are
assumed to share no variables in what follows). Also, states
will be writtenq

t

instead oft.
The set of statesQ of the automaton consists in all uni-

fiers of unifiable subsets ofQ
0

n fq

r

g, plus the additional
stateq

r

(in this wayQ containsQ
0

). The rules are defined
by:

f(q

t

1

; : : : ; q

t

n

)

c

�! q

t

with

� t = r and c = > if one of the t
i

’s is r or if
f(t

1

; : : : ; t

n

) is an instance of someu 2 L.

� If f(t
1

; : : : ; t

n

) is not an instance of any term inL,
thent is the unifier of all termsu 2 Q

0

n fq

r

g such
thatf(t

1

; : : : ; t

n

) is an instance ofu.

� Whenq
t

6= q

r

, the constraintc is defined by

^

l 2 L

2

l andt unifiable

_

x 2 V ar(l)

lj

�

= lj

�

0

= x

� 6= �

0

� 6= �

0

The final states are all states, exceptq

r

.
Let A

NF(R)

be the automaton constructed in this way.
A

NF(R)

is not necessary complete (the automaton may have
no run on terms that are reducible by a non-left linear rule).
It is however deterministic.

Proposition 6 The above automatonA
NF(R)

accepts the
set of terms that are irreducible byR. Its number of states
is an exponential in the size ofR. The constraints have
always a size bounded by the sizeR.

3.2 Ground reducibility and ADC

If t is a linear term, then its ground reducibility is equiva-
lent to the emptiness of the intersection ofL(A

NF(R)

) with
the set of instances oft. Since the class ADC is closed
by intersection with a regular language (it can be com-
puted in time the product of the sizes of both automata),
deciding ground reducibility amounts to decide emptiness
of an ADC whose number of states isO(2

kRk

� ktk) and
constraints have a sizeO(kRk). It is a bit more diffi-
cult when t is not linear since, in such a situation, the
set of irreducible instances oft is not necessarily recog-
nized by an ADC. For this reason, we have to compute
directly an automaton having the desired property. Let

A

NF(R)

= (Q

NF

; Q

f

NF

;�

NF

). We computeA
NF;t

def
=

(Q

NF;t

; Q

f

NF;t

;�

NF;t

) as follows:

� Q

NF;t

def
= ft�j

p

j p 2 Pos(t)g �Q

NF

where� ranges
over substitutions fromNLV (t) (the set of variables
occurring at least twice int) intoQf

NF

.

� For all f(q

1

; : : : ; q

n

)

c

�! q 2 �

NF

, and all

u

1

; : : : ; u

n

2 ft�j

p

j p 2 Pos(t)g, �
NF;t

contains
the following rules:

– f([q

u

1

; q

1

]; : : : ; [q

u

n

; q

n

])

c^c

0

��! [q

f(u

1

;:::;u

n

)

; q]

if f(u
1

; : : : ; u

n

) = t�

0

andc0 is constructed as
sketched below.

– f([q

u

1

; q

1

]; : : : ; [q

u

n

; q

n

])

c

�! [q

f(u

1

;:::;u

n

)

; q] if

[q

f(u

1

;:::;u

n

)

; q] 2 Q

NF;t

and we are not in the
first case.

– f([q

u

1

; q

1

]; : : : ; [q

u

n

; q

n

])

c

�! [q

q

; q] in all other
cases

c

0 is constructed as follows. Fromf(u
1

; : : : ; u

n

) we can
retrieve the rules applied at positionp in t. Assume that the
rule atp checks�

1

6= �

2

. This amounts to checkp�
1

6= p�

2

at the root position oft. LetD be all disequalitiesp�
1

6=

p�

2

obtained in this way. The non linearity oft implies
some equalities: letE be the set of equalitiesp

1

= p

2

, for
all positionsp

1

; p

2

such thattj
p

1

= tj

p

2

is a variable. Now,
c

0 is the set of disequalities� 6= �

0 which are not inD and
that can be inferred fromD; E using the rules

pp

1

6= p

2

; p = p

0

` p

0

p

1

6= p

2

p 6= p

0

; pp

1

= p

2

` p

0

p

1

6= p

2

For instance,
let t = f(x; f(x; y)) and assume that the automatonA

NF

contains a rulef(q; q)
1 6=2

��! q. Then the automatonA
NF;t

will contain the rulef([q
q

; q]; [q

f(q;q)

; q])

1 6=2^1 6=22

������! q.

The final states are[q
u

; q

f

] whereq
f

2 Q

f

NF

andu is an
instance oft.

Proposition 7 t is ground reducible byR iff the language
accepted byA

NF;t

is empty. The number of states of this
automaton isO(2

c�ktk�kRk

) wherec is a constant. The
size of the constraints of each rule isO(ktk

4

� kRk

2

).

Moreover, the number of rules of the automaton is
O(2

c�ktk�kRk�a

� kFk) wherea is the maximal arity of
a function symbol andkFk is the number of function sym-
bols.

The automaton does not recognize only irreducible
ground instances oft. However, if u is accepted by
A

NF;t

, then we can construct a termu0 which is an irre-
ducible instance oft and which is still accepted.u0 is ob-
tained by replacinguj

p

1

; : : : ; u

p

n

with uj

p

0

in u whenever
p

0

; p

1

; : : : ; p

n

are positions of the same variable int.

4 Generalized pumping lemmas

This is the crux part of our proof. We assume here a
well founded ordering�, total on runs and monotonic (i.e.
�� �

0 implies that for every contextC, C[�]

p

� C[�

0

]

p

).

Definition 8 A pumping(w.r.t. �) is a replacement�[�0]
p

where�; �0 are runs such that the target state of�0 is the
same as the target state of�j

p

and�� �[�

0

]

p

This definition generalizes the usual pumping definition:
a usual pumping is also a pumping according to the above
definition, as soon as� contains the� theembedding or-
dering.

Lemma 9 Every pumping�[�0]
p

is a weak run and every
equality of it is either far fromp or close top.

Hence, given a large enough run�, we will successively
show how to construct a weak run by pumping which does
not contain any close equality (this uses combinatorial ar-
guments only) then we show how to remove far equalities
by further successive pumpings.

4.1 Pumping without creating close equalities

Given an ADCA and an integerk, we let:

g(A; k)

def
= (e� k + 1)� jQj � 2

c(A)

� c(A)!

r

�

�

@

@

u

0

v

0

r

�

�

@

@

u

1

v

1

r

�

�

@

@

u

2

�

��

v

2

r

�

�

@

@

u

3

v

3

r

�

�

@

@

u

4

�

��

v

4

�

��

��

��

r

�

�

@

@

u

5

v

5

r

�

�

@

@

u

6

�

��

v

6

�

��

��

��

v

Figure 3. A run with a possible pumping

wheree
def
=

P

+1

n=0

1

n!

is the exponential basis andc(A)
is the maximal size of a constraint inA. Then we have a
pumping lemma which generalizes those of [5, 4]:

Lemma 10 If � is a run ofA andp
1

; : : : ; p

g(A;k)

are po-
sitions of� such that�j

p

1

� : : : � �j

p

g(A;k)

and target
states of�j

p

1

; : : : ; �j

p

g(A;k)

are identical, then there are in-
dicesi

0

; : : : ; i

k

such that the weak run�[�
p

i

j

]

p

i

0

does not
contain any close equality.

Example 11 This example illustrates the principle of the
proof of lemma 10. LetF contain a ternary symbol and
constants andA be an ADC containing the following tran-
sition rule:

r : f(q

1

; q

2

; q

3

)

1 6=31^1 6=32

�������! q

Consider moreover the run:

� = r(u

0

; v

0

;

r(u

1

; v

1

;

r(u

2

; v

2

;

r(u

3

; v

3

;

r(u

4

; v

4

r(u

5

; v

5

;

r(u

6

; v

6

; v)))))))

which is also depicted on figure 3.
We are going to show that� is large enough so as to

be able to find a pumping which does not create any close
equality. Assume first that replacing each subtree rooted

with r at position 3 creates a close equality. This means
that, for alli = 2; ::6, u

i

= u

0

or v
i

= v

0

. Then it is pos-
sible to extract a subsequence of three indicesi

1

; i

2

; i

3

such
that (u

0

= u

i

1

= u

i

2

= u

i

3

) _ (v

0

= v

i

1

= v

i

2

= v

i

3

).
Assume we are in the first case of the alternative and that,
for instanceu

0

= u

2

= u

4

= u

6

. Now we replace the sub-
term r(u

2

; v

2

; : : :) with r(u

4

; v

4

; : : :) and r(u
6

; v

6

; v) re-
spectively. Sinceu

2

= u

4

= u

6

6= u

1

, if each of these
replacements creates a close equality, we must havev

1

=

v

4

= v

6

. Finally, replacingr(u
4

; v

4

; : : :) with r(u

6

; v

6

; v),
we cannot create a close equality sinceu

4

= u

6

6= u

3

and
v

4

= v

6

6= v

3

.

In this example, the ordering� was any simplification
ordering on runs. A similar example could be built where
the positionsp

i

are incomparable w.r.t. the prefix ordering.
Note that we did not use yet its totality.

4.2 Pumping without creating equalities

In the following definition,M is supposed to express
some “non minimality” of the run: ifM holds true, then
there are many possible replacements which yield smaller
weak runs without creating any close equality. The goal is
to show that, for large enough runs, it is possible to con-
struct a run which is smaller w.r.t.�.

Definition 12 M is the predicate (defined relatively to an
ADCA and an ordering�) which holds true on�, p, k iff
p is a position of� andk runs�j

p

� �

k

� : : : � �

1

such
that�(p); �

1

(�); : : : ; �

k

(�) have the same target state and
for all 1 � i � k the pumping�[�

i

]

p

does not contain any
close equality.

Leth(A; k) = (1+ c(A))�g(A; k+ c(A))+k+ c(A).
The following propagation lemma is the crux part of our
proof. (It is also very technical to prove). It explains how
to get rid of remote equalities, if we have enough pumpings
which do not create close equalities.

Lemma 13 (Propagation lemma)Let� be a run ofA, p 2
Pos(�) andk be an integer such thatk2 � h(A; k). Then,
if M(�; p; h(A; k)) is true, one of the following holds:

1. there is a run�0 such that�j
p

� �

0 and�[�0]
p

is a run

2. There exists ap0 < p such thatM(�; p

0

; h(A; k)) is
true.

Sketch of the proof:
If we are not in the first case of the lemma, then for each

run�
i

such that�j
p

� �

i

and�[�
i

]

p

does not create a close
equality (as in the definition ofM), �[�

i

]

p

contains a far
equality. This means that each�

i

already occurs at some po-
sition�

i

in � with �

i

incomparable withp. More precisely,

there are prefixesp
1

; : : : ; p

h(A;k)

of p and disequalities
�

0

i

6= �

00

i

checked atp
i

such that�[�
i

]

p

j

p

i

�

00

i

= �[�

i

]

p

j

p

i

�

0

i

.
And p

i

�

0

i

is a prefix ofp. The situation is depicted on fig-
ure 4.

Let k
1

=

h(A;k)�k�c(A)

n(A)

(n(A) is the maximal num-
ber of constraints checked by a rule).h(A; k) is chosen in
such a way thatM(�; p; h(A; k)) impliesM(�; p

0

; k) for
p

0 ranging in the set of thek
1

+ c(A) largest positions in
fp

1

; : : : ; p

h(A;k)

g (this is a simple extraction: among all far
equalities created in�[�

i

]

p

some have to be far enough).
However, this is not quite satisfactory since we do not
“propagate” the predicateM with the same arguments.

Now, consider
the k

1

smallest positions infp
1

; : : : ; p

h(A;k)

g. By extrac-
tion, we may assume thatp

1

�

00

1

< : : : < p

k

1

�

00

k

1

. Now
the terms�j

p

i

�

0

i

are distinct and we apply to them lemma
10. This yieldsk + c(A) possible pumpings at a position
p

i

0

�

0

i

0

, which do not create close equalities. One of these
pumpings is indicated by the arrow on figure 4.

The final idea is to combine the two above constructions.
Roughly, we have on one handk replacements�[�

i

]

p

such
thatM(�; p

0

; k) and on the other hand we havek pump-
ings �[�0

j

]

p

i

0

such that alsoM(�; p

0

; k) where p0 < p.
Combining each pumping with each replacement, we get
M(�; p

0

; k

2

) which yields the lemma according to the as-
sumption onk. 2

Note that we used some other properties of� in this
proof, for instance its monotonicity. We also used its total-
ity, in order to be able to apply lemma 10.

Then, we initiate the process with lemma 10 and use
the propagation lemma to push the position under which no
equality is created, up to the root of the tree. With simple
sufficient conditions for the inequalityk2 � h(A; k), this
yields:

Lemma 14 LetA be an ADC . There is a boundb(A) =

c � jQj

3

� 2

P (c(A)) whereP is a polynomial, such that, if
M(�; p; b(A)) for some positionp of � then there is a run
�� �

0 such that�(�) and�0(�) have the same target state.

The lemma states that, if a run is large enough, so as
to accommodateb(A) pumpings which do not create close
equalities, then there is a strictly smaller run. Now, an ADC
accepts at least a tree iff it accepts a tree with a minimal run
(w.r.t.�). Lemma 14 states that such a minimal run has to
contradict the predicateM, hence to be small enough. The
algorithm of the next section exploits this property, search-
ing a minimal run within a given amount of space.

5 Emptiness decision for ADC

In this section we present the following result:

p
h

p
hπ’

h

p
1

’ ’p πhh

’ ’p
1
π

1

ρ
1

p
1
π

1
’

ρ
h

ρ

p

Figure 4. Equalities created by the replacements at position p

Theorem 15 There is an algorithm which decides the
emptiness of an ADC and which runs in timeO(P

1

(jQj) �

2

P

2

(c(A))

) whereP
1

, P
2

are polynomials.

We use a marking algorithm in which each state is
marked with some successful runs yielding this state. This
generalizes the usual marking algorithm for finite bottom-
up tree automata: we do not keep only the information that
a state is inhabited, but also keep witnesses of this fact.
The witnesses are used to check the disequality constraints
higher up in the run.

It can be simply stated as follows:

start with a mappingf which associates each state
q with an empty setE0

q

, then saturate the states
E

0

q

using the rule:

f�

1

; : : : ; �

n

g 2

[

q2Q

E

n

q

` r(�

1

; : : : ; �

n

) 2 E

n+1

q

0

If r(�
1

; : : : ; �

n

) is a run whose target state isq
0

and:M(r(�

1

; : : : ; �

n

); p; b(A)) for every posi-
tion p which is a prefix of some position checked
by r. (This expresses a minimality condition).

We have to prove on one hand that the saturated set

E

�

def
=

[

q2Q

[

n�0

E

n

q

contains an accepting run iffA accepts at least one tree
(completeness) and on the other hand thatE

� can be com-
puted with the expected complexity (termination).

Lemma 16 If E� does not contain any accepting run then
A does not accept any term.

Sketch of the proof: Assume thatA acceptst and� is
a successful run ont. Assume moreover that� is mini-
mal w.r.t. �. Let � = r(�

1

; : : : ; �

n

). By lemma 14,
M(�; p; b(A)) is true for every positionp of �. By construc-
tion, this means that� 2 E

� whenever�
1

; : : : ; �

n

2 E

�.
We conclude by an induction on the number of states.2

In order to give a complexity bound, we need an addi-
tional argument (a generalization of König’s theorem for
bipartite graphs to hypergraphs). Let us first define a notion
of dependency in hypergraphs:

Definition 17 Let S be a set andn; k be integers. The
nupless

1

; : : : ; s

k

of elements inS are independentiff there
is a setI � f1; : : : ; ng such that

� 8i 2 I; s

1;i

= : : : = s

k;i

� 8i =2 I;8j 6= j

0

; s

j;i

6= s

j

0

;i

LetA be an ADC andf�
1

; : : : ; �

c(A)

g be the set of suf-
fixes of positions which are checked by some rule ofA. Let
� = r(�

1

; : : : ; �

n

) be a run ofA. Then Check(�) is the tu-
ple (�

1

; : : : ; �

c(A)

) 2 (T (�) [f?g)

c(A) such that�
i

=?

if �
i

is not checked byr and�
i

= �j

�

i

otherwise.

Lemma 18 Let � be a run of the ADCA and p 2

Pos(�), k > b(A) and � be a total ordering. If
there are k + 1 runs �j

p

= �

k+1

� : : : � �

1

such that, Check(�
1

); : : :Check(�
k+1

) are independent
thenM(�; p; k � c(A)) is true.

The proof of this lemma is quite simple: since the runs
are independent, we can replace some run with another,
without creating equalities.

Now, we have the extension of König’s theorem from
bipartite graphs to hypergraphs:

Theorem 19 (B. Reed, private communication)LetS be
a set andK;n be integers. LetG � S

n. If every subset
G

1

� G of independent elements has a cardinaljG

1

j � K,
thenjGj � K

n

� n!.

With this additional argument, we can give an upper
bound to the cardinal of setsEn

q

:

j

[

q2Q

E

n

q

j � jQj � (b(A+ c(A))

c(A)

� c(A)!

Which proves its termination withn � O(jQj

3�c(A)

�

2

P

0

(c(A))

) whereP
0

is a polynomial.
Now, we have to estimate the cost of each inference step.

Of course, we assume that identical subterms are shared.
More precisely, each new run is a rule whose sons are al-
ready in the set. Hence checking thatr(�

1

; : : : ; �

n

) is a
run can be performed in timec(A) since disequalities are
checked in constant time. Finally, it remains to check the
predicateM. If � satisfies the following additional prop-
erty:

(�� �

0 and� 2 E

n

q

0

) implies�0 2
[

q2Q

E

n

q

then only the runs which are already inEn

q

are possible can-
didates for�

1

; : : : ; �

k

in the definition ofM. There are at
most jEn

q

j possible runs to consider andc(A) positionsp.
Finally, for each pumping, verifying whether or not it cre-
ates a close equality requires timec(A). Hence minimality
condition can be checked in time at most

jQj � (b(A+ c(A))

c(A)

� c(A)!� c(A)

2

Together with the bound on the number of steps, we get the
desired property.

It still remains to exhibit an ordering� which satisfies
all our requirements:

Lemma 20 There is an ordering� which is monotonic,
well-founded, total onT (�) and such that, ift � u, then
the depth oft is larger or equal than the depth ofu.

sketch of the proof: consider the following interpretation
of t: I(t) is the triple(d(t);M(t); t) whered(t) is the depth
of t, M(t) is the multiset of strict subterms oft. Triples are
ordered with the lexicographic composition of 1– the order-
ing on natural numbers 2– The multiset extension of� 3–
a lexicographic path ordering extending a total precedence

(see [6] for complementary definitions on orderings).� it-
self is defined asu� t iff I(u) > I(t). 2

As a consequence of theorem 15 and proposition 7, we
get:

Theorem 21 Ground reducibility of a termt w.r.t a
rewrite systemR can be decided in deterministic time
O(2

P (ktk;kRk)

) whereP is a polynomial.

The coefficients ofP may depend linearly froma (the
maximal arity of a function symbol) andkFk.

Let us emphasize that using an ordering which has the
properties of lemma 20 instead of the usual pumping order-
ing was crucial in the proof; for instance the totality of the
ordering allows much more pumpings that usually. Hence
looking for minimal runs restricts the search space in a dra-
matic way. The construction of the propagation lemma re-
lies on these properties.

6 Lower bound

Theorem 22 Ground reducibility is EXPTIME-hard, for
linear rewrite systemsR and linear termst.

The proof is very much similar to H. Seidl’s proof [15]
that inclusion of tree languages is EXPTIME-hard. We en-
code computation trees of an alternating Turing machineM

which works on a polynomially bounded space as a term in
T (F). (This encoding is polynomial). Then, from an input
w of the Turing machine, we build a termt and a rewrite
systemR such that there is a ground instance inT (F) of t
which is irreducible iffM acceptsw. R andt are built in
polynomial time w.r.t.w andjMj. The irreducible ground
instances oft simply describes the accepting configurations:
t = >(x). The rules inR essentially check that the initial
configuration isw and discards trees which are not compu-
tation trees: this can be verified locally with a polynomial
number of rules.

It is also possible to prove EXPTIME-hardness by re-
ducing the emptiness problem for the intersection ofn tree
automata. The latter is EXPTIME-complete ([16, 7]).

7 Conclusion

We proved that ground reducibility is EXPTIME-
complete for both the linear and the non-linear case. This
closes a pending question. However, we do not claim that
this result in itself gives any hint on how to implement a
ground reducibility test. As we have seen, it is not tractable
in general. A possible way to implement these techniques
as efficiently as possible was suggested in [1]. On the av-
erage, some algorithms may behave well. In any case, we
claim that tree automata help both in theory and in practice.

References

[1] A.-C. Caron, H. Comon, J.-L. Coquidé, M. Dauchet, and
F. Jacquemard. Pumping, cleaning and symbolic constraints
solving. InProc. Int. Conference on Algorithms, Languages
and Programming, Lecture Notes in Computer Science, vol.
820, Jerusalem, July 1994. Springer-Verlag.

[2] A.-C. Caron, J.-L. Coquidé, and M. Dauchet. Encompass-
ment properties and automata with constraints. In C. Kirch-
ner, editor,5th International Conference on Rewriting Tech-
niques and Applications, volume 690 ofLecture Notes in
Computer Science, Montreal, Canada, June 1993. Springer-
Verlag.

[3] H. Comon. An effective method for handling initial alge-
bras. InProc. 1st Workshop on Algebraic and Logic Pro-
gramming, Gaussig, LNCS 343. Springer-Verlag, Nov. 1988.

[4] H. Comon and F. Jacquemard. Ground reducibility and au-
tomata with disequality constraints. In P. Enjalbert, editor,
Proc. 11th Symp. on Theoretical Aspects of Computer Sci-
ence, Lecture Notes in Computer Science, vol. 775, Caen,
1994. Springer-Verlag.

[5] Dauchet, Caron, and Coquidé. Automata for reduction prop-
erties solving.JSCOMP: Journal of Symbolic Computation,
20, 1995.

[6] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In
J. van Leeuwen, editor,Handbook of Theoretical Computer
Science, volume B, pages 243–309. North-Holland, 1990.

[7] T. Frühwirth, E. Shapiro, M. Vardi, and E. Yardeni. Logic
programs as types for logic programs. InProc. 6th IEEE
Symp. Logic in Computer Science, Amsterdam, pages 300–
309, 1991.

[8] J. Gallier and R. Book. Reductions in tree replacement sys-
tems.Theorical Computer Science, 37:123–150, 1985.

[9] F. Jacquemard.Automates d’arbres et Réécriture de termes.
PhD thesis, Université Paris-Sud, 1996.

[10] J.-P. Jouannaud and E. Kounalis. Automatic proofs by in-
duction in theories without constructors.Information and
Computation, 82(1), July 1989.

[11] D. Kapur, P. Narendran, D. Rosenkrantz, and H. Zhang. Suf-
ficient completeness, ground reducibility and their complex-
ity. Acta Inf., 28:311–350, 1991.

[12] D. Kapur, P. Narendran, and H. Zhang. On sufficient com-
pleteness and related properties of term rewriting systems.
Acta Inf., 24(4):395–415, 1987.

[13] E. Kounalis. Testing for the ground (co)-reducibilityin
term rewriting systems. Theoretical Computer Science,
106(1):87–117, 1992.

[14] D. Plaisted. Semantic confluence tests and completion meth-
ods. Information and Control, 65:182–215, 1985.

[15] H. Seidl. Deciding equivalence of finite tree automata.Siam
Journal of Computing, 19(3):424–437, 1990.

[16] H. Seidl. Haskell overloading is DEXPTIME-complete.Inf.
Process. Lett., 52:57–60, 1994.

